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Preface

 

A wide range of potential sources of noise and distortion can degrade the
quality of the speech signal in a communication system. 

 

Noise Reduction in
Speech Applications 

 

explores the effects of these interfering sounds on speech
applications and introduces a range of techniques for reducing their influ-
ence and enhancing the acceptability, intelligibility, and speaker recogniz-
ability of the communications signal. A systems approach to noise reduction
is taken that emphasizes the advantage of minimizing noise pickup and
creation, in the first instance, in addition to choosing the most appropriate
noise reduction technique at each stage to obtain the best overall result. This
handbook aims to make the available technologies better known and to set
expectations of what can actually be achieved in practice at a realistic level.
Sufficient detail is given for readers to decide which, if any, of the noise
reduction techniques discussed is an appropriate solution for their own
systems and also to help them make the best use of these technologies.

The timing of this book is particularly appropriate. Although much of the
technology required for noise reduction has existed for some time, it is only
with the recent development of powerful but inexpensive digital signal
processing (DSP) hardware that implementation of the technology in every-
day systems has started to become practical.

 

Noise Reduction in Speech Applications 

 

begins with a tutorial chapter cover-
ing background material on digital signal processing and adaptive filtering.
Emphasis is placed on techniques relevant to noise reduction in speech
applications that are referenced by the authors of later chapters. This tutorial
chapter is written at a level suitable for students studying DSP techniques
as part of their electrical engineering or acoustics courses and for master’s
degree students taking specialist digital signal processing courses.

The remainder of the book is divided into three sections:

 

Systems Aspects

 

 addresses the need to consider the complete system and
apply the most appropriate noise reduction technique at each stage to
achieve the best overall result.

 

Digital Algorithms and Implementation

 

 looks at three types of digital
noise reduction algorithms in detail: single-channel speech enhancers, micro-
phone arrays, and echo cancellers. Example code and audio wavefiles illus-
trating the noise problems and solutions are provided to accompany these
chapters. These files are available at http://www.crcpress.com/e_products/
download.asp?cat_no=0949. The example code will be of particular interest
to students of the subject, whereas the audio wavefiles will be of interest to
a wider audience, including readers with limited technical knowledge but
an interest in the noise reduction achievable with such algorithms.
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Special Applications 

 

investigates the use of noise reduction techniques in
eight application areas, including speech recognition, Internet telephony, and
digital hearing aids. This final section is aimed at potential commercial cus-
tomers of this technology and focuses on the sorts of results that can be
achieved in practice. Audio wavefiles are provided to accompany these chap-
ters at http://www.crcpress.com/e_products/download.asp?cat_no=0949.

Each chapter of this book concludes with a list of references that provide
guidance for readers wishing to examine the subject of the chapter in more
detail. In addition, because many of the chapters use acronyms that may be
unfamiliar to the reader, a general list of acronyms is provided at the front
of the book.

It has been a great pleasure working with the chapter authors on the
production of this book. The willingness of these specialists to sacrifice
valuable research time to prepare this review material is greatly appreciated.
Without their commitment, this book would not have been possible. I have
enjoyed watching this book develop, and I hope that those who read it will
find it to be a valuable source of information.

Many thanks are due to NCT Group, Inc. U.S.A. for supporting my
involvement in the preparation of this book. A substantial debt of gratitude
is due also to James Elburn of NCT (Europe) Ltd., U.K. who provided
invaluable IT support throughout this project, and to Stephen Leese, who
advised on suitable subjects and contributors.

 

Gillian M. Davis
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Acronyms

 

ACRM Absolute Category Rating Method
ADC analog-to-digital converter
AFC alternative forced choice
AGC automatic gain control
ALU arithmetic logic unit
ANC active noise control
ANCU adaptive noise cancellation unit
ANN artificial neural network
API application program interface
APLB adaptive phase-locked buffer algorithm
AR autoregressive
ASIC application-specific integrated circuit
ATM asynchronous transfer mode; automated teller machine

BB background buzz (specific to the DAM)
BC background chirping (specific to the DAM)
BJT bipolar junction transistor
BNH background noise high frequency (specific to the DAM)
BNM background noise mid frequency (specific to the DAM)
BNL background noise low frequency (specific to the DAM)
BS background static (specific to the DAM)
BSS blind source separation

CAE composite acceptability estimate (specific to the DAM)
CBA composite background acceptability (specific to the DAM)
CCS crosstalk cancellation system
CDCN codeword-dependent cepstral normalization
CE common mode error
CER command error rate
CIA composite isometric acceptability (specific to the DAM)
CM common mode
CMN cepstral mean normalization
CNG comfort noise generator
COTS commercial off-the-shelf
CPA composite perceptual acceptability (specific to the DAM)
CPU central processing unit
CSA composite signal acceptability (specific to the DAM)
CSU critical speech unit
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DAC digital-to-analog converter
DACS Digital Access Carrier Systems
DALT Diagnostic Alliteration Test
DAM Diagnostic Acceptability Measure
DAT Diagnostic Alliteration Test
DCRM Degradation Category Rating Method
DCT discrete cosine transform
DE differential error
DFT discrete Fourier transform
DM differential mode
DMA direct memory access
DMCT Diagnostic Medial Consonant Test
DMOS Degradation Mean Opinion Score
DPLL digital phase-locked loop
DRT Diagnostic Rhyme Test
DSL digital subscriber line
DSP digital signal processing/processor
DSRT Diagnostic Speaker Recognizability Test
DST discrete sine transform
DTFT discrete-time Fourier transform
DWT discrete wavelet transform

EM expectation maximization
EMAP extended MAP
emf electromagnetic field
EPQ elementary perceived qualities
ERL echo return loss
ERLE echo return loss enhancement
ETSI European Telecommunications Standards Institute

FEC front-end clipping
FFT fast Fourier transform
FIR finite impulse response
FXLMS filtered-x least mean squares
FXO foreign exchange office
FXS foreign exchange station

GCC generalized cross correlation
GJB Griffiths-Jim beamformer
GPP general-purpose processor
GSC generalized sidelobe canceller
GSD generalized sidelobe decorrelator
GSS geometric source separation
GUI graphical user interface
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HINT Hearing in Noise Test
HMM hidden Markov model
HOS higher-order statistics
HOT hold-over time
HPI host port interface
HRTF head-related transfer function

IBA isometric background acceptability (specific to the DAM)
IIR infinite impulse response
IMC internal model control
INT induction neutralizing transformers
ISA instruction set architecture; isometric signal acceptability (specific

to the DAM)
ISDN integrated services digital network
ISR interrupt service routine
ITU International Telecommunication Union

JFET junction field-effect transistor

KLT Karhunen-Loeve transform

LAN local area network
LCMV linearly constrained minimum variance
LMS least mean square(s)
LP linear prediction
LPF low-pass filter
LSS linear spectral subtraction
LTI linear and time invariant

MAC multiply and accumulate
MAP maximum 

 

a posteriori

 

MFCC Mel frequency cepstral coefficients
MLLR maximum likelihood linear regression
MMSE minimum mean square(d) error
MNRU modulated noise reference unit
MOS mean opinion score
MPLS multiprotocol label switching
MRT Modified Rhyme Test
MSE mean squared error
MSUB magnitude spectrum of noise

NG noise generator
NLP nonlinear processing
NOC network operations center
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NOP null operations
NSS nonlinear spectral subtraction

OS operating system
OSI open system interconnection

PAC physical acoustical correlates
PAMS perceptual analysis measurement system
PB phonetically balanced
PBA perceptual background acceptability (specific to the DAM)
PCM pulse code modulated
PCU pipeline control unit
pdf probability density function
PDF probability distribution function
PESQ perceptual evaluation of speech quality
PMC parallel model combination
POF probabilistic optimal filtering
PSA perceptual signal acceptability (specific to the DAM)
PSD power spectral density
PSTN public-switched telephone network
PSUB power spectrum of noise
PVT perceived voice trait

QoS quality of service

RASTA relative spectral processing
RFI radio frequency interference
RISC reduced instruction set computer
RLS recursive least squares (algorithm)
RMA rate-monotonic analysis
RMS root-mean square
RSVP resource reservation protocol
RTCP real-time transport control protocol
RTOS real-time operating system
RTP real-time transport protocol

SB signal babble (specific to the DAM)
SD signal distortion (specific to the DAM)
SF signal flutter (specific to the DAM)
SH signal high pass (specific to the DAM)
SI signal interrupted (specific to the DAM)
SIP Session Initiation Protocol
SIR signal-to-interference ratio
SL signal low pass (specific to the DAM)
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SN signal nasal (specific to the DAM)
SNR signal-to-noise ratio; speech-to-noise ratio
SPINE speech in noisy environments (database)
SQNR signal-to-quantization-noise ratio
SRAM static RAM
SS spectral subtraction
ST signal thin (specific to the DAM)

TCB task control block
TCL terminal coupling loss
TCP transport control protocol
TF transfer function
THD total harmonic distortion
TIA Telecommunications Industry Association
TOS type of service
TRI transformed rating intelligibility (specific to the DAM)
TRP transformed rating pleasantness (specific to the DAM)

UDP user datagram protocol

VAD voice activity detector
VCA voltage-controlled amplifier
VLIW very long instruction word
VoFR voice over frame relay
VoIP Voice over Internet Protocol
VOX voice-operated switch
VTS vector Taylor series

WAN wide area network
WDRC wide dynamic range compression
WS waveform synthesis

 

0949_frame_FM  Page 15  Tuesday, March 5, 2002  10:52 AM

© 2002 by CRC Press LLC



 

Contents

 

Section I Tutorial

1

 

Noise and Digital Signal Processing

 

Stephan Weiss, Robert W. Stewart, and Gillian M. Davis

 

Section II System Aspects

2

 

Analog Techniques

 

Malcolm J. Hawksford

 

3

 

Hardware Design Considerations

 

Robert S. Oshana

 

4

 

Software Design Considerations for Real-Time DSP
Systems

 

Elizabeth G. Keate

 

5

 

Evaluating the Effects of Noise on Voice Communication 
Systems

 

William D. Voiers, Alan D. Sharpley, and Ira L. Panzer

 

Section III Digital Algorithms and Implementation

6

 

Single-Channel Speech Enhancement

 

Graham P. Eatwell

 

7

 

Microphone Arrays

 

Stephen J. Leese

 

8

 

Echo Cancellation

 

Stephen J. Leese

 

0949_frame_FM  Page 17  Tuesday, March 5, 2002  10:52 AM

© 2002 by CRC Press LLC



 

Section IV Special Applications

9

 

Signal and Feature Compensation Methods for Robust
Speech Recognition

 

Rita Singh, Richard M. Stern, and Bhiksha Raj

 

10

 

Model Compensation and Matched Condition Methods for 
Robust Speech Recognition

 

Rita Singh, Bhiksha Raj, and Richard M. Stern

 

11

 

Noise and Voice Quality in VoIP Environments

 

Dennis Hardman

 

12

 

Noise Canceling Headsets for Speech Communication

 

Lars Håkansson, Sven Johansson, Mattias Dahl, Per Sjösten,
and Ingvar Claesson

 

13

 

Acoustic Crosstalk Reduction in Loudspeaker-Based Virtual 
Audio Systems

 

Darren B. Ward

 

14

 

Interference in Telephone Circuits

 

George Keratiotis, Larry Lind, Minesh Patel, John W. Cook,
and Pete Whelan

 

15

 

An Adaptive Beamforming Perspective on Convolutive
Blind Source Separation

 

Lucas Parra and Craig Fancourt

 

16

 

Use of DSP Techniques to Enhance the Performance
of Hearing Aids in Noise

 

Douglas M. Chabries and Victor Bray

  

0949_frame_FM  Page 18  Tuesday, March 5, 2002  10:52 AM

© 2002 by CRC Press LLC



 

Section I:

 

Tutorial

 

0949_frame_C01  Page 1  Tuesday, March 5, 2002  10:59 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



   

1

 

Noise and Digital Signal Processing

 

Stephan Weiss, Robert W. Stewart, and Gillian M. Davis

CONTENTS

 

Introduction 
Analog/Digital Interfacing and Noise Chain

A Generic Digital Speech Communication System
Sampling
Quantization
Signal-to-Noise Ratio

Stochastic Signals and Their Characteristics
Probability Density Function 
Expectation, Mean, and Variance
Correlation and Power Spectral Density

Digital Filtering
Difference Equation and 

 

z

 

-Domain Representation
Filter Design
Optimal or Wiener Filtering

Discrete Signal Transforms
Discrete Fourier Transform
Spectral Analysis with the DFT
Other Discrete Transforms
Noise Reduction Based on Signal Transforms 

Adaptive Digital Filtering 
Structure and Architectures
Mean Square Error Optimization
Gradient Techniques
LMS Convergence Characteristics
Other Adaptive Filter Algorithms

Conclusions
References

 

0949_frame_C01  Page 3  Tuesday, March 5, 2002  10:59 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



   

Introduction

 

Electronic systems in the context of audio communication perform transmis-
sion, recording, playback, analysis, or synthesis of speech signals. When
designing a system for any of these purposes, noise influences must be care-
fully considered. Different types of noise and distortion can be characterized,
and a number of signal processing concepts exist that can assist in mitigating
their effect, thus enhancing the quality or intelligibility of the speech signal.
Digital signal processing (DSP) offers a number of powerful tools that,
depending on the circumstances, may or may not be applicable to specific
types of noise corruptions. Therefore, the purpose of this introductory chapter
is to create some awareness of the “noise chain” in a speech communication
system and the relevant fundamental digital signal processing concepts,
which can be exploited to design a system that is robust toward noise.

“Analog/Digital Interfacing and Noise Chain” gives an overview of the
different stages in a general digital speech communication system and their
exposure to, and inherent production of, noise. To characterize noise, which
is generally assumed to be random, some background of stochastic signals
and their quantities are reviewed in “Stochastic Signals and Their Charac-
teristics.” If the noise does not share the same frequency range as the speech
signal, digital filtering can be a promising technique for noise reduction; this
is discussed in “Digital Filtering.” If noise and speech overlap in frequency
but the speech signal exhibits specific features, processing in a transform
domain may present a viable solution. The fundamentals of transforms and
transform-domain processing are detailed in “Discrete Signal Transforms.”
Finally, if a probe of the corrupting noise is available or the noise is periodic,
powerful adaptive DSP algorithms can be applied; these are reviewed in
“Adaptive Digital Filtering.”

The scope of this chapter is to provide a simple and generally intuitive
overview of the DSP fundamentals upon which noise reduction methods
can be based. Examples are provided that give additional insight into the
working and application of the techniques discussed. For further informa-
tion, the reader should consult the reference list at the end of this chapter
and the specialized DSP applications discussed elsewhere in Sections III and
IV of this book.

 

Analog/Digital Interfacing and Noise Chain

 

Any system involving the transmission, acquisition, or generation of speech
is subject to a wide range of influences that may deteriorate the quality of
the speech signal. This can include external interferences such as background
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noise in the recording, but it can also extend to echoic effects or nonlinear
distortions introduced by analog electroacoustic devices or amplifiers.

Some of these adverse influences can be controlled through system param-
eters, such as sampling rate and word length, while others can be mitigated
by DSP techniques. In the following, potential sources of noise and distortion
in a speech communication system are highlighted and categorized. We then
review basic signal processing techniques and discuss which particular noise
influences can be addressed by them.

 

A Generic Digital Speech Communication System

 

A generic speech communication system connecting a speaker A to a listener
B is shown in Figures 1.1 and 1.2. Taken on its own, Figure 1.1 represents a
recording or general speech acquisition system, while Figure 1.2 implements
a mechanism to synthesize speech or play back speech. Concatenated, the
two block diagrams implement a simplex speech transmission system. From
this simplex system, duplex communication can be established by addition-
ally operating the same concatenated system from B back to A. In either of
the two cases of Figures 1.1 and 1.2, a similar “noise chain” is encountered
that will affect the quality of the signal of interest. In the case of the speech
communication system in Figure 1.1, distortion includes:

 

FIGURE 1.1

 

Stages of acquiring a speech signal, which are prone to noise corruption and distortion.

 

FIGURE 1.2

 

Reverse operation to Figure 1.1 where different stages suffer from noise and distortion.

analysis
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signal conditioning
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coding/
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∑

 

Environmental noise: The transducer picking up the voice of
speaker A may be corrupted by environmental noise, e.g., in an
airplane cockpit, where engine noise corrupts the pilot’s voice in
the microphone signal.

 

∑

 

Unwanted reverberation or echo: If speaker A is in an echoic envi-
ronment, the recorded speech signal may be subject to severe dis-
persion and echo.

 

∑

 

Acoustic echo feedback: If the speech communication is full duplex,
i.e., listener B can also communicate back to speaker A, then B’s
voice might be picked up by A’s microphone and fed back to B.
This situation arises in, e.g., hands-free telephony and results in
severe intelligibility problems.

 

∑

 

Nonlinear amplifier distortion: Nonlinear distortion occurs if the
amplifier is overdriven; in an extreme case, the signal becomes
clipped.

 

∑

 

Amplifier noise: The amplifier may produce noise itself through,
e.g., thermal influences. This noise can become audible, particularly
for amplification with high gain.

 

∑

 

The anti-alias low-pass filter (LPF) in the signal conditioning block
may distort the signal by suppressing high-frequency components
of the speech.

 

∑

 

Jitter: This results in an irreversible signal distortion through an
inaccurate clock signal for sampling. However, jitter is a problem
that only affects high sampling rates that usually lie beyond the
ones used for speech and audio.

 

∑

 

Quantization noise in the analog-to-digital converter (ADC): Dis-
tortion is introduced due to the round-off operation of sample
values.

 

∑

 

Loss in coding and compression: Unlike lossless coders, lossy cod-
ing or compression schemes achieve a high compression of data
through a trade-off against signal distortion. Although the aim of
lossy coders is to refrain only from the coding of information that
cannot be perceived by the human ear anyway, some audible dis-
tortion can be incurred.

When the data are finally stored, transmitted, or processed, further signal
distortion can be encountered, e.g., through channel errors or interference
in a transmission scenario. In the second part of the speech communication
system in Figure 1.2, similar noise influences are found in reversed order:

 

∑

 

Noise introduced in decoding, decompression, or retrieval from
storage medium.

 

∑

 

Inaccuracies in the signal reconstruction.
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∑

 

Nonlinear distortion and amplifier noise.

 

∑

 

Nonlinear distortion and noise in the loudspeaker.

 

∑

 

Environmental noise: Interfering acoustic noise can disturb the
quality or intelligibility of the signal for listener B. For example,
the headphone signal is likely to be superposed with engine noise
at the pilot’s ear.

The noise influences listed above are not comprehensive but give an idea of
the various sources of distortion to which speech communication is prone
in the “noise chain.” If the distortion becomes too dominant, then the signal
quality quickly degrades.

In the remainder of this section, we concentrate on distortion due to the
conversion of a signal from an analog waveform to its digital representation.
In particular, the distortion introduced by quantization, discussed below,
will provide the motivation to define a suitable “noise model.” This additive
noise model in turn permits the definition of a measure, the signal-to-noise
ratio (SNR), to assess the severeness of noise distortion (see below). Before
we treat this “classic” model, and its assumptions and characteristics, we
consider sampling in the following section.

 

Sampling

 

A first step toward a digital number representation is the sampling of a
signal 

 

x

 

(

 

t

 

), with 

 

t

 

 being the continous time variable, to obtain time-discrete
values. This is generally performed by a sample-and-hold device. If we
assume ideal sampling of an analog electrical signal 

 

x

 

(

 

t

 

) with a sampling
period 

 

T

 

s

 

 (and hence a sampling rate of 

 

f

 

s

 

 = 1/

 

T

 

s

 

), the result of the sampling
process, 

 

x

 

s

 

(

 

t

 

), can be expressed by multiplying 

 

x

 

(

 

t

 

) with a pulse train,

(1.1)

The pulse train consists of Dirac impulses 

 

d

 

(

 

t

 

),

(1.2)

which are spaced at integer multiples of the sampling period 

 

T

 

s

 

. By exploiting
the relation between an impulse train and its Fourier series representation,
the Fourier transform 

 

X

 

s

 

 (

 

j

 

w

 

) 

 

●

 

—

 

�
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),

(1.3)
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can be expressed as

 

1

 

(1.4)

(1.5)

As an example, consider the spectrum 

 

X

 

(

 

j

 

w

 

) of the continuous time signal

 

x

 

(

 

t

 

) as given in Figure 1.3(a). Then according to Equation (1.5), the spectrum

 

X

 

s

 

(

 

j

 

w

 

) consists of a superposition of spectra of the continuous signal, 

 

X

 

(

 

j

 

w

 

),
shifted by integer multiples of the (angular) sampling rate 

 

w

 

s

 

 = 2

 

p

 

f

 

s

 

, as shown
in Figure 1.3(b). Therefore, unless the continuous signal 

 

x

 

(

 

t

 

) is sufficiently
bandlimited, an overlap of spectral contributions occurs in the sampling
process. This spectral overlap, known as aliasing and visualized in Figure
1.3(c), can be avoided by selecting the sampling rate appropriately as 

 

w

 

s

 

 >
2

 

w

 

max

 

, where 

 

w

 

max

 

 is the maximum frequency component of the continuous
time signal 

 

x

 

(

 

t

 

). The rate 2

 

w

 

max

 

 is commonly labeled as the Nyquist rate

 

w

 

Nyquist

 

, which permits us to formulate the sampling theorem as

(1.6)

According to Equation (1.6), sampling has to occur at least at the Nyquist
rate to ensure the correct and faithful representation of an analog signal in
the digital domain, such that, e.g., the underlying analog signal can be
reconstructed. As the exact spectral content of the signal supplied to an ADC

 

FIGURE 1.3

 

(a) Spectrum of analog signal 
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), and the spectra of sampled signals with
(b) 
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s,1

 

 > 2

 

w
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 and (c) 

 

w

 

s,2

 

 < 2
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; note the periodicity 

 

w

 

s

 

 of the sampled spectra.
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is 

 

a priori

 

 unknown, the signal has to be appropriately bandlimited to avoid
potential aliasing. This is performed by an anti-alias low-pass filter with a
stopband frequency of 

 

w

 

s

 

/2. The spectra of a signal prior to and after anti-
alias filtering are depicted in Figures 1.4 and 1.5. Note that after filtering in
Figure 1.5, the signal possesses no more components at or above 

 

w

 

s

 

/2, and
hence sampling can be performed perfectly satisfying the Nyquist theorem
in Equation (1.6).

An alternative representation of the spectrum of 

 

x

 

s

 

(

 

t

 

) considers the sam-
pled signal, 

 

x

 

[

 

nT

 

s

 

], as sifted by the pulse train. This forms a discrete time
signal, in shorthand denoted as 

 

x

 

[

 

n

 

], with a discrete time index 

 

n

 

 

 

Œ

 

 

 

�

 

 of
integer values. The Fourier transform 

 

X

 

s

 

(

 

j

 

w

 

) 

 

●

 

—

 

� 

 

x

 

s

 

(

 

t

 

) based on 

 

x

 

[

 

nT

 

s

 

] can
be written as

(1.7)

and is known as the Fourier transform of a discrete time sequence 

 

x

 

[

 

n

 

]. The
periodicity of Xs(jw), which may also be noted from Equation (1.5), can be
reflected in the notation by writing Xs(ejW) instead of Xs(jw), whereby W =
w/Ts is the normalized angular frequency.

Reconstruction of the underlying continuous-time analog signal x(t) can
be accomplished from the sampled signal values x[n] by filtering the impulse
train xs(t) of Equation (1.1) by a reconstruction filter — an ideal LPF with
cut-off frequency ws/2. In the time domain, such an ideal reconstruction filter
is given by the sinc-function  defined as

(1.8)

FIGURE 1.4
Spectrum X(jw) corresponding to an analog continuous time signal x(t).

FIGURE 1.5
Spectrum of continuous time signal x(t) after anti-alias filtering with a filter H(jw) to remove
spectral components above ws/2.
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Hence the reconstructed signal  is

(1.9)

where * denotes convolution. Ideal reconstruction  = x(t) from the sam-
pled signal values is theoretically possible, if x(t) is suitably bandlimited and
the Nyquist criterion (Equation [1.6]) is satisfied. In practice, some inaccu-
racies have to be permitted, as neither the anti-alias nor the reconstruction
filter is ideal but must be approximated by a realizable system, which can
introduce amplitude and phase distortions and only provide a finite stop-
band attenuation.

Quantization

After a sample-and-hold device has created discrete-time (usually voltage)
signal values, x[n], these values need to be rounded such that representation
in a given number format is possible. DSP number formats can be fixed-
point or floating-point. We consider here only fixed-point systems, where N
bits are dedicated to represent a signal value within a manifold of 2N possible
levels. To represent both positive and negative values, 2’s complement nota-
tion is employed. This allows the following range of integer values to be
represented by an N bit number:

The rounding operation (“quantization”) to one of the 2N discrete signal
values is performed by a quantizer characteristic, as shown in Figure 1.6.
Although quantization itself is a nonlinear operation, the quantizer charac-
teristic as, e.g., given in Figure 1.6, a so-called mid-tread quantizer with
coded zero-level,2 at least approximates a linear function.

Two sources of error arise. First, the rounding operation of the quantizer
from x[n] to a quantized signal, xq[n], at its output causes a quantization
error e[n]. As is obvious from Figure 1.6, the maximum modulus of e[n] is
half of the quantization step size, q/2. Therefore, the quantization error can
be controlled by the word length N, whereby the exact relation between N
and the power of the resulting quantization error will be established in the
next section, “Signal-to-Noise Ratio.” Second, if the amplitude of the input
signal, x[n], exceeds the range [Vmin; Vmax] of the quantizer, the signal is
clipped and harmonic distortion is introduced into xq[n]. To avoid clipping,

Word Length, N Number Range

8 bits
16 bits
24 bits
N bits
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the analog input signal requires preprocessing by an amplifier, as given in
the block diagram of Figure 1.1, to limit the amplitude of x(t). Also, this
amplifier is to ensure that small signal amplitudes are avoided which would
only excite the quantizer characterized in Figure 1.6 around the origin and
hence waste resolution.

The problem of resolving small signal amplitudes while permitting larger
amplitudes without clipping has led to nonlinear quantizer characteristics.
These characteristics offer a smaller step size q around the origin and larger
step sizes toward larger signal amplitudes. Although the optimum quantizer
characteristic in this respect is determined by the probability density function
(i.e., the histogram) of x[n], usually standardized nonlinearities are
employed. These encompass A-law, a European standard, and m-law, which
is used in the United States and Japan.2

Signal-to-Noise Ratio

To assess the effect that noise has on a signal, a measure known popularly
as signal-to-noise ratio (SNR) is applied. This measure is based on an additive
noise model, as shown in Figure 1.7, where the quantized signal xq[n] is a
superposition of the unquantized, undistorted signal x[n] and the additive
quantization error e[n]. The ratio between the signal powers of x[n] and e[n]
defines the SNR. To capture the wide range of potential SNR values and to
consider the logarithmic perception of loudness in humans, SNR is generally
given in a logarithmic scale, in decibels (dB),

(1.10)

where  are the powers of x[n] and e[n], respectively. Specifically
for the assessment of quantization noise, SNR is often labeled as the signal-
to-quantization-noise ratio (SQNR).

FIGURE 1.6
Quantizer characteristic with N = 3 bits.
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For a linear quantizer characteristic as in Figure 1.6, the SNR can be
quantified if the word length N is known. Let us assume a sinusoidal signal
x[n] with maximum amplitude Vmax and therefore power  The
quantization noise is assumed to be uniformly distributed within the interval
[–q/2; q/2], and the resulting noise power is  = q2/12, as will be derived
below in “Expectation, Mean, and Variance.” Hence, we can evaluate Equa-
tion (1.10) as

(1.11)

Thus, for example, a word length of N = 16 bits results in an SNR of 98 dB.
This SNR value represents the power ratio between an input signal of
maximum amplitude and the quantization noise. However, even for smaller
input signal amplitudes, the noise power remains q2/12 and therefore forms
a “noise floor” that can only be altered by modifying the word length N.
Therefore, Equation (1.11) also states the dynamic range of the digital sys-
tem, i.e., the range between the minimally and maximally resolvable input
signal amplitude.

Similar to the effect of the quantization noise on the signal, most other
noise sources in the noise chain of Figures 1.1 and 1.2 can be described by
the additive noise model of Figure 1.7. Subsequently, SNR measures can be
used to characterize the severeness of the inflicted distortion.

Stochastic Signals and Their Characteristics

The description of a time domain waveform by other means such as its
Fourier transform or by parameters such as the signal power or the maximum
frequency was found to be useful in “Analog/Digital Interfacing and Noise
Chain.” Such parameters are well defined for deterministic signals for which

FIGURE 1.7
Additive noise model of quantizer.
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an exact analytical formulation of the waveform is generally possible, in
particular for periodic or quasiperiodic signals, which exhibit repetitiveness
or repetitiveness over at least short time intervals, respectively. Signals, how-
ever, whose continued behavior is not known, are termed random or sto-
chastic. Various quantities can be used to characterize such stochastic signals;
the most important ones will be briefly reviewed in the following sections.

Probability Density Function

A very fundamental characteristic of a random signal is its probability den-
sity function (PDF), i.e., the distribution of signal values. For an intuitive
understanding of the PDF, consider the random signal x[n] in Figure 1.8. In
a first step, a histogram is recorded by counting how often certain intervals
of signal amplitudes are hit by the signal x[n]. By taking a large enough
sample set, making the bins of the histogram infinitesimally small, and
normalizing the area under the histogram curve to one, finally the PDF in
Figure 1.8(bottom right) emerges.

The shape of the PDF bears important characteristics; for example, the
signal for which the PDF is shown in Figure 1.8 has a normal or Gaussian
distribution. A particular property of this distribution is that the PDF remains
Gaussian even if the signal is subjected to a linear filtering operation. For

FIGURE 1.8
Description of a time series x[n] (top) by a histogram (bottom left) and its probability density
function (PDF, bottom right).
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this reason, and because many real-world noise signals are at least approx-
imately Gaussian, the Gaussian PDF

(1.12)

is particularly important for modeling signals. The PDF gives access to other
important signal parameters, such as the variance or signal power  or
the mean value mx, which will be derived in the following section, “Expec-
tation, Mean, and Variance.” Besides the Gaussian PDF, many other relevant
distributions exist,3 e.g., the uniform PDF as given in Figure 1.9, where all
signal amplitudes are equally likely to occur.

Expectation, Mean, and Variance

Although the stochastic signal itself is random, some of the underlying
parameters actually are deterministic, such as the mean mx and variance in
Equation (1.12) or the PDF itself. To evaluate the PDF in the example of
Figure 1.8, a large amount of data had to be considered. In general, to
determine or at least faithfully estimate the underlying parameters of a
stochastic signal, intuitively some form of averaging over either many real-
izations of the signal or a large number of signal values is required to bypass
randomness. For analysis purposes, this is performed by the expectation
operator E{·} by averaging over an ensemble of values. Here an ensemble
represents an ideally infinite amount of realizations of random signals, which
are parallel in time and are all drawn from the same statistics, i.e., have the
same underlying PDF, mean, variance, and so forth.1,4

This expectation operator can be used to calculate the pth-order moment
for a random variable x as  Most important are first-
and second-order moments,

(1.13)

(1.14)

FIGURE 1.9
Uniform PDF.
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which yield the mean mx and variance , whereby a small modification was
applied for the variance in Equation (1.14) to compensate for the presence
of a mean mx.

Example: To calculate the quantization noise power in the section “Signal-
to-Noise Ratio,” we note that the quantization error cannot exceed half of
the quantizer’s step size q/2 and e[n] is therefore uniformly distributed on
the interval [–q/2; q/2] as shown in Figure 1.9. As the PDF is symmetric
about e = 0, the mean value according to Equation (1.13) is zero, and we can
calculate the quantization noise power  using Equation (1.14),

(1.15)

which is the result stated earlier in the section “Signal-to-Noise Ratio.”
The above definitions were based on the expectation operator and

ensemble averages. If the random signal x[n] is ergodic, stochastic quanti-
ties such as mx and  can be estimated over a time interval I rather than
an ensemble,

(1.16)

(1.17)

where ^ indicates estimates of the true quantities. The property encompassed
by the term ergodicity implies that ensemble averages over several trials with
a random signal can be replaced by time averages. As an example, let us
consider the mean number of eyes when throwing a die. Ideally, the mean
is calculated over an ensemble of a large number of different dice that have
been thrown. If ergodicity holds, then the same result for the mean can be
obtained from throwing a single die 1000 times and averaging the results.
An obvious case where ergodicity is not given is if the random signal x[n]
is nonstationary, i.e., its mean mx and variance  vary over time.

Correlation and Power Spectral Density

The similarity between two stochastic variables can be expressed by means
of their correlation. Specifically, a measure of similarity between two random
signals x[n] and y[n] as a function of the relative shift, or lag, k between the
two sequences is defined by the cross-correlation
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(1.18)

where the superscript * denotes complex conjugate. Large values of rxy[k]
indicate strong similarity between y[n] and a version of x[n] shifted by k
samples, while a small value means that the similarity is weak, with rxy[k]
= 0 in the extreme case indicating no correlation between the two (shifted)
signals. Also note from Equation (1.18) that

(1.19)

Example: The cross-correlation function of two independent (e.g., pro-
duced by two independent sources) Gaussian random signals, x[n] and y[n],
is

(1.20)

and therefore the cross-correlation is zero if at least one of the two signals
has zero mean.

The autocorrelation sequence can be employed to test the self-similarity
of a signal and to evaluate how predictable successive signal samples are. It
can be derived from Equation (1.18) for y[n] = x[n], yielding

(1.21)

Obvious properties of this autocorrelation sequence are its symmetry with
respect to lag zero and complex conjugation, and its maxi-
mum value for zero lag (k = 0), as the signal x[n] is perfectly self-similar to
itself when no shifts are applied.

The Fourier transform X(ejW) of a signal x[n],

(1.22)

and its inverse transform

(1.23)

only exist for signal x[n] of finite energy, which generally is not the case for
random signals. Therefore, amendments have to be made to define the
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spectrum of a random signal. This is performed by power spectral densities,
which are based on the above correlation sequences of the signal rather than
the signal itself. The power spectral density (PSD) of x[n] is computed by
taking the Fourier transform of its autocorrelation function,

(1.24)

which is also known as the Wiener-Khintchine transform.3 Although not as
widely used as the PSD of Equation (1.24), a cross power spectral density
(cross-PSD) between two random signals x[n] and y[n] can be defined as
Pxy(ejW) ●—� rxy[t] based on the cross-correlation function of Equation (1.18).
Due to Equation (1.19), note that Pxy(e–jW) = Pyx(ejW) ●—� ryx[t]. Although the
definitions of PSD and cross-PSD are based on correlation sequences, they
can be evaluated practically using averaging procedures on Fourier-trans-
formed segments of the random signal x[n].3

Example: For a completely random signal x[n], shifted versions bear no
correlation with the unshifted signal; hence,  Therefore, solving
Equation (1.24) gives

(1.25)

as the PSD of x[n]. The magnitude of the PSD,

(1.26)

is now constant. In analogy to the visible color spectrum, the fact that all
frequencies are equally present in the PSD has led to the term white noise when
describing an uncorrelated random signal with the above autocorrelation.

Example: The filter in Figure 1.10 with impulse response h[n] is excited

by Gaussian white noise with autocorrelation  We are inter-
ested in finding the PSD of the filter output y[n]. The autocorrelation of y[n],
ryy[n] is given by Equation (1.21), and the relation between y[n] and x[n] is

defined by the convolution,  Inserting

the convolution into Equation (1.21) yields

P r exx xx
j( ) [ ]W W= ◊

=-•

•
-Â k

k

k

r n nxx x[ ] [ ].= s 2

P n e exx x
j n

x
j

n

( ) [ ]W W W= ◊ = ◊- -

=-•

•

Â s d s2 2

Pxx x( )W = s 2

r n nxx x[ ] [ ].= ◊s d2

y n h n x n h j x n jj[ ] [ ] [ ] [ ] [ ].= * = ◊ -=-•
•S

0949_frame_C01  Page 17  Tuesday, March 5, 2002  10:59 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



(1.27)

When Fourier transformed, the convolution (Equation [1.27]) corresponds
to a multiplication of H(ejW) ●—� h[n] with H*(ejW) ●—� h*[–n], therefore

(1.28)

represents the magnitude of the PSD. Hence, the initially white input signal
x[n] is “colored” by the filter h[n], and according to Equation (1.28), the
resulting PSD at the filter output is given by the squared magnitude of the
filter.

As a generalization from the above example, the PSDs of a filter input and
output are related by

(1.29)

Similarly, the cross-PSDs Pxy(ejW) and Pyx(ejW) can be derived if the two random
signals are the input and output of a system h[n]. Although not as often used
as the PSDs, the cross-PSD derivations

(1.30)

(1.31)

FIGURE 1.10
Random signal y[n] at the output of a filter impulse response h[n] excited by a Gaussian white
signal x[n].
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will be useful when defining optimum filters in the section “Optimal or
Wiener Filtering.”

Correlation functions and spectral densities are therefore not only impor-
tant characteristics of random signals themselves but also play an eminent
role when the interaction with a linear time-invariant system is to be
described. This will be further elaborated in the following section, which
focuses mainly on filtering by linear time-varying systems, their character-
ization, and design.

Digital Filtering

Linear filtering of digital signals is an essential technique to either enhance
signal components of interest or to attenuate noise components within the
signal. The filter operation, i.e., the relation between the filter input and
output, is in the time domain represented by a difference equation imple-
mentating a discrete convolution. This mathematical description can be
brought into other forms and representations, which permit simple realiza-
tion or analysis of the filter system.

Difference Equation and z-Domain Representation

The input-output behavior of a digital filter is characterized by a difference
equation

(1.32)

where the parameters a[n] and b[n] are the filter coefficients and y[n] is the
filter output in response to an excitation x[n] applied to the filter input. The
difference equation consists of a weighted average over the current input
sample x[n] and L – 1 past input values, whereby L – 1 is called the order
of the feedforward section. Additionally, a J – 1 order section performs a
feedback from J – 1 past filter output samples.

The filter coefficients in Equation (1.32) uniquely characterize the behavior
of the filter. The difference equation (1.32) can be implemented as a signal
flow graph, whereby a manifold of different implementations is possible.
Figure 1.11 shows one such flow graph representation, whereby the feed-
forward and feedback part are separately realized (“direct form I”1,4). Such
flow graph representations generally include basic operations such as
adders, multipliers, and delay elements, whereby the latter delay their input
by one sampling period and can be stacked to delay-lines — similar to a
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shift register — as shown in Figure 1.11 in both the feedforward and feedback
part. From the signal flow graph, it is straightforward to implement a digital
filter as a circuit.

An important tool to characterize both the digital filter itself, as defined
through its difference equation, as well as the relation between the input
and output signals to the filter is the z-transform. This transformation can
be interpreted as a generalization of the Fourier transform for discrete signals
given in Equation (1.7). However, unlike the Fourier transform, the z-trans-
form is not only applicable to steady-state analysis but also can be as well
employed to capture transient behavior. For the z-transform, the forward
transform for a pair h[n] �—● H(z) is given by

(1.33)

The inverse transform is not straightforward, and it generally is, if required,
evaluated through tables for basic signal and system components into which
the z-transform representation has to be decomposed.

As the transform (Equation [1.33]) is linear, applying it to Equation (1.32)
results in

(1.34)

Note that unit delays are replaced by z–1. The transfer function of the digital
filter in Figure 1.11 is the ratio between the output Y(z) ●—� y[n] and input
X(z) ●—� x[n], i.e., describes the input-output behavior:

FIGURE 1.11
Flow graph of a digital filter in direct form I.
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(1.35)

(1.36)

Similar to the Fourier transform, the z-transform has turned the (potentially
awkward) convolution defined by the difference equation (1.32) in the time
domain into a simple product of polynomials, Y(z) = H(z) · X(z), in the
z-domain.

Important characteristics of a digital filter H(z) can be investigated from
factorizations in the z-domain. The fractional polynomial (Equation [1.36])
can be brought into the root representation

(1.37)

where an and bn are the roots of the polynomials A(z) and B(z) in Equation
(1.36), respectively. For z = an or z = bn singularities occur in H(z), whereby
the first case causes Y(z) = 0 and the latter case drives the output to infinity.
Therefore, the parameters an and bn are called the zeros and poles of the
system H(z). As the system exhibits poles, or in general feedback, we are
particularly interested in the stability of H(z), i.e., whether the filter output
remains bounded for a bounded input signal. This stability can be easily
observed from the impulse response of the system, i.e., the series h[n] from
Equation (1.33). The impulse response can be determined by observing the
output y[n] after applying an impulse x[n] = d[n] at the filter input. For a
stable system, the impulse response will converge, whereas for an unstable
system it will diverge. The rare case of an oscillating, but neither decaying
nor diverging system, is termed marginally stable. To address stability, we
determine the roots of Equation (1.37) and define first-order systems Bi(z)
and Ai(z),

(1.38)

Obviously, the system H(z) can be brought into a cascade of subsystems Bi(z)
and Ai(z), as shown in Figure 1.12. The overall system H(z) will be stable if
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and only if all subsystems are stable. The subsystems Bi(z) have no feedback
and are therefore so-called finite impulse response (FIR) filters, whose
impulse response is identical to the filter coefficients, h[n] = b[n] for J = 1.
As the impulse response will be zero after the first L coefficients, an FIR filter
is stable by default.

The impulse response of one of the feedback sections Ai(z) in Figure 1.12
is given by

(1.39)

This impulse response converges for |ai| < 1. Hence, for convergence, all
poles ai must have a modulus smaller than one, i.e., when displayed in a
pole-zero plot, the poles must lie within the unit circle to guarantee stability.

Another important representation for a digital filter is its frequency
response, which can be useful to assess the system’s behavior in the steady-
state case. The frequency response H(ejW) can be calculated by evaluating
H(z) ●—�  h[n] for z = ejW, i.e., on the unit circle. Alternatively, the Fourier
pair relation H(ejW) ●—� h[n] can be invoked by simply calculating the Fourier
transform of h[n] according to Equation (1.22). For display purposes, the
frequency response is usually separated into

(1.40)

where |H(ejW)| is the magnitude response and F(W) the phase response. Some
examples of such descriptions in the frequency domain will be given below.

Filter Design

Noise distortion of a signal of interest may be restricted to a certain frequency
band, such as a jammer signal or mains hum as sources of interference.
Therefore, the design of a filter with a specified frequency response H(ejW)
to suppress these noise components is desirable. Four different main types

FIGURE 1.12
Factorization of the digital filter in Figure 1.11 into first-order subsystems.
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of frequency response can be distinguished: low-pass, high-pass, bandpass,
and bandstop filter, as shown in Figure 1.13. A bandstop filter with a notch
in its frequency response at 50 Hz can, for example, be used to attenuate
mains interference on a signal. The main characteristics of a filter are — as
an example shown for an LPF in Figure 1.14 — the passband width, transition
band width, the stopband edge, stopband attenuation, and passband ripple.
The design of a high-quality filter that possesses a small passband ripple, a
narrow transition band width, and a high stopband attenuation will gener-
ally result in a large number of coefficients, which in turn may make it
difficult to implement the filter in real time.

A large number of different filter design algorithms are embedded in
almost any signal processing software package. While therefore the insight
into the implementation of any such algorithm is secondary, it is important
to be aware of the design criteria in Figure 1.14 and the above trade-off
between filter quality and filter complexity. In this respect, the differences
in the design of FIR and infinite input response (IIR) filters are interesting
and will be commented on briefly.

The design of FIR filters is in many cases based on the specification of a
desired magnitude response, as given in Figure 1.14. After performing an

FIGURE 1.13
Four different basic filter types as defined by their magnitude response: (a) low-pass, (b) high-
pass, (c) bandpass, and (d) bandstop filter.

FIGURE 1.14
Criteria/quality measures in defining the magnitude response of a digital filter.
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inverse Fourier transform, the time-domain response needs to be multiplied
by a tapered window.5 Sometimes several iterations between the time- and
frequency-domain are performed to optimize the filter coefficients. IIR filter
designs are based on well-known algorithms for analog filters, such as But-
terworth or Chebychev filter designs.5-7 The results of these analog filter
designs are transferred into the digital domain by means of a so-called
bilinear transform.

Some of the general advantages and disadvantages of FIR and IIR filter
design are evident from the following example. At a given sampling rate of
fs = 48 kHz, the digital filter should have a cutoff frequency of fc = 6 kHz
(3 dB attenuation point), a transition band width of 1.2 kHz, and a stopband
attenuation of 45 dB. In normalized angular frequency values, this yields Wc

= 2p fc/fs = 2p · 6 kHz/48 kHz = 0.25p and a transition band width of DW =
2p · 1.2 kHz/48 kHz = 0.05p. For the FIR filter, a Parks-McClellan design5 is
selected that fulfills the desired specification with an 83rd-order filter, i.e., L
= 84 and J = 1. An IIR elliptic filter design only requires L = J = 6 for a
comparable quality. The pole-zero plot of the elliptic IIR filter is given in
Figure 1.15 with circles (o) denoting zeroes and asterisks (*) denoting pole
positions in the complex z-plane.

The characteristics for the FIR and IIR designs are compared in Figure 1.16.
Although the IIR system has considerably fewer coefficients and therefore
requires only K + J – 1 = 11 multiply-accumulate (MAC) operations per
sampling period to calculate one new output sample, the FIR filter is with
84 MACs almost eight times more complex. Due to the feedback, an IIR filter
can model a longer impulse response with fewer coefficients compared to
the FIR filter, as evident from Figure 1.16(a) and (b). However, despite the
generally much lower number of coefficients, the IIR filter parameters usu-
ally exhibit a considerable dynamic range, particularly for higher filter
orders. This can result in design deterioration up to instability when trans-
ferring the designed filter coefficients to a fixed point representation with
inherent round-off errors.

The magnitude responses, |H(ejW)| — fulfilling the initial specifications —
are shown in Figures 1.16(c) and (d). Also displayed in Figures 1.16(e) and
(f) are the phase responses F(W) of both designs whereby notably the FIR

FIGURE 1.15
Pole-zero plot for the elliptic IIR H(z) further characterized in Figure 1.16.
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FIGURE 1.16
Filter characteristics (impulse, magnitude, and phase responses from top to bottom) for an FIR filter design (left: Parks-McClellan) and an IIR filter design
(right: elliptic filter).
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has a linear phase response. This linearity is guaranteed by a symmetric
impulse response, which can be embedded as a design option into the filter
design algorithm. The advantage of a linear phase system is that the group
delay g(W) = –dF(W)/dW — specifying how long different frequency compo-
nents in the input signal require to propagate to the filter output — is
constant and no dispersion of a signal of interest is incurred. In contrast, an
IIR filter will never have a linear phase response and, therefore, may not be
applicable if signals sensitive to dispersion are processed.

Optimal or Wiener Filtering

If noise corrupting a signal is restricted to a given frequency band, the
previously discussed filter designs can be applied to reduce the effect of
noise on the signal of interest. These designs are based on the specification
of a desired filter characteristic in the frequency domain. Alternatively, the
so-called “optimal” or Wiener filter can be derived if the statistics of the
signal of interest and the noise are known.

The problem addressed by Wiener filtering is highlighted in Figure 1.17.
There, a random input signal s[n] is filtered by a system g[n] and corrupted
by additive noise v[n], whereby v[n] and s[n] are uncorrelated. Based on the
observable signal x[n], the filter hopt[n] is to be found such that its output
y[n] is a close as possible estimate of s[n] in the mean square error sense,
i.e., such that the power of the error signal e[n] = s[n] – y[n] is minimized.
Although the exact time series is unknown, only the correlation functions,
and therefore the PSDs, of the signals in Figure 1.17 are available.

The solution of the above Wiener problem is a standard exercise described
in many textbooks (see, e.g., References 1, 3, and 8). Here, we only refer to
the general solution based on the PSD of the observed signal x[n], Pxx(ejW),
and the cross-PSD between the signal of interest s[n] and x[n], Psx(ejW),

(1.41)

To derive the filter coefficients hopt[n] �—● Hopt(ejW) in the time domain, an
inverse Fourier transform has to be applied to Equation (1.41). Of the poten-

FIGURE 1.17
Reconstruction of a signal s[n] distorted by a linear system g[n] and corrupted by additive noise
v[n] by means of an optimal (Wiener) filter hopt[n].
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tially noncausal result, only the causal part is realizable and is retained as
the solution.

If the system g[n] �—● G(ejW) filtering the signal of interest is known, the
solution of the optimal Wiener filter in Equation (1.41) can be modified and
expressed solely in terms of the PSDs of the signal of interest and the noise,
Pss(ejW) and Pvv(ejW), respectively:

(1.42)

An interesting case arises if the signal s[n] is not linearly distorted but only
corrupted by noise v[n], i.e., g[n] = d[n]. As hence G(ejW) = 1, Equation (1.42)
simplifies to

(1.43)

Intuitively, it can be seen that for frequencies where the noise PSD, Pvv(ejW),
takes on large values, the Wiener filter will attain a small gain and therefore
attenuate the noise. As in the previous case, the realizability of hopt[n] �—●
Hopt(ejW) is limited to the causal part of the solutions Equations (1.42) and
(1.43). Note, however, that particularly with the simplification g[n] = d[n],
Equation (1.43) addresses a very basic noise suppression problem, and for
the previous filter design example in the previous section, “Filter Design,”
to suppress mains interference the Wiener filter would similarly provide a
bandstop filter at 50 Hz.

Discrete Signal Transforms

Transforms such as the Fourier and z-transforms have so far been encoun-
tered for the purpose of signal or system analysis. In this section, we will
consider discrete transforms, such as, e.g., the discrete Fourier transform
(DFT), which is discussed in the next section, “Discrete Fourier Transform.”
Such transforms fulfill two purposes. First, they can be used as an analysis
tool, such as the DFT approximating the Fourier transform. We will charac-
terize this ability and shortcomings in “Spectral Analysis with the DFT.”
Second, discrete transforms, among which the DFT is but one, can be utilized
to parameterize signals, which bears importance for many practical appli-
cations such as coding and compression of speech signals. The section “Other
Discrete Transforms” will provide a brief overview of a number of trans-
forms. The parameterization property of such discrete transforms can be
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further exploited for noise reduction, as discussed in the section “Noise
Reduction Based on Signal Transforms.”

Discrete Fourier Transform

Fourier techniques analyze a signal or system with respect to sinusoids. The
rationale behind this is that many processes produce by default a sinusoidal
behavior, such as, e.g., rotating machinery, and that sinusoids are eigenfunc-
tions of linear time-invariant (LTI) systems. The latter property is most
important, and means that an LTI system with sinusoidal input will in the
steady state produce a sinusoidal output. This does not hold for any other
function, as, e.g., a square wave input will generally not result in a square
wave output. The only change for a fixed sinusoid is with respect to the
amplitude and phase of the sinusoid, which can therefore be used to
uniquely describe an LTI system’s behavior at that specific frequency.

Fourier analysis therefore tries to find the sinusoidal content in a signal
or system response, which is performed by fitting sinusoids of different
frequencies to the signal. For a fixed frequency, amplitude and phase of the
sinusoid are varied until a “best fit” — mathematically in the least square
error sense — is achieved. The resulting parameter pair of adjusted ampli-
tude and phase is the Fourier coefficient at the specified frequency. Mathe-
matically, this best fit is performed by the scalar product in Equation (1.22),
which on its left-hand side yields the Fourier coefficient at frequency W.

To obtain a practically realizable discrete Fourier transform, we have to
(1) limit the time index, n, to a causal finite interval 0 £ n < N and (2) evaluate
only discrete frequency points (“bins”) W = 0, W0, 2W0, 3W0, etc., yielding

(1.44)

as the transform. As a standard, in the DFT N such equispaced frequency
bins are evaluated, such that W0 = 2p/N. An example of this is given in Figure
1.18. Considering the sampling period Ts, the bin separation in terms of
absolute frequency is

(1.45)

which determines the frequency resolution of the DFT. Therefore, the higher
N, the higher is the frequency resolution of the DFT.

If we write Equation (1.44) in terms of the index k into the frequency bins,

(1.46)
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a matrix representation X = T · x of an N-point DFT is obtained, where x
and X are vectors holding the time-domain samples and the Fourier coeffi-
cients, respectively:

(1.47)

The matrix T is known as the DFT matrix. Due to its structure, the DFT
matrix is symmetric, T = T T, where (·)T indicates the transpose operator.9-11

The DFT matrix is not only invertible, but takes the very simple form
 such that the operation

(1.48)

defines the inverse DFT (IDFT). The operator (·)H denotes Hermitian trans-
pose, performing a transposition and complex conjugation of its argument.

It is clear from Equations (1.47) and (1.48) that a DFT or IDFT operation
requires N2 multiplications and additions (multiply-accumulates, MACs). In
general, if N is not prime, this complexity can be reduced by exploiting
common arithmetic steps in the transform calculation. These redundancies
can be removed by following the so-called butterfly operations of an FFT,
an example of which is given in Figure 1.19. A number of implementations
exist whereby here a so-called decimation-in-time FFT with permutated time

FIGURE 1.18
Example of transforming a sequence x[n] using a DFT with N = 16 points: (a) time-domain
waveform x[n]; (b) magnitude of DFT with underlying spectrum X(ejW) (dashed).
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domain samples is shown.7 If N is a power of two, the complexity of an FFT
is given by N log2 N MACs. Particularly for large N, this significantly reduces
the transform complexity.

Spectral Analysis with the DFT

The classic use of the DFT is that of a numerical tool to calculate the Fourier
transform of some time series x[n]. This has an important relation to noise
reduction, if, for example, a harmonic signal is buried in noise and frequency
domain information is required in order to design a digital filter for retrieving
this signal or for determining the PSDs in case of the Wiener filter in the
section “Optimal or Wiener Filtering.” It is, however, important to under-
stand the limitations of the DFT for this analysis, which will be briefly
outlined in this section.

As noted in Equation (1.7), the spectrum of a discrete signal, x[n], results
in the Fourier domain in a periodicity of 2p/Ts, where Ts is the sampling
period, i.e., the distance between adjacent discrete sample values. Due to the
duality of the Fourier transform, this holds vice versa:1,4 a discrete spectrum
corresponds to a periodic time domain, which is a well-known fact exploited
in the Fourier series. As in Equation (1.46) both domains are discrete, peri-
odicity is enforced in either domain. For the time domain, this results in an
enforced periodicity of N, where N is the number of samples considered in
a DFT, also known as the window length. Thus, the DFT “periodizes” the
data, which is likely to create aberrations.

Example: Consider spectral analysis of a sampled sinusoid with a funda-
mental period of N0 = 16 samples, as shown in Figure 1.20(a). If we apply a
DFT with N = 2 N0 = 32 points, we obtain the Fourier domain in Figure
1.20(b) with a single nonzero coefficient, as may be expected for the sinuso-
idal signal under analysis. In Figure 1.20(d), an N = 27 point DFT is applied

FIGURE 1.19
Flow graph of an eight-point fast Fourier transform calculation with decimation-in-time (with
a factor W = ej/N).
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to the data, and the previous single peak has now “leaked” into neighboring
frequency bins. This can be explained by the time series shown in Figure
1.20(c), which the DFT inherently creates by periodizing a data segment of
N = 27 samples. The discontinuities arising at the repetitions of this funda-
mental period N are responsible for introducing spurious frequencies into
the spectrum that have not been present in the original data in Figure 1.20(a).

The effect noticed in the previous example is known as spectral leakage,
and it arises whenever N · Ts, with N the number of points in the DFT, is
not an integer multiple of the fundamental period present in the signal to
be analyzed. The resulting discontinuities at the margins of the window
repetitions, as seen in Figure 1.20(c), can however be alleviated by applying
a tapered window to the N-sample data segment prior to executing the DFT.
A simple window based on a raised cosine, w[n] = 1 – cos 2p(n/N), fulfilling
this purpose is shown in Figure 1.21.

A number of popular windows exist to control spectral leakage, such as
Hamming, Hann, Blackman-Harris, or Bartlett,5,7 which are part of most
signal processing toolboxes and come with a specific side effect. This effect
generally consists of reducing spectral leakage at the cost of a loss in spectral
resolution, i.e., the main lobe of a sinusoid in the Fourier domain is widened.
An example is given in Figure 1.22, where in (a) a sinusoidal data segment
is subjected to a DFT with a noninteger multiple N of the sinusoid’s funda-
mental period. The result in the Fourier domain is given in (b). The graphs
in (c) and (d) are with a Hamming window applied, and clearly show the
reduction in spectral leakage, but also the widened main lobe at the fre-
quency of the sinusoid.

The widening of the main lobe can be reasoned as follows. In the frequency
domain, the multiplication of the data segment with a window corresponds
to a convolution between the true Fourier spectrum with the Fourier trans-
form of the window function. As window functions have a low-pass char-
acteristic, the true spectrum is blurred, as outlined in Figure 1.23.

FIGURE 1.20
(a) Sinusoidal signal and (b) its magnitude response via N = 32 point DFT; with N = 27, (c) shows
the periodized data with discontinuities and hence (d) spectral leakage in the Fourier domain.
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Other Discrete Transforms

 

Besides the application to frequency domain analysis, the DFT is often used
as a parameterizing transform. While, for example, a time series requires the
storage of all 

 

N

 

 samples, the DFT coefficient domain may be sparse and only
a small amount of non-zero coefficients may be necessary to represent the
contained information. For this operation, the application of a transform
matrix to a data vector can be interpreted as a change of coordinate system.

 

FIGURE 1.21

 

Tapered raised cosine window to de-emphasize the margins of the data segment obtained by
rectangular windowing in order to avoid discontinuities in the periodization and therefore
spectral leakage.

 

FIGURE 1.22

 

(a) Sinusoidal signal with a rectangular window and (b) the magnitude of its DFT coefficients;
(c) sinusoidal signal with a Hamming window and (d) the magnitude of its DFT coefficients.

 

FIGURE 1.23

 

The multiplication of a signal to be analyzed, 

 

x
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], and a window function, 
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], in the time
domain corresponds to a convolution of the two Fourier transforms in the frequency domain,
resulting in a blurred spectrum with a widened main lobe.
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The time domain representation of a time series, x[n], can be separated into
the basis, formed by shifted Dirac impulses d[n],

(1.49)

which are weighted by the coordinates, i.e., the sample values corresponding
to these specific time shifts:

(1.50)

Note that the basis functions are orthogonal, i.e.,  for
k π 0. Of course, the signal can be represented differently, using, e.g., a
Fourier expansion whereby a number of N orthogonal complex harmonics
form the basis and the DFT coefficients represent the corresponding coordi-
nate values:

(1.51)

Both expansions in Equations (1.50) and (1.51) have an orthogonal basis, and
their coordinates can be organized in vectors x and X and related by Equation
(1.47). Therefore, Equations (1.47) and (1.48) essentially perform rotations
with respect to a new coordinate system.8,10

The motivation of subjecting data samples to a discrete transform as in
Equation (1.47) lies in the potential sparseness of the resulting new coordi-
nates. This is, e.g., exploited in coding and compression, where the amount
of data can be reduced by extracting only non-zero or sufficiently large values
from a sparse representation. Besides the DFT as a potential transform, many
other possibilities exist. Orthogonality of a matrix T indicates that only a
rotation (no deformation) of the coordinate system is performed, which is
easily reversible by applying T–1 = T H. Candidates for this include discrete
sine transforms (DST), discrete cosine transforms (DCT), discrete wavelet
transforms (DWT), and many others.12,13 Any such transform can be viewed
analogously to the step from Equations (1.50) to (1.51) as an expansion of
the time-domain waveform with respect to a different basis, and can be
brought into a matrix notation similar to Equation (1.47). Each of the above
transforms rotates a time-domain waveform into a basis with distinct prop-
erties, and thus may be more or less suitable for a specific application with
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respect to the achievable parameterization and hence sparseness of the data
in the transform domain.

Noise Reduction Based on Signal Transforms

The parameterization property of discrete transforms highlighted in the
previous section can be exploited for noise reduction. If a signal is corrupted
by random noise in the time domain, the idea is to find a suitable discrete
transform that parameterizes the signal component of interest. If the noise
is white, the application of a transform does not change the whiteness, and
the noise will be spread in the transform domain while coefficients corre-
sponding to well-parameterized signal components stick out. The recon-
struction of the original time series is performed only with those coefficients
that are representing signal components, thus reducing the noise compared
to the original time series. This procedure is known as “de-noising”14 and
its steps are demonstrated in Figure 1.24.

De-noising relies on two important steps. First, a suitable transform has
to be found. Here, usually a DWT is employed, which offers a large variety
of potential bases over which an optimization can be performed. Second,
the decision as to which coefficients are to be retained in the transform
domain is not trivial. A variety of approaches exist to determine suitable
thresholds, whereby either hard thresholding, i.e., zeroing small coefficients,
or soft thresholding, i.e., shrinking coefficients with an appropriate smooth
nonlinear function, can be applied.

The requirements for de-noising are not as strict but are similar to Wiener
filtering because a certain amount of information about the signal of interest

FIGURE 1.24
De-noising of a one-dimensional time series: in the transform domain, additive noise remains
smeared, whereas the signal of interest is parameterized by only few coefficients. By thresh-
olding and inverse transformation, noise reduction can be achieved.
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and the corrupting noise has to be known in order to adjust the noise
reduction mechanism appropriately.

Adaptive Digital Filtering

More powerful noise reduction mechanisms than Wiener filtering or de-nois-
ing are at hand if a reference probe of the corrupting noise is available. These
techniques are based on adaptive digital filtering. Different from the fixed
filter design in the section “Filter Design,” here the filter coefficients are
tunable, are adjusted in dependency of the environment that the filter is
operated in, and can therefore track any potential changes in this environment.

The first section, “Structure and Architectures,” presents some applications
and architectures of adaptive filters, and thereafter defines an optimum filter
in the mean squared error sense, given by the Wiener-Hopf solution in the
section “Mean Square Error Optimization.” An adaptive filter presents an
iterative solution toward this optimum, and is used because either the direct
optimization may be numerically costly or even unstable, or because the
underlying environment has time-varying parameters, which need to be
tracked by the adaptive system. As an example of the wide range of available
adaptive algorithms, gradient descend methods, including the popular least
mean squares (LMS) adaptive filter, are reviewed in the section “Gradient
Techniques.” Some exemplary characteristics regarding the convergence of
the LMS filter are addressed in “LMS Convergence Characteristics,” which
are similarly found in other adaptive digital algorithms for which “Other
Adaptive Filter Algorithms” provides an overview.

Structure and Architectures

A generic adaptive filter is shown in Figure 1.25. The aim of the filter is to
produce an output signal y[n] from an input x[n], such that when subtracted

FIGURE 1.25
Generic adaptive filter.
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from a desired signal d[n], the error signal e[n] is minimized in a suitable
sense. To achieve this, the parameters of the filter are adjusted by an adaptive
algorithm. In most cases, this algorithm monitors the error signal e[n]. This
feedback intuitively works such that if the filter is adjusted well, the error
signal will be small and only slight changes need to be applied to the
parameters inside the filter. In contrast, if the filter is misadjusted, the error
signal e[n] will be large and the algorithm will subsequently apply larger
changes to the filter coefficients. Exact definitions of the error criterion to be
minimized and suitable adaptation algorithms will be discussed in the sec-
tions “Mean Square Error Optimization,” “Gradient Techniques,” and “LMS
Convergence Characteristics.”

The generic adaptive filter of Figure 1.25 can be applied in a number of
different architectures.15 These are shown in Figure 1.26. The functionality
of these architectures, provided that the adaptive filter finds the optimum
solution, is:

∑ System identification: As given in Figure 1.26(a), the adaptive filter
is placed parallel to an unknown system with impulse response
c[n], and both systems are excited by the same input x[n]. If the
adaptive filter w[n] converges, ideally the error signal e[n] should
go to zero. Therefore, the input-output behavior of c[n] and w[n]
is identical. If the excitation x[n] is broadband and c[n] is an LTI
system, then the adapted w[n] represents a model of the unknown
system c[n].

∑ Inverse system identification: The unknown system c[n] and the
adaptive filter w[n] are placed in series according to Figure 1.26(b).
If the error signal e[n] is minimized, the convolution c[n] * w[n]
will approximate a Dirac impulse with a delay, depending on the
delay D that is placed in the path of the desired signal d[n]. Thus,
using a broadband input signal, with w[n] the inverse of the
unknown system, c[n] will be obtained.

∑ Prediction: The signal d[n] is applied delayed to the adaptive filter
w[n], as seen in Figure 1.26(c). From these past signal values in
x[n], the current sample value d[n] = x[n + D] has to be predicted
by the adaptive filter. If the error e[n] is minimized, the filter will
replicate the predictable signal components at its output, y[n],
whereas e[n] will only retain the random, uncorrelated part of the
signal d[n].

∑ Noise cancellation: In Figure 1.26(d) the desired signal is
formed by a signal of interest, v[n], corrupted by noise  A
reference signal x[n] of the noise — e.g., picked up from the noise
source — is appropriately modified by the adaptive filter to match

 once filtered. Therefore, after adaptation, the error signal e[n]
will ideally only contain the signal of interest v[n].

˜[ ].x n

˜[ ]x n
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The noise cancellation architecture can, for example, be employed for voice
communication in a helicopter cockpit. As the pilot’s microphone picks up
both speech and engine noise, a separate reference can be taken from the
engine. Identifying the reference with x[n] in Figure 1.26(d) and the micro-
phone signal with d[n], providing adaptation is good, the error signal e[n]
will be the pilot’s voice undistorted by noise, which can be transmitted.

Although it is mostly the last of the above architectures, noise cancellation,
that is immediately connected to noise reduction, other structures also find
use in this respect. Examples include the removal of sinusoidal interference,
e.g., through mains hum, from a speech signal. There, a prediction architecture
can be employed that removes the predictable mains components, while the
speech remains unaffected if the delay D in Figure 1.26(c) is select to be long
enough to decorrelate any short-time periodicities within the speech signal.

Mean Square Error Optimization

Several minimization criteria can be employed for determining the optimum
parameter setting for an adaptive filter. The most commonly used are the
mean square error (MSE) criterion, i.e., the variance of the error signal e[n],
and the least squares criterion, i.e., the sum of squared error samples over
all times n. Depending on the chosen criterion, different algorithms arise.11

Here we concentrate on the MSE minimization.
To formulate the MSE, consider an adaptive FIR filter, as in Figure 1.27.

By adopting vector notation for both the samples of the input signal in the
filter’s tap delay line and the coefficients at time instance n,

(1.52)

FIGURE 1.26
Adaptive filter architectures.
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(1.53)

the filter output can be denoted by y[n] = wH · xn. This can be used to
formulate the mean squared error (MSE) xMSE as

(1.54)

(1.55)

where substitutions with the cross-correlation vector p and the autocorrela-
tion matrix (covariance matrix for zero-mean processes) R have taken place.
The cross-correlation vector p is defined by

(1.56)

(1.57)

where rxd [t] is the cross-correlation function between x[n] and d[n] according
to Equation (1.18). Both x[n] and d[n] are assumed to be wide-sense station-
ary, i.e., their mean and variance as defined in Equations (1.13) and (1.14)
are constant while higher-order moments may be time-varying. For the
further analysis, we also make the “classic” assumption of statistical inde-
pendence between w and xn.15 The entries of the L ¥ L autocorrelation
matrix, R

FIGURE 1.27
Adaptive FIR filter with coefficients adjusted by an adaptive algorithm.
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(1.58)

are samples of the autocorrelation function rxx[t] according to Equation (1.21).
R is Töplitz, which implies that it possesses a band structure with identical
elements on all diagonals, and Hermitian, i.e., RH = R. By sole virtue of these
structural properties,8,10,11 R is positive semidefinite and has real-valued
eigenvalues.

The cost function xMSE in Equation (1.55) is apparently quadratic in the
filter coefficients, and due to the positive semidefiniteness of R, Equation
(1.55) has a minimum, which is unique for a positive definite (full-rank)
autocorrelation matrix R. The cost function therefore forms an upright hyper-
parabola over the L-dimensional hyperplane defining all possible coefficient
sets wn. In Figure 1.28 xMSE(w) is visualized for the case N = 2 in dependency
of the two filter coefficients.

Due to the quadratic nature of the MSE cost function, its minimum can be
evaluated by differentiating xMSE with respect to the coefficient vector and
setting the derivative to zero. If vector and matrix calculus is applied (see,
e.g., Reference 8), this derivative is given by

(1.59)

FIGURE 1.28
Mean squared error (MSE) cost function x for the case of a weight vector w with two coefficients.
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Therefore, if the autocorrelation matrix R is invertible, the optimum filter
coefficients are given by

(1.60)

which is well known as the Wiener-Hopf solution.11,15

Although Equation (1.60) could be readily applied to update the filter
coefficients w[n], three pitfalls arise. First, R might not be invertible, or might
be ill-conditioned, such that the inverse either does not exist or, more likely,
is highly noisy and therefore does not present a numerically stable solution.
Second, the estimation of the correlation quantities for R and p requires
considerable effort. Finally, the matrix inversion is of the order O(L3) MACs,
and therefore is computationally very complex and potentially unsuitable
for real-time applications. Therefore, the next section reviews iterative tech-
niques that are numerically more efficient and robust in computing wopt.

Gradient Techniques

The quadratic form of the cost function xMSE derived in the previous section
allows us to search for the minimum using iterative methods. This can be
performed by stepping from an initial starting point in the direction of the
negative gradient of the cost function, which will eventually lead to the
global minimum. Mathematically, this can be phrased as

(1.61)

where w[n] marks the current weight vector at time n. From this current
solution, a step is taken in the direction of the negative gradient —x[n] of the
cost function to yield a new improved coefficient vector w[n + 1]. The
notation —xMSE[n] is to indicate that the gradient is applied to the MSE cost
function yielded by the coefficient vector wn at time, n. The parameter m is
referred to as the step size, loosely defining the length of a step that the
algorithm takes in each iteration toward the optimum.

The explicit term for the gradient has been derived with Equation (1.59),

(1.62)

and insertion into Equation (1.61) leads to the update equation known as
the steepest descend algorithm.11,15 In comparison to the Wiener-Hopf solu-
tion in Equation (1.60), inversion of the autocorrelation matrix is no longer
required, but both the autocorrelation matrix R and the cross-correlation

w R popt = -1

w w[ ] [ ] [ ]n n n+ = - —1 m xMSE

— =
∂

∂
= - +*x

x
MSE

MSE[ ]n
n

nw
p Rw

0949_frame_C01  Page 40  Tuesday, March 5, 2002  10:59 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



vector p have to be reliably estimated. Furthermore, the multiplication with
Rwn creates a computational cost of order O(L2) MACs.

To lower the computational complexity and statistical record of the
involved signals, in a simplification step the true gradient is replaced by an
estimate, which leads to so-called stochastic gradient algorithms.11,15 In the
extreme case, the gradient estimate is based only on the current samples of
x[n] held in the tap delay line and d[n],

(1.63)

(1.64)

which is equivalent to minimizing the instantaneous squared error 
rather than the MSE  Inserting these estimates into Equation (1.62),

(1.65)

gives a gradient estimate, which together with Equation (1.61) forms the
basis for the least mean squares (LMS) algorithm11,15

(1.66)

The complete LMS equations are listed in Table 1.1. These steps have to
be performed once in every sampling period, leading to a moderate com-
plexity of 2L MAC. This complexity of O(L) is considerably lower than that
required for the Wiener-Hopf equation and gradient descend algorithms.

LMS Convergence Characteristics

Representative of adaptive algorithms in general, this section addresses some
convergence issues of the LMS algorithm. For an exact proof of convergence,

TABLE 1.1

Equations for Filter Update by 
LMS Adaptive Algorithm

LMS Algorithm

1

2

3

yn n
H

n= w x

e d yn n n= -

w w xn n n ne+ = +1 m *

p̂ x= *
n nd

R̂ x x= n n
H

e en n
* ,

e{ }.*e en n

ˆ ˆ ˆ ( )— = - + = - - = -* *xn n n n n
H

n n nd ep Rw x x w x

w w xn n n ne+
*= +1 m
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the reader is referred to standard textbooks.11,15 To prove that the LMS (or
in fact any) algorithm converges to the Wiener-Hopf solution, two steps are
required: (1) convergence in the mean to show that the LMS solution is bias-
free, and (2) convergence in the mean square to prove consistency.

These proofs give some insight into the functioning of an adaptive algo-
rithm, and specifically for the LMS algorithm yield a number of interesting
analytical limits. One of these limits concerns the step size parameter m. If
m is selected within the easily obtainable bounds

(1.67)

where L is the number of adaptive filter coefficients and  the power of
the input signal, the adaptive algorithm is guaranteed to be stable.11,15

The LMS algorithm exhibits an exponential convergence. As a measure for
the convergence speed therefore a time constant T can be derived by fitting
an exponential e–n/T to the MSE cost function evolving over time. This time
constant can be approximated analytically as11

(1.68)

with li being the eigenvalues of R. Although the validity of this approxima-
tion is based on restrictions on l such as slow convergence,11 it can be
observed that the overall convergence is governed by (1) the step size and
(2) the smallest eigenvalue of R. In particular, the smaller the step size m, the
slower the convergence of the algorithm.

Analysis of LMS convergence in the mean square reveals that the final
error variance will differ from the minimum MSE (MMSE) value by an excess
MSE, xEX = xMSE[n] – xMMSE with n Æ •, which can be derived as11

(1.69)

This means that a large m will create a large excess MSE. The influence of m
is therefore such that a trade-off is created between the convergence speed
(large for large m) and the size of the final MSE, xMSE[n] for n Æ •, which is
kept small if a small parameter m is selected.

Other Adaptive Filter Algorithms

Besides the LMS adaptive filter as introduced in the section “Gradient Tech-
niques,” a large variety of other adaptive filtering algorithms exists. Algo-
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rithmically, the cost function can be modified; minimizing the sum of
squared errors leads to the class of recursive least squares (RLS) adaptive
algorithms, which generally tend to have a higher complexity than the LMS
but exhibit faster convergence.11 Structurally, for some problems, multichan-
nel adaptive filters are required, or IIR filters can be employed instead of
the FIR system discussed here. Even nonlinear filters can be embedded into
an adaptive system, such as Volterra filters or neural networks. Algorithmi-
cally, modifications to the algorithm are possible and may be motivated by
the demand for more robust, fast converging, or computationally more
efficient adaptive filters.

Conclusions

This chapter has highlighted some of the noise sources that can distort speech
signals and reviewed fundamental DSP techniques that allow us to combat
this distortion. To describe the noise, the additive noise model was adopted,
which motivated the definition of the SNR as a measure for the severeness
of the noise corruption in “Analog/Digital Interfacing and Noise Chain.”
“Stochastic Signals and Their Characterization” characterized the noise by
means of stochastic signals and their parameters, such as variance or signal
power, autocorrelation and cross-correlation sequences and power spectral
densities. In order to control or mitigate the influence of noise, digital filters
were reviewed in “Digital Filtering.” Digital filters can be best employed if
the corrupting noise occupies well-defined frequency bands, as the filter can
be designed accordingly. The filter design can be performed explicitly by
standard design software or by means of a Wiener filter if the signal and
noise statistics are known. “Discrete Signal Transforms” addressed the dis-
crete Fourier transform (DFT) for frequency domain analysis, or general
transforms in order to parameterize a signal in the transform domain. The
latter culminated in de-noising techniques by thresholding of noisy trans-
form coefficients prior to an inverse transform. More powerful noise reduc-
tion techniques were introduced in “Adaptive Digital Filtering,” which can
be applied if, e.g., a reference probe of the corrupting noise is available.

The techniques for noise reduction addressed in this chapter should pro-
vide a strong motivation to study the finer details of DSP, for which several
excellent books are recommended as a starting point.1,4,13,15 It should transpire
from the noise reduction examples provided in this chapter that the specific
DSP technique chosen for noise reduction strongly depends on the circum-
stances of the application, such as the availability of a reference signal and/or
additional information on the signal of interest and the noise. This book
covers many specialized techniques for speech enhancement and noise
reduction, which are customized by exploiting as much knowledge of the
involved signals and systems as possible. However, despite the potentially
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high specialization of these techniques, the reader will find that many of the
methods introduced in later chapters of this book, such as the ones dedicated
to single-channel speech enhancement (Chapter 6) or acoustic echo cancel-
lation (Chapter 8), make strong use of the basic concepts that have been
outlined in this first chapter.
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Section II:

 

System Aspects
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Introduction

 

This chapter considers a number of performance-critical applications of
audio signal processing to demonstrate how modern circuit techniques are
used to complement the advances being made in digital audio systems. The
performance of a digital audio system (e.g., DVD-audio,* includes in its
specification 24-bit at 96-kHz sampling

 

1

 

) demands a high degree of accuracy
within the analog circuitry to maximize transparency and to prevent com-
promise in terms of distortion, noise, and bandwidth. Although much signal
processing can be performed in the digital domain, certain key processes
ultimately require analog techniques. Prominent examples are the anti-
aliasing and signal recovery filters (referred to collectively in this text as

 

gateway filters

 

) and the transresistance amplifier required to perform current-

 

*  DVD-audio refers to the audio-specific format of digital versatile disk.
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to-voltage conversion in association with current output digital-to-analog
converters (DAC).

Other analog processes to be reviewed include the important class of
voltage-controlled amplifiers (VCAs) that exploits the logarithmic character-
istics of the bipolar junction transistor (BJT) to perform analog multiplication.
Two generic applications of the VCA are then described to demonstrate
dynamic range control and complementary noise reduction. Specifically, as
an example of a classic analog system Dolby* A-type noise reduction is
outlined, where it is characterized both by its topology and semiconductor
device profiles.

 

Analog Filter Requirements at the Analog-to-Digital Gateway

 

Gateway filters are fundamental to the successful operation of a digital audio
system, where the performance of the analog circuitry should approach, if
not exceed, the resolution of the digital channel. However, if the digital
system operates at the compact disc (CD) Nyquist sampling** rate of 44.1
kHz, then the frequency response specification for each system filter is par-
ticularly demanding. Specifically, the anti-aliasing filter requires a flat and
very low ripple amplitude response extending to about 20 kHz with a rapid
attenuation region over the frequency band 20 to 22.05 kHz, a frequency
space designated as the filter 

 

transition band

 

. Ideally, the filter should also
have a linear phase characteristic to eliminate group delay distortion from
degrading the time domain response. Also, for signal recovery filtering
immediately following the DAC, a similarly specified analog 

 

recovery filter

 

is required to eliminate ultrasonic frequency components resulting from
signal reflection about the sampling frequency and its harmonics.

It is well known that for an ideal filter with a brick wall frequency domain
response, the time-domain impulse response 

 

h

 

(

 

t

 

) of the filter is given by
Equation (2.1) as

(2.1)

where 

 

f

 

x

 

 is the filter’s cut-off frequency. In practice, this impulse response is
impossible to match because it extends infinitely either side of its center.
Consequently, to reproduce the precursive response correctly infinite delay
is required before the main peak, implying that a practical filter must be
constrained in its time-domain response that in turn limits the rate of fre-

 

*  Dolby is a trade name for Dolby Laboratories, San Francisco, CA.
**  Nyquist sampling theorem determines the minimum sampling rate for a given signal band-
width.

h t
f t

f t
f tx

x
x( )

)
)=

sin(
= sinc(

p
p
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quency domain attenuation. However, the precursive response cannot be
chosen arbitrarily as the impulse response 

 

h

 

(

 

t

 

) should have even symmetry
such that if the response center is located at 

 

t

 

 = 

 

t

 

, then 

 

h

 

(

 

t

 

) = 

 

h

 

(2

 

t

 

 – 

 

t

 

). This
condition is necessary and sufficient for the phase response to be a linear
function of frequency 

 

f

 

 = –2

 

p

 

f

 

t

 

 that implies a constant time delay 

 

t

 

 with no
group delay distortion. From this discussion it can be concluded that if the
gateway filters are to exhibit zero group delay distortion, then their time-
domain impulse responses should be even symmetric.

If the gateway filters use purely analog topologies, then even symmetry
imposes a formidable challenge, because upon closer inspection a funda-
mental problem emerges. Analog filters use resistance, capacitance, and
inductance together with active amplification at their core and may also
include gyrators to synthesize inductors from resistor–capacitor networks.
Following the principles of electromagnetic theory, both capacitors and
inductors can be modeled as first-order differential equations relating current
and voltage. This implies that each reactive element has a frequency-depen-
dent relationship where the reactance is either proportional or inversely
proportional to frequency with a corresponding phase of either 

 

p

 

/2 or –

 

p

 

/2.
Hence, the building blocks normally incorporated in analog filters are not
well matched to synthesizing a specific time-domain response, especially
where even symmetry is required. It follows that where a linear phase
response is required, an analog circuit can only ever approximate the
required response. The better this approximation, the more elaborate
becomes the filter in terms of component count, including amplifier stages
if an active synthesis is required. Also, the ultimate rate of attenuation is
determined by the number of reactive elements (capacitors and inductors);
thus, if the circuit has 

 

N

 

 reactive elements, then the ultimate attenuation rate
cannot exceed –6.01 

 

N

 

 dB/octave*. It is evident that as the complexity of the
filter increases, problems of tuning and of component tolerances become
more severe.

Hence, there must be compromise in designing a high-performance analog
filter that is able to match the requirement of an anti-aliasing filter. For audio
applications, circuit complexity is the enemy of transparent performance.
Each active amplifier stage introduces noise and distortion, and each com-
ponent inevitably has a tolerance value that introduces a random error into
the design and makes repeatability and matching between multiple audio
channels problematic. There is considerable literature on the synthesis of
analog filters, but a specification that calls for a 2 kHz transition band with
>100 dB attenuation and good phase linearity becomes a complicated struc-
ture that is difficult to tune and relatively expensive to implement.

Rather than pursue high complexity in the analog circuitry, it is prudent
to consider alternative solutions, now widely practiced in audio systems
whereby a minimalist solution to the analog filter problem can be obtained
that can lead ultimately to a more accurate and transparent performance.

 

*  A slope of –6.01-dB/octave refers to a filter where gain is inversely proportional to frequency.
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The key to solving this problem is to distribute the filter structure between
the analog and digital domains. Within an analog-to-digital converter (ADC)
this requires the sampling rate to be increased significantly above the
Nyquist rate where 

 

oversampling ratios

 

 of between 4 and 64 are not uncom-
mon. Increasing the sampling rate obviously enables a much wider signal
bandwidth without incurring aliasing distortion; however, more signifi-
cantly, it enables a wider transition band that relaxes the analog filter design.
A digital filter can then be used to band-limit the signal to the required
bandwidth, for example, 20 kHz. Digital filters are perfectly matched to
engineering a specific impulse response, because they use discrete delays
rather than circuit elements that model a first-order time derivative. As such,
the so-called 

 

finite impulse response (FIR) filter

 

 can be designed with even
symmetric coefficients, thus achieving an exact linear phase response
without incurring a significant cost penalty. Such filter responses are readily
synthesized in the digital domain. Once the information bandwidth is
reduced, then decimation can be used to discard samples and reduce the
sampling rate, for example, to 44.1 kHz. In essence, this process allows the
majority of filtering to be performed in the digital domain, whereas a mild
second- or third-order filter is used in the analog domain. However, the
overall filter should be seen as a cascade of both the digital and the analog
filters. This strategy also implies that any imperfections in the analog filter,
such as mild amplitude response errors together with mild phase distortion,
can in part be corrected for within the digital domain. A similar technique
can be used in DAC systems to reduce the complexity of the analog recovery
filter. However, in this case, up-sampling is used to increase the sampling
rate, which is a process that also requires a digital low-pass filter. Finally,
signal recovery is completed using a low-order low-pass filter that is located
after the DAC to attenuate the highest frequency components. It will be
shown that the filter requirements for anti-aliasing and signal recovery are
similar and that when either decimation or interpolation is combined with
oversampling, similar advantages are achieved by employing part digital
and part analog processing. In this way, the problem areas associated with
high-order analog filters and circuit complexity are avoided.

 

Anti-Aliasing and Recovery Filters in Digital Audio Systems

 

Consider an ADC that is oversampled by a modest factor of four. The ADC
is to be used with a high-resolution audio system with a nominal sampling
rate of 96 kHz and a bit depth of 24 bit. Four-times oversampling implies
that the converter is sampled at 384 kHz. To meet the digital audio specifi-
cation in full, the audio band must extend almost to 48 kHz, although in
practice a transition band of about 2 kHz should be provided, so the work-
able bandwidth is reduced to 46 kHz. It is within this narrow transition band
that the digital filter must provide appropriate attenuation to prevent aliased
signal components reflected about 96 kHz from entering the ultrasonic region
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of the audio band. However, because the ADC is sampled at 384 kHz, the
audio signal prior to decimation (i.e., sampling rate conversion down to 96
kHz) can extend up to 336 kHz before reflected signal components fall below
48 kHz. Consequently, an extreme specification for the analog filter would
require an attenuation of about 140 dB over a frequency band extending
from 46 to 336 kHz, which is just under 3 octaves, and represents about –46
dB/octave slope, roughly equivalent to an eighth-order low-pass filter. If an
analog filter were to be implemented with a cascade of second-order, low-
pass sections, then four such sections would be required. However, this is
an extreme case and neglects to take into account specific features of the
sampled audio waveform and the interaction with the digital low-pass filter
that will be used in the decimation process when the sampling rate is reduced
to 96 kHz. Also, the nature of most audio signals is the low ultrasonic content
above 40 to 50 kHz. Consequently, a third-order filter can be a fair balance
between out-of-band attenuation and complexity, although it is expedient to
introduce additional attenuation in the frequency band where the first sam-
pling side bands appear, namely, 384 ± 48 kHz.

A circuit example is shown in Figure 2.1(a) together with its corresponding
frequency response in Figure 2.1(b). This circuit incorporates simple but very
high-performance discrete unity gain buffers. The buffers are derived from
a two-stage complementary emitter follower and yield a voltage gain close
to unity. Alternatively, operational amplifiers can be used, although the
discrete circuit or its integrated equivalent can offer exemplary performance
with low distortion, low noise, and wide bandwidth. The circuit consists of
two cascaded filter sections where the first section includes transmission
zeros (i.e., notch filters) located around 384 kHz to give additional attenua-
tion in this critical region. The overall response was calculated by simulation
and shows the notch filter implemented by the addition of two inductors
that together with the capacitors form series resonant circuits. Low-valued
inductors can readily be incorporated into a practical circuit, although
screening is required to minimize the injection of interference that is often
endemic in the hostile electrical environment of fast digital circuitry.

In high-performance analog systems, unlike purely digital processing, the
problems associated with interference that is injected through either electro-
magnetic coupling or power rail and ground rail contamination can be
severe. In practice, this requires special attention to the circuit layout and
the use, for example, of copper-plated metal screens that together can help
achieve the wide dynamic range demanded by the extreme resolution of a
24-bit system.

In a DAC application

 

2

 

 there is a need for a similar filter characteristic and
configuration, especially where up-sampling is used to enable the rapid
attenuation requirements demanded of the recovery filter to be performed
in the digital domain. However, a major difference is that this filter only has
to suppress high-frequency spuriae associated with sampling. Even if the
analog recovery filtering is not performed completely, there is not a problem
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of aliasing distortion. The only potential problem that may then occur is
increased intermodulation distortion that arises in subsequent stages of ana-
log processing, such as in a pre-amplifier or a power amplifier. Consequently,
a simpler filter can be used where an example is the first stage of Figure
2.1(a) but where the notch filters (i.e., inductors) have been omitted. Inevi-
tably there are limitations in the degree of high-frequency attenuation; how-
ever, this is a typical analog system compromise where a balance has to be
achieved between out-of-band attenuation, circuit complexity, and cost.
Note, however, that with proper digital filter design and the use of up-
sampling, together with good linearity DACs, there should not be significant
signal energy until the up-sampled, sampling frequency and its associated
sidebands are encountered.

 

3

 

FIGURE 2.1

 

(a) Anti-aliasing filter for use with an ADC sampled at 384 kHz. (b) Magnitude frequency
response of anti-aliasing filter.
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Current-to-Voltage Conversion with Embedded Signal 
Recovery Filter

 

Providing the primary function of an analog system is met to an appropriate
degree of accuracy, then additional and possibly unnecessary circuit com-
plexity can often lead to deterioration in performance; usually in analog
audio 

 

less is more

 

. Hence, considering the analog circuitry associated with a
DAC, it is expedient to identify techniques that reduce complexity yet retain
a high level of performance. A typical multibit DAC is a current output
device

 

3

 

 and as such requires a 

 

transresistance amplifier stage

 

 with very low
input impedance (e.g., < 1 

 

W

 

) to transform the output current to a voltage.
Such a circuit is then cascaded typically with one or more filter stages, each
using a buffer amplifier. In practice, the transresistance stage (or I-V stage)
is a particularly critical part of a digital audio system. Not only does this
amplifier have to process the audio components but it also has to respond
linearly to the wide band signals produced by the DAC. At a sampling
instant, when the DAC output current switches from one quantization level
to another, the transresistance stage must respond momentarily extremely
rapidly, a period where there is higher likelihood of nonlinear operation.
Consequently, the amplifier must be designed to have both a rapid response
and to generate low levels of distortion under broadband excitation.
Although an operational amplifier is often employed and configured in the
classic shunt–feedback amplifier arrangement (i.e., 

 

virtual earth amplifier

 

) as
shown in Figure 2.2(a) operational amplifiers can have relatively high open-
loop nonlinearity, so they are not particularly suited to this function. How-
ever, Figure 2.2(b) illustrates an example of a current-feedback

 

4

 

 configuration
that uses discrete circuitry with input stage error correction

 

5

 

 and overall
feedback to enhance linearity. Also, to craft a more efficient topology while
simultaneously improving performance, the recovery filter is embedded
within the feedback structure, thus eliminating the need for additional cas-
caded stages.

The use of local, input stage error feedback

 

2,5

 

 will virtually eliminate the
nonlinear modulation of transistor base–emitter slope resistance. In Figure
2.2(b) the input stage consists of two matched complementary transistors,
T

 

1

 

 and T

 

2

 

, together with a grounded base stage, T

 

3

 

. Transistors T

 

1

 

 and T

 

3

 

form a cascode* stage to steer the DAC output current, i, to the current mirror
formed by T

 

4

 

 and T

 

5

 

 and the three equal-valued resistors, R

 

0

 

, such that the
collector currents of T

 

4

 

 and T

 

5

 

 each carry a mirror of the current, i. As a
result, the changes in emitter currents within T

 

1

 

 and T

 

2

 

 are identical, where
assuming parametric and thermal matching, then V

 

BE1

 

 = –V

 

BE2

 

. Consequently,
the emitter potential of T

 

1

 

 remains theoretically zero even though the
base–emitter voltages are nonlinear functions of signal current. This

 

*  A cascode is a series connection of a common-emitter transistor stage and a grounded-base
transistor stage.
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(a)

(b)

 

FIGURE 2.2

 

(a) Transresistance I-V stage using shunt feedback (

 

virtual earth

 

) amplifier. (b) Transresistance
I-V stage with embedded low-pass filter and servo.
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operation implies zero input impedance even under large signal conditions.
A constant current generator formed by transistors T

 

6

 

 and T

 

7

 

 then sinks the
collector bias current of T

 

5

 

, thus completing the driving circuitry for the
output stage.

A principal feature of this topology is the inclusion of a second-order, low-
pass filter that is embedded within the output stage and is formed by the

 

p

 

-network R

 

1

 

, C

 

1

 

, and C

 

2

 

, a unity-gain buffer and resistor, R

 

2

 

, where the
latter defines the low-frequency transresistance of the stage. However, the
common signal line of this inner filter is not connected to ground but is
returned to the input node where the whole structure constitutes a current-
feedback path back to the emitter of T

 

1

 

. At low frequency, overall feedback
is derived from the output voltage via R

 

2

 

 and includes the output buffer,
whereas at higher frequency in the filter attenuation region, the feedback
current is derived primarily from the collector current of T

 

6

 

. However, under
all signal conditions, the signal current produced at the collector of T

 

5

 

 is fed
back to the input, which helps both to improve overall linearity and to lower
the input impedance.

In this respect, the high-frequency feedback path is similar to a simple dc-
coupled feedback pair of transistors. Benefits derived from this configuration
include reduced output impedance and enhanced linearity together with an
embedded low-order reconstruction filter, where the filter behaves as an
integral part of the feedback path while returning no current to ground and
thus aiding ground-rail purity. Although a second-order low-pass filter is
illustrated in Figure 2.2(b), higher-order filters can be accommodated with-
out incurring a stability penalty. Also, the DAC signal current 

 

i

 

 is returned
directly to the power supply and does not require transient currents to flow
in the ground bus; this helps reduce circuit layout problems associated with
electromagnetic compatibility. Assuming the current mirror formed by tran-
sistors T

 

4

 

 and T

 

5

 

 has unity current gain, then the closed-loop transimpedance

 

Z

 

I/V

 

 of the overall amplifier is given as

(2.2)

Equation (2.2) describes the overall circuit transresistance and confirms
that the transfer function is a second-order low-pass filter response.

 

Servo Amplifier to Establish Output dc Conditions

 

A technique that can be used to give precise control of the output dc condi-
tions is to incorporate an analog servo amplifier in the feedback path of a
negative feedback control loop. The transresistance amplifier shown in Fig-
ure 2.2(b) includes a noninverting servo amplifier. A servo amplifier is nor-
mally a single linear integrator (i.e., gain inversely proportional to frequency,

Z
R

j R C C R C R CI V/ . ( ) .
=

-
+ + -

2

2 1 2
2

1 1 2 21 0 5 0 5w w
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–90° phase shift) with a suitably large time constant so as only to influence
the closed-loop gain at low frequency. At signal frequencies approaching dc,
the servo amplifier should have an extremely high gain (typically 10

 

5

 

 for an
operational amplifier) that then forces the closed-loop gain of the transresis-
tance amplifier to become virtually zero at dc. If the servo amplifier dc gain
is assumed to be infinite, then the output voltage of the transresistance
amplifier is controlled by negative feedback so as to have an average value
(i.e., the quiescent dc value) that is equal to the dc input offset voltage of
the servo amplifier. Normally with operational amplifiers such as a BI-FET,*
the input bias current is negligible and the input offset voltage is typically
under 1 mV. A servo loop can accurately maintain the average output voltage
close to zero enabling dc coupling to be used at the output of the transre-
sistance amplifier, where the closed-loop transfer function now includes a
first-order high-pass filter response. The servo amplifier can achieve a low
value of cut-off frequency without recourse to high-value capacitors, as the
input resistors in the servo amplifier that are instrumental in determining
the integrator time constant can be large.

 

Voltage-Controlled Amplifiers

 

An important class of analog amplifiers is the voltage-controlled amplifier
(VCA). The VCA is a two-quadrant analog multiplier (as opposed to a
modulator, which is a four-quadrant multiplier**), where the signal input is
bipolar, whereas the gain control input is constrained to be zero or positive.
A VCA finds use in audio system applications such as programmable analog
mixing desks where, e.g., gain or filter parameters require dynamic control
from signals derived within a computer or remote controller. VCAs are also
widely used in phase-lock loops as the phase-sensitive detector, although in
this application a four-quadrant multiplier implementation is required. The
basic specification requirements of a VCA are similar to other audio ampli-
fiers in terms of noise and distortion. However, because the gain is program-
mable, a method is required to embody active devices that, although
nonlinear, appear to be linear from the signal’s perspective. The core prin-
ciple exploited by BJT-based VCAs is to use the logarithmic method of
multiplication, where

(2.3)

 

*  A BI-FET incorporates field-effect transistors in the input stage with the remaining circuitry
using bipolar junction transistors.
**  Quadrant describes effectively the permissible polarities of the two input signals to the VCA.

x y e e ex y◊ ∫ +{log ( ) log ( )}
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However, in the multiplication described by the identity in Equation (2.3),
only positive and nonzero values of inputs 

 

x

 

 and 

 

y

 

 are permissible, so in its
basic form, this process is limited to one-quadrant applications. To extend
the technique to two-quadrant operation requires a bias level 

 

X

 

 to be added
to the input designated to handle a bipolar signal, say the 

 

x

 

 input, combined
with a method of differential input drive and subtraction at the output. This
technique is demonstrated as follows and is described by Equation (2.4):

Let

whereby

(2.4)

The device characteristic exploited in BJT-based VCAs is the logarithmic
relationship between emitter current and base-emitter voltage, where for an
ideal BJT the emitter current is 

 

V

 

BE

 

 = (

 

kT

 

/

 

q

 

)log

 

e

 

[

 

I

 

E

 

/

 

I

 

s

 

], where 

 

I

 

s

 

 is the satu-
ration current, 

 

q

 

 is the charge on electron, 

 

k

 

 is Boltzmann’s constant, and 

 

T

 

is the junction temperature in degrees Kelvin. However, two fundamental
problems of using a single transistor are that it is only a one-quadrant device
and that it is highly temperature sensitive, particularly with respect to the
saturation current, 

 

I

 

s

 

. For BJTs to operate successfully as a VCA, means must
be found to compensate for the temperature dependence. This is resolved
using a transistor array consisting of at least two, but more usually four,
transistors in a configuration that, if all the transistors are physically identical
and their junction temperatures also identical, then the temperature-depen-
dent parameters cancel. To understand the operation of a typical gain cell,
the design is divided into two parts. First, the transistor gain cell topology
is identified or conceptualized and then analyzed to confirm whether it meets
the requirement of a linear multiplier. Second, support or interfacing cir-
cuitry is introduced around the basic multiplier cell to establish dc biasing,
to apply appropriate input signals and to extract a suitable output signal.
Three gain cell topologies that can be used at the core of a VCA are illustrated
in Figure 2.3(a–c). Barry Gilbert* conceived the first cell,

 

6

 

 the second was by
the author,

 

7,8

 

 and the third was by the dbx company.** To establish that a
matched transistor array can achieve multiplication over a wide dynamic
range, the cell in Figure 2.3(b) is analyzed here, where the following assump-
tions are made:

 

*  Barry Gilbert is associated with Analog Devices, Norwood, MA, U.S.A.
**  dbx is a trade name of a company in the U.S.

( ) ( ){log ( ) log ( )} {log ( ) log ( )}X x y e X x y ee e e eX x y X x y+ ◊ ∫ - ◊ ∫+ + + +and

x y
X x y X x y e ee e e eX x y X x y

◊ ∫
+ ◊ - - ◊

∫ -+ + - +( ) ( ) {log ( ) log ( )} {log ( ) log ( )}

2 2
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• Emitter current, base-emitter voltage exhibits exact logarithmic
conformity.

• All BJTs in the array are parametrically and thermally matched.
• BJT bulk resistance is negligible.
• BJT base currents are negligible so that collector current IC equals

emitter current IE.

If the logarithmic relationship is applied to each of the transistors T1, T2,
T3, and T4, then applying Kirchhoff’s voltage law to the mesh containing the

(a)

(b)

FIGURE 2.3
(a) Gilbert translinear gain cell. (b) Current-steering gain cell.
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respective base-emitter voltages VBE1, VBE2, VBE3, and VBE4, then VBE1 – VBE2 +
VBE3 – VBE4 = 0. Substituting for each base-emitter voltage, it follows that the
respective transistor collector currents IC1, IC2, IC3, and IC4 are related as IC1IC3

= IC4IC2 while defining Ig as the gain control current, then the current gain of
the cell is given by Equation (2.5) as

(2.5)

A critical characteristic of all the cell topologies shown in Figure 2.3 is that
the dominant temperature-dependent parameters cancel where providing
the transistors maintain accurate logarithmic conformity over a wide current
range, then the VCA cells remain linear even for large input signals. This is
critical because enabling high signal levels to be used that can approach the

(c)

FIGURE 2.3 Continued.
(c) dbx-complementary transistor gain cell.
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limits set by transistor bias currents facilitates a wide dynamic range and an
extended signal-to-noise ratio performance. Also, a characteristic of the cur-
rent steering cell is that at maximum gain the cell operates purely as a
grounded-base stage and therefore produces negligible distortion.

In practice, VCAs suffer impairment that can be grouped into linear and
nonlinear errors. It is possible to visualize a three-dimensional error surface
where the error is plotted against the two input functions. The error is
effectively the difference between the theoretical multiplier output and the
actual multiplier output. For linear distortions, the error surface remains
planar, although the surface can in theory appear to be displaced and
rotated. On the contrary, nonlinear multiplier errors are represented by
curvature of the error surface. In practice, it is possible to trim out the linear
error by applying appropriate input and output offset correction; however,
the nonlinear error cannot be corrected by such means and represents a
fundamental shortcoming of the multiplier. The need to adjust errors in an
analog system can be problematic, because where trim controls are provided
there remains the possibility of drift with time and temperature. Neverthe-
less, the use of properly matched devices and appropriate interface circuit
design can reduce these problems and lead to cost-effective and high-per-
formance circuit solutions.

Dynamic Range Control

It is a common requirement for an audio signal to be processed in order to
limit the dynamic range, that is, the difference in level between loud and
quiet sounds, where typical applications include:

• Reproduction of audio in noisy environments such as a factory or
a car

• Gaining enhanced penetration in radio broadcasts where program
content may be required to be produced at a near-constant level

• Hearing-impaired persons, where the suppression of loud signals
and the expansion of low-level signals can improve intelligibility

At the core of a dynamic range control system is the requirement to mod-
ulate the gain of a system as a function of signal level. Consequently, in
analog systems, variable gain circuitry, as discussed earlier in this section
can be employed, where performance parameters such as low distortion and
noise and gain control signal feed-through to output are particularly impor-
tant if the quality of the input signal is to be preserved. There are many
forms of dynamic range controllers with numerous characteristics where
such systems may have a specific function or may be used as an effects unit
where the modification is for artistic reasons. However, whatever the appli-
cation, a number of key factors should be considered. First, changes in sound
quality should be subjectively pleasing to the ear without obvious generation

0949_frame_C02  Page 60  Tuesday, March 5, 2002  11:02 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



of distortion or gain and noise-pumping effects unless, of course, such mod-
ifications are specifically required. This implies the modifications must be
perceptually acceptable. It is a characteristic of a dynamic range control
device that gain does not change instantaneously, otherwise gross nonlinear
distortion is generated. Hence, a gain control signal is required that has
metered dynamics, where typically this has a fast attack and a slower decay
function. It is also desirable that some signal delay is introduced in the main
signal channel so that gain changes can be predicted before their occurrence.

At the core of a dynamic range control processor are a number of sub-
systems that are normally located in a side chain; these influence the control
range and the nonlinear characteristics of the dynamic range controller. Also,
the dynamic response times of the circuit are determined by appropriate
system time constants, where a basic feedforward structure is shown in
Figure 2.4. The dynamic response times, particularly decay times, must be
selected to avoid rapid gain changes that otherwise would be perceived as
gross signal distortion. A key process is the derivation of a signal related to
the input signal level. A common technique is to use a full-wave rectifier
and smoothing circuit, although this can be waveform dependent in its
operation. An alternative is to incorporate a true root-mean square (RMS)
detector. Such detectors can use a four-quadrant multiplier as described in
the previous section, but where the two inputs are connected together so
that the output responds to the square of the input voltage. Following a
smoothing function, a quantity related to the RMS value can be derived. The
output of the detector is then processed by a time-dependent circuit to
establish different attack and decay times. Finally a nonlinear system is used
to shape the control function in order to produce the required overall gain
control law, whether this be expansion or compression. Some of these fea-
tures are addressed in the next section on complementary companding.

Dolby A-Type Noise Reduction

The family of noise reduction systems introduced by Dolby Laboratories in
the 1960s9 was designed to reduce the effects of additive noise introduced

FIGURE 2.4
Basic audio compression structure.
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by analog tape recorders as well as other forms of analog transmission
channels. The system is widely used with analog tape recorders where the
Dolby A-type system finds favor with the professional studios, whereas the
Dolby B-type system is widely used in domestic applications, especially with
cassette tape recorders. The amount of noise reduction follows a well-defined
and standardized characteristic, varying from 10 dB at 50 Hz to 10 kHz and
rising to 15 dB at 15 kHz and above. This level and frequency-dependent
characteristic is designed to match perceptual requirements such that the
processor dynamics are inaudible, while achieving useful improvements in
dynamic range. This section discusses the Dolby A-type system, which has
found wide application in studios, where it can be viewed as a landmark
product, although a later system, Dolby SR,10 is now considered to be the
ultimate solution to analog noise reduction.

The Dolby system works by encapsulating the channel to be protected with
an encoder and decoder that operate as complementary processes in order to
adapt the signal to achieve improvement in dynamic range. When considered
as a composite process, the input and output signals should remain almost
identical, but where the noise in the channel is no longer constant and adapts
according to the signal. As such, the process can be viewed as a forerunner
to the class of perceptually motivated coders, where the aim is to mask the
channel noise by spectral shaping and level adaptation. A fundamental con-
cept common to both the Dolby systems and perceptually motivated coders
is masking by the human ear. It can be shown that if the noise spectrum is
similar to that of a signal or signal component, then the signal will mask the
noise even when the noise is only a few tens of decibel below the signal. The
closer the noise spectrum matches the signal spectrum, the better can be the
noise masking. However, if the noise spectrum is spectrally distant from the
signal spectrum, then masking by the human hearing system is minimal.

To forge correlation between noise and signal spectra, a method of fre-
quency discrimination is required. In the Dolby A-type system, this is
achieved by dividing the audio signal into four subbands (although the two
higher bands do overlap to some extent). Within a perceptually motivated
coder, banks of bandpass filters are used, although here 16 to more than 50
bands are not uncommon, because this allows much tighter matching
between signal and noise. However, the Dolby system is an analog process
where the degree of noise reduction is relatively modest, so a four-band filter
is adequate. Principal requirements of a noise reduction system are that the
overall operation is complementary, that there is no discernible modulation
noise (noise pumping), that transient overshoot is kept to a minimum, and that
level matching between encoder and decoder is not too critical (typically
± 2 dB). The Dolby A-type system achieves this in part by processing only
lower-level signals that in effect become amplified at the encoder and then
attenuated at the decoder. However, higher-level signals are by default remote
from the channel noise and are left almost unmodified; consequently, tracking
errors resulting from incorrect level matching only occur on lower-level
signals. In practice, the system employs a reference tone for calibration, where
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this tone is generated at the encoder to allow the decoder to be calibrated in
level prior to use. The tone is set at the standard Dolby level, which in tape-
based applications is also related to a specific magnetic flux density on the
tape (e.g., 185 nW/m Ampex NAB level and 320 nW/m DIN level).

A key system feature of the Dolby system is to locate the adaptation and
filtering subsystems within a side-chain process by using a combination of
feedback and feedforward, where for the special case of a noiseless channel,
this technique allows, in theory, exact complementary performance. Even
when channel noise is present, system tracking still has low sensitivity to
this noise, because the signals are held at a much higher level and there is
effective bandlimiting in the level control circuits that offer a degree of noise
rejection. The complementary feedback and feedforward structures are
shown in Figure 2.5, together with some of the key side-chain processes. The
complementary characterization of the Dolby system can be demonstrated
as follows. Let S(Vin) be the transfer function of the side-chain processor at
any instant in time, noting that S(Vin) is a nonlinear function of Vin that
depends upon the current state of the system. If Vch is the output of the
encoder, then if the feedforward path in the encoder is examined, it follows
that Vch = Vin{1 + S(Vin)}. Similarly, if S(Vout) is the transfer function of the
decoder side-chain processor (shown now as a function of Vout) where Vch is

FIGURE 2.5
Dolby A-type complementary noise reduction processor.
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also the input to the decoder, then the decoder output is calculated by
applying standard analysis of a negative feedback loop as Vout = Vch{1 +
S(Vout)}–1. Hence, assuming a noiseless and unity gain channel, then the
overall system transfer function is given by Equation (2.6) as

(2.6)

However, if the input and output signals of the overall process track closely
as they are required to do in practice, the states of the two side-chain pro-
cessors also track, implying the transfer functions S(Vout); S(Vin). Conse-
quently, even if the side-chain process is nonlinear, providing that any
additional noise in the channel does not cause the side-chain states to diverge
significantly, the overall system transfer function described by Equation (2.6)
is unity. This is the principal feature that enables the Dolby noise reduction
to offer virtually exact complementary encode and decode functionality.

In the Dolby A-type system, the four band-pass channels are synthesized
from a combination of two high-pass filters, a low-pass filter, and a matrix
process that derives a band-pass response. The filters and matrix are shown in
the side-chain processor of Figure 2.5, where the frequency subbands are nom-
inally 0 to 80 Hz, 80 to 3 kHz, 3 to 9 kHz, and 9 to 20 kHz. In practice, there is
significant spectral overlap between the low-order filters, as they are typically
second-order Sallen and Key topologies, similar to those shown in Figure 2.1.
Each subband channel uses almost identical nonlinear compressors that include
variable gain, nonlinear transient limiting and nonlinear smoothing circuitry.

A compressor consists of a variable gain stage, a transient limiter, and a
level detection stage to derive a gain control signal that is applied in a local
feedback path back to the variable gain stage. Consequently, as the input
signal level rises, the gain control signal increases and the gain of the first
stage is reduced, thus realizing signal compression. Although the gain con-
trol stage could employ a translinear amplifier, as described in “Voltage-
Controlled Amplifiers,” in this example two cascaded junction field-effect
transistors (JFETs) form a linear attenuator. The combination of specific
device characteristics, nonlinear transient limiting, and nonlinear smoothing
endow the Dolby noise reduction system with its idiosyncratic, yet highly
effective, characterization.

The use of a dual JFET as a voltage-controlled attenuator yields a cost-
effective solution to gain control, especially where the gain control range is
modest. However, a JFET does not offer the large signal linearity of a trans-
linear circuit, as described earlier in “Voltage-Controlled Amplifiers,” nor
does it offer a well-defined gain control characterization that would make it
suitable for general analog multiplication applications. The problem of using
a JFET as a variable resistor in an attenuator is that the drain current vs.
drain-source voltage is nonlinear. However, if an optimum fraction of the
drain-to-source voltage is fed back to the gate control voltage, a degree of
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linearization can be achieved. This technique is used in the Dolby attenuator
implementation, so it is described here as an example of a subtle design
change that improves the linearity up to an acceptable quality. A single JFET
attenuator stage is illustrated in Figure 2.6 where an ac feedback signal is
added to the dc gain control voltage Vg that in turn is applied to the gate of
the JFET. In the JFET pinch-off or triode region of operation where the JFET
drain-to-source voltage VDS is below its saturation value,* then the drain
current ID can be expressed as VDS = VpID[IDSS(2 + 2VGS/Vp – VDS/Vp)]–1, where
Vp is the pinch-off voltage and IDSS the drain current when the gate-to-source
voltage VGS is zero. The JFET slope resistance rd for small values of drain-to-
source voltage close to zero is then calculated by differentiation as

(2.7)

Equation (2.7) reveals that the JFET resistance is a nonlinear function of
the drain-to-source voltage. However, by adding a fraction of the drain-to-
source voltage VDS back to the gate-to-source control voltage, the slope
resistance of the JFET is sympathetically modulated by the gate-to-source
voltage so that the resistance can remain almost constant, thus substantially

FIGURE 2.6
JFET attenuator with linearization achieved by using ac feedback.

*  JFET saturation is where an increase in VDS causes little change in drain current ID, assuming
VGS is constant.
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linearizing the attenuator circuit. Hence, by substituting VGS = Vg +0.5VDS in
Equation (2.7) the slope resistance becomes

(2.8)

Equation (2.8) shows that the slope resistance has been made independent
of the gate-to-source voltage. Figure 2.6 reveals this modification is simple to
implement, where using a buffer amplifier, a signal equal to one half the drain-
to-source voltage is derived, fed back, and superimposed onto the gate control
voltage via an ac coupling network to remove any bias voltages. The ac
coupling is satisfactory in this application because the mean voltage applied
to the attenuator is zero and the drain is effectively biased at zero voltage.

The design of a multiband processor is relatively complicated where the
performance is determined by the accuracy of the analog circuitry. It is
therefore expedient to make the principal signal paths as direct as possible
with the nonlinear processing placed in a parallel side-chain. A key aspect
of the Dolby A-type system relates to the method by which the internal level
control signals are derived, where this technique is illustrated in the simpli-
fied circuit diagram shown in Figure 2.7. Following the JFET gain control
and transient limiter to prevent excessive signal overshoot, a phase-splitter
circuit produces complementary, equal amplitude audio signals that are
applied subsequently to a full-wave rectifier. The rectifier stage in turn drives
a nonlinear smoothing circuit that has a variable but fast response time and
a slow decay time where the output of this stage forms the control signal
for the variable gain stage.

The dynamics of the smoothing circuits are selected on perceptual criteria
and require special consideration, since short-term variations of the audio
signal can introduce ripple onto the compressor gain control signal. By

FIGURE 2.7
Dolby A-type side chain processor showing linear attenuator, nonlinear limiter, and gain control
derivation using full-wave rectification and nonlinear smoothing.

r
V

I
V

V

d
p

DSS
g

p

=

+
Ê

Ë
Á

ˆ

¯
˜2 1

bias

bufferbuffer

0.5

buffer buffer

side-chain output

from 
filter

bias

overshoot
clipping

attenuator feedback

feedforward path

non-linear
smoothing

2-stage attenuator

full-wave
rectification

gain control signal

0949_frame_C02  Page 66  Tuesday, March 5, 2002  11:02 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



introducing smoothing, this problem may be reduced, although there is a
potential penalty that the response of the level detector can become too slow,
leading to audible noise pumping and gain variation artefacts. As shown in
Figure 2.7, this area is addressed by using a nonlinear filter that includes a
diode–resistor–capacitor network, the response of which depends upon sig-
nal level. Effectively, for near-constant level signals, the time constant con-
trolling the level detector attack response time is made relatively large, thus
smoothing the control signal and reducing ripple. However, for a sudden
increase in signal level, the attack time constant is reduced dynamically to
enable a faster response time. This problem is common to most dynamic
range controllers but is addressed in the Dolby A-type process by using a
combination of four subband filters with individual side chain compressor
circuits employing the circuit techniques shown in Figure 2.7, where the key
features of each compressor can be summarized as

• Two-stage JFET attenuator
• Local ac-feedback loop to improve attenuator linearity
• Nonlinear transient limiter to limit the maximum signal under

transient conditions
• Full-wave rectifier
• Nonlinear smoothing circuit with fast response/slow decay to

derive JFET gain control signal

Conclusions

There are often significant philosophical differences in the way an analog
system is conceived and designed compared to a digital system. For example,
the analog designer may use a lateral approach to identify a new topology
and to simplify functionality, in a way that is difficult for a formal design
method to emulate. It may be argued that such differences are weaknesses,
but in terms of a cost-effective design, they can also become strengths. For
example, the process characterization of the Dolby noise reduction system
is in part dependent not on specific algorithms but on the idiosyncratic
characteristics of JFET diodes, and the implementation of the dynamic level
detection circuitry. This is in strict contrast to processes that are designed
specifically for digital implementation where normally more precise system
definitions are made. However, this is not unusual for analog circuitry espe-
cially in the era when the Dolby noise reduction system was conceived. In
the mid- to late 1960s, translinear gain circuits and low-cost digital circuits
that could be used to control analog processes were not available, so in order
to produce a cost-effective design, it was common practice to use the specific
characteristics of available devices. Although this leads to an efficient design
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and considerable ingenuity in the system topology, it does require precise
selection and matching of parts in order that they adhere to the required
specification. In particular, the JFET devices are critical and would require
careful selection to ensure proper functionality compared to a laboratory
reference processor.

An interesting problem therefore emerges as to how one might characterize
processes such as Dolby noise reduction in digital terms in order to emulate
its performance and, e.g., enable Dolby encoded material to be decoded
correctly within the digital domain. In fact, Dolby has produced an A-type
digital processor for film studio applications, a task representing a formida-
ble design challenge, especially because some of the analog processes are
relatively subtle and complicated. Certain aspects map exactly; in particular,
the filters are easily modeled and transformed to the z-domain (see Chapter
1). However, the attenuator and nonlinear integrators pose a greater prob-
lem. Even here analog multipliers, as discussed in “Voltage-Controlled
Amplifiers,” can represent the JFET attenuators and the control law emulated
with an appropriate code-based lookup table. Alternatively, mathematical
polynomial approximations can be made to describe in an abstract way the
control laws embedded in the analog domain. For such a process, careful
measurement would have to be performed, preferably on an analog labora-
tory reference circuit from which all other processors would be calibrated.
Of course, once a digital model is created, the design process can be inverted,
and a new analog design synthesized that combines modern hybrid ana-
log–digital circuit elements, possibly augmented using digital processing
and logic-based design, e.g., in the side chain processor.

This latter observation is important because it identifies a design method-
ology where the strengths of both analog and digital techniques can be
combined to achieve high performance with accurate repeatability including
self-calibration. Also, the theme of combining analog and digital filter tech-
niques was shown also to be critical at the analog-to-digital gateways where
this was highlighted at the beginning of this chapter. Elegance in analog
design can often combine simplicity and functionality; the current-to-voltage
conversion stage is such an example. Here, the low-pass filter is interleaved
into the transresistance amplifier stage rather than performing each function
as a cascade of individual processes. Thus, although it is true that many
processes can be performed in the digital domain, if the input and output
signals are analog signals, then the conversion and the expense of a pure
digital solution may not yield the best performance for a given task. This is
especially so if the gateway converters compromise performance. Finally, it
is also sobering to consider that all practical electronics operate within an
analog world and that the limits on speed, interconnectivity, and information
communication are dictated ultimately by analog structures. It is only the
information conveyed or contained that is digital data.
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Introduction

 

This chapter discusses digital signal processing (DSP) hardware applied to
noise reduction. DSP is the method of processing signals and data in order
to enhance or modify those signals or to analyze those signals to determine
specific information content. It involves the processing of real-world signals
that are converted and represented by sequences of numbers. These signals
are then processed using mathematical techniques to extract certain infor-
mation from the signal or to transform the signal in some preferably bene-
ficial way.

There are many advantages for using a DSP solution over an analog
solution, including:

•

 

Versatility:

 

 It is easy to reprogram digital systems for other appli-
cations or to fine tune existing applications. A DSP solution allows
for easy changes and updates to the application. A digital system
can also be ported to other hardware more easily.

•

 

Repeatability: 

 

As opposed to analog components whose character-
istics change slightly over time, a digital solution does not depend
on these tight tolerances. Digital systems can also be duplicated
easily for other platforms or applications.

•

 

Simplicity:

 

 It is much easier to implement a filter using simple
programming than to fine tune several hardware components to
achieve the same response.

•

 

Size, weight, and power: 

 

A DSP solution requires mostly program-
ming, and the DSP device itself consumes less power than a solu-
tion using all hardware components.

•

 

Reliability: 

 

Analog systems are reliable to the extent the hardware
devices function properly. If any of these devices fails due to phys-
ical condition, the entire system degrades or fails. A DSP solution
implemented in software will function properly as long as the
software is implemented correctly.
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•

 

Expandability: 

 

To add more functionality to the system, the engineer
must add more hardware. This may not be possible due to cost or
time-to-market constraints. Adding the same functionality to a DSP
involves adding software, which is much easier.

•

 

Changeability:

 

 A redesign or major change involves changing hard-
ware, which is expensive and time consuming. The same redesign
can be done using software in a digital system.

This chapter offers an overview of the characteristics and architectures of
DSP hardware. First, a few examples of DSP hardware applied to noise
reduction are presented. An overview of hardware architectures is then given
followed by specific features of digital signal processors.

 

Noise Reduction in Hearing Devices Using DSP

 

Digital hearing aids convert analog sound information from the micro-
phone into computer code, which is then processed by an amplifier con-
sisting of microcomputers such as DSPs instead of combinations of
electronic circuitry (Figure 3.1). Adjustments to the hearing aid are made
by programming the DSP.

 

1

 

Noise reduction technology is a main component applied to hearing
impairment. The noise reduction operation requires frequency-dependent
signal analysis in order to identify whether the signal is speech or noise. In
most digital hearing aid algorithms, this basic function is the fast Fourier
transform (FFT). The FFT algorithm in hearing aid applications requires an
important computational load, because the time-to-frequency and fre-
quency-to-time conversions have to be done in real time. These operations
are responsible for close to 50% of the computational load as well as most
power consumption. DSPs are used for digital hearing aids because of the
efficiency of computation of FFTs.

Other standard noise reduction techniques are based on adaptive filtering
algorithms. Adaptive filtering algorithms are also performed efficiently
using DSP.

Two of the most important requirements for the modern high-performance
hearing aid are low physical area consumption (it must fit inside the ear)
and low-power dissipation. The processing engine of a hearing aid consists
of a DSP which executes a number of signal processing routines that a DSP
performs very efficiently. Examples of these algorithms are basic filter algo-
rithms such as finite impulse response (FIR) and real-time adaptive algo-
rithms used for noise reduction.

Digital filtering algorithms are important for hearing aids to reduce certain
bands of noise. A digital filter requires a core set of components that are
common on most DSPs: adders, multipliers, multiply-accumulators and
memories, counters, and high-speed registers.
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The main advantage of DSP is the far greater processing power over
standard analog signal processing. Some of the other potential advantages
of digital hearing aids include:

• Reduced feedback
• Improved sound quality
• Increased flexibility of programming or fine tuning
• More precise adjustments resulting in improved sound quality
• Elimination of circuit noise, which can be a problem for some

clients, particularly those with normal or near normal low-
frequency hearing

DSP-based hearing aids also have the processing power to divide the
frequency response into two or more channels and adjust amplification
characteristics independently for each channel. This is an important advan-
tage for individuals who hear significantly better in one part of the frequency
range than in others.

 

FIGURE 3.1

 

Block diagram of (a) a simple analog hearing aid and (b) a DSP-based hearing aid.
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DSP provides several other advantages over an analog hardware solution.
Analog systems are combinations of electronic components. Digital systems,
on the other hand, have much of their functionality as software on a DSP.
In order to change the parameters of an analog system, you must add or
remove electronic components. This can be expensive and time consuming.
To make the same change in a DSP-based system, all that needs to be changed
is the software running on the DSP. This is a relatively fast and inexpensive
procedure. Electronic components found in an analog hearing aid such as
resistors, capacitors, and operational amplifiers will change characteristics
as the temperature changes. DSP-based solutions show no variation in per-
formance with changing temperatures because much of the processing is
software based. Digital systems are also repeatable, whereas an analog circuit
has variable tolerances. These tolerances make each circuit unique and more
difficult to maintain. DSP-based solutions can also respond dynamically to
changing conditions (e.g., noise background, etc). Analog systems cannot
respond dynamically to changing conditions — they must be readjusted.

 

DSP Noise Reduction in Automobiles Using Electronic Mufflers

 

Electronic mufflers are one example of noise reduction applied to a commer-
cial system.

 

2

 

 This system receives input from a microphone and a crankshaft
speed/position sensor. These sensors trap the waveform signature of the
engine. A computer receives input on the pattern of pressure waves (basically
sound waves) the engine is emitting at its tail pipe. These data are processed
using DSP algorithms, which produce mirror-image (antinoise) pulses that
are sent to speakers mounted near the exhaust outlet, creating contrawaves
that cancel out the noise and remove sound energy from the environment.
Although the concept can be applied to any type of unwanted sound, it
works particularly well against annoying low frequencies — buzzes, hums,
booms, and rumbles.

Active noise cancellation techniques have been used since the vacuum
tube days of the 1930s. DSP has provided an enormous boost to the appli-
cation of noise cancellation and reduction.

 

3

 

 DSP performs active noise reduc-
tion and cancellation using predictive analysis and feedforward analysis
techniques. Predictive analysis records rotations per minute (rpm) from a
component and checks for errors with a microphone. This approach works
well with the repetitive sounds caused by the rotating parts of an engine
and other car parts. The feedforward approach uses a microphone input
only, and it is the best technique to use for more random sounds such as
wind and tire noise. An adaptive learning algorithm in the DSP is capable
of storing these various characterizations so the DSP does not have to per-
form a full computation each time the same pattern is heard. This makes
this approach to noise cancellation fast and efficient.

Active noise cancellation does not just make the car ride more enjoyable
by reducing background noise. There are also performance advantages for
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the car itself. Active noise cancellation reduces backpressure by up to 80%,
which can lead to an improvement in power output and fuel mileage. An
ordinary car muffler is a passive system. There are certain bands of noise
frequency where a muffler will work well, but a muffler is too simple a
system to suppress all of the various noises produced by an automobile.
Real-time DSP provides the ability to customize the sound control to various
load conditions.

 

DSP-Based Digital Audio Noise Reduction

 

Digital audio is another example of modern noise reduction techniques.
Digital audio noise reduction techniques prevent certain classes of noise and
distortion from corrupting an audio signal.

 

4,5

 

 These audio signals are rela-
tively free of pops, clicks, crackles, surface noise, hums, and buzzes. Most
of the noise remaining after digital noise reduction is the background noise
such as that found in heating, ventilating, and air conditioning (HVAC)
rumble, traffic, and other low-level noises that often creep into recordings.

Audio noise reduction techniques are divided into two main areas: the
removal of ticks, pops, and other noises of an impulsive nature and removal
of broad-band low-level noises. Removal of these types of noise has been done
using analog electronics for quite some time. But the approaches used have
been relatively expensive and inefficient. DSP techniques are able to apply
greater sophistication to noise reduction. Modern digital audio noise reduc-
tion systems use hundreds of bands of multiband processes and apply psy-
choacoustics principles to determine when a noise band can be removed with
no detrimental effects on the signal. Host side signal processing (e.g., using a
desktop PC) is used to splice and rebuild damaged portions of a program
segment using advanced signal processing techniques.

PC-based noise reduction systems are often based on floating point DSP
boards and sophisticated DSP software that perform a number of complex
operations:

• Click, pop, and scratch removal
• Splitter/combiner fine click removal (sometimes called “decrackle”)
• Real-time broad-band noise reduction
• Real-time hard disk editing and assembly
• Phase/time correction

DSP is also used to reduce noise in digital cameras.

 

6

 

 These DSP-based
cameras provide digital performance that is far superior to conventional
analog camera technology. Signal processing technologies such as three-
dimensional (3D) digital noise reduction is used to improve the picture
quality. 3D digital noise reduction cancels out random noise without intro-
ducing noticeable delay in the camera operation. This is done by comparing
multiple frames together and applying motion-detection algorithms.
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Overview of Processor Architectures

 

Architecture is a term applied to both the process and the outcome of think-
ing out and specifying the overall structure, logical components, and logical
interrelationships of a computer, its operating system, a network, or other
conception. An architecture can be a reference model, or it can be a specific
product architecture. Computer architecture can be divided into the funda-
mental components of input/output, storage, communication, control, and
processing. This chapter will review DSP architectures, including the com-
ponents previously mentioned.

 

Von Neumann Architecture

 

The organization of a traditional microprocessor is based on the von Neu-
mann architecture shown in Figure 3.2. This computer architecture is char-
acterized by two main components:

• Central processing unit (CPU) where the instructions are executed.
• Memory; most DSPs have two types of memory: slow-to-access

storage area, like a hard drive, and secondary fast-access memory
(RAM).

This architecture was the first model of the stored program concept. Instruc-
tions, stored as binary values, were executed sequentially. The processor
would fetch instructions one at a time and process them. Today the term 

 

von
Neumann architecture

 

 often refers to the sequential nature of computers based

 

FIGURE 3.2

 

Von Neumann architecture.
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on this model. There is only one memory space connected to the processor
core by one system bus that is used to access address and data information.
For many applications, this architecture works well. The single-system bus
is able to keep the processor fed with enough data not to impact performance.

 

Harvard Architecture

 

A Harvard architecture uses two memory banks and two bus sets, as shown
in Figure 3.3. Each of these two memory spaces is connected to the processor
core. This allows the processor to make two simultaneous accesses to mem-
ory during each cycle. This approach basically doubles the processor band-
width, allowing twice as much data to be fed to the processor. With the
proper arrangement of data in these two memory spaces, applications such
as the FIR filter can execute extremely quickly because the processor can
access all the required data for each tap point from the two memory locations
to perform the operation in one cycle (instead of four). The downside to this
approach is the extra cost of the hardware to provide the extra bus set. This
also costs in terms of power and space on the processor die.

 

Scalar Architectures

 

The scalar processor instruction cycle consists of the steps each instruction
must pass through during processing. Each step in the instruction cycle
requires one or more clock cycles to complete. A typical reduced instruction
set computer (RISC) instruction for a scalar processor consists of the follow-
ing stages:

 

FIGURE 3.3

 

Harvard architecture.
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• Fetch
• Instruction decode
• Read operands
• Execute
• Write results

A RISC processor is designed to perform a smaller number of types of
computer instruction so that it can operate at a higher speed. Each instruction
type that a processor must perform requires additional transistors and cir-
cuitry. Therefore, the larger the list of computer instructions, the more com-
plicated and slower the operation of the processor. The execution time of a
scalar processor is dependent on the number of instructions required and
the average number of cycles per instruction. The number of instructions is
dependent on the program, the compiler, and the instruction set architecture.
The number of cycles per instruction is dependent on these plus the proces-
sor implementation. The execution time can be described as

Execution time = number of instructions 

 

¥

 

number of cycles per instruction 

 

¥

 

 processor clock cycle time

For the scalar processor example described previously, the number of cycles
per instruction is five.

In order to improve performance, at least one of these factors must be
improved. The fact that the number of instructions, the number of cycles per
instruction, and the processor clock cycle time are all interrelated results in
complex trade-offs among design options.

One obvious way to increase performance is to reduce the processor clock
cycle time. This is usually a technology-driven issue (over time smaller die
sizes and routes result in shorter clock cycle times — this is basically
Moore’s Law*).

One key performance enhancement is to use a pipelined processor. Pipe-
lining basically overlaps the processing of one instruction with the next,
utilizing the different subphases of a DSP instruction (Figure 3.4). Efficient
overlapping of instructions can reduce the average cycles per instruction to
close to one. For a pipeline with 

 

n 

 

stages, the performance can be improved
by at most a factor of 

 

n

 

.
All instructions must pass through these phases in Figure 3.4 to be imple-

mented. Each subphase takes one cycle. This sounds like a lot of overhead
when speed is important. However, since each pipeline phase uses separate

 

*  Moore’s Law states that the pace of microchip technology change is such that the amount of
data storage that a microchip can hold doubles every year or at least every 18 months. In 1965,
when preparing a talk, Gordon Moore noticed that up to that time microchip capacity seemed to
double each year. Because the pace of change has slowed down a bit over the past few years, the
definition has changed (with Moore’s approval) to reflect that the doubling occurs only every 18
months.
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hardware resources from each other phase, it is possible for several instruc-
tions to be in process every cycle (Figure 3.5).

As shown in Figure 3.5, instruction 1 (P

 

1

 

) first implements its Prefetch
phase. The instruction then moves to the Fetch phase. The Prefetch hardware
is therefore free to begin working on instruction 2 (P

 

2

 

) while instruction 1 is
using the Fetch hardware. In the next cycle, instruction 1 moves on to the
Decode phase (D

 

1

 

), allowing instruction 2 to advance to the Fetch phase (F

 

2

 

),
and opening the Prefetch hardware to start on instruction 3. This process
continues until instruction 1 executes. Instruction 2 will now execute 

 

one

 

cycle later, not six. This is what allows the high MIP rate offered in pipelined
DSPs. This process is performed automatically by the DSP, and requires no
awareness on the part of the programmer of its presence or actions to cor-
rectly write arithmetic code on the DSP.

Figure 3.6 shows the speed improvements to be gained by executing
multiple instructions in parallel using the pipeline concept. By reducing
the number of cycles required, pipelining also reduces the overall power
consumed.

Adding pipeline stages increases the computational time available per
stage, allowing the DSP to run at a slower clock rate. A slower clock rate
minimizes data switching. Electronic circuits consume power when the tran-
sistors that they are composed of are switched on and off. So reducing the
clock rate leads to lower power supply voltage. The trade-off is that large

 

FIGURE 3.4

 

The subphases of a DSP instruction execution.

 

FIGURE 3.5

 

DSP instruction pipeline.

P

Prefetch

F

Fetch

D

Decode

A

Access

R

Read

E

Execute

Cycles

P1 D1

F2

P3

D1

F2

P3

A1

D2

F3

P4

A1

D2

F3

P4

R1

A2

D3

F4

P5

R1

A2

D3

F4

P5

X1

P6

R2

A3

D4

F5

X1

P6

R2

A3

D4

F5

F6

X2

R3

A4

D5

F6

X2

R3

A4

D5

F1

P2

F1

P2

D6

X3

R4

A5

D6

X3

R4

A5

A6

X4

R5

A6

X4

R5

R6

X5

R6

X5

X6

Fully loaded pipeline

 

0949_frame_C03  Page 80  Tuesday, March 5, 2002  11:08 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



  

pipelines consume more silicon area. In summary, pipelining, if managed
effectively, can improve the overall power efficiency of the DSP.

There are limits to increasing pipeline depth. Given that each instruction
is an atomic unit of logic, there is a loss of performance due to pipeline
flushes during program control flow. Another limitation to pipelines is the
increased hardware/programmer complexity because of resource conflicts
and data hazards. The latency increases as the depth of the pipeline increases.
Sources of latency also increase, including register delays for the extra stages,
register setup for the extra stages, and clock skew to the additional registers.

 

Superscalar Architectures

 

Superscalar processors are the next step beyond pipelining. In superscalar
architectures, multiple pipelines operate in parallel. A superscalar processor
is one that can fetch, execute, and complete more than one instruction in
parallel. Superscalar designs use smart hardware controllers to manage the
parallelism on chip. This approach requires less support from the software
(compiler) to manage the parallel issuance of instructions. Superscalar
devices can execute words of varying widths. This enhances programmer
flexibility and also produces higher code densities because the less complex
instructions occupy fewer bytes of memory.

An 

 

n

 

-degree superscalar processor has 

 

n

 

 pipelines. Theoretically, the cycles
per instruction for an 

 

n

 

-degree superscalar processor can be reduced to 1/

 

n

 

.
If each pipeline is 

 

k

 

 stages, the potential speedup over a scalar implementa-
tion is 

 

n 

 

¥

 

 k

 

. In practice, it is very difficult to keep multiple pipelines busy,
and many superscalar implementations have been limited to just two or
three pipeline stages. Figure 3.7 shows the structure of a three-stage super-
scalar pipeline.

The ZSP DSP architecture by LSI Logic Inc. is superscalar, issuing up to
four instructions per cycle. The architecture is also pipelined with a five-
stage pipeline and a dual multiply and accumulate (MAC) and dual arith-
metic logic unit (ALU). The superscalar architecture makes the device
compiler and programmer friendly, and the dynamic hardware scheduling

 

FIGURE 3.6

 

Speed in a DSP using pipelining.

Cycles required without pipeline

P1 D1 A1 R1 X1F1

P1 D1 A1 R1 X1F1

F2 D2 A2 R2 X2P2

F2 D2 A2 R2 X2P2

P3 F3 D3 A3 R3 X3

P3 F3 D3 A3 R3 X3

Cycles saved using pipeline

 

0949_frame_C03  Page 81  Tuesday, March 5, 2002  11:08 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



   

can automatically eliminate pipeline conflicts. But this same dynamic
instruction scheduling also leads to more nondeterministic behavior. (The
dynamic scheduling takes place in the pipeline control unit [PCU] of Figure
3.8. This is where data and resource dependencies are resolved. The PCU
synchronizes the entire operation of the pipeline, arranges for operand
bypass, and processes interrupt requests.)

 

Very Long Instruction Word Architectures

 

Very long instruction word (VLIW) architectures basically pack multiple
opcodes into a single instruction. Each opcode describes the action of one
functional unit. All of the functional units in a VLIW architecture operate in
parallel.

 

7

 

 The main problem with this approach is finding enough independent
operations to fill the available slots in each instruction word. If enough are not
found, no-ops are used instead. A no-op, for no operation, is a computer
instruction that takes up a small amount of space but specifies no operation.
The processor simply moves to the next sequential instruction. In order to be
successful, a good compiler is required. VLIW processors work at reducing
the number of instructions executed (instead of cycles per instruction).

One of the fundamental characteristics of a VLIW architecture is the ability
to extract a highly parallel instruction stream from the application program.
These parallel instructions are then allocated to the multiple execution units
of the device (Figure 3.9). The execution units can execute multiple instruc-
tions in a single clock cycle. VLIW processors are relatively simple compared
to superscalar devices. In superscalar devices, the instructions are scheduled
dynamically, in real time, based on the state of the processor at the time. In

 

FIGURE 3.7

 

A three-way superscalar pipeline.
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VLIW processors, there is no real-time dynamic execution capability on the
device. The instructions are scheduled ahead of time by the compiler.

The term 

 

VLIW

 

 implies a wide bit length word. Multiple different com-
mands are packed into this wide bit word. The job of the compiler in a VLIW
device is to determine which instructions can be scheduled in parallel and
pack those instructions into a single word. Since this is done by the compiler,

 

FIGURE 3.8

 

ZSP DSP architecture.

 

FIGURE 3.9
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there is less overhead at run time to determine this scheduling. Also, less
silicon is required to determine the proper scheduling during run time. This
directly translates to simpler silicon designs for VLIW processors.

The Texas Instruments TMS320C6x DSP architecture is an example of a
VLIW architecture for DSP (Figure 3.10). There are two data paths in this
device, each with four instruction execution units (L, S, M, D). Up to eight
instructions can be issued and executed per cycle using this VLIW approach.

 

Characterizing DSP Architectures

 

Many DSP architectures are available today. Each architecture has unique
features to address specific problem domains. DSP architectures can be clas-
sified by the following attributes:

• Instruction set architecture (ISA) specialization
• Component specialization
• Processors
• Memory
• System
• Load distribution
• Component interaction

 

Instruction Set Architecture Specialization

 

The term 

 

instruction set architecture

 

 (ISA) defines a number of different
attributes for operand storage and execution. ISA specialization determines
the operand storage plan in the CPU, including the definition of the stack,

 

FIGURE 3.10

 

The Texas Instruments TMS320C6x DSP VLIW processor.
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accumulator, and registers data flows. The ISA also defines the number of
explicit operands named per instruction (0,1,2,3), the operand location def-
inition (memory, registers, addressing modes), the operations themselves
(e.g., shift, add, store), and the type and size of operands (e.g., immediate,
constant, signed, unsigned, byte, word).

The ISA specialization determines the concurrency of the individual oper-
ations as well as the chaining of operations. The ISA also defines the instruc-
tion length. This is important when considering code size. Embedded
applications are code size sensitive and require a small program footprint.
The ISA determines the branch control structure and the number of instruc-
tions required to express a function. The raw peak performance of a DSP
ISA is measured in instructions/cycle, operations/cycle, or floating point
operations/cycle. Finally, the ISA definition defines the power contribution
due to operand/instruction widths. This is obviously important for power-
sensitive applications.

 

Component Functional Unit/Data Path Specialization

 

The component functional unit and data path specialization defines the
implementation of the internal data flow in the DSP. This specialization
defines the implementation of the operations in the DSP as well as the widths
of the internal paths and storage capability.

This type of specialization determines the frequency of the device (with
the pipeline model), the throughput of the device, and the precision per cycle
that the device can produce. This type of specialization also determines the
power contribution due to the circuit style and the number of circuit tran-
sitions per operation.

 

Component Local Memory Specialization

 

The local memory of a DSP is specialized as well. The local memory spe-
cialization defines the number and size of memory. It also defines the orga-
nization of memory (e.g., RAM, ROM, cache, FIFO) and the number and
size of the I/O ports. The structure of memory is also defined by this type
of specialization, including how many memory banks, whether they are
interleaved, and so forth).

Local memory specialization determines the efficiency of use of temporal
locality in both data and program storage as well as the efficiency of use of
spatial locality in data and program memory. Local memory specialization
determines efficiency in data structure sizes and data flow strategies.

 

Component Interconnect Specialization

 

Another type of specialization in DSPs is the component interconnect. The
component interconnect defines the physical connections and protocols
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between the subunits of the processor. The component interconnect scheme
implements the chaining and concurrency functionality of the ISA.

This type of specialization determines the communication bandwidth in
the processor. This is important for high-performance I/O applications. The
component interconnect also impacts cost and power. The more buses that
have to be switched on and off, the more power is consumed in the device,
and the more silicon area is required.

 

Component Control Specialization

 

Component control specialization in a DSP defines such things as the control
path width of the processor. The control implementation (finite state
machine, controller) is also defined by this type of specialization. Component
control specialization determines the pipeline model used in the DSP and
the latency in the device.

 

System Specialization

 

System specialization focuses on load distribution. Load distribution is the
mapping of functions to resources in a processor. This involves such tech-
niques as data decomposition, control decomposition, and component inter-
action. Data decomposition, for example, considers the data flow from one
computation unit to the next. Does the DSP, for example, require specialized
storage to buffer data, to match formats, and to match the processing rates
of the system. System specialization also includes the use of shared resources
and the communication mechanisms used in the processor.

 

DSPs vs. General Purpose Processors

 

This section will describe some of the main differences between general-
purpose processors (GPPs) and digital signal processors. There are several
fundamental differences in these two types of processor.

 

Functionality

 

GPPs are designed to have broad functionality. These processors are designed
to be used in a wide variety of applications; therefore, their architectures are
designed to support a wide range of solutions. Specialized processors, on
the other hand, are designed to take advantage of the limited functionality
required by their applications to meet specific objectives.

 

 

 

DSPs are specialized
processors designed to focus on signal processing applications. Hence, there
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is little or no support to date for features such as virtual memory manage-
ment, memory protection, and certain types of exceptions.

 

8

 

Performance

 

The performance goal of GPPs is maximized performance over many appli-
cations. Specialized processors have customized architectures designed to
achieve some required performance level in their applications. These pro-
cessors have specific performance targets which may or may not be the
maximum performance of the technology. DSPs, as a type of specialized
processor, have customized architectures to achieve high performance in
signal processing applications. Traditionally, DSPs are designed to maximize
performance for inner loops containing product of sums (multiply and accu-
mulate instructions called MACs). New commercial standards are emerging
that need more than simple MACs (e.g., conditionals within inner loops).

 

Time to Market

 

GPPs meet time-to-market windows by designing the hardware with existing
software used as benchmarks. Hardware development is more loosely cou-
pled to the software development. Specialized processors meet time-to-mar-
ket pressures by designing or codesigning the hardware with specific
software applications in a tightly (temporal, functional) fashion. DSPs follow
a general-purpose model for DSP core development. DSPs also support a
specialized time-to-market model using an embedded core strategy (an exam-
ple is configurable DSPs). ASICs can also be used to design specialized DSPs.

 

Execution Predictability

 

GPPs are designed to improve average performance. Predictability is a minor
concern with GPPs. Many modern GPPs have complex architectures that
make execution time predictability difficult (e.g., superscalar architectures
dynamically select instructions for parallel execution). These processors often
lack proper tool support to allow programmers to accurately predict execu-
tion time. This makes it difficult to predict execution timing of GPP code.

Specialized processors with hard time constraints such as DSPs, require
designs to meet worst-case scenarios. There is little advantage in improving
the average performance. Predictability is very important so that time
responses can be calculated and predicted accurately. DSP processors have
relatively straightforward architectures and are supported by development
and analysis tools that help the programmer accurately determine execution
time of applications.

The memory systems of DSPs are also designed to improve execution time
predictability by limiting the use of cache. Most GPPs use cache systems to
boost performance. Processor cache memory is a small amount of high-speed
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static RAM (SRAM) that can significantly improve CPU performance. The
cache resides between the CPU and the main system memory. There are two
levels of processor cache: “primary” and “secondary.” Primary cache, also
known as Level 1 or L1, is that cache memory built into the processor itself.
Secondary cache, or Level 2 (L2), is external from the CPU. On-chip caches
consume a significant portion of the silicon area of the chip, which increases
the chip size as well as the cost.

If the instructions the processor executes reside in the cache, execution is
much faster. If the instruction and data are not in the cache, the processor
must wait while the code and data are loaded into the caches. This model
of execution is probabilistic. In other words, it is not totally deterministic
and predictable. This may be fine for many general computing applications,
but for many real-time applications, this model of behavior can cause prob-
lems. Since many real-time applications have hard real-time constraints that
must always be met, having a deterministic execution time is a requirement.

Branch prediction can also cause potential execution time predictability
problems. Modern CPUs have deep pipelines that are used to exploit the
parallelism in the instruction stream. This has historically been one of the
most effective ways for improving performance of GPPs as well as DSPs.

Branch instructions can cause problems with pipelined machines. A branch
instruction is the implementation of an if-then-else construct. If a condition
is true, then jump to some other location; if false, then continue with the
next instruction. This conditional forces a break in the flow of instructions
through the pipeline and introduces irregularities instead of the natural,
steady progression. The processor does not know which instruction comes
next until it has finished executing the branch instruction. This behavior can
force the processor to stall while the target location to jump to is resolved.
The deeper the execution pipeline of the processor, the longer the processor
will have to wait until it knows which instruction to feed next into the
pipeline. This is one of the largest limiting factors in microprocessor instruc-
tion execution throughput and execution time predictability. These effects
are referred to as ‘‘branch effects.’’ These branch effects are probably the
single biggest performance inhibitor of modern processors.

Dynamic instruction scheduling can also lead to execution time predict-
ability problems. Dynamic instruction scheduling means that the processor
dynamically selects sequential instructions for parallel execution, depending
on the available execution units and on dependencies between instructions.
Instructions may be issued out of order when dependencies allow for it.
Superscalar processor architectures use dynamic instruction scheduling.
Many (although not all) DSPs on the market today are not supserscalar for
this reason — they need to have high execution predictability.

 

Power

 

GPPs exist in three typical environments: mainframe computers, desktop
computers, and notebook computers. In these applications, the system
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environment is designed to the processor. Desktop computers, for example,
can use large enclosures and powerful fans to cool a power-hungry proces-
sor. Specialized processors such as DSPs are often embedded in the environ-
ment. Many such environments have poor heat-dissipation characteristics
(e.g., the DSP processor that performs speech processing inside a doll). Long
battery life is also an important requirement. DSPs are designed to meet
these important system requirements.

 

Cost

 

Specialized processors and DSPs have functionality at a cost point that drives
the market. Applications are dominated by relatively low-price consumer
and commercial markets. GPPs attempt to maximize performance at a cost
point that drives the market. Applications are dominated by relatively high-
price consumer and commercial markets.

 

Safety

 

In GPPs, reliability is the main concern. Consumers should be able to turn
their desktop computers on and off several times a day without the processor
failing. Specialized processors often include additional features for self-
checking, fault checking, radiation hardness, error detection and correction,
and electromagnetic interference. DSPs, for example, focus on applications
containing error detection and correction.

 

Run Time Kernels and Operating Systems

 

One of the key elements driving DSP solutions to higher and higher levels
of performance has been the evolution of real-time operating systems
(RTOSs). DSP RTOs have evolved to the point that developing code for
multiprocessor DSP applications is a simple extension to just programming
a single processor. It is now becoming advantageous to purchase a commer-
cial off-the-shelf (COTS) RTOS instead of developing an operating system
in house. Real-time operating systems are now being built specifically for
DSPs. The main features of these operating systems include:

• Preemptive priority-based real-time multitasking
• Deterministic critical times
• Time-out parameters on blocking primitives
• Memory management
• Synchronization mechanisms
• Interprocess communication mechanisms
• Special memory allocation for DSP (on-chip)
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• Low interrupt latency
• Asynchronous, device-independent, low-overhead I/O

 

Tools

 

DSP processors, like many of the GPPs, come with a standard set of tools
provided by the chip manufacturer. Most DSP vendors supply enhanced tool
suites which are, generally, the standard code generation tool suite with an
interactive graphical user interface (GUI) wrapped around them and a set
of advanced analysis and profiling tools. Software and hardware develop-
ment tools are necessary for rapid application development and overall time
to market. Real-time applications require an enhanced set of tools to help
the developer analyze real-time constraints, improve the efficiency of soft-
ware, and make power, memory size, and performance trade-offs.

There are other tools that can be useful for developing DSP-based systems
including simulators and emulators. Software simulators are available for
many common DSPs. These tools let the engineer begin development and
integration of software without the DSP and associated hardware being
available. Simulators are more common in DSP applications because the
algorithms typically run on a DSP are complex and mathematically oriented.
This leads to many areas in which errors in design and implementation can
be made. Simulators also allow the engineer to examine the device operation
easily and without having to buy the device ahead of time.

Another very useful tool for DSP developers is the emulator. The purpose
of an emulator is to provide the engineer access to the DSP(s) and its periph-
erals in a nonintrusive way to aid in debugging operations and hard-
ware/software integration. Emulators allow engineers easy access to
hardware registers and memory, allowing reading and writing to these loca-
tions. Other common functions such as breakpoints, single stepping, and
benchmarking are also supported. Most emulators are nonintrusive both
spatially and temporally. Spatially nonintrusive means the emulator does
not require any additional hardware or software in the target environment.
Temporally nonintrusive means the emulator does not prevent the processor
or system from executing at full speed. These two requirements are very
important when performing hardware/software integration.

 

Single-Cycle Multiply

 

DSPs were designed to process certain mathematical operations very quickly.
Consider the filtering operation discussed earlier. There are actually two
popular forms of filtering: finite impulse response (FIR) filters and infinite
impulse response (IIR) filters (the difference in these two filters will be
discussed later). The FIR filter contains a series of delay components. These
delay components produce a copy of the input sample which has been
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delayed by one or more sample periods. These delay components are stored
in some type of storage element such as memory.

To perform this type of operation the DSP will be performing many mul-
tiply operations. DSP vendors recognized this bottleneck and have added
specialized hardware to compute a multiply operation in only one cycle.
This dramatically improves the throughput for these types of algorithms.

 

Large Accumulator

 

Another distinguishing feature of a DSP is its large accumulator register or
registers. The accumulator is used to hold the summation of several multi-
plication operations without overflowing. The accumulator is several bits
wider than a normal processor register, which can help avoid overflow
during the accumulation of many operations.

 

Multiply-Accumulate Instructions

 

DSP processors very often contain specialized instructions that take advan-
tage of the fact that many DSP algorithms require both a multiply (which has
been optimized) and an accumulate (which is handled with a larger register)
to complete its operation. Specialized instructions called multiply and accu-
mulate (MAC) were developed to perform these operations very quickly.

 

Characteristics of DSP Applications

 

As an example of a typical DSP application, consider the application of signal
filtering. Signal filtering involves the manipulating of a signal in order to
improve some characteristic of that signal. One goal may be to remove noise
from the signal. Another goal may be to retain one small subset of signal
frequencies and throw away (attenuate) the rest.

 

Problems with Analog Circuitry

 

Signal filtering used to be performed using analog circuitry. A mixture of
capacitors, inductors, and resistors were used to “tune” the circuit to the
desired characteristic. This approach is not desirable for the following reasons:

• Environmental factors such as temperature cause the characteris-
tics of the circuit to change. The characteristics of the capaci-
tor/inductor/resistor filter could change over time as the
temperature of the environment warmed and cooled.

 

0949_frame_C03  Page 91  Tuesday, March 5, 2002  11:08 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



   

• Analog filters had to be designed to a specific characteristic and
could not change unless the circuit was redesigned. This is expen-
sive if a filter circuit has to be redesigned with new hardware
components each time the filter characteristics changed.

• Analog filters, because of their very nature, could not be designed
to very tight tolerances. This leads to filters that may not be able
to attain the optimal signal to noise improvement required for some
applications.

 

Digital Alternatives

 

DSP devices, on the other hand, are fully programmable, which eliminates
many of the barriers seen in analog filter design. Table 3.1 contrasts the two
approaches to filter design.

 

Common DSP Characteristics

 

Although each DSP application is different, they all share some common
characteristics:

• Use of many mathematical operations, especially multiplies and
adds. Because of this characteristic, using a DSP (or other proces-
sor) that performs these operations quickly will dramatically
improve the response time of a signal processing based application.

• They must interact with signals from the real world. Therefore, the
system must accept information from the real world in a timely
manner and respond back to the real world in a timely manner.

• They must complete processing of a signal sample in a certain
amount of time. Signals from the real world must be sampled at a
rate that varies based on the characteristics of the signal. The faster
the sampling rate of the signal, the less time there is to complete
processing of that sample before the next sample arrives.

There are many DSP processors on the market today. Each processor adver-
tises its own unique functionality for improving DSP processing. However,

 

TABLE 3.1

 

Analog vs. Digital Filter Implementation Considerations

 

Analog Filter Digital Filters

 

Behavior varies depending on temperature Immune to temperature variations
Difficult to obtain very tight tolerances due to the 

combination of several components
Programmable to very tight tolerances

Difficult to change because filter is designed in 
hardware

Programmable and very easy to change
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as different as these processors may sound from each other, there are a few
fundamental characteristics that all DSP processors share. In particular, all
DSP processors must:

• Perform high-speed arithmetic
• Make multiple accesses to and from memory in a single cycle
• Be able to process data to and from the real world

Many DSP algorithms require a few specific operations to perform a major-
ity of the computation:

• Addition
• Multiplication
• Delay
• Array indexing

DSP Example

As an example of these operations, consider the FIR filter shown in Figure
3.11. In this representation,

y(n) = a0 ¥ x(n) + a1 ¥ x(n – 1) + a2 ¥ x(n – 2) + a3 ¥ x(n – 3) + a4 ¥ x(n – 4)

This filter structure will produce a result that is a weighted average of the
past and present inputs. For each output sample, y(n), the present input, x(n)
and previous inputs, x(n – 2), x(n – 3), and x(n – 4) are all multiplied by the
corresponding weights, or coefficients (a0, a1, a3, and a4), and these products
are added together to produce one output sample. The FIR filter shown in
Figure 3.11 requires the following mathematically based operations:

• Addition: This operation requires
• Fetching two operands from memory

FIGURE 3.11
Block diagram of an FIR filter. The y term is the output sample, the x terms are the input
samples, and the a terms are the filter weights.
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• Performing the addition on those operands
• Storing the result in memory for later use

• Multiplication: This operation requires
• Fetching two operands from memory
• Performing the multiplication
• Storing the result in memory for later use

• Delay: This operation requires
• Holding a value for later use (usually in memory)

• Array indexing: This operation requires
• Fetching values from consecutive memory locations
• Copying data to and from different memory locations

A DSP is designed to enable these operations to execute extremely quickly.
Since many DSP algorithms are based on these fundamental concepts, if they
can be made to execute quickly, the performance of the application in general
will improve. The characteristics of many DSPs that optimize these opera-
tions include:

• Ability to perform a multiply and an add in parallel (at the same
time). In many DSPs, there is a dedicated hardware adder and
hardware multiplier. The adder and multiplier are often designed
to operate in parallel so that a multiply and an add can be executed
in the same clock cycle. Special MAC instructions have been
designed into DSPs for this purpose. Figure 3.12 shows the high-
level architecture of the multiply unit and adder unit operating
in parallel.

FIGURE 3.12
Adder and multiplier operating in parallel.

P S
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• Multiple accesses to memory (in the FIR example, this would
include fetching two operands from memory and storing the result).

• Efficient address generation algorithms for processing arrays of
data. DSPs must be able to process arrays of data quickly so gen-
erating the addresses quickly is an important feature for DSPs.
Some of the on-chip DSP registers are address registers used for
generating the array addresses.

• Data registers that hold data temporarily and have fast access
times. Many DSP processors include a bank of internal memory
with fast, single-cycle, access times. This memory is used for storing
temporary values for algorithms such as the FIR filter. The single-
cycle access time allows for the multiply and accumulate to com-
plete in one cycle. The register file residing on-chip is used for
storing important program information and some of the most
important variables for the application. For example, the delay
operation required for FIR filtering implies information must be
kept around for later use. It is inefficient to store these values in
external memory, because a penalty is incurred for each read or
write from external memory. Therefore, these delay values are
stored in the DSP registers or in the internal banks of memory for
later recall by the application without incurring the wait time to
access the data from external memory. The on-chip bank or mem-
ory can also be used for program and/or data and also has fast
access time. External memory is the slowest to access, requiring
several wait states from the DSP before the data arrive for process-
ing. External memory is used to hold the results of processing.

• Customized features that allow for special addressing modes, delay
instructions, and block data transfers.

DSP-related devices require sophisticated memory architectures. The main
reason is the memory bandwidth requirement for many DSP applications.
It becomes imperative in these applications to keep the processor core fed
with data. A single memory interface is not good enough. For the case of a
simple FIR filter, each filter tap requires up to four memory accesses:

• Fetch the instruction.
• Read the sample data value.
• Read the corresponding coefficient value.
• Write the sample value to the next memory location (shift the data).

If this is implemented using a DSP MAC instruction, four accesses to
memory are required for each instruction. Using a serial von Neumann
architecture, these four accesses to memory slow down the processor core
to the point of causing it to wait for data. In this case, the processor is

0949_frame_C03  Page 95  Tuesday, March 5, 2002  11:08 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



“starved” for data and performance suffers. In order to overcome this per-
formance bottleneck, DSPs have introduced a higher performance memory
interface architecture.

DSP Building Blocks

Modern DSP applications are composed of very complex signal processing
algorithms. These algorithms are composed of building blocks (Figure 3.13).
At the heart of all of these DSP building blocks are two basic functions; the
multiply and the add. These two operations are required regardless of
whether the algorithm is an FFT, a filter, a correlation, or a convolution.9
These operations can be expensive to perform (from a cycle time perspec-
tive). DSPs are designed specifically to make these operations very fast and
efficient. At the heart of any DSP on the market today is the fast and efficient
execution of the multiply and add instructions.

Most DSP algorithms consist of a “sum of products” type of equation. At
the core of the equation is the need to multiply two numbers together. A
multiplier with two inputs would serve this requirement well. Next, consider
the summation of each of these products. Ideally, there should exist an adder
to sum each product to create the result to store back to memory.

At the core of the DSP CPU is the MAC unit, which gets its name from
the fact that the unit consists of a multiplier that feeds an accumulator. To
most efficiently feed the multiplier, a “data” bus is used for the input sample
array (x terms), and a “coefficient” bus is used for the filter weight array
(a terms). This simultaneous use of two data buses is a fundamental charac-
teristic of a DSP system. If the coefficients were constants, the user might
want to store them in ROM. This is a common place to hold the program,
and allows the user to perform the MAC operations using coefficients stored
in program memory and accessed via the program bus. Results of the MAC

FIGURE 3.13
DSP algorithm building blocks.
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operation are built up in either of two accumulator registers, as shown in
Figure 3.14. Both of these registers can be used equally. This allows the
program to maintain two chains of calculations instead of one. The MAC
unit is invoked with the MAC instruction. An example of a MAC instruction
is shown in Figure 3.14. The MAC instruction MAC *AR2+, *AR3+, A per-
forms many operations in a single cycle: reading two operands from memory,
incrementing two pointers, multiplying the two operands together, and accu-
mulating this product with the running total.

There are other, more general-purpose and flexible, instructions on DSPs
that allow more standard mathematical equation calculations and control
loops that are not pure DSP-like. DSPs are also designed to process integer
or fractional numbers efficiently as well as signed and unsigned numbers.
This allows the DSP designer to adapt to a number of different environments
without loss of performance.

Most DSP systems need to perform a lot of general purpose arithmetic
(simple process of additions and subtractions). For this type of process, a
separate arithmetic logic unit (ALU) is often added to a DSP. The results of
the ALU can be basic mathematical or Boolean functions. These results are
sent to either of the accumulators shown in Figure 3.14. The ALU performs
standard bit manipulation and binary operations. The ALU also has an adder.
The adder ensures efficient implementation of simple mathematical opera-
tions without interfering with the specialized MAC unit.

Conclusions

DSP architectures are designed to process complex signal processing algo-
rithms efficiently, including those used to perform advanced noise reduction

FIGURE 3.14
MAC functionality in a DSP. The MAC loads two operands (AR2 and AR3), multiplies them,
and accumulates them in accumulator A  (acc A).

MPY

ADD

MAC   *AR2+, *AR3+, A

acc A acc B

Data Coeff Prgm

S/US/U

Fractional
Mode Bit

A
B
O

Acc A Temp Acc AData

S/US/U

Fractional
Mode Bit

A
B
O

Acc A Temp Acc AData

0949_frame_C03  Page 97  Tuesday, March 5, 2002  11:08 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



processing. Although much of the technology required for noise reduction
has existed for some time, only with the recent introduction of powerful,
but inexpensive, DSP hardware has the technology become practical. These
specialized DSPs were designed for real-time numerical processing of digi-
tized signals. These devices have enabled the low-cost implementation of
powerful noise reduction algorithms and encouraged the widespread devel-
opment of noise reduction systems. Filtering and transform algorithms
required to perform various types of noise reduction map well to the spe-
cialized architectures of modern DSPs. Noise reduction systems that use
advanced signal processing implemented on a low-cost, high-performance
DSP are an emerging new technology.
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Understanding Real-Time DSP Embedded Systems

 

There are many categories of embedded systems from communication
devices to home appliances to control systems. The list of applications
includes car navigation, compact disk (CD) players, digital cameras, robot-
ics, cellular phones, and base stations. These systems all contain some type
of noise reduction algorithm. These systems, however, have certain design
constraints that make moving from conceptual to practical application dif-
ficult. Chapter 3 discussed the hardware characteristics of digital signal
processing (DSP). This chapter focuses on the software design methodolo-
gies and paradigms that are required to design these types of real-time
applications.

 

Defining Features of Embedded Systems

 

Embedded systems are defined by a unique set of characteristics. Each char-
acteristic imposes a specific set of design constraints on embedded systems
designers. The challenge to designing embedded systems is to conform to
the specific set of constraints for the application.

 

Application Specific Systems

 

Embedded systems are not general-purpose computers. Embedded system
designs are optimized for a specific application. Many of the job character-
istics are known before the hardware is designed. This allows the designer
to focus on the specific design constraints of a properly defined application.
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As such, there is limited user reprogrammability. Some embedded systems,
however, require the flexibility of reprogrammability. Programmable DSPs
are common for such applications.

 

Reactive Systems

 

A typical embedded systems model responds to the environment via sensors
and controls the environment using actuators. This requires embedded sys-
tems to run at the speed of the environment. This characteristic of embedded
systems is called “reactive.” Reactive computation means that the system
(primarily the software component) executes in response to external events.
External events can be either periodic or aperiodic.* The maximum event
arrival rate must be estimated in order to accommodate worst-case situa-
tions. Most embedded systems have a significant reactive component. One
of the biggest challenges for embedded system designers is performing an
accurate worst-case design analysis on systems with statistical performance
characteristics (e.g., cache memory on a DSP or other embedded processor).
Real-time system operation means that the correctness of a computation
depends, in part, on the time at which it is delivered. Systems with real-time
requirements must often be designed to worst-case performance to ensure
that time lines are met.

 

Distributed Systems

 

A common characteristic of an embedded system is one that consists of
communicating processes executing on several central processing units
(CPUs) or application-specific integrated circuits (ASICs), which are con-
nected by communication links. In this approach, multiple processors are
usually required to handle multiple time-critical tasks. Devices under control
of embedded systems may also be physically distributed.

 

Embedded Systems Examples

 

Figure 4.1 shows the system block diagram of a digital cell phone. This
embedded system contains an analog base band section (acting as the sensor
component of a typical embedded system), as well as the DSP-based pro-
cessing unit and an antenna that acts as the actuator component in the
embedded system.

 

*  Periodic events are events that happen or appear at regular intervals such as the sampling of
a signal by an analog-to-digital converter (ADC). Aperiodic events are events that occur without
periodicity, irregular events include interrupts from a threshold detector.

 

0949_frame_C04  Page 101  Tuesday, March 5, 2002  11:21 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



   

Overview of Real-Time Systems

 

A real-time system is a system that is required to react to stimuli from the
environment (including the passage of physical time) within time intervals
dictated by the environment. The lag from input time to output time must
be sufficiently small for acceptable timeliness. Another way of thinking of
real-time systems is any information processing activity or system that has
to respond to externally generated input stimuli within a finite and speci-
fied period. Generally, real-time systems are systems that maintain a 

 

con-
tinuous timely

 

 interaction with their environment such as the previous cell
phone example.

There are two types of real-time systems: reactive and embedded. A
reactive real-time system involves a system that has constant interaction
with its environment (e.g., a pilot controlling an aircraft). An embedded
real-time system is used to control specialized hardware that is installed
within a larger system (e.g., a microprocessor that controls the fuel-to-air
mixture for automobiles).

 

1

 

Real-Time Event Characteristics

 

Real-time events fall into one of the three categories: asynchronous, synchro-
nous, or isochronous.

•

 

Asynchronous events

 

 are entirely unpredictable; for example, the
event that a user makes a telephone call. As far as the telephone

 

FIGURE 4.1

 

An embedded system example — digital cell phone.
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company is concerned, the action of making a phone call cannot
be predicted.

•

 

Synchronous events

 

 are predictable and occur with precise regularity
if they are to occur. For example, the audio and video in a movie
take place in synchronous fashion.

•

 

Isochronous events

 

 occur with regularity within a given window of
time. For example, audio bytes in a distributed multimedia appli-
cation must appear within a window of time when the correspond-
ing video stream arrives. Isochronous events are a subclass of
asynchronous events.

Real-time systems differ from time-shared systems in several ways:

• Predictably fast response to urgent events
• High degree of schedulability; timing requirements of the system

must be satisfied at high degrees of resource usage
• Stability under transient overload; when the system is overloaded

by events and it is impossible to meet all deadlines, the deadlines
of selected critical tasks must still be guaranteed

 

Characteristics of Real-Time Systems

 

Real-time systems have many special characteristics, which are inherent or
imposed. This section discusses some of these important characteristics.

 

Reliable and Safe

 

The more society relinquishes control of its vital functions to computers, the
more it becomes imperative that those computers do not fail. Failure in
automated teller machines (ATMs) can result in the loss of millions of dollars.
A faulty component in electricity generation could fail a life support system
in a hospital intensive care unit.

 

Real-Time Facilities

 

Response time is crucial to any embedded system. It is very difficult to design
and implement systems that will guarantee that the appropriate output will
be generated at the appropriate times 

 

under all possible conditions. 

 

Accomplish-
ing this and making use of all computing resources at all times is often
impossible. Given adequate processing power, a good real-time programming
language and run-time support are required to enable the programmer to:
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• Specify times at which actions are to be performed
• Specify times at which actions are to be completed
• Respond to situations where 

 

all

 

 timing requirements cannot be met
• Respond to situations where the timing requirements are changed

dynamically

 

Efficient Execution and the Execution Environment

 

Real-time systems are time critical. Therefore, the efficiency of their imple-
mentation is more important than in other systems. One of the main benefits
of using a higher-level language is to allow the programmer to abstract away
the details and concentrate on solving the problem. This is not always true
in the embedded system world. Some higher-level languages have instruc-
tion ten times slower than assembly language. However, higher-level lan-
guages can be used in real-time systems effectively. A system operates in
real time as long as its actions, which have time constraints, are performed
with acceptable timeliness. 

 

Acceptable timeliness 

 

is defined as part of the
behavioral requirements for the system. These requirements should be objec-
tively quantifiable and measurable.

 

Hard Real-Time and Soft Real-Time Systems

 

An activity (typically, a task) is considered hard real-time if and only if it
has a hard deadline for the completion of an action (typically, the execution
of the whole task). This deadline must always be met; otherwise, the task
has failed. The same machine having one or more hard real-time tasks may
also execute other (i.e., soft real-time or nonreal-time) tasks if and when they
do not interfere with any hard real-time ones. A failure to meet a deadline
in a hard real-time system means the system does not deliver its output in
time for its critical tasks and/or deterministic tasks (e.g., flight control laws,
collision alert tasks, etc). Hard real-time systems are commonly embedded
systems. In all hard real-time systems, collective timeliness is deterministic.
This determinism does not imply that the actual individual task completion
times or the task execution ordering are necessarily known in advance.

The feasibility and costs (e.g., in terms of system resources) of hard real-
time computing depend on how well known 

 

a priori 

 

are the relevant future
behavioral characteristics of the tasks and execution environment. These task
characteristics include:

• Timeliness parameters, such as arrival periods or upper bounds
• Deadlines
• Worst-case execution times
• Ready and suspension times
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• Resource utilization profiles
• Precedence and exclusion constraints

Deterministic collective task timeliness in hard (and soft) real-time comput-
ing requires that the future characteristics of the relevant tasks and execution
environment be deterministic, that is, known absolutely in advance. The
knowledge of these characteristics must then be used to pre-allocate resources
so all deadlines will always be met. In many real-time computing applications
it is common that the primary factor is dispatched on-line according to that
schedule. For certain hard real-time task and environment characteristic cases,
task execution eligibility indices, usually called priorities, can be assigned
either off-line by application programmers or on-line by application or oper-
ating system software. For most cases of real-time systems, task and future
execution environment characteristics are difficult to predict. This makes true
hard real-time scheduling infeasible. In hard real-time computing, determin-
istic satisfaction of the collective timeliness criterion is the driving require-
ment. The necessary approach to meeting that requirement is static scheduling
of deterministic task and execution environment characteristic cases. The
requirement for advance knowledge about each of the system tasks and their
future execution environment to enable off-line scheduling and resource allo-
cation significantly restricts the applicability of hard real-time computing. Soft
real-time computing is conventionally not defined except by default as “not
hard real-time.” It violates either, or both, of hard real-time’s axioms:

• Missing some deadlines, by some amount, under some circumstances
• Not completing or even attempting the least eligible actions at all

In soft real-time systems, these violations may be acceptable rather than
failures. In these systems, some tasks may have action time constraints that
are multivalued (best, better, worse, and worst completion times — instead
of binary-valued deadlines). In a soft real-time system, there may be soft
deadlines in that they may not always have to be met. For transient or steady-
state resource (e.g., computational) overload conditions, which may be rou-
tine in soft real-time computing systems, the actions whose execution prior-
ity is lowest may not be performed, completed, or even started at all.
Examples of soft real-time systems include video conferencing, stock price
quotation, and airline reservation systems.

 

2

 

Introduction to Real-Time Operating Systems

 

The framework of real-time applications is based on fundamental infrastruc-
ture — typically an operating system. An operating system is a computer
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program that is initially loaded into a processor by a boot program. It then
manages all the other programs in the processor. The other programs are
called applications or tasks. The applications make use of the operating
system by requesting services through a defined application program inter-
face (API).

A task is a basic unit of programming that an operating system controls.
Each operating system may define a task slightly differently. Fundamentally,
a task also referred to as a thread, is a unit of programming that may be an
entire program or each successive invocation of a program. Programs may
make requests of other utility programs, and these utility programs may also
be considered tasks. Many of today’s widely used operating systems support
multitasking. This allows multiple tasks to run concurrently. Each task takes
turns using the resources of the computer.

An operating system performs these services for applications:

• In a multitasking operating system where multiple programs can
be running at the same time, the operating system determines
which applications should run in what order and how much time
should be allowed for each application before giving another appli-
cation a turn.

• It manages the sharing of internal memory among multiple appli-
cations.

• It handles input and output to and from attached hardware devices,
such as hard disks, printers, and dial-up ports.

• It sends messages to each application or interactive user about the
status of operation and any errors that may have occurred.

• It can offload the management of what are called batch jobs (e.g.,
printing) so that the initiating application is freed from this work.

• On computers that can provide parallel processing, an operating
system can manage how to divide the program so that it runs on
more than one processor at a time.

 

What Makes an Operating System a Real-Time Operating
System?

 

An operating system (OS) must have certain properties to qualify it as a
real-time operating system (RTOS). Most importantly, an RTOS must be
multitasking and preemptable. The RTOS must also support task priori-
ties. Because of the predictability and determinism requirements of real-
time systems, the RTOS must support predictable task synchronization
mechanisms. A system of priority inheritance must exist to limit any
priority inversion conditions. Finally, the RTOS behavior should be known
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to allow the application developer to accurately predict performance of
the system.*

An RTOS is a type of OS that guarantees a certain capability within a
specified time constraint. If a certain calculation, for example, could not be
performed for making a task available at a designated time, the OS would
terminate with a failure. Some RTOSs are created for special applications
such as DSP or even a cell phone. Others are more general-purpose operating
systems. In general, RTOSs are said to require:

• Multitasking
• Process tasks that can be prioritized
• A sufficient number of interrupt levels

The purpose of an RTOS is to manage and arbitrate access to global
resources such as the CPU, memory, and peripherals. The RTOS scheduler
manages MIPS and real-time aspects of the processor. The memory manager
allocates, frees, and protects code and memory. The RTOS drivers manage
I/O devices, timers, and direct memory access units (DMAs).

Reduced functionality RTOSs, kernels, are often required in small embed-
ded systems that are packaged as part of microdevices. Some kernels can be
considered to meet the requirements of an RTOS. More than a general-
purpose operating system, an RTOS should be modular and extensible. In
embedded systems, the RTOS must be small because it is often in ROM and
RAM space may be limited. Some systems are safety critical and require
certification, including the operating system. This is why many RTOSs con-
sist of a kernel that provides only essential services:

• Scheduling
• Synchronization
• Interrupt handling
• Multitasking

 

RTOS for DSP

 

An RTOS for DSP is somewhat specialized in itself. A typical embedded DSP
application will consist of two general components: the application software
and the system software. The operating system is part of the system software
layer (Figure 4.2). The function of the system software is to manage the

 

*  An example is the interrupt latency (i.e., time from interrupt to task run). This has to be com-
patible with the application requirements and has to be predictable. This value depends on the
number of simultaneous pending interrupts. For every system call, this value would be the max-
imum time to process the interrupt. The interrupt latency should be predictable and indepen-
dent from the number of objects in the system.
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resources for the application. Examples of system resources that must be
managed are peripherals like direct memory access (DMA) units, host port
interface (HPI), or on-chip memory (DSP have internal [on-chip] memory
that is much faster then memory located externally). The DSP is a processing
resource to be managed and scheduled like other resources.

The system software provides the infrastructure and hardware abstraction
for the application software. As application complexity grows, a real-time
kernel can simplify the task of managing the DSP MIPS efficiently using a
multitasking design model. The developer also has access to a standard set
of interfaces for performing I/O as well as handling hardware interrupts. A
DSP RTOS also provides the capability to define and configure system mem-
ory efficiently. The overall structure that the multitasking design

 

 

 

paradigm
adds to the application makes it easier to scale and maintain larger applica-
tions. DSP RTOSs have very low interrupt latency. Because many DSP sys-
tems interface with the external environment, they are event or interrupt
driven. Low overhead in handling interrupts is very important for DSP
systems. For many of the same reasons, DSP RTOSs also ensure that the
amount of time interrupts are disabled is as short as possible. When inter-
rupts are disabled (e.g., context switching), the DSP cannot respond to the
environment.

A DSP RTOS also has very high performance device independent I/O.
This involves basic I/O capability for interacting with devices and other
tasks. This I/O should also be asynchronous, have low overhead, and be
deterministic in the sense that the completion time for an I/O transfer should
not be dependent on the data size.

 

FIGURE 4.2

 

Embedded DSP software components.

Application software

System software

DSP Timers DMA
I/O

Peripherals
Memory
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A DSP RTOS must also have specialized memory management. Capability
to align memory allocations and multiple heaps* with very low space over-
head is important. The RTOS will also have the capability to interface to the
different types of memory that may be found in a DSP system, including
SRAM, SDRAM, and fast on-chip memory.

 

Adopting a New Design Paradigm

 

In the early days of DSP, much of the software written was low-level assem-
bly language that ran in a loop performing a relatively small set of functions.
There are several potential problems with this approach:

• The algorithms could be running at different rates. This makes
scheduling the system difficult using a “polling” approach (a tech-
nique for periodically checking on the status of an event — this is
noninterrupt driven).

• Some algorithms could overshadow other algorithms, effectively
starving them. With no resource management, some algorithms
could never run.

• There are no guarantees of meeting real-time deadlines. Polling in
the fashion described above is nondeterministic. The time it takes
to go through the loop may be different each time, because the
demands may change dynamically.

• Nondeterministic timing.
• No, or difficult, interrupt preemption.
• Unmanaged interrupt context switching.
• “Super loop” approach is a poor overall design approach.**

As application complexity has grown, the DSP is now required to perform
very complex concurrent processing tasks at various rates. A simple polling
loop to respond to these rates has become obsolete. Modern DSP applications
must respond quickly to many external events, be able to prioritize process-
ing, and perform many tasks at once. These complex applications are also
changing rapidly over time, responding to ever-changing market conditions.
Time to market has become more important than ever. DSP developers, like

 

* A heap is a block of memory allocated for program use, usually in conjunction with memory
allocation.
**  Super-loop is defined as several functions grouped in a single thread. For example, a robotic
arm could have functions for moving the shoulder, the arm, and the wrist, which would in gen-
eral be separate events, but implemented as a super-loop, these would be grouped in one main
program loop.
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many other software developers, must now be able to develop applications
that are maintainable, portable, reusable, and scalable.

Modern DSP systems are managed by RTOSs that manage multiple tasks,
service events from the environment based on an interrupt structure, and
effectively manage the system resource, as illustrated in Figure 4.3.

 

Concepts of an RTOS

 

An RTOS requires functionality to effectively perform its functions, that is,
to be able to execute all of its tasks without violating specified timing con-
straints. This section describes the major functions that RTOSs perform.

 

Task Based

 

A task implements a computation job and is the basic unit of work handled
by the scheduler. The kernel creates the task, allocates memory space to the
task, and brings the code to be executed by the task into memory. A structure

 

FIGURE 4.3

 

Multitasking application code to respond to external events.

Main()  {
…
}

   Task_Event_0() {
…
    while(1)  {
        wait for Event_0 signal
        ProcessEvent_0
     }
    …..
  }

Task_Event_1() {
…
    while(1)  {
        wait for Event_1 signal
        ProcessEvent_1
     }
    …..
  }

Event_0_ISR
…
signal Event_0;
…

Event_1_ISR
…
signal Event_1;
…
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called a task control block (TCB) is created and used to manage the schedule
of the task. A task is placeholder information associated with a single use
of a program that can handle multiple concurrent users. From the program’s
point of view, a task is the information needed to serve one individual user
or a particular service request.

 

Multitasking

 

Preemptive multitasking is a condition in which an operating system uses
some criteria to decide how long to allocate to any one task before giving
another task a turn to use the operating system. The act of taking control of
the operating system from one task and giving it to another task is called
preempting. A common criterion for preempting is simply elapsed time (this
kind of system is sometimes called time sharing or time slicing). In some
OSs, some applications are given higher priority than other applications,
giving the higher priority programs control as soon as they are initiated and
perhaps longer time slices.

In preemptive multitasking, each task is assigned a priority depending on
its relative importance, the amount of resources it is consuming, and other
factors. The OS preempts tasks with a lower priority value so that a higher
priority task is given a chance to run. Cooperative multitasking is the ability
of an OS to manage multiple tasks such as application programs at the same
time but without the ability to necessarily preempt them. The processor
operates at speeds that make it seem as though all of the user’s tasks are
being performed at the same time.

Multitasking is often a confusing topic for those who have not developed
a multitasking system. Today’s microprocessors can only execute one pro-
gram instruction at a time. But because they operate so fast, they appear to
run many programs and serve many users simultaneously. Each of the pro-
grams executed by the computer is viewed by the RTOS as a “task” for which
certain resources are identified and kept track of in the application.

 

Rapid Response to Interrupts

 

An interrupt is a signal from a device attached to a computer or from a
program within the computer that causes the RTOS to stop and figure out
what to do next. Almost all DSPs and general-purpose processors are inter-
rupt driven. The processor will begin executing a list of computer instruc-
tions in one program and keep executing the instructions until either the
task is complete or cannot go any further (e.g., waiting on a system resource)
or an interrupt signal is sensed. After the interrupt signal is sensed, the
processor either resumes running the program it was running or begins
running another program.

An RTOS has a code called an interrupt handler. The interrupt handler
prioritizes the interrupts and saves them in a queue if more than one is
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waiting to be handled. The scheduler program in the RTOS then determines
which program to give control to next.

In many ways, interrupts provide the “energy” for embedded real-time
systems. The energy is consumed by the tasks executing in the system.
Typically, in DSP systems, interrupts are generated on data buffer or event
boundaries by the DMA or other equivalent hardware. In this way, every
interrupt occurrence will make ready a DSP RTOS task that is iterated on
full/empty data buffers. Interrupts come from many sources (Figure 4.4)
and the DSP RTOS must effectively manage multiple interruptions from both
inside and outside the DSP system.

 

RTOS Scheduling

 

The RTOS scheduling policy is one of the most important features of the
RTOS to consider when assessing its usefulness in a real-time application.
The scheduler decides which tasks are eligible to run at a given instant and
which task should actually be granted the processor. The scheduler runs on
the same CPU as the user tasks, and this is already the penalty in itself for
using its services. There are a multitude of scheduling algorithms and sched-
uler characteristics, not all of which are important for a real-time system.

 

FIGURE 4.4

 

An RTOS must respond to and manage multiple interruptions from inside and outside the
application.

Kernel

ISR

Schedule

Timer
services

Task create,
suspend,
destroy,

other system
calls

Scheduling

Return

External
interrupts

H/W and
S/W

exceptions

Clock
interrupts

System
calls

 

0949_frame_C04  Page 112  Tuesday, March 5, 2002  11:21 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



  

An RTOS for DSP requires a specific set of attributes to be effective. The
task scheduling should be priority based. A task scheduler for DSP RTOS
has multiple levels of interrupt priorities where the higher priority tasks run
first. The task scheduler for DSP RTOS is also preemptive. If a higher priority
task becomes ready to run, it will immediately preempt a lower priority
running task. This is required for real-time applications. Finally, the DSP
RTOS is event driven. The RTOS has the capability to respond to external
events such as interrupts from the environment. DSP RTOS can also respond
to internal events as required.

The major states of a typical RTOS include:

•

 

Sleeping:

 

 The task is put into a sleeping state immediately after it
is created and initialized. The task is released and leaves this state
upon the occurrence of an event of the specified type(s). Upon the
completion of a task that is to execute again, it is reinitialized and
put in the sleeping state.

•

 

Ready: 

 

The task enters the ready state after it is released or when
it is preempted. A task in this state is in the ready queue and eligible
for execution.

•

 

Executing: 

 

A task is in the executing state when it executes.
•

 

Suspended (Blocked):

 

 A task that has been released and is yet to
complete enters the suspended or blocked state when its execution
cannot proceed for some reason. The kernel puts a suspended task
in the suspended queue.

•

 

Terminated: 

 

A task that will not execute again enters the terminated
state when it completes. A terminated task may be destroyed.

Different RTOSs will have slightly different states. Figure 4.5 shows the
state model for the DSP RTOS, DSP/BIOS.

 

3

 

The scheduler is a central part of the kernel. It executes periodically and
whenever the state of a task changes. The system clock device raises (gen-
erates) interrupts periodically. This is called the clock interrupt. The period
in which this interrupt is invoked is called the “tick” size. A common tick
size is 10 ms. At each clock interrupt, the kernel processes the timer events.
The clock device has a timer queue where pending expiration times of all
timers connected to the clock are queued. The kernel uses this to determine
which timer event happened. The RTOS carries out actions related to each
timer event. At each clock interrupt the RTOS updates the execution budget.

 

The RTOS Kernel

 

An RTOS consists of a kernel that provides the basic OS functions. There are
three reasons for the kernel to take control from the executing task and
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execute itself: respond to a system call, perform scheduling and service
timers, and handle external interrupts. Events are handled depending on
their priority. The following lists the type of events and their relative priority
levels in the system:

• Highest priority events are hardware interrupts. One hardware
interrupt can interrupt another.

• Next highest priority events are software interrupts. The RTOS may
also support a number of software interrupts. Software interrupts
have a lower priority than hardware interrupts and are prioritized
within themselves. A higher software interrupt can preempt a
lower priority software interrupt. All hardware interrupts can pre-
empt software interrupts. A software interrupt is similar to a hard-
ware interrupt and is very useful for real-time multitasking
applications. An internal RTOS clock module drives these inter-
rupts. Software interrupts run to completion, do not block, and
cannot be suspended.

• Following software interrupts in priority are tasks. Tasks can also
be preempted by higher priority tasks. Tasks will run to completion
or yield if blocked waiting for a resource or voluntarily to support
certain scheduling algorithms such as “round robin” (a technique
for scheduling tasks based on a period event to trigger a task
switch; sometimes also referred to an time slicing).

 

System Calls

 

The application can access the kernel code and data via application program-
ming interface (API) functions. An API is the specific method prescribed by

 

FIGURE 4.5

 

State model (with preemption) for the Texas Instruments DSP/BIOS RTOS.

Inactive Job Create 

Ready 
(active) 

Running 
(executing)  

Terminated Job Delete 

Activate 

Preempt 
Dispatch 

Terminate 

 

0949_frame_C04  Page 114  Tuesday, March 5, 2002  11:21 AM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



  

a computer OS or by an application program by which a programmer writing
an application program can make requests of the OS or another application.
A 

 

system call

 

 is a call to one of the API functions. When this happens, the
kernel saves the context of the calling task, switches from user mode to kernel
mode (to ensure memory protection), executes the function on behalf of the
calling task, and returns to user mode.

 

External Interrupts

 

Hardware interrupts provide effective means of notifying the application of
the occurrence of external events. Interrupts are also used for sporadic I/O
activities. The amount of time to service an interrupt varies based on the
source of the interrupt. For example, handling DMA interrupts can take a
significant amount of time. Interrupt handling in most processors, including
DSPs, is divided into two steps: the immediate interrupt service and the
scheduled interrupt service. The immediate interrupt service is executed at
an interrupt priority level.

The total delay to service a DSP interrupt is the time the processor takes
to complete the current instruction, do the necessary chores, jump to the
interrupt handler, and interrupt the dispatcher part of the kernel. The kernel
must then disable external interrupts. There may also be time required to
complete the immediate service routines of higher priority interrupts, if any.
The kernel must also save the context of the interrupted task, identify the
interrupting device, and get the starting address of the interrupt service
routine (ISR). The sum of this time is called “interrupt latency,” and measures
the responsiveness to external events via the interrupt mechanism. Many
RTOSs provide the application the ability to control when an interrupt is
enabled again. The DSP can then control the rate at which external interrupts
are serviced. The flow diagram to service a nonmaskable interrupt in the
TMS320C55 DSP is shown in Figure 4.6.

The second part of interrupt handling in a DSP is called the scheduled
interrupt service. This is another service routine invoked to complete inter-
rupt handling. This part is the scheduled interrupt handling routine and is
typically preemptable (unless interrupts are specifically turned off by the
DSP during this time).

There are various reasons for a multitasking DSP to suspend. A task may
be blocked due to resource access control. A task may be waiting to synchro-
nize execution with some other task. The task may be held waiting for some
reason (I/O completion and jitter control). There may be no budget or job
to execute (this is a form of bandwidth control). The RTOS maintains differ-
ent queues for tasks suspended or blocked for different reasons (e.g., a queue
for tasks waiting for each resource). The RTOS may also keep a number of
task-ready queues. In fixed priority scheduling, there will be a queue for
each priority. Rather than simply admitting the tasks to the CPU, the RTOS
scheduler makes a decision based on the task state and priority.
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There are three important multitasking algorithms:

•

 

Preemptive: 

 

With this algorithm, if a high-priority task becomes
ready for execution, it can immediately preempt the execution of
a lower-priority task and acquire the processor without having to
wait for the next regular rescheduling. In this context, “immedi-
ately” means after the scheduling latency period. This latency is
one of the most important characteristics of a real-time kernel and
largely defines the system responsiveness to external stimuli.

•

 

Cooperative:

 

 With this algorithm, if a task is not ready to execute it
voluntarily relinquishes control of the processor so that other tasks
can run. This algorithm does not require much scheduling and
generally is not suited for real-time applications.

•

 

Time sharing:

 

 A pure time-sharing algorithm has obvious low respon-
siveness (limited by the length of the scheduling interval). Never-
theless, a time-sharing algorithm is always implemented in real-time
operating systems, since there is almost always more than one non-
real-time task in the real-time system, for example, a user interacting
with a cell phone or an automated teller machine. These tasks have
low priority and are scheduled with a time-sharing policy in the time
when no tasks of higher priority are ready for execution.

 

3,4

 

FIGURE 4.6

 

Interrupt flow in a TMS320C55 DSP.
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Synchronization and Communication

 

Communication can be defined as the passing of information from one task
to another. Many forms of communication require synchronization. Synchro-
nization is the satisfaction of constraints on the interleaving of the actions
of different tasks. Synchronization is sometimes referred to as content less
communications.

 

Mutual Exclusion

 

Mutual exclusion is the synchronization required to protect a critical section.
In real-time DSP applications, there can be many of these critical sections.
As an example, consider a DSP system with the following characteristics:

• Shared memory (between tasks)
• Load-store architecture system (like many of the DSP architectures

today)
• Preemptive RTOS
• Two tasks running in the system, T1 and T2 (T2 has higher priority)
• Both tasks needing to increment a shared variable, X, by one

 

Rate-Monotonic Scheduling

 

Rate-monotonic scheduling is an optimal fixed priority policy where the
higher the frequency (1/period) of a task, the higher is its priority. This
approach can be implemented in any OS supporting the fixed priority pre-
emptive scheme, such as DSP/BIOS. Rate-monotonic scheduling assumes
the deadline of a periodic task is the same as its period.

 

Scheduling Periodic Tasks

 

Many DSP systems are multirate systems. This means there are multiple
tasks in the DSP system running at different periodic rates. Multirate DSP
systems can be managed using nonpreemptive as well as preemptive sched-
uling techniques. Nonpreemptive techniques include using state machines
as well as cyclic executives.

Preemptive scheduling is an effective approach for scheduling real-time
DSP systems. Its modularity simplifies the overall design. The application
can be viewed as a collection of independent tasks or jobs. The complexity
is reduced as the functionality becomes encapsulated into a set of well-
defined tasks. Systems designed using preemptive scheduling are also more
maintainable. The issue of changes to one task in the system affecting other
jobs in the system is removed. New functionality can easily be added by
adding a new task. A preemptive scheduling approach also makes the system
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more efficient, since preemptive scheduling is more efficient at utilizing time
slots that may not be fully utilized.

 

Rate-Monotonic Analysis

 

Some of the scheduling strategies discussed earlier presented a means of
scheduling but did not give any information on whether the deadlines would
actually be met. Rate-monotonic scheduling addresses how to determine
whether a group of tasks with known individual CPU utilizations will meet
their deadlines. This approach assumes a priority preemption scheduling
algorithm. The approach also assumes independent tasks (no communica-
tion or synchronization). (The restriction of no communication or synchro-
nization may appear to be unrealistic, but there are techniques for dealing
with this that will be discussed later.)

In this discussion, each task discussed has the following properties:

• Each task is a periodic task with a period, T, which is the frequency
with which it executes.

• An execution time, C, which is the CPU time required during the
period.

• A utilization, U, which is the ratio C/T.

A task is schedulable if all its deadlines are met (i.e., the task completes
its execution before its period elapses). A group of tasks is considered to be
schedulable if each task can meet its deadlines.

Rate-monotonic analysis (RMA) is a mathematical solution to the sched-
uling problem for periodic tasks with known characteristics (size, timing).
The assumption with the RMA approach is that the total utilization must
always be less than or equal to 100% (any more and you are exceeding the
capacity of the CPU).

For a set of independent periodic tasks, the rate-monotonic algorithm
assigns each task a fixed priority based on its period, such that the shorter
the period of a task, the higher the priority. For three tasks T1, T2, and T3
with periods of 5, 15, and 40 ms, respectively, the highest priority is given
to the task T1, as it has the shortest period; the medium priority to task T2;
and the lowest priority to task T3. Note the priority assignment is indepen-
dent of the applications “priority,” i.e., how important meeting this deadline
is to the functioning of the system or user concerns.

 

2

 

Optimizing Real-Time DSP Applications

 

Many of today’s DSP applications are subject to real-time constraints. Many
applications will eventually grow to a point where they are stressing the
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available CPU and memory resources. Understanding the architecture of the
DSP as well as the compiler can speed up applications, sometimes by an
order of magnitude. This section summarizes some of the techniques used
in practice to gain orders of magnitude speed increases from high perfor-
mance DSPs.

 

What Is Optimization?

 

To start with, we must understand what optimization is and how it relates
to real-time DSP systems. Optimization is a procedure used in designing
systems to maximize or minimize one or more performance indices. These
indices include throughput, memory usage, I/O bandwidth, power dissipa-
tion, and size.

Since many DSP systems are real-time systems, at least one (and probably
more) of these indices must be optimized. It is difficult (and sometimes
impossible) to optimize all these performance indices at the same time. In
many cases, trade-offs will be made. For example, making the application
faster may requires more memory and vice versa. The designer must weigh
each of these indices and make the best trade-off. The size vs. speed trade-
off is typical in embedded systems. The fastest program, e.g., is one that is
perfectly linear with no branches or function calls. This is obviously an
unrealistic constraint in today’s sophisticated programs.

Determining which index or set of indices is important to optimize
depends on the goals of the application developer. For example, optimizing
for performance means that the developer can use a slow or less expensive
DSP to do the same amount of work. In some embedded systems, cost
savings like this can have a significant impact on the success of the product.
The developer can alternatively choose to optimize the application to allow
the addition of more functionality. This may be very important if the addi-
tional functionality improves the overall performance of the system, or if
the developer can add more capability to the system such as an additional
channel of a base station system. Optimizing for memory use can also lead
to overall system cost reduction. Reducing the application size leads to a
lower demand for memory, which reduces overall system cost. And finally,
optimizing for power means that the application can run longer on the same
amount of power. This is important for battery-powered applications.

Program optimization in some large systems is often unnecessary. In the
embedded world, however, resources are still limited. Add to this the
migration from assembly language to a less efficient language like C, C

 

++

 

,
or Java and the pressures to develop efficient code for scarce resources is
a continual struggle.

Generally, DSP optimization follows the 80/20 rule. This rule states that
20% of the software in a typical application uses 80% of the processing time.
This is especially true for DSP applications that spend much of their time in
tight inner loops of DSP algorithms. Optimizing these loops for speed and
power will make the biggest impact on overall system performance. DSP
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control software (best described as nonloop DSP software) consumes the
majority of program memory in a typical DSP application. But this code is
executed very infrequently and, therefore, consumes only a fraction of the
overall system execution cycles. DSP control software is a prime target for
performance-based optimizations.

The best way to determine which parts of the code should be optimized
is to profile the application. This will answer the question as to which
modules take the longest to execute. These will become the best candidates
for performance-based optimization. Similar questions can be asked about
memory usage and power consumption.

Some of the optimization techniques available are architecture and appli-
cation dependent. Others are more generic approaches and can be applied
to many architectures and applications. Good optimization requires a thor-
ough understanding of the following:

•

 

DSP architecture:

 

 Each target processor and compiler has different
strengths and weaknesses and understanding them is critical to
successful software optimization.

•

 

DSP compiler:

 

 Today’s DSP compilers are advanced. Many allow
the developer to use a higher-order language such as C and very
little, if any, assembly language. This allows for faster code devel-
opment, easier debugging, and more reusable code.

 

• Software application.

 

Performance Improvement Guidelines

 

Despite a programmer’s expertise and years of experience, there is always
a potential for performance improvements in a DSP application. Perfor-
mance-critical software like real-time embedded and DSP-based systems
should always be analyzed for bottlenecks and poorly written code.

DSP application optimization requires a disciplined approach to get the
best results. Here are a few guidelines:

• Performance analysis and optimization is a process of diminishing
returns. Significant improvements can be found early in the process
with relatively little effort. This is the “low-hanging fruit.” Exam-
ples of this include accessing data from fast on-chip memory using
the DMA and pipelining inner loops

 

5

 

 (these techniques are dis-
cussed below).

• Change one parameter at a time. Making several optimization
changes at the same time will make it difficult to determine what
change led to which improvement percentage.

• Have a test plan and use it often. Optimization can be difficult.
More difficult optimizations can result in subtle changes to the
program behavior that leads to wrong answers.
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Overview of Common Compiler Optimization Techniques

 

Optimizing compilers perform sophisticated program analysis including
intraprocedural and interprocedural analysis. These compilers also perform
data flow and control flow analysis as well as dependence analysis, and they
often require provably correct methods for modifying or transforming code.
Much of this analysis is to prove that the transformation or modification is
correct in the general sense.

Most optimizations on code are performed while the code is in the inter-
mediate representation (IR) stage, that is, before the application is linked.
Optimizations can also be performed in the back end of the compiler where
the final machine adaptations are best performed (such as allocations to the
actual register files of the particular machine).

 

6

 

Some of the common compiler optimization techniques are listed below:

•

 

Branch optimization:

 

 Rearranges the program code to minimize
branching logic and to combine physically separate blocks of code.

•

 

Code motion:

 

 If variables used in a computation within a loop are
not altered within the loop, the calculation can be performed out-
side of the loop and the results used within the loop.

•

 

Instruction scheduling: 

 

There are various techniques of instruction
scheduling that will reorder instructions to minimize execution time.

•

 

Interprocedural analysis:

 

 Will uncover relationships across function
calls and attempt to eliminate loads, stores, and other computations
that cannot be eliminated with more straightforward optimizations.

•

 

Invariant IF code floating (unswitching):

 

 Removes invariant branch-
ing code from loops.

•

 

Profile-driven feedback:

 

 Uses actual results from a sample program
execution. The results are used to improve optimization near con-
ditional branches and in other frequently executed code sections.

•

 

Reassociation:

 

 Rearranges the sequence of calculations in an array
subscript making it more optimal for the particular machine. This
technique produces more candidates for common expression
elimination.

•

 

Store motion:

 

 Seeks to move store instructions out of loops.
•

 

Strength reduction: 

 

Replaces less efficient instructions with more
efficient ones. A common example of this is in array subscripting,
where the optimizer will use an “add” instruction to replace a more
costly “multiply” instruction.

 

Last-Resort Assembly Language

 

Often the C code can be modified slightly to assist in optimizing the appli-
cation, but it can take time and several iterations to achieve the optimal (or
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close to optimal) solution. The process of refining code in this manner is
shown in Figure 4.7. The code optimization process consists of a series of
iterations. In each iteration, the programmer should examine the compiler-
generated code and look for optimization opportunities. The programmer
will look for an abundance of null operations (NOP) in the code due to
delays in accessing memory and/or another processor resource. These are
the areas that become the focus of improvement. As a last resort, the pro-
grammer can consider hand-tuning the algorithms using assembly language.

Other Issues to Consider

There are other performance issues to consider when designing these types
of systems. For example, when using an RTOS for task-driven systems, there
is overhead to consider that increases with the number of tasks in the system.
The overhead in a task switch (or semaphore pend- or postoperation) can
vary based on where the operating system structures are located. If the struc-
tures are in off-chip memory, the access time to perform the operation can be
much longer than if the structure was in on-chip memory. The same holds
true for the task stack space. If this is in off-chip memory, the performance
suffers proportionally to the number of times the stack has to be accessed.
One solution is to allocate the stack in on-chip memory. If the stack is small
enough, this may be a viable thing to do. But if there are many tasks in the
system, there will not be enough on-chip memory to store all of the task stacks.

Compile Time Options

Many DSP optimizing compilers offer several options for code size vs. per-
formance. Each option allows the programmer to achieve a different level
of performance vs. code size. These options allow more and more aggressive

FIGURE 4.7
Code optimization process for DSP programming.
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code size reduction from the compiler. The Texas Instruments DSP compiler,
e.g., has five different levels of code performance (Table 4.1). Each option
allows the compiler to perform different DSP optimization techniques.5,7

Summary of Optimization

Application programmers have always had to develop a library of techniques
to allow software to run as fast as possible. As processors continue to become
more complicated, this becomes a more necessary approach. For advanced
processors, managing two separate pipelines and ensuring the highest
amount of parallelism requires tools support. Optimizing compilers are help-
ing overcome many of the obstacles of these powerful new processors, but
even the compilers have limitations. Application programmers should not
rely on the compiler to perform all of the necessary optimizations for them.

Optimization is required in many real-time embedded DSP applications.
However, optimization can also be antagonistic to other important goals for
the application developer; namely, stability, maintainability, and portability.
At a cursory level optimization is useful and should always be applied. But
optimization can also be intrusive.

Finally, optimization of DSP applications is a process that it is part of the
overall application development cycle. DSPs differ fundamentally from other
more general-purpose applications. One difference is the optimization phase,
which can also be iterative. Applying some of the techniques in this section
will allow the developer to minimize the number of iterations required in
developing DSP applications.

Conclusions

Designing noise reduction algorithms for use in real-time embedded systems
requires the understanding of the application system’s constraints. This

TABLE 4.1

DSP Optimizing Compiler Options

-o3 Highest performance — typically highest code size

-o3
-ms0

More aggressive prologue/epilogue collapsing — minimal performance impact
No redundant loops — required for some filter designs

-o3
-ms1

Some loops not software pipelined
Reduced unrolling — some performance degradation

-o3
-ms2

No software pipelining or unrolling — code size
Benefit with large performance degradation

-o3
-ms3

No parallelism — smallest code size and lowest performance
Typically used for control code with no performance constraints 
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chapter outlined the requirements, issues, and design methodologies
required for building a real-time DSP application. The relevance of under-
standing the application’s constraints is apparent when developing a sophis-
ticated noise reduction algorithm.
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Introduction

 

After more than a century of developments in the field of voice telecommu-
nication, noise remains the most ubiquitous deterrent to effective voice com-
munications. It can serve not only to reduce the intelligibility of transmitted
speech, but it may also impair the aesthetic quality and obscure acoustical
cues to the identity of the speaker. If we are to succeed in coping with the
effects of noise on voice communications, we must understand in detail the
nature of its impact on the various useful components of the speech signal.
These include not only the components on which intelligibility depends but
also those critical to overall acceptability and speaker recognizability.*

The need for methods of assessing the impact of noise on speech intelli-
gibility was recognized early in the development of the field, and various
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methods for measuring intelligibility were developed during the first half
of the 20th century. The advent of digital voice coding and communication
systems obviated some noise problems but exacerbated others, particularly
the problems posed by noise at the communication source. Noise in digital
voice channels results in bit errors, the effects of which on intelligibility are
different and more difficult to predict than effects of noise on analog systems.

Until recently, methods for removing noise from speech usually succeeded
in improving acceptability only at some cost of intelligibility. Methods devel-
oped within the past few years, however, have achieved improvements in
acceptability at no measurable cost of intelligibility.

Before World War II, there was little concerted effort to standardize meth-
ods of evaluating intelligibility in ways that would permit their use beyond
the confines of a single laboratory. There was little concern about the effects
of noise and other types of signal degradation on speech acceptability and
on speaker recognizability. No generally accepted methods for evaluating
these properties were available.

The difficulty of developing valid and reliable methods of evaluating intel-
ligibility, acceptability, and speaker recognizability in speech becomes appar-
ent when one considers the diversity of factors that may influence the results
of tests designed to evaluate these properties. In many respects, the human
auditory–perceptual system can perform far more complex acoustical analy-
ses than any electro-acoustical instrument available today, but it is also char-
acteristically susceptible to the types of error to which these devices generally
have the greatest immunity. Adequate control of these errors is a formidable
task. Just how formidable becomes apparent when we examine the nature
and number of factors on which intelligibility, acceptability, and speaker
recognizability ultimately depend both in real life and in the speech-testing
laboratory. Although in the testing situation as well as in real life, intelligi-
bility, acceptability, and speaker recognizability depend most immediately on
the fidelity with which the speech signal is delivered to a communicator’s
ear, they also depend on a diversity of other factors, as described below.

 

Conceptions of Intelligibility: Implications for Test Design

 

In many nonspeech communication situations, a single standard waveform
can serve as a test signal for a communication device or link. Depending on

 

* The term 

 

quality

 

 has been widely used in reference to the subjective consequences of factors
such as these, but, since the ultimate effect of speech quality is 

 

acceptability

 

, we propose here to
replace 

 

quality

 

 with that term. Among other things, this convention will restore a useful term to
its historical place in the vocabularies of perceptual psychology and psychophysics. 

 

Quality

 

 will
be used here only in its traditional scientific sense, in reference to the elementary auditory qual-
ities of pitch, loudness, timbre, and, in particular, the elementary perceptual qualities on which
speech acceptability depends.
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circumstances and purpose, the extent and manner to which the signal is
degraded by the link can provide valuable information about the link. With
speech, however, critical information is acoustically encoded in such a diver-
sity of ways that no single test signal thus far devised can adequately reflect
the fidelity with which all the intelligibility-relevant features of the signal
have been transmitted. We have no practical choice but to use a variety of
test signals and to use human listeners as our measuring instruments. The
effect of this is to introduce a diversity of extraneous factors, which must be
controlled, depending on the purposes for which testing is to be performed.
These factors include:

• Linguistic content and information structure of the source signal
— the predictability of the message

• Physical characteristics of the source signal as dependent on the
articulatory (acoustical encoding) capabilities and performance of
the speaker

• Availability of 

 

contextual information, 

 

i.e., intelligibility-relevant
information in the communications environment and the history
of the speech signal itself — the availability of 

 

a priori

 

 information
regarding the nature or identity of a speech event

• Transmission characteristics of the 

 

link

 

, i.e., the medium, channel,
coding device, or combination thereof (the effects of which are our
primary concern here)

• Inter- and intralistener variation in auditory-discriminative capac-
ity and performance, i.e., “between-listeners” variation in capacity
to discriminate the intelligence-bearing physical–acoustical fea-
tures of the speech signal and “within-listener” variation in the
availability and use of this capacity

• Interlistener variation in 

 

situational

 

 and 

 

linguistic

 

 competency —
individual differences in ability to assimilate contextual informa-
tion from the situation and the speech signal, respectively

• Capacity and availability of the listener’s sensory–cognitive chan-
nels for the assimilation of speech intelligence as dependent on the
extent of competing demands for channel space, the listener’s state
of alertness, level of motivation, etc.

With appropriate experimental design and procedures, tests of intelligibil-
ity can be used to evaluate the effects of any of the above factors, but rigorous
control of the remaining

 

 

 

factors is essential to the reliability and validity of
such tests. This is especially true where the goal is to isolate the effects of a
speech link or medium on these properties. To enable crews of human
listeners to function as reliable, precise measuring instruments, we must
control all factors external to the link. In particular, we must control the types
of error to which humans are uniquely susceptible if we are to ensure that
our human “meters” are measuring what we intend.
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A crucial step in the design of tests for evaluating the effects of commu-
nication systems or links on intelligibility is the selection of appropriate “test
signal(s)” or 

 

critical speech units

 

 (CSUs). Historically, CSUs have consisted
variously of paragraphs, sentences, phrases, words, syllables, or elementary
speech units (phonemes). The type of response required of listeners depends
at least in part upon the nature of the CSU. At one extreme, listeners may
be required to indicate their comprehension of extended prose passages. At
the other, they may be asked to discriminate the state of a single phonemic
feature. Most of these approaches have been used effectively in one appli-
cation or another, but the advantages and limitations of each depend heavily
on application and purpose.

Tests in which the CSU is a word, phrase, or larger linguistic unit have
considerable intuitive appeal, but they pose some formidable problems of
control when used for evaluating communications equipment or links.
Almost inevitably, they allow listeners to draw on resources other than their
ability to discriminate the physical properties of the received speech signal.
In particular, they allow, if not invite, listeners to take advantage of the
predictability of the CSU from contextual information contained in the sit-
uation or in the speech signal itself. Generally, tests in which the equivocal
element or CSU is a minimal linguistic unit, or 

 

phoneme

 

, permit more rigorous
control of context and other extraneous factors than do tests in which the
CSUs are larger linguistic units.

Intelligibility tests differ not only in the nature of the CSU they employ,
but also in terms of the conception of intelligibility on which they are
based. The manner in which we approach the evaluation of intelligibility
in communication systems ultimately depends on whether we treat intel-
ligibility as a unidimensional or as a multidimensional quantity, as a scalar,
or as a vector. Earlier tests treated intelligibility as a scalar, yielding a
single figure of merit. Most recent tests, however, are based on the con-
ception of intelligibility as a vector, whose components are not uniformly
vulnerable to the types of degradation commonly encountered in modern
voice communications.

 

Scalar Approaches to the Evaluation of Intelligibility

 

Research begun at the Harvard Psycho-Acoustic Laboratory during World
War II led to the development of the first widely used methods of evaluating
the effects of communication media and devices on speech intelligibility. The
“phonetically balanced” (PB) word lists of Egan

 

1

 

 were adopted by the Amer-
ican National Standards Institute as the “American Standard Method for
Measurement of Monosyllabic Word Intelligibility.” Although still so recog-
nized,

 

2

 

 along with the Diagnostic Rhyme Test (DRT) and the Modified
Rhyme Test (MRT), the PB test is rarely used for purposes of evaluating
communication systems or links. However, it is still frequently used for
purposes of clinical audiology.
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The conventional method of scoring the PB test makes allowance only for
the number, not the nature, of the errors made by the listeners. Other dis-
advantages of this test include the requirement that listeners undergo exten-
sive familiarization training with the test materials. Results can be expected
to vary with the amount of training to which the listeners have been exposed.
Moreover, no reliable methods exist for evaluating the effects of such training
on test results. In recent years, there has been a tendency to dispense with
the training requirement, but numerous questions remain regarding the
contribution of extraneous factors when the test is used for purposes of
evaluating communication systems or links.

The Fairbanks Rhyme Test

 

3

 

 is an open-response test in which the listener
is presented with a word and provided a “stem” lacking the initial consonant.
The listener’s task is to provide the missing consonant. A purported advan-
tage of this method is that “linguistic factors of higher order weigh lightly.”

 

3

 

The Fairbanks test does provide improved control of some of the extraneous
factors among those listed above, but it leaves others poorly controlled, in
particular, the listener’s linguistic competency.

The Modified Rhyme Test (MRT) of House et al.

 

4

 

 

 

provides somewhat
improved control of contextual factors and listener variation in linguistic
competence by utilizing a closed-response set. Here, in responding to a test
word, the listener is required to select from among six possibilities. In half
of the test items in the MRT, the six alternatives are rhyming, i.e., the alter-
natives differ in the initial consonant. In the remaining half, the six alterna-
tives are alliterative, i.e., they differ only in their final consonants. One
unpublished study by Voiers, Sharpley, and Panzer

 

5

 

 showed that listeners’
errors in the MRT tend to be highly skewed in favor of those options that
differ from the correct choice by the least number of distinctive features.* In
the case of many items on the MRT, some response options are virtually
never exercised by listeners.

A CVC-word test (i.e., consonant–vowel–consonant) proposed by
Steeneken

 

6

 

 provides acceptable resolution when used to yield a gross, or
overall, measure of intelligibility. However, it suffers from several disadvan-
tages of multiple-choice and free-choice tests when used for purposes of
evaluating communication systems.

In well-designed multiple-choice or free-choice tests, the incorrect choices
should be equally attractive. Where this is not the case, adjustments for the
effects of chance or guessing become quite complicated. “Diagnostic” scoring
of results yielded by such tests is difficult if not impossible. Faced with
arbitrary constraints on their response options, listeners may be forced by
their perceptions of one phonemic feature to make choices that do not rep-
resent their perceptions of the states of one or more other features. Under

 

*  The distinctive features of a language are the dimensions used to classify the phonemes in the
language. They may have articulatory, i.e., place and manner of articulation, acoustic, or percep-
tual bases.
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such circumstances, the nature of a particular error cannot be univocally
attributed to the system or link being evaluated.

With free-choice tests of consonant recognizability, it is generally necessary
to embed the critical phoneme in a CV, VCV, or VC syllable, which syllable
may or may not be an actual word in the language involved. It is virtually
impossible to assemble a suite of tokens similar to those used by Miller and
Nicely

 

7

 

 but composed entirely of words or entirely of nonsense syllables.
Normally, therefore, listeners must choose among a mix of meaningful syl-
lables and meaningless syllables

 

 

 

in order to register their perception of a
given test element. There is a wealth of experimental evidence to the effect
that listeners would favor the former option. In addition, listeners must
choose among familiar, frequently encountered words and less-familiar
words. They must choose between euphonious or pleasant-sounding tokens
and cacophonous or unpleasant-sounding tokens. Listeners must choose
between tokens having pleasant connotations and tokens having unpleasant
connotations, possibly between “socially acceptable” and “socially unaccept-
able” tokens. Finally, they must choose between tokens with familiar gra-
phemic correlates (e.g., “b”) and tokens with unfamiliar graphemic correlates
(e.g., “

 

q

 

”).
All of the above considerations argue against the interpretability of free-

choice test results even when the results are adjusted for the effects of chance.
Results described in the classic paper of Miller and Nicely

 

7

 

 bear on several
critical issues in the design of intelligibility tests. They reveal three important
principles regarding the most appropriate means of evaluating intelligibility
in voice communication systems. First, errors of speech perception are not
random — phonemic confusions tend to occur in well-defined patterns. Sec-
ond, error patterns vary with the type of speech degradation involved. Third,
most errors can be accounted for in terms of discrimination failures with
respect to a limited number of perceptual dimensions or “distinctive features”
traditionally recognized by linguists, e.g., Jakobson, Fant, and Halle.

 

8

 

 These
principles have been validated, directly or indirectly, by other investigators
(e.g., Peters,

 

9

 

 Wicklegren,

 

10

 

 and Singh et al.

 

11

 

), and they provided a basis for
a novel approach to the evaluation of speech intelligibility: the Diagnostic
Rhyme Test (DRT), developed by Voiers,

 

12,13

 

 and various of its derivatives.

 

14,15

 

Various other tests developed during the past several years have been
described by Schmidt-Nielsen.

 

16

 

 None of these, however, is yet to enjoy
extensive use beyond the confines of a single laboratory.

 

Vector Approach to the Evaluation of Intelligibility

 

The DRT, which has undergone a succession of refinements, was the first of
several tests, including the Diagnostic Medial Consonant Test (DMCT) and
the Diagnostic Alliteration Test (DAT),

 

15

 

 in which intelligibility is treated as
a multidimensional property of the speech signal. All of these tests use a
two-alternative forced choice (2AFC) paradigm in which the choices available
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to the listeners to each stimulus word differ only by a single distinctive
feature in the critical consonant, an initial, medial, or final consonant, depend-
ing on the test involved. The classification of 23 consonants with respect to
these features, shown in Table 5.1, was used in the design of these tests.
Scorable to yield a gross or total intelligibility score, all of these tests yield
gross diagnostic scores for each of six binary phonemic attributes or features:

• Voicing (voiced vs. unvoiced)
• Nasality (nasals vs. nonnasals)
• Sustention (sustained vs. interrupted)
• Sibilation (sibilants vs. nonsibilated)
• Graveness (grave vs. acute)
• Compactness (compact vs. diffuse)

The usefulness of such diagnostic scores depends upon knowledge of their
articulatory and physical–acoustical correlates, particularly their implica-
tions regarding the acoustical characteristics of the speech signal.

The articulatory bases of the seven features are fairly well understood. All

 

voiced

 

 phonemes involve some free vibration of the vocal cords; 

 

unvoiced

 

phonemes do not. 

 

Nasals

 

 are produced by lowering of the velum, allowing
air to escape through the nasal passages; 

 

nonnasals

 

 are produced by closing
the nasal passages. 

 

Sustained

 

 phonemes, the continuants, are produced by
incomplete constriction of the vocal tract; 

 

interrupted

 

 phonemes, the stops
and affricates, are produced by complete constriction of the tract at some
point. 

 

Sibilants

 

 involve extreme, but incomplete constriction of the vocal tract.

 

Grave

 

 phonemes are produced by constriction toward the anterior of the
vocal tract; 

 

acute

 

 phonemes are produced by constriction in the middle of
the tract. 

 

Compact

 

 phonemes are produced by constriction toward the rear

 

TABLE 5.1

 

Classification of 23 English Consonants by Seven Distinctive Features

 

Feature

 

Phoneme
M N V TH Z ZH DJ B D G W R L Y f th s sh ch p t k h

 

Voicing + + + + + + + + + + + + + + – – – – – – – – –
Nasality + + – – – – – – – – – – – – – – – – – – – – –
Sustention – – + + + + – – – – + + + + + + + + – – – – –
Sibilation – – – – + + + – – – – – – – – – + + + – – – –
Graveness + – + – – 0 0 + – 0 + – 0 0 + – – 0 0 + – 0 0
Compactness – – – – – + + – – + – – 0 + – – – + + – – + +
Vowel–like* – – – – – – – – – – + + + + – – – – – – – – –

 

* The DRT, DMCT, and DALT do not test for the discriminability of vowel-likeness, but do 

 

not

 

confound the effects of this feature with those of other features.

 

Note:

 

Voiced phonemes are indicated by uppercase letters, unvoiced by lowercase letters. Pluses
(+) denote the nominal or positive state of the feature; minuses (–) denote the negative
state; zeros (0) denote indifference or neutrality with respect to the feature.
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of the vocal tract; 

 

diffuse

 

 phonemes are produced by constriction near the
middle. 

 

Vowel-like 

 

phonemes, or glides, are produced by minimal constric-
tion of the vocal tract, with changes in the point of maximum constriction
depending on the phoneme involved.

The acoustical correlates of the above features present a more complex
problem. Each perceptual distinctive feature has multiple acoustical corre-
lates, where the relative saliency of each correlate depends on the phoneme
involved, its phonemic environment, and the states of one or more noncritical
features. However, some rough generalizations are possible.

Voiced fricatives are distinguished from their unvoiced counterparts by
the presence of periodicity and, in particular, by the time of onset in peri-
odicity, but the acoustical correlates of voiced stops are distinguished by a
more complex set of acoustical features. In voiced consonants, preceding
vowels tend to be of greater duration than in unvoiced consonants. Voiers

 

12

 

and Miller and Nicely

 

7

 

 showed that sufficient information for the discrim-
inability of voicing is contained in the frequency range below 1 kHz.

Nasal phonemes are distinguished by relatively pronounced resonances
at approximately 250, 800, and 2200 Hz and by the presence of nulls through-
out the frequency range. The cues to nasality also vary with the height of
the succeeding vowel. Several investigators, e.g., Voiers

 

17

 

 and Miller and
Nicely,

 

7

 

 have shown that sufficient information for the reliable discrimination
of nasality is contained in the frequency range below 1 kHz.

Sustained phonemes are distinguished by their gradual onset and by the
presence of midfrequency noise, and interrupted phonemes are distin-
guished by their abrupt onset. Sustained phonemes have characteristic dura-
tional and high-frequency cues that distinguish them from their interrupted
counterparts. However, as in the case of other features, the relative saliency
of the various acoustical correlates of sustention varies with vowel environ-
ment and the states of other consonant features, voicing, in particular.

Sibilant consonants are characterized by higher-frequency noise and
greater duration than their nonsibilant counterparts. Miller and Nicely

 

7

 

 sug-
gested that duration is the most important acoustical correlate of this feature.

Grave phonemes are distinguished by, among other properties, the origin
and direction of second-formant transitions. However, the dominant acous-
tical cue to this feature-state depends, as in other cases, on whether the
critical phoneme is voiced or unvoiced, sustained or interrupted.

In general, compact phonemes are characterized by the concentration of
spectral energy in the midfrequency range, diffuse phonemes by the distri-
bution of energy over more widely separated spectral peaks, but as in the
case of the other place feature, graveness, the dominant acoustical cue
depends on whether or not the phoneme is voiced or unvoiced, sustained
or interrupted.

Given the complexity of the relationship between distinctive features and
their acoustical correlates, the usefulness of gross feature scores for purposes
of pinpointing specific system defects or deficiencies is somewhat, but not
seriously, limited. However, this problem was anticipated in the design of
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the DRT and its various derivatives. All allow for a more detailed analysis
of feature-discrimination data, in that the set of items designed to test for
the discriminability of each feature is “balanced” with respect to vowel
environment and to the states of various noncritical features. For example,
data provided by the voicing scale of the DRT can be partitioned to yield
separate discrimination scores for voicing “present” and voicing “absent,”
for voicing in sustained consonants and voicing in interrupted consonants,
for voicing in high vowel environments vs. voicing in low vowel environ-
ments, in front vowel environments vs. back vowel environments, and all
combinations thereof. The significance of these effects and their interactions
can be conveniently determined by various statistical techniques, in partic-
ular, analysis of variance with factorial design. Similar analyses can be per-
formed on data for all the other features, although the structure of the
language dictates that some amount of confounding is unavoidable in some
instances. For example, in half the items used to test the discriminability of
sibilation, the critical phonemes are voiced; in half they are unvoiced.
Orthogonal to this partitioning is one based on sustention, which, however,
is completely confounded with compactness (i.e., all interrupted sibilants
are compact affricates).

Although precise identification of system or channel deficiencies would in
most cases require the sorts of detailed analyses described above, gross diag-
nostic scores can still be of considerable value in differentiating the effects of
different types of speech degradation, as is shown in Figures 5.1, 5.2, and 5.3.
In all three cases, the results shown are average values for three male speakers.
The listening crews contained eight trained members of both sexes.

Figure 5.1 shows the effects of band-limited Gaussian noise on the major
diagnostic scores of the DRT. These results are in close accord with those of
Miller and Nicely.

 

7

 

 

 

Voicing

 

 and 

 

nasality 

 

appear to be very robustly encoded
features. The discriminability of these features is significantly reduced only
under the most extreme noise conditions. Most generally vulnerable to the
effects of Gaussian noise are 

 

sustention

 

 and the place feature, 

 

graveness. 

 

The
discriminability of the other place feature, 

 

compactness, 

 

which, in the DRT,
distinguishes “back” consonants from “middle” and “front” consonants, is
relatively unaffected by this type of noise.

Figure 5.2 shows the effects of the speech-modulated masking noise (mod-
ulated noise reference unit, MNRU) on diagnostic score patterns, which
differ dramatically from those associated with Gaussian noise. Except under
conditions of extreme degradation, the effects of this type of degradation are
confined to the two place features, 

 

graveness

 

 and 

 

compactness

 

.
Figure 5.3 shows the effects of a masking babble of eight voices on the

major DRT diagnostic scores. Differences from the results of the preceding
cases are evident. The discriminability of the six features is affected in a more
nearly uniform manner than in those two cases.

Closer examination of data from the above studies reveals even more dif-
ferences among the effects of the three types of masking noise. For example,
a conspicuous effect of Gaussian noise is pronounced negative bias in
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FIGURE 5.1

 

Effects of Gaussian noise on DRT diagnostic scores.

 

FIGURE 5.2

 

Effects of speech-modulated noise (MNRU) on DRT diagnostic scores.

0

10

20

30

40

50

60

70

80

90

100

VOIC. NASL. SUST. SIBL. GRAV. COMP. MEAN

Diagnostic Scale

C
h

an
ce

 A
d

ju
st

ed
 P

er
ce

n
t 

C
o

rr
ec

t

    Clear
  +18 dB
  +12 dB
   +6 dB
    0 dB
   -6 dB
  -12 dB

0

10

20

30

40

50

60

70

80

90

100

VOIC. NASL. SUST. SIBL. GRAV. COMP. MEAN

Diagnostic Scale

C
h

an
ce

 A
d

ju
st

ed
 P

er
ce

n
t 

C
o

rr
ec

t

   Clear
   +12 dB
   +6 dB
    0 dB
   -6 dB

 

0949_frame_C05  Page 134  Tuesday, March 5, 2002  1:15 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



  

listeners’ perceptions of sustained and sibilated consonants — a strong ten-
dency in listeners to perceive sustained consonants as their interrupted coun-
terparts and sibilated consonants as their unsibilated counterparts. These
biases are not evident in the case involving speech-modulated noise, but there
is a strong negative bias in listeners’ perception of

 

 

 

graveness, a very pro-
nounced tendency to perceive grave consonants as their acute counterparts.

As discussed by Voiers,

 

12,13

 

 the 2AFC (alternative forced choice) paradigm
provides the most effective means of controlling all of the major sources of
extraneous variance in intelligibility test results, particularly those that com-
plicate the task of diagnostic interpretation of test results.

Where an investigator’s concern is only with a gross or scalar measure of
intelligibility, most of the above considerations are less relevant. Moreover,
there are often circumstances where such a measure will serve the investi-
gator’s purposes. Since all of the intelligibility tests in use today can be scored
to yield an overall or gross intelligibility score, some interest attaches to the
comparability of the various tests in use today when used for this purpose.

Figure 5.4 shows the effects of bandlimited Gaussian noise on the total or
overall scores of four currently available tests. These results show that, at
least for the case of Gaussian noise masking, cross predictability among these
four tests is quite high. This does not, however, address the issue of relative
resolving power

 

. Ceteris paribus

 

, resolving

 

 

 

power is a function of the amount
of data involved, e.g., number of replications, listening crew size. The ques-
tion of resolving power is thus ultimately a question of economics. The DRT

 

FIGURE 5.3

 

Effects of an eight-voice babble on DRT diagnostic scores.
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and its derivatives compare favorably in this respect with other currently
available tests.

Figure 5.5 compares DRT diagnostic score profiles for the three types of
noise conditions (i.e., Gaussian, MNRU, and babble) shown in Figures 5.1,
5.2, and 5.3, respectively. Here, diagnostic scores have been interpolated from
the data for each of the three types of noise to yield an equivalent overall
intelligibility score of 75%. The profiles illustrate how conditions can yield
the same degree of overall intelligibility while exhibiting quite dramatically
different feature profiles. Figure 5.5 supports the premise of intelligibility as
a multidimensional rather than a unidimensional concept.

 

Conceptions of Speech Acceptability

 

It is commonly recognized that intelligibility does not alone ensure the
acceptability of transmitted speech. Intelligibility is a necessary, but not
sufficient, condition of acceptability. Depending on the circumstances and
purposes occasioning voice communication, other factors, such as aesthetic
acceptability and the recognizability of the communicator’s voice, may also
affect the acceptability of transmitted speech.

The ultimate criterion of acceptability is a 

 

subjective

 

 one, albeit 

 

not

 

 one
based on the judgment of any single individual but rather on the judgment
of a hypothetical typical, or 

 

normative,

 

 individual. The goal with all methods

 

FIGURE 5.4

 

Effects of Gaussian noise masking on selected intelligibility tests (M = medial consonant; F =
final; I = initial).
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of evaluating the acceptability of the speech output of a communication
system or device is thus to estimate the response of the normative individual
by means other than exhaustive sampling of the user population. A major
problem is that individuals vary widely within and among themselves in
the subjective criteria of acceptability they bring to the testing situation. Our
success in approximating the response of the normative user thus depends
on our understanding of the nature of such variation and on our ability to
control or to compensate for it.

Investigations by several researchers, e.g., Rothauser, Urbanek, and Pachl,

 

18

 

Nakatani and Dukes,

 

19

 

 and Voiers,

 

20

 

 have provided some important insights
regarding the traditionally low reliability of subjective methods of accept-
ability evaluation. However, these investigators have also shown that much
seemingly random variation in acceptability test results is in fact attributable
to systematic, potentially controllable factors. In particular, these include:

•

 

Inter

 

individual differences in the “subjective yardsticks” listeners
bring to the testing situation — differences in the subjective origins
and scales to which they reference their judgments of acceptability
and the perceptual qualities on which such judgments depend

• Experience-dependent 

 

intra

 

individual variation in the subjective
origin and scale to which listeners reference their judgments

•

 

Inter

 

individual differences in tolerance for specific types of degra-
dation

• Experience-dependent 

 

intra

 

individual variations in tolerance for
specific types of degradation

 

FIGURE 5.5

 

DRT diagnostic scores for three types of masking noise.
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• Listener uncertainty as to the nature of the task to be performed
in the testing situation; uncertainty as to what aspects of the trans-
mitted speech sample should be the basis for judgments of accept-
ability or other perceptual qualities

• Variation in listeners’ perceptions of the actual or hypothetical
purposes to be served by voice communication in a given situation

Various approaches to the control of the above factors by statistical or
experimental means have been employed, but most have not been com-
pletely successful. As in the case of intelligibility, the approach to acceptabil-
ity evaluation followed in any instance depends on how acceptability is
conceived — whether it is conceived as a scalar or as a vector.

Diverse methods for evaluating acceptability have appeared during the
past 40 years. Schmidt-Nielsen

 

16

 

 describes a number of them. Only three of
these, however, have been widely used during the past 25 years: the Absolute
Category Rating Method (ACRM),

 

21

 

 which yields a mean opinion score
(MOS); the Degradation Category Rating Method (DCRM),

 

22

 

 which yields a
mean opinion score for perceived degradation (DMOS); and the Diagnostic
Acceptability Measure (DAM) developed by Voiers and colleagues.

 

23

 

Scalar Approaches to the Evaluation of Speech Acceptability

 

Both the ACRM and the DCRM treat acceptability as a scalar and yield a
single figure of merit, a MOS and a DMOS, respectively. Currently, the MOS
and DMOS are the standard criteria of telecommunication acceptability rec-
ommended by the Telecommunication Standards Sector of the International
Telecommunications Union (ITU-T).

 

24,25

 

 As the standard, the ACRM and the
DCRM are routinely used by international standards organizations such as
the ITU-T, the Telecommunications Industry Association (TIA), and the Euro-
pean Telecommunications Standards Institute (ETSI), among others.

 

 

 

The
DAM, on the other hand, treats acceptability as a vector whose components
provide a variety of potentially useful information.

Although there is some variation in the procedures employed to obtain a
MOS, several features of the ACRM are common to all of the most widely
used versions. Speech samples (typically two sentences) for the condition or
device being evaluated are presented to listening crews under controlled
listening conditions. The listeners rate each sample using a five-category
rating scale in which the categories are defined as “excellent,” “good,” “fair,
“ poor,” or “bad.” These category ratings form the basis of the five-point
MOS, ranging from 1 for “bad” to 5 for “excellent.”

In the case of the DCRM, each trial involves two samples, where the first
sample is a reference condition and the second a test sample. The listener’s
task is to rate the amount of degradation in the second (test) sample compared
to that of the first (reference) sample using a five-category “detectability of
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degradation” rating scale, in which the categories are labeled “inaudible,”
“audible but not annoying,” “slightly annoying,” “annoying,” and “very
annoying.” The listener’s category ratings form the basis of the five-point
DMOS, where the scores range from “1” for “degradation is very annoying”
to “5” for “degradation is inaudible.” The DCRM was designed to be used
in tests involving very high quality voice communication systems and in
evaluating system conditions involving noisy inputs.

 

22

 

 Since the DMOS pro-
vides a measure of perceived degradation of test-conditions “relative to”
reference conditions, it is highly dependent on the specific reference condi-
tions used in the evaluation. The relative nature of the DMOS precludes
comparisons with “absolute” measures of acceptability yielded by the ACRM
and DAM as described by Panzer, Sharpley, and Voiers.

 

26

 

 The remainder of
this discussion will focus on the ACRM and the DAM.

A feature of current ACRM testing practice is the inclusion of MNRU as
additional test conditions. The MNRU conditions serve two purposes: (1) to
“bound” the test (i.e., provide a continuous range of acceptability from “bad”
to “excellent”), and (2) to provide a common reference system to be used,
for example, across different laboratories, different languages, and different
source materials. The error associated with the listener sample can thus be
controlled to some extent by transforming raw scores into equivalent “Q-
levels,” each of which corresponds to a specified MNRU level. However, this
practice is not universal. The repeatability or interlaboratory reliability of
MOS results has not been impressive in the past, but improved experimental
design, multiple speakers, and very large listening crews can ameliorate this
problem to some extent.

Standard procedure with the ACRM and its derivatives calls for crews of
naive listeners, and thus presents a problem where results from different
experiments, and thus different listeners, are to be compared. Fortunately,
the use of large listening crews (usually 32 to 64) and replication through
the use of multiple talkers (usually 4 to 16), reduce listener sampling error
to some extent.

 

Vector Approach to the Evaluation of Speech Acceptability

 

The use of multidimensional scaling methods by some investigators, e.g.,
McDermott,

 

27

 

 in effect implicitly treats acceptability as a vector. However,
this approach has not been widely adopted, and, in any case, is not practical
in situations where the test plan requires the evaluation of a large number
of systems or conditions in the same context.

Only a few investigators (e.g., McDermott,

 

27 Nakatani and Dukes,19

Voiers,20,23,28 Quackenbush, Barnwell, and Clements29) have attempted to
understand the bases of acceptability, i.e., to identify the perceived speech
qualities on which listeners’ judgments of acceptability depend. Knowledge
of the nature and number of these qualities played a crucial role in the design
and development of the DAM. As described below, listener’s judgments of
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various elementary perceived qualities (EPQ) of processed speech conditions
provide a basis for various supplementary estimates of acceptability and
also provide useful diagnostic information about the system being evaluated.

All versions of the DAM, e.g., Voiers,20,28 Panzer, Sharpley, and Voiers,26

share some features with earlier methods of evaluating speech acceptability,
but also have some unique features. In particular, these include:

• Use of detectability vs. evaluative judgments of acceptability and of
the perceptual qualities on which it depends: Listeners are asked
to judge the effects of a system or device on the detectability of
various simple and complex perceptual qualities.

• Provision of multiple estimates, both direct (isometric) and indirect
(metametric and parametric), of speech acceptability (see below).

• Explicitly identified “end anchors” to stabilize the listeners’ sub-
jective scale and origin.

• Standard “probes” to sense shifts in listeners’ subject scale or origin.
• Use of trained listeners who have been carefully screened and using

the DAM itself, and the use of familiarization and training sessions
to acquaint listeners with the types of degradation produced by
modern speech coding systems and with the voices and the speech
materials used.

• Calibration procedures to permit statistical control of interindivid-
ual and intraindividual variation in adaptation level and taste.

• Procedures for monitoring the performance consistency of individ-
ual listeners.

Each of these features provides some control of one or more of the major
sources of extraneous variance, or error, in estimates of speech acceptability.
Each source of error is in turn subject to some degree of control by one or
more of these features.

Rather than being asked only to make raw subjective judgments of the
acceptability of a sample of system-processed speech, listeners are also asked
to judge the detectability of the effects of a link or system on the various EPQs
on which acceptability depends. In principle, at least, such judgments should
be relatively free of the effects of individual listener differences in tolerance
for the qualities involved. Thus, a key feature of the DAM rests on the
premise that individuals tend generally to agree better on what they hear
rather than on how well they like it. For example, as noted by Nakatani and
Dukes,19 they would certainly agree more nearly on the color of a car than
on how much they like it. A group of musically sophisticated individuals
would be expected to agree better on how much a musical composition
“sounds like Bartok” than on how well they like it, just as they might be
expected to agree better on the noisiness of a sample of processed speech
than on how acceptable it is. This principle has wide application and pro-
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vides us with a powerful tool for controlling extraneous variation in accept-
ability test results.

The relationship between acceptability and various perceptual qualities,
such as noisiness, varies from one individual to the next, but knowing this
relationship for the normative individual we can, in principle, make reliable
estimates of acceptability from judgments of noisiness and other perceptual
qualities, as well as from “raw” judgments of acceptability.

The task of identifying the perceptual correlates of acceptability began
with the compiling of a list of several hundred descriptors of undesirable
speech qualities. Listening crews were asked to provide as many synonyms
as they could supply for each descriptor, particularly as it might apply in
an acoustical or speech context. This served to replace the original set of
potential scale descriptors with a smaller, but still large, set of adjectival
clusters. Rating scales defined by these clusters were then used in a succes-
sion of experimental tests to determine the nature and number of EPQs
required to account for the variation in listeners’ responses to the still large
number of scales involved. Crews of listeners rated a wide diversity of
“system conditions” — state-of-the-art speech coders under various operat-
ing conditions, simple laboratory degradations, and so forth — with respect
to the various potential EPQs, as well as to the higher-order perceptual
qualities, intelligibility, pleasantness, and overall acceptability. The nature and
number of underlying speech qualities, the EPQs, were ultimately revealed
by factor analysis cluster analysis (of variables) of data from dozens of
experiments conducted over a period of 15 years. These efforts led to:

• Confirmation of the fact that listeners can and do reliably distinguish
between perceptual qualities of the speech signal itself and percep-
tual qualities of background noises or other extraneous sounds

• The discovery that eight EPQs of the signal and seven EPQs of the
background are the primary bases of listeners’ judgments of the
effects of state-of-the-art voice communication systems and devices
on speech acceptability

• The discovery that judgments of EPQs can be used (1) to provide
reliable and valid supplementary estimates of overall acceptability
and (2) to diagnose specific deficiencies and malfunctions of voice
communication equipment and devices

• The discovery that judgments regarding intelligibility and pleas-
antness can provide valuable supplementary estimates of overall
speech acceptability along with useful diagnostic information

The present version of the DAM thus requires the listener to judge the
detectability of a diversity of acceptability-related, simple and complex per-
ceptual qualities. These fall into three categories, depending on the type of
acceptability estimate they provide: isometric estimates, metametric estimates,
and parametric estimates.
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Isometric estimates are direct estimates of the level of an elementary or
complex perceptual quality. In the case of the DAM, these qualities include
overall acceptability, signal acceptability, background acceptability, pleasantness,
intelligibility, and a variety of more elementary perceptual qualities. The
distinction between isometric and other types of estimates ultimately
depends on purpose. If listeners’ judgments of the detectability of noise in
a communication system are used to estimate speech-to-noise ratio, they
provide us with isometric estimates of speech-to-noise ratio. If they are used
to estimate other properties of the speech signal, such as intelligibility or
acceptability, they provide us with parametric or metametric estimates,
depending on the nature of the relationship between the properties involved.

The major disadvantage of isometric measures of complex speech features
such as acceptability is their potential dependence on taste or “preference,”
and hence their extreme susceptibility to listener sampling error.

As used here, the term metametric refers to the special case of estimates
that are highly, but nonlinearly, correlated with a given perceptual quality —
estimates that appear to measure the same (or very similar) qualities but do
not yield numerically interchangeable results. Ratings of pleasantness and
intelligibility provide two examples. For virtually all types of degradation
encountered in modern voice communications, judgments of a system’s
effects on intelligibility and pleasantness are highly, but curvilinearly, related
to judgments of acceptability. By transforming them appropriately, we obtain
two metametric estimates of acceptability.

Acceptability estimates based on EPQs are termed parametric estimates
and the rating scales from which they are obtained are called parametric
scales. The basis for distinguishing parametric estimates from other types of
estimates of acceptability is found in the nature of the relationship between
EPQs and higher-order qualities such as acceptability: Interdependencies
between the various EPQs and the complex qualities of pleasantness, judged
intelligibility, and acceptability are not symmetrical. For example, perceived
raspiness in the received speech signal can reduce acceptability, but poor
acceptability can occur in the absence of raspiness. Plots of acceptability vs.
EPQ scores all yield triangular scattergrams consistent with the above illus-
tration. (In the course of analyzing DAM data, all EPQ scores are transformed
to approximate the acceptability level a system would be accorded if it were
deficient only with respect to the EPQ involved.)

As used with the DAM, each of the three types of estimate described above
has unique advantages and disadvantages, but the three tend to be comple-
mentary. When used in combination, they offer improved control of major
types of error inherent in all subjective evaluations of speech. Additionally,
metametric and parametric estimates can provide potentially valuable “diag-
nostic” information about the channel or link being evaluated. A list of all
scores obtained with the DAM is shown in Table 5.2. Using both linear and
nonlinear transformations, the various parametric, metametric, and isomet-
ric estimates are combined to yield a final composite acceptability estimate
(CAE).
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TABLE 5.2

Scores Yielded by the DAM

Parametric Signal-Quality Scores Parametric Background-Quality Scores
SF Signal flutter Fluttering–pulsating BNH Background noise high Hissing–fizzing
SH Signal high-pass Small–distant BNM Background noise mid Rushing–roaring
SD Signal distortion Rasping–scratchy BNL Background noise low Rumbling–rolling
SL Signal low-pass Dull–muffled BB Background buzz Humming–buzzing
SI Signal interruption Interrupted–chopped BF Background flutter Bubbling–percolating
SN Signal nasality Nasal–whining BS Background static Crackling–staticky
ST Signal thin Thin–tinny BC Background chirping Chirping–clicking
SB Signal babble Babbling–slobbering

Isometric Signal-Quality Score Isometric Background-Quality Score
ISA Isometric signal acceptability Unnatural–distorted IBA Isometric background acceptability Conspicuous–intrusive

Isometric Overall-Quality Scores Metametric Overall-Quality Scores
CIA Overall acceptability TRI Intelligibility
MOS Predicted mean opinion score TRP Pleasantness

Overall Acceptability
CAE Composite acceptability estimate
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As with the DRT, the pattern of scores yielded by the DAM varies, depend-
ing on the type of degradation involved. Examples using an early version
of the DAM are found in Barnwell and Voiers28 and in Quackenbush, Barn-
well, and Clements.29

Figure 5.6 shows the effects of band-limited Gaussian noise on the pattern
of DAM scores. Most noteworthy are the scores for BNH (background noise
high) and IBA (isometric background acceptability. Except for SH (signal
highpass), the remaining parametric scores are little affected by this type of
degradation. Figure 5.7 shows the effects of speech-modulated masking
noise (MNRU), and Figure 5.8 the effects of an eight-voice masking babble
on DAM scores. The three sets of DAM score profiles are distinct for the
different forms of masking noise.

Figure 5.9 shows the relationship between the ACRM’s MOS and the
DAM’s measure of overall acceptability, CAE, for a large number (n > 200)
of common system conditions. The two measures show a substantial degree
of cross predictability (rMOS,CAE = 0.959).

Figure 5.10 shows DAM diagnostic score profiles for the three types of
noise conditions (i.e., Gaussian, MNRU, and babble) shown in Figures 5.6,
5.7, and 5.8, respectively. In Figure 5.10, the DAM diagnostic scores have
been interpolated from the data for each of the three types of noise to yield
an equivalent overall acceptability score, CAE, of 50. As shown above for
intelligibility, conditions can yield similar scores for overall acceptability
while exhibiting dramatically different diagnostic profiles. Figure 5.10, there-
fore, supports the premise of acceptability as a multidimensional rather than
a unidimensional concept and provides a strong argument for using vector
methods rather than scalar methods in the evaluation of acceptability.

FIGURE 5.6
Effects of Gaussian noise on DAM diagnostic scores.
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FIGURE 5.7

 

Effects of speech-modulated noise (MNRU) on DAM diagnostic scores.

 

FIGURE 5.8

 

Effects of an eight-voice masking babble on DAM diagnostic scores.
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FIGURE 5.9
ACRM’s mean opinion score (MOS) vs. DAM’s composite acceptability estimate (CAE).

FIGURE 5.10
DAM diagnostic score profiles for three types of masking noise.
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Conceptions of the Nature of Speaker Recognizability

Standardized tests for evaluating the effects of voice coding and communi-
cation systems on speech intelligibility and acceptability are presently avail-
able, but a valid, practical, and economically feasible method for evaluating
the effects of such systems on the recognizability of speakers’ voices has not
been available heretofore. A major obstacle has been the difficulty of con-
trolling listeners’ familiarity with voices used in such tests, in particular, the
difficulty of obtaining and maintaining listening crews whose members have
equal familiarity with voices in a sample large enough (probably > 300) to
provide adequate representation of the range and diversity of qualities that
distinguish voices from each other.

Scalar Approaches to the Evaluation of Speaker Recognizability

Although several approaches to the evaluation of speaker recognizability in
communication systems have been proposed during the past few years, none
has been generally accepted for purposes of routine evaluation of commu-
nication systems. The problem noted above is prominent among the reasons
for this. Under support from the Armstrong Laboratory (contract F41624-97-
C-6003), Dynastat Inc. undertook the development and validation of a
method, the Diagnostic Speaker Recognizability Test (DSRT), in which lis-
teners’ familiarity with voices is not a factor. The method is based on the
simple premise that voice recognition by human listeners presupposes dis-
crimination, discrimination with respect to various perceived voice traits
(PVTs), traits that carry information as to the identity of the speaker.

The first steps in the development of the DSRT involved determining the
nature and number of PVTs that carry significant amounts of speaker-iden-
tity information and the development of rating scales by means of which
listeners can characterize their perceptions of these traits.

Kreiman et al.30 studied the problem of interrater reliability in ratings made
of various voice characteristics by speech professionals and by laypersons.
They observed limited reliability in ratings made with respect to commonly
used clinical descriptors such as breathiness and roughness. A major aspect of
the development of the DSRT involved the experimental test of hundreds of
potential scale descriptors to identify those specific descriptors and clusters
of descriptors that provided maximum interrater reliability when used to
define voice rating scales.

Appropriate multivariate analyses (factor analysis and cluster analysis in
particular) of data obtained with a diversity of candidate rating scales
revealed the approximate nature and number of underlying PVTs required
to account for the variance (across speakers) of listeners’ perceptions of
voices. Listeners appeared able to discriminate 20 PVTs, 10 of which were
bipolar (i.e., scales on which the modal individual falls near the middle of
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the range) and 10 of which were monopolar (i.e., scales on which the modal
individual falls near the lower extreme of the range). The latter appear,
generally, to pertain to one form or another of aberrant or dysphonic speech.
Two highly correlated rating scales were developed to tap each of the above
traits. Averages for each pair of scales provided the means of classifying
voices in the 20-dimension trait space. Examples of the two types of rating
scales are:

The 20 PVTs are labeled as follows:

Any reduction in speaker recognizability occasioned by signal degrada-
tion would be reflected in reduced discriminability of one or more PVTs as
measured by the interrater reliability of voice ratings on these traits. Analysis
of variance with factorial design provides a convenient means of evaluating
the significance of such effects as reflected in the F-ratio for “(speak-
ers)/(speakers ¥ listeners).” From an F-ratio, we can also estimate the
amount of shareable speaker identity information (SII) contained in the mean
of N listeners’ ratings. It also provides the means of comparing the effects
of different conditions on the SII content of the received signal. Where the
assumption is that both the systematic effect and the error are normally
distributed, SII can be estimated as 1/2 log2(FN), where F is the ratio of mean
square for speakers to mean square for error (speakers ¥ listeners) and N is
the number of listeners. This statistic is quite robust across variations from
normality, such as is found in the case of most monopolar traits. (For the

Bipolar PVTs Monopolar PVTs

Pitch Breathiness
Rate Shriekiness
Roughness Stammeriness
Melodiousness Slurpiness
Resonance Wheeziness
Clippedness Twanginess
Shakiness Hoarseness
Jerkiness Thickness
Crispness Hissiness
Pervasiveness Exoticness

LOW
DEEP
BASS

vs.
HIGH
SHALLOW
TENOR

SCRATCHY
DRY

HOARSE

Bipolar Rating Scale Monopolar Rating Scale
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extreme case of a rectangular distribution, this equation overestimates SII
by a constant of 0.25 bits.31)

For purposes of the DSRT, separate sets of five exemplars were selected
from pools of 240 males and 240 females to represent approximately equi-
distant points across the range of mean ratings for each PVT. The exemplars
selected for each PVT were, to the extent possible, neutral with respect to
all other PVTs.

The DSRT involves having crews of 24+ listeners rate speech samples
(sentences) for five exemplars for each of the 20 PVTs. For a given transmis-
sion condition, we estimate the average amount of speaker identity infor-
mation in mean voice ratings (SII) for each PVT, as described above. The
effect of a channel or device on the speaker identity information in mean
voice ratings for each PVT is measured as SIIC–SIIE, i.e., the difference
between SII for the control or clear condition and SII for an experimental
condition. Separate tests are conducted for male speakers and female speak-
ers. The results for the two sexes are then averaged.

It should be stressed that the DSRT is presently in the final stages of
validation. It is still subject to minor modification, depending on the results
of research in progress. Here, unlike the cases of intelligibility and accept-
ability, no independent criteria of speaker recognizability are available, nor
ever likely will be. Hence, the results yielded by the DSRT must be taken at
face value.

Figure 5.11, which shows the effects of Gaussian noise masking on the
discriminability of the various PVTs (variations of 0.25 or less may be attrib-
utable to chance). It is evident that speaker identity information is more
robustly encoded for some PVTs than for others. Gaussian noise masking
affected the PVTs of pitch, warmth, and thickness the least and the PVTs of
slurpiness and wheeziness the most.

Figure 5.12 shows the effect of speech-modulated masking noise (MNRU)
on the discriminability of the 20 PVTs. Moderate levels of MNRU appear to
have negligible effect on recognizability, but below an MNRU of 0 dB, the loss
of SII is widespread, particularly so among the monopolar PVTs. Most affected
is the PVT, exoticness, which is presumably sensitive to a speaker’s linguistic
heritage — to speakers whose native language is not American English.

Not shown here are the effects of other forms of degradation, speech
coding, etc. The DSRT has been proven highly sensitive to various forms of
frequency pass band restriction, to differences among speech coding algo-
rithms, and to data rate in coders thus far tested.

The DSRT is still being validated and refined within the limitations
imposed by economic considerations. The ultimate product must be avail-
able at prices comparable to those typically charged for tests of intelligibility
and acceptability.

Common intuition and the results presented here both attest to the robust-
ness with which speaker identity is encoded in a speaker’s voice. A practical
need for a test of speaker recognizability may be confined to the case of
moderate- to low-rate coders, but final resolution of this issue will depend
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FIGURE 5.11
Effects of Gaussian noise masking on the speaker identity information content of 20 perceived
voice traits (PVTs).

FIGURE 5.12
Effects of speech-modulated noise (MNRU) on the speaker identity information content of 20
perceived voice traits (PVTs).
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on the results of continuing research and on future developments in the
speech-coding field.

Conclusions

The results presented above attest strongly to the importance of knowledge
regarding the effects of noise on the specific speech components on which
intelligibility, acceptability, and speaker recognizability depend. Such knowl-
edge should greatly facilitate the development of effective methods of noise
reduction in speech communication systems.
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Characteristics of Speech and Noise

 

Single-channel speech enhancement relies upon differences between the
characteristics of speech and noise. In some situations, these differences are
clear. For example, telephone-quality speech lies in a frequency band 300 to
3300 Hz — any noise below 300 Hz or above 3300 Hz can be removed by
passing the signal through a bandpass filter. Other noise, e.g., tonal noise,
is contained in a number of very narrow frequency bands. This noise can be
removed by filtering out these frequencies. If the bands are very narrow, the
effect on speech will be small.

However, in many situations, the noise has a broadband, random nature
with frequency components across the whole speech band. Some components
of speech (such as vowel sounds in normal speech) are produced by a peri-
odic vibration of the vocal chords. These components constitute voiced
speech. Other components are produced by shaping a turbulent airflow.
These are called unvoiced components. Whispers are unvoiced. The unvoiced
components of speech are broadband, which makes the separation of speech
from the noise a difficult task. To make any progress in this direction it is
necessary to look at the statistical properties of the speech and noise signals.

The earliest statistical property used in speech enhancement is the auto-
correlation function, or its equivalent, the power spectral density. An early
review of such methods was done by Lim and Oppenheim.

 

1

 

 Methods based
on more sophisticated statistical models have been reviewed by Ephraim.

 

2

 

Frames

 

Speech signals can be considered as stationary over periods of about 20 ms.
This time scale is associated with changes in the shape of the vocal tract. It
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is common in speech processing to consider blocks or frames of speech of a
similar duration. For some speech processing, such as pitch detection, longer
frames are used to encompass multiple pitch periods. Since the transitions
from one vocal tract shape to another are continuous, it is usual to process
overlapping sections of speech.

We begin by considering a signal 

 

x, 

 

which is sampled at times 

 

nT

 

, where

 

n

 

 is an integer and 

 

T

 

 is the sampling period. We denote the sample value at
time 

 

nT

 

 by 

 

x

 

(

 

n

 

). The dependence upon the sampling period is implicit. Each
frame contains 

 

N

 

 samples, and the vector of samples for the frame ending
at time sample 

 

n

 

 is defined as

(6.1)

In MATLAB notation,

 

x_sub_N = x(n:-1:n-N+1);

 

In general, where it does not cause confusion, the explicit dependence
upon the frame length 

 

N

 

 will be dropped. The frame of 

 

N

 

 samples is called
an 

 

N

 

-vector and may be thought of as a vector in an 

 

N

 

-dimensional vector
space. Consecutive frames may be overlapped by 

 

N-M

 

 samples, so that a
new frame is generated every 

 

M

 

 samples.

 

Models for Speech

 

Some speech enhancement techniques make no assumptions about the
speech signal except that it is uncorrelated with the noise and that the noise
statistics vary more slowly than the speech statistics. However, the speech
signal can be reasonably well modeled as an autoregressive process. This
provides some additional 

 

a priori

 

 knowledge of the speech signal, which can
be used in an enhancement scheme. Before moving on to discuss speech
enhancement, we shall look at how an autoregressive (AR) model for a signal
may be formulated in terms of speech frames.

In an AR model, the current value of the signal is defined in terms of the
previous value of the signal. In the AR model, the current sample 

 

x

 

(

 

n

 

) is
written as

(6.2)

where 

 

a

 

(

 

n

 

) is an 

 

L

 

-vector (a vector of length 

 

L

 

) of linear prediction (LP)
coefficients, 

 

x

 

L

 

 is an 

 

L

 

-vector of previous samples and 

 

s

 

(

 

n

 

) is an excitation
or source signal. 

 

s

 

(

 

n

 

) can also be interpreted as a prediction error signal (the
difference between the signal and its prediction). It is also called the

xN
Tn x n x n x n x n N( ) { ( ), ( ), ( ), ..., ( )}= - - - +1 2 1

x n n n s nT( ) ( ) ( ) ( )= - +x aL 1
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innovation

 

, since it is the part of the signal that cannot be predicted from past
measurements. The signal is thus modeled as passing the excitation signal

 

s

 

(

 

n

 

) through a recursive (all-pole) filter with coefficients 

 

a

 

(

 

n

 

). The excitation
signal is often modeled as either a Gaussian random noise signal (for
unvoiced speech or noise) or an impulse train (for voiced speech).

This model gives the current 

 

sample

 

 in terms of the previous samples. For
speech enhancement, we would like to find expressions for the current 

 

frame

 

.
Several different formulations are described below.

 

Data Matrix Form

 

A frame of the signal can be written as

(6.3)

where 

 

X

 

(

 

n – 

 

1)

 

 

 

is an 

 

N 

 

¥

 

 L

 

 

 

data matrix

 

 of previous samples of the signal,
defined as

(6.4)

 

Frame-Recursive Form

 

The current frame can also be written in terms of previous frames, rather
than in terms of a data matrix

(6.5)

where 

 

A

 

F

 

 and 

 

B

 

F

 

 are matrices that depend upon the time-varying LP
coefficients.

 

Circular Convolution Approximation

 

An alternative representation is

(6.6)

where 

 

A

 

C

 

 is an 

 

N 

 

¥

 

 N

 

 circular matrix with first-row 

 

c

 

T

 

(

 

n

 

)  =
{1,–

 

a

 

1

 

,–

 

a

 

2

 

,…,0,0,…0} and 

 

e

 

(

 

n

 

) is an error vector. The first 

 

N

 

 – 

 

L

 

 terms of the

x a sN Nn X n n n( ) ( ) ( ) ( )= - +1

X n

(n

n

n N

L
T

L
T

L
T

( )

)
( )

( )

- =

-
-

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1

1
2

x

x

x

M

x x sN F N F Nn A n M B n( ) ( ) ( )= - +

A n n nC N Nx s e( ) ( ) ( )= +
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error vector are zero. If 

 

N

 

 >> 

 

L

 

, the error is small and can be neglected. An
equivalent representation is

(6.7)

where  This approximation is useful because of the special prop-
erties of circular matrices, which will be discussed later in the sections
“Discrete Fourier Transform” and “Estimating the Characteristics of the
Speech and Noise.” It also allows us to develop some simple relationships
between the autocorrelation matrices of the speech signal and the excitation
signal. For example, we can construct the 

 

N

 

 

 

¥

 

 

 

N

 

 autocorrelation matrix 

 

R

 

 of
the signal from knowledge of the vector 

 

a

 

 and the power 

 

s

 

2

 

 of the excitation
signal. Equivalently, we can think of 

 

a

 

 and 

 

s

 

2

 

 as a parameterization of the
autocorrelation matrix. For zero mean Gaussian processes, the probability
density function is determined from 

 

R

 

, so 

 

a

 

 and 

 

s

 

2

 

 also provide a parame-
terization of the probability density function. The representation is valid for
the period during which the signal is stationary and describes the intraframe
relationship between samples.

For speech, the statistics can be considered stationary within each frame.
However, they will vary from frame to frame. To obtain a better represen-
tation of the statistics of speech, we must also consider the relationships
between frames. This will be considered later in “Vector Quantization.”

 

Hidden Markov Model

 

Referring to the frame autoregressive model, we can write 

 

n = mM

 

, where

 

m

 

 is the frame index and 

 

M

 

 is the frame advance. This gives

(6.8)

where the coefficient matrix 

 

B

 

M

 

 depends upon the LP coefficients in the
current and previous frames. We refer to the LP coefficient vectors as the

 

state vectors

 

 of the system. In this model, the state vectors are quantized.
Rather than a continuum of states, it is assumed that a finite discrete set of
state vectors is sufficient to describe the speech process. This is clearly an
approximation. The probability density functions (pdf) of the states are
assumed to form a Markov process, in which the pdf of the current state can
be predicted from the pdf of the previous state alone. This form is called a

 

hidden

 

 Markov model (HMM) for 

 

x

 

N

 

, since the state vectors cannot be
observed directly. Instead, we observe the result of a random process whose
statistics are determined by the state vector. The use of a HMM for speech
enhancement is described in, e.g., Ephraim,

 

2

 

 Ephraim, Malah, and Juang,

 

3

 

and Sameti, Sheikhzadeh, and Deng.

 

4

x sN C Nn B n( ) ( )@

B AC C= -1.

x a a sN M m m Nm B m( ) ( , ) ( )@ -1
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The relationship between the state in one frame and the state in the next
is described by a state transition matrix. The states contain information about
how samples within each frame and the previous frame are related, while
the state transition matrix contains information about how the state vector
changes between frames.

 

General Speech Enhancement

Time-Domain Filtering

In many environments, the noise is additive. The noisy signal vector is written
as

(6.9)

where x(m) is the vector of clean speech signals and d(m) is the vector of
noise samples. Other types of noise exist. For example, distortion produces
a noise that is dependent upon the speech signal. In this chapter we will be
concerned with additive noise for which the speech and noise are assumed
to be independent (i.e., the cross correlation of the speech and noise is equal
to zero). The autocorrelation matrix Ry of the input for frame m satisfies

(6.10)

where Rx is the autocorrelation matrix of the speech and Rd is the autocor-
relation matrix of the noise. The angled brackets denote the expected value.

The elements of the autocorrelation matrix can be estimated by a sample
average over each frame. The mean square value (power) of an example
speech signal is shown in Figure 6.1. The uppermost plot shows the power
of the original speech signal in decibels (relative to full-scale input for this
digitized signal). The vertical lines denote the beginning and end of the
speech signal. Notice that there is some background noise at a level of –40 dB
even in this relatively clean signal. The middle plot shows the power of a
white noise signal. The noise is stationary, so the level is fairly constant. Even
though the noise is stationary, the mean square value is only an approxima-
tion of the statistics and so is not exactly constant. The lowest plot shows
the power of the combined speech and noise. This closely approximates the
sum of the individual powers. Notice how the last section of speech is lost
in the noise. This illustrates one of the difficulties in detecting speech in the
presence of noise.

If the autocorrelation matrix of the noise is known, the autocorrelation
matrix of the speech can be estimated as

y x d( ) ( ) ( )m m m= +

R m m m R m R my
T

x d( ) ( ) ( ) ( ) ( )∫ = +y y
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(6.11)

If the noise is stationary or almost stationary, the noise autocorrelation
matrix Rd does not change much from frame to frame. Rd can be estimated
by averaging during pauses in the speech. The speech is not stationary, and
we only have one instance of the noisy speech. Estimation of Ry(m) is there-
fore more difficult. However, this does provide the motivation for a variety
of speech enhancement algorithms. The main problems are:

1. Estimation of the speech autocorrelation matrix
2. Estimation of the noise autocorrelation matrix
3. Use of the autocorrelation matrices to obtain enhanced speech

Spectral Filtering

We begin by considering the last of the problems described above. One way
of using the autocorrelation matrices to obtain enhanced speech is to use
them to design a filter. Filtering may be performed in the time domain or a
spectral domain, such as the frequency domain. In spectral filtering, the
estimate  of the clean speech is

FIGURE 6.1
Signal powers.
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(6.12)

where U is a unitary transform matrix that satisfies UU* = I, and F(m) is a
gain or filter matrix. The superposed star denotes the conjugate transpose of
the matrix. This process is depicted in Figure 6.2.

The computation of  is performed in three steps: analysis, filtering,
and synthesis.

Analysis

The input spectrum is obtained by transforming the input vector

(6.13)

Although written as a matrix–vector multiplication, some transforms can
be calculated using fast algorithms. Examples include wavelet, Fourier, and
discrete cosine transforms.

Filtering

The output spectrum is calculated from the input spectrum

(6.14)

Synthesis

The output vector is calculated by applying the inverse transform to the
output spectrum

(6.15)

The output time series is obtained from the output vectors. There are a
number of different strategies that can be used to design a speech enhance-
ment filter:

1. The unitary transform matrix U can be fixed and the filter matrix
F(m) adjusted for each frame (e.g., frequency domain spectral

FIGURE 6.2
Spectral filtering.
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filtering, wavelet denoising). In general, the matrix F can be a
function of current and past inputs, Y(m),Y(m – 1),…, and past
outputs, . Often, the matrix F is diagonal. Indeed,
the unitary transform should be chosen so that F is diagonal or
almost diagonal.

2. The unitary transform matrix U(m) can be adjusted for each frame
and the weighting matrix F held fixed (e.g., subspace projection).

3. Both the unitary transform matrix U(m) and the weighting matrix
F(m) can be adjusted for each frame (e.g., subspace filtering).

The underlying assumption is that the application of the unitary transform
to the noisy vector helps to separate the speech and noise vectors in some sense.

We now consider some specific unitary transforms used in speech enhance-
ment.

Spectral Filtering Examples

Discrete Fourier Transform

The discrete Fourier transform is widely used for several reasons. First, the
fast Fourier transform (FFT) provides a computationally efficient way of
computing the transform and its inverse and, second, the human ear per-
forms a kind of Fourier analysis.

The kth column of U is the kth column of the Fourier transform matrix,
namely,

(6.16)

where WN = e–i2p/N. The factor  is introduced so that  The

factor  is included only if it is important to keep track of the phase
between frames. If the factor is included, the transform is sometimes called
the short-term discrete Fourier transform.

In MATLAB notation,

U = exp(i*(0:N-1)’*(0:N-1)*2*pi/N)/sqrt(N);

or

U = fft(eye(N,N))/sqrt(N);

In the circular convolution approximation, the Fourier transform diagonalizes
the autocorrelation matrix. Furthermore, if the excitation is Gaussian, the
statistics are completely determined by the autocorrelation matrix and the

ˆ ( ), ( ),X Xm m - º1

u uk k
N

mM

N
k

N
k

N
N k Tm

W

N
W W W( ) { , , , ..., }( )= =

-
-1 2 1

1/ N uk = 1.

WN
mM-
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spectral components are statistically independent. For the approximation to
be useful, the frame length (transform length) must be much greater than
the maximum correlation time of the signal. This means that the frequency
components can be treated independent of one another, which is a major
simplification.

Karhunen-Loeve Transform

In the approximation above, the Fourier transform was found to diagonalize
the autocorrelation matrix. The approximation may not be good for voiced
speech, which has a long correlation time and where a long filter would be
required to whiten the signal.

In the Karhunen-Loeve transform, the kth vector uk(m) of the unitary
transform matrix is the kth eigenvector of the N ¥ N autocorrelation matrix
R. Consequently, the unitary transform will diagonalize the autocorrelation
matrix whatever its form. The autocorrelation matrix, and hence the trans-
form, can be estimated from N1 > N samples, including the current frame.

In MATLAB notation,

[U,E] = eig(R); (6.17)

where R is the autocorrelation matrix and E = D2 is the diagonal matrix of
eigenvalues.

Subband Filtering/Wavelet Transform

In subband filtering, uk(m) is the vector of coefficients of the kth synthesis
filter. Although the filter is implemented in fast-form, as a tree of filters, with
decimation at each stage (see, e.g., Reference 5), the result is mathematically
equivalent to multiplication by a transform matrix.

Discrete Cosine Transform

In MATLAB notation,

U = diag([1 sqrt(2)*ones(1,N-1)])* …
cos((0:N-1)’*(0.5:N)*pi/N)/sqrt(N);

Estimating the Characteristics of the Speech and Noise

There are two approaches to the design of the spectral filter F(m). The first
approach is a direct approach, where the parameters of F(m) are found
directly from the data. The second approach is an indirect approach in which
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some characteristics of the speech and noise are estimated and then the filter
is calculated from these characteristics. We shall consider the indirect
approach first, and look at some methods for estimating the signal and noise
characteristics.

Noise Estimators

Many noises can be modeled as filtered white noise. The autocorrelation
function of the noise is constant, or at least slowly changing relative to the
time scales of the speech. The autocorrelation matrix for the noise spectrum is

(6.18)

If U is a constant transform matrix, we can estimate RD(m) directly. Alter-
natively, Rd(m) can be estimated and then RD(m) can be found using Equation
(6.18). A special case is when the noise is white. In this case, Rd(m) = RD(m)
= s2I. If the noise can be modeled as an autoregressive process, a pre-
whitening filter can be used to ensure that the noise in the input to the speech
enhancer is white. An inverse whitening filter is then used on the output to
remove the distortion of the speech. This approach should be used with
caution if the algorithm uses sophisticated speech models, since the speech
will be distorted by the whitening filter.

For constant transforms, the autocorrelation matrix for the noise spectrum
can be estimated recursively as

(6.19)

where

(6.20)

D(m) is the transform of the noise vector, d(m), and m is a small positive
constant. The initial value can be set from the first nonspeech frame, for
example.

For the Fourier transform, RD(m) is diagonal. We write the kth diagonal
element as RD(m,k), which is updated according to

(6.21)

These approaches require that the pauses in the speech be detected, so the
periods of speech activity must be detected using a voice activity detector. A

R m U m R U mD d( ) ( ) * ( )∫

ˆ ( ) ˆ ( ) [ ( ) * ( ) ˆ ( )]R m R m m m R mD D m D= - + - -1 1e m D D

e m =
Ï
Ì
Ó

0
1

  if speech is present in the frame
  otherwise

ˆ ( , ) ˆ ( , ) [ ( ) ˆ ( , )]R m k R m k D m R m kD D m k D= - + - -1 1
2

e m
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voice activity detector is a device (or algorithm) that determines if speech is
present in a signal at a given time. A simple voice activity detector might
monitor the power of the signal and compare it to a threshold level related
to the ambient noise level.

An alternative approach6 is to track minima in the spectral powers. This
avoids the need for a voice activity detector but requires knowledge of the
relationship between the sequence of minimum values and the expected value.

Signal Estimators

Spectral Subtraction

In the frequency domain, the autocorrelation matrices are assumed to be
diagonal and the components satisfy

(6.22)

We can estimate RY(m,k) from the current frame as simply

(6.23)

and we can estimate the speech power in the current frame as

(6.24)

That is, the estimate of the power of the noise spectrum is subtracted from
the spectrum of the power of the noisy input signal to yield an estimate of
the power of the speech spectrum. Accordingly, this approach is called spec-
tral subtraction.7-10 One problem associated with this estimator is that the

speech amplitude  can be negative. This is not a valid
estimate, so it must be fixed in some way. The usual approach is to set the
negative portions to zero. During pauses in the speech, this results in spectral
components that appear and disappear, creating a “musical” artifact in the
residual noise.

The spectral amplitude in the current frame can be estimated by simply
taking the square root.

Interframe Smoothing

Ephraim and Malah11 use a recursive estimate of the signal to noise ratio. If
the noise is assumed constant, this is equivalent12 to a recursive estimate of
the signal power estimate  namely,

(6.25)

R m k R m k R m kY X D( , ) ( , ) ( , )= +

ˆ ( , ) ( )R m k Y mY k=
2

ˆ ( ) ( , ) ˆ ( , ) ˆ ( , )X m R m k R m k R m kk X Y D

2
= @ -

ˆ ( , ) ˆ ( , )R m k R m kY D-

ˆ ( , ),R m kX

ˆ ( , ) ( )max( ( ) ˆ ( , ), ) ˆ ( , )R m k Y m R m k X m kX k D= - - + -1 0 1
2 2

b b
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where b < 1 is a parameter to be chosen. This estimate reduces to the simple
spectral estimate when b = 0.

Speech Model–Based Signal Estimators

The algorithms described above treat each spectral component as being
independent from the other. However, if the speech has been generated by
an autoregressive process the autocorrelation function and hence the power
spectrum have a limited number of free parameters. The spectral estimates
above are not constrained to fit this parametric model.

Intraframe Smoothing

The idea here is to fit a parametric model to the power spectrum of the
speech. The most common model is the LP model. The LP model has fewer
free parameters than the full-power spectrum, and the net effect is a smooth-
ing of the spectral components. This approach utilizes the relationship
between spectral components in the same frame, so it is referred to as
intraframe smoothing. There are, of course, many other types of intraframe
smoothing that can be used.

Iterative Weiner Filter

The iterative Weiner filter13 is an example of an enhancement algorithm that
uses a parametric model for the power spectrum of the speech. The idea is
to fit a parametric model to the output of a spectral filter (in “Intraframe
Smoothing,” the model was applied to the estimate of the speech power
spectrum, which is used to design the filter). This parametrically constrained
spectrum is then used as an improved estimate of the signal power spectrum.
Based on this improved estimate, a new filter is defined, producing a new
output. The process is then iterated until some stop criterion is met. In
general, the iterative process does not converge, so various approaches have
been used to determine the stop criterion or to constrain the parameters
themselves. One method is to insist that the parameters remain close (in
some sense) to the parameters on neighboring blocks. Tracking line spectral
pairs is one method that has been used. Line spectral pairs are a function of
the linear prediction coefficients of the frame. It has been shown that line
spectral pairs change slowly between adjacent frames. Constraining the
change between frames may be used to determine when the iteration should
be halted.

Vector Quantization

The parametric modeling described above provides one method for con-
straining the estimate of the speech autospectrum. An alternative approach
is to look at all of the possible speech spectra that can occur. Clearly, this is

0949_frame_C06  Page 167  Tuesday, March 5, 2002  1:21 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



a continuum of possibilities, but the technique of vector quantization may
be used to define a finite set of representative vectors. The vectors can be
the spectral amplitudes themselves, but usually the dimension is reduced
by considering some function of the spectral amplitude (often called a feature
vector). The representation feature vectors (called code words) may be chosen
by a clustering algorithm, such as the K-means algorithm. The feature vector
is often associated with the LP parameters a and s2, or some other smoothed
version of the spectrum. In the simplest algorithm, the feature vector of the
input is calculated and the closest code word is selected and used as the
estimate of the clean speech. This approach can be combined with the
algorithms described above. Quatieri and McAulay14 give an example of
vector quantization.

Hidden Markov Model and State-Dependent Dynamical System Model

An enhancement of vector quantization is the state-dependent dynamical
model. Here a vector quantization based on the LP parameters a is used, but
in addition, a simple statistical model (a Markov model) of how the param-
eters are likely to change between frames is also used. The net result is a
HMM or state-dependent dynamical system model. In the model, the states
are related to the (quantized) parameters a (or the parameters of the partic-
ular feature vectors being used). However, the states themselves cannot be
observed (they are hidden), instead we can only measure the input signal,
which is the result of passing a random signal through the model and then
adding noise.

In either form, if we know the states am and am–1, and the statistics of the
excitation signal vector sN, we can estimate the statistics of signal vector xN.
However, we can only observe the noisy input signal. The probability density
functions of the states are related by

(6.26)

where p(am) is the probability density for state am. T(m, m – 1) = p(am|am–1)
is an element of the state transition matrix, which is the probability density
for state am, given that the system was in state am–1 in the previous frame.

The problems are:

1. How do we determine the set of states, {ai}?
2. How do we determine the probabilities in the matrix, T?
3. How do we determine the probabilities of the model being in a

particular state, given the observation of the noisy signal?
4. Given these probabilities, how do we design a filter?

Fortunately, the solutions to problems 1 and 2 are well documented, since
this model has been used extensively in automatic speech recognition.

p p p T m m pm m m m m( ) ( | ) ( ) ( , ) ( )a a a a a= = -- - -1 1 11

0949_frame_C06  Page 168  Tuesday, March 5, 2002  1:21 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



Problems 3 and 4 have been discussed by a number of investigators (see,
e.g., Chapter 12 in Reference 15).

Several approaches have been used as solutions for problem 4. The first
is simply to use the most likely state (i.e., the one with the highest probability)
as the feature vector of the speech. This is the standard HMM approach used
in speech recognition, where a single phoneme must be selected. A spectral
filter or Kalman filter is then designed using this feature vector. An example
is shown in Figure 6.3.

In speech enhancement, however, there is no need to make a hard decision.
Accordingly, a second approach is to calculate filters for all of the states and
apply all of them. The filter outputs are then combined according to the state
probabilities, so that the most likely state has the highest weighting.16

It is important to note that a training phase is required in order to identify
the set of state vectors to be used.

Spectral Filter Design

The estimation procedures described above result in estimates for the auto-
spectra of the signal and the noise. Once these have been obtained, a corre-
sponding filter (or gain) must be designed.

In this section, we look at some spectral filter designs. The speech and
noise spectra can also be used to estimate statistical models of the speech
and the noise. These models can also be used in time domain filters, such
as the Kalman filter.

All of the signal estimators described above estimate the spectral ampli-
tudes of the signal and the noise. No attempt is made to estimate the phase
of the noise (since it is usually unpredictable). The phase of the speech is
simply estimated as the phase of the noisy input spectrum, since it has been

FIGURE 6.3
Spectral filter with hidden Markov model.

|  | 2 HMM

FILTER
DESIGN

ESTIMATE
NOISE

noisy spectrum, Y

filter
coefficients

X

power
state

probabilities

noise
power

observation

EXTRACT
FEATURE
VECTOR

0949_frame_C06  Page 169  Tuesday, March 5, 2002  1:21 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



   

shown that the human ear is relatively insensitive to phase (except for
binaural hearing). This is not surprising, since the listener must be able to
understand speech in reverberant environments, where multiple reflections
have a big influence on the phase. However, large, 

 

time-varying

 

 phase errors
will produce significant distortion.

 

Spectral Subtraction

 

In the simple spectral subtraction approach, the final estimate of the speech
spectrum is

(6.27)

This can be written in the standard form  where 

 

F

 

(

 

m

 

) is a
diagonal matrix with diagonal elements

(6.28)

Notice that the filter has zero phase. Only the amplitude of the noise input
is changed at each frequency. Although the ear is less sensitive to phase
errors than to amplitude errors, this is a fundamental limitation on the
performance of this type of filter. When the clean version of the speech signal
is available, it is easy to generate a synthetic signal having the phase of the
noisy signal and the amplitude of the clean signal. This should be one of the
first tests performed when considering this type of filter for a particular
application, since it represents a fundamental limitation on performance. In
addition, a filter can be designed based upon the exact  rather than
the estimate  This is a good test of the filter design process.

Using the same approach as above, an alternative form for 

 

F

 

(

 

m

 

), motivated
by the Wiener filter, is

(6.29)

A generic spectral subtraction/spectral filtering scheme is shown in
Figure 6.4.

Examples of other gain functions are given in the example code that
accompanies this chapter (available at http://www.crcpress.com/e_ prod-
ucts/download.asp?cat_no=0949). These include gain functions derived by
McAulay and Malpass

 

17

 

 and by Ephraim and Malah.

 

11

 

 Ephraim and Malah

 

11

 

observe that the probability density function for the spectral amplitude is
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not symmetric (it is bounded by zero on one side). Consequently, the Weiner
filter is not an optimal estimator for the spectral amplitude. They derive an
estimator for the spectral amplitude that yields the minimum mean square
error (MMSE), assuming the complex spectral components are Gaussian.

In practical applications, the gain function may be computed via a lookup
table.

There are many heuristic schemes for choosing the gain. These include
both time (interframe) and frequency (intraframe) smoothing.

 

Threshold Filtering

 

In some stategies (e.g., see Reference 7 and wavelet denoising), only the
largest spectral components are retained. The equivalent filter is

(6.30)

where the threshold 

 

T

 

k

 

, is a constant or is dependent upon the expected noise.

 

Subspace Decomposition

 

Ephraim and Van Trees

 

18

 

 and Asano et al.

 

19

 

 used a Karhunen-Loeve trans-
form instead of the Fourier transform. This transform is better suited to
voiced speech than the Fourier transform, but it is seldom used for real-
time speech processing because the transform requires a large amount of
computation.

 

FIGURE 6.4

 

Spectral amplitude filtering.
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Predictive Filtering

When the noise is white, the noisy input vector can be decomposed as

(6.31)

where

(6.32)

is the predictable part of the signal and e(m) is the error or the unpredictable
part. This is known as Wold’s decomposition and shows that the predictable
part of y(m) is a projection of y(m) onto a subspace.

In the approach used by Eatwell,20 for example, the speech estimate can
be written in the general form

(6.33)

The prewhitening filter is updated during pauses in the speech. One exam-
ple for the choice of gains is

(6.34)

where s2 is an estimate of the noise power. The algorithm is implemented
as shown in Figure 6.5.

FIGURE 6.5
Feedforward prediction-correction filter.
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Predictable Noise

In the discussion above, we assumed that the speech was correlated while
the noise was uncorrelated. A different situation occurs when the correlation
time of the noise is much longer than that of the speech. This is the case for
repetitive noise (such as hums or buzzes). In this case, the only part of the
signal that can be predicted a long time ahead is the noise. The predictable
part of the signal is then an estimate of the noise. The speech estimate is
obtained by subtracting the noise estimate from the total input. This can be
implemented as an adaptive interference canceller21 as shown in Figure 6.6.

Recursive Algorithms

In the approach described above, the speech estimate is obtained by filtering
the current noisy vector. An alternative approach is to use the previous
estimate of the speech vector and the latest noisy sample. In this approach,
the frame is advanced by a single sample at each iteration. The estimate is
of the form

(6.35)

In state-space form, the AR model for the noisy input is

(6.36)

where

FIGURE 6.6
Adaptive interference canceller for predictable noise.
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174 Noise Reduction in Speech Applications

(6.37)

s(m) is the excitation signal and d(m) is the noise signal. (Note: The frame
length is N = L in this representation.) The prediction of x(m) is

(6.38)

and the prediction error is

(6.39)

The estimate takes the form

(6.40)

where k(m) is a gain vector to be determined. Comparing with the general
form, we find that

(6.41)

Kalman Filter

The Kalman filter22,23 provides a way for recursively calculating the optimal
gain vector k(m) when the prediction filter coefficients a(m) for the clean
speech and the statistics of s(m) are known. For example, any of the spectral
estimators described above could be used to estimate a(m). Alternatively, the
coefficients can be found by iteration starting with the noisy input. The
estimated speech is then used to recalculate the coefficients and the process
is repeated.

Prediction Filter

In the prediction filter described above, the predicted signal was obtained
by filtering the noisy input signal. An alternative20 is to filter the output
signal, so that

(6.42)
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This approach, presented in Figure 6.7, shows the predicted speech is based
on the previous outputs, and so the filter is recursive.

Artificial Neural Networks

An artificial neural network (ANN) provides a “model-free” approach for
estimating a nonlinear function. The network is trained using noisy speech
sequences for which the clean speech is available. The training vectors are
the noisy input vectors y(m) and the associated error vectors

(6.43)

The input vectors may be raw time samples24 as shown in Figure 6.8.
Figure 6.8(a) shows a feedforward network in which the current and pre-

vious noisy input vectors are provided to the neural network, while Figure
6.8(b) shows a recurrent network where the current noisy input vector and
past output vectors are fed to the neural network.

In addition, the vectors may be preprocessed before being input to the
neural network. For example, the spectral amplitude vectors may be passed
to the network rather than the vectors themselves, so that the network
estimates the spectral amplitude of the speech.

Since the network is nonlinear, the input vectors are usually normalized
in some way.

FIGURE 6.7
Recursive prediction-correction filter.
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When spectral amplitudes are estimated, the speech spectrum itself can
be estimated using the phase of the noisy input spectrum. In another exam-
ple,25 the LP coefficients are used as inputs to the neural network. The
approach can be expected to work best when the characteristics of the speech
and noise are similar to those in the training vectors. Haykin26 provides a
comprehensive foundation on ANNs.

Summary

Single-channel noise reduction relies upon differences between the proper-
ties of speech and noise. Since the characteristics of speech are well docu-
mented, the first step when confronted with a particular noise problem is to
identify the characteristics of the noise. The types of noise that can be
removed include:

• Noise outside of the speech frequency band, which can be removed
by a bandpass filter

• Tonal or predictable noise, which can be removed by a notch filter
or by subtracting an estimate of the predictable part of the noisy
signal

FIGURE 6.8
Artificial neural networks: (a) feedforward network, (b) recurrent network.
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• Stationary noise, which can be reduced by:
1. Spectral filtering based on estimates of the power spectrum
2. Time-domain filtering based on estimates of the autocorrelation

of the noise and the speech or
3. An ANN

• Impulse noise, which can be removed by an ANN or other pattern-
recognition techniques.

Techniques for these types of noise are described in the literature, and
software (for both real-time and postprocessing implementations) is avail-
able for many of the algorithms.
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Introduction and Scope

 

This chapter is about noise reduction using two or more microphones. In
actual applications, this will often be combined with additional functions
such as stereophony or talker localization. Very large microphone systems
have been designed for use in public spaces and auditoriums.

 

1,2

 

 The empha-
sis in this chapter is, however, on relatively small enclosures and spaces,
ranging from vehicle interiors up to a typical small conference room.

 

* The opinions expressed here are solely those of the author and are not necessarily those of NCT
(Europe) Ltd. or its parent company NCT Group, Inc.
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Microphones, by nature, have some directionality, and, in some cases, this
can be maximized or minimized by the design of the hardware and its
electronics. This directionality can be used to enhance the signal-to-noise
ratio (SNR) of speech picked up by the microphone, but this enhancement
may still not be sufficient for effective communication. Chapter 6 describes
how the signal obtained from a single microphone may be enhanced by
signal processing. If several microphones are available, it is possible to
improve the quality of the signal yet further by using 

 

digital signal processing

 

(DSP) to combine the inputs from each microphone. There is a cost penalty
in doing this on account of the additional hardware required. However, the
expected benefit is that greater noise reduction may be achieved without
any distortion of the speech, so giving better intelligibility.

This chapter provides a brief introduction to what is a very large area of
research and indicates what might reasonably be achieved in practice.

 

Beamforming

 

Basic Notions

 

The notion of beamforming was first developed in the field of radar and
electronic warfare. First of all, it is necessary to define some technical terms.
Figure 7.1 shows a typical “polar diagram” for an antenna. This is rather
idealized: real polar diagrams can be much less regular, and there may be
many more distinct sidelobes than are shown. The angle coordinate repre-
sents the direction of a reference source in the far field, and the radius
coordinate is a measure of the power received from that source. The plot
generally takes the form of a “main beam” and “sidelobes” that are separated
by “nulls.” Although the nulls may, in theory, be directions where no power
is received, their actual “depth” in practice may vary considerably.

The behavior of a microphone in a sound field is in many ways analogous
to that of an electromagnetic antenna, and its performance can be described
by polar diagrams in the same way. Given an array of antennas, it is possible
to combine their outputs so as to make a sharper beam than is achievable
with a single antenna, and so increase the power of the received signal. This
sharpening of the beam is achieved by modifying the amplitude and phase
of the individual antenna feeds. Furthermore, if there is an interfering noise
source or jammer, its effect can be minimized by steering a null so that it
coincides with the direction of the jammer radiation. Newcomers to the
subject may be confused by some of the terminology; for example, we often
speak of a “radiation pattern” or a “main beam” for something that is
actually “receiving” rather than “radiating.” This use of words is permitted
by the 

 

principle of reciprocity

 

, which is defined in an acoustic context in
Reference 3. The importance of this principle is that if we have experimental
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results or measurements about sound radiation (e.g., loudspeaker arrays),
then we may (with caution) be able to make inferences about the correspond-
ing microphone arrays.

Consider the case of a “broadside array” of 

 

M

 

 microphones, as shown in
Figure 7.2. Suppose microphone 

 

i 

 

(

 

i = 

 

0, …, 

 

M

 

 – 1)

 

 

 

produces an electrical
signal 

 

y

 

i

 

. It is possible to produce a narrower main beam by applying scalar
multipliers 

 

q

 

i

 

 to the microphone outputs before mixing them to obtain a
combined signal 

 

e

 

, thus,

(7.1)

The classic paper by Dolph

 

4

 

 calculates values for the coefficients 

 

q

 

i

 

, which
are now known as the 

 

Dolph-Chebychev coefficients.

 

 The motivations for this
work were the needs of radar and radio communications, where the signals
of interest were confined to a relatively small frequency range. However, it
was already apparent that the art of compromise is crucial to the successful
design of array sensors: there is a trade-off between the sharpness of the
main beam and the level of the sidelobe peaks. For example, if our aim is to
reduce the level of interfering noise in the transmitted signal 

 

e

 

, it is pointless
to make the beam sharper if we find that noise enters through the sidelobes.

 

FIGURE 7.1

 

Features of antenna radiation pattern.

0°

180°

270° 90°

Main beam

First sidelobe

Backlobes

First null

Second sidelobe

Second null

e q yi i
i

M

=
=

-

Â
0

1

 

0949_frame_C07  Page 181  Tuesday, March 5, 2002  1:24 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



   

Equation (7.1) can be implemented effectively using analog electronics.
More complicated beamforming algorithms are possible, and these are usu-
ally implemented on DSP; this is the approach that is taken in the rest of
this chapter. Equation (7.1) is a special case of the more general system where
the 

 

q

 

i

 

 are vectors of length 

 

N 

 

and we calculate the 

 

convolution 

 

of each 

 

q

 

i

 

 with
the corresponding 

 

y

 

i

 

:

(7.2)

where the subscript 

 

n

 

 denotes the sample point and 

 

q

 

i,k

 

 is the 

 

k

 

th

 

 element of
the vector, 

 

q

 

i

 

. The number of microphones is 

 

M 

 

throughout this chapter. We
use uppercase letters to denote 

 

z

 

-transformed variables, so that Equation
(7.2) becomes

(7.3)

or more conveniently

(7.4)

 

FIGURE 7.2

 

Beamforming basics.
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Here, we are using the fact that a convolution in the time domain corresponds
to a simple 

 

multiplication

 

 in the 

 

z-

 

domain, as explained in Chapter 1. This is
a great simplification, which helps us to undertake the theoretical analysis
of various schemes and check on aspects of their feasibility.

The beam shape and hence the noise rejection properties of a microphone
array will depend on frequency:

 

5

 

 it follows, therefore, that if we want to
achieve a consistent level of performance across a given frequency range
some ingenuity may be needed. As an example, Mahieux et al.

 

6

 

 describe
how they use subarrays of a larger array in order to control array beamwidth
over the speech band.

 

Delay-and-Sum Adaptive Beamforming

 

It has already been pointed out that Dolph’s original work

 

4

 

 postulated a
narrow frequency band. It also assumed an anechoic operating environment
of infinite extent, so that there were no interfering multipath reflections or
reverberation. This “anechoic” assumption is approximately valid for certain
situations, such as some instances of open-air use. We shall continue with it
for the time being, as it is helpful in motivating the main approaches to the
design of algorithms for microphone array processing.

First, suppose that the talker is not addressing the array from broadside
on but from an angle; for example, the context could be teleconferencing
(where perhaps only one participant can be broadside on), or it could be the
casual use of a speech-recognition system where the user may not wish to
sit in the same position all the time. Then, for best signal-to-noise ratio, it
might be desirable to steer the beam so that it points directly to the talker.
A simple way of doing this is delay-and-sum beamforming: the continuous-
time output of the system at time 

 

t

 

 is calculated to be

(7.5)

where 

 

d

 

i

 

 is the time-delay relative to microphone 0 (so that 

 

d

 

0

 

 = 0), as
illustrated in Figure 7.3, and 

 

M

 

 is the number of microphones. The angular
response of the array to a signal at a given frequency depends on the distance
between the microphones. A rough rule of thumb for the average noise
reduction performance of the delay-sum beamformer described by Equation
(7.5) is 10log

 

10

 

M 

 

dB, in the case of uncorrelated noise:

 

7

 

 this estimate is
independent of angle. The performance at specific frequencies or for partic-
ular localized noise sources may be better or worse than this.

In a practical implementation, it is necessary to estimate the time delays

 

d

 

i

 

. These generally have to be calculated to the nearest whole number of
samples. To understand this, recall that all the microphone signals have been
sampled and digitized, as explained in Chapter 1 (if greater precision is

e t y tM i i
i

M

( ) ( )= -
=

-

Â1

0

1

d
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required, it has to be obtained by interpolation, which adds to the DSP
processing load). One method for estimating the time delays 

 

d

 

i 

 

makes use
of the 

 

generalized cross correlation 

 

(GCC) of the microphone signals. To do
this, one of the microphone channels is arbitrarily selected to be the reference
(say channel 0). Then the cross correlation between channels 0 and 

 

i 

 

at time

 

t

 

 and time difference 

 

t

 

 is given by

(7.6)

where E denotes statistical expectation, and 

 

t

 

max

 

 is a practical bound on the
variation of 

 

t

 

. In practice, the expectation E( ) has to be approximated by a
time-domain filter. It may be found helpful to prefilter the microphone
channels in order to remove out-of-band noise. Since at any one time we
want to track the main talker, this cross-correlation estimate should be per-
formed only during speech bursts. In situations where the interfering noise
is not excessive, this could be decided by using a signal-to-noise estimate
based on minimum statistics (i.e., tracking the recent minima in the input
stream: one such scheme is described in Reference 8).

The above theory has been derived for conditions that are anechoic and

 

far field

 

, i.e., the talker is sufficiently far from the microphones for the wave-
fronts arriving at the array to be approximately planar. In practice, the sound
received at the microphones will be affected by noise and multipath reflec-
tions, and various efforts have been made to design a more robust beam-
former: one approach is to exploit the periodicity of the speech signal as
explained elsewhere.

 

9

 

 If there is a small number of microphones, the noise

 

FIGURE 7.3

 

Principle of delay-sum beamforming.
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reduction provided by the delay-sum beamformer by itself is not expected
to be dramatic. For example, if there are four microphones, the above formula
predicts only 6-dB reduction of uncorrelated noise. It is most likely, therefore,
that delay-sum beamforming will be used as a “front-end” for other noise
reduction techniques, and some of these techniques are discussed in the
following sections.

 

Superdirective Beamforming

 

The delay-sum beamformer is a special case of Equation (7.2) where each 

 

q

 

i

 

consists of a series of zeros followed by a “1.” 

 

Superdirective beamforming

 

 aims
to produce a sharper beam from a wider choice of coefficients. In applying
more general vectors 

 

q

 

i

 

 to the microphone outputs, we are in effect applying
finite impulse response (FIR) filters to them (Chapter 1). It has been found
that greatly improved directivity and hence noise reduction can be achieved
by this means. For example, whereas a delay-sum beamformer will enhance
the gain of a dual-mic array by 3 dB, superdirective beamforming will
enhance it by up to 6 dB, for an endfire array

 

10

 

 (

 

endfire

 

 means that the
microphones are positioned one in front of the other — see Figure 7.2).

There is, however, a price for this improved performance: the FIR filters
may affect the spectral content of the speech. There is also a practical diffi-
culty: the choice of filter coefficients for optimum performance depends on
the response (i.e., gain and directivity) of the individual microphone ele-
ments. This microphone response can vary considerably (6 dB is not
unknown), even within the same production batch, and so filter coefficients
optimized for one particular set of microphones may not be appropriate for
another. There is moreover a loss of performance when wide steering ranges
are required (as, for example, in a conference phone, which talkers may
address from any angle): the maximum SNR gain occurs for endfire arrays
and steering away from the endfire direction entails substantial SNR loss.

 

10

 

This sensitivity of the optimal filter design suggests that an adaptive
approach should be appropriate, and there are now a number of proprietary
schemes for adjusting the filter coefficients, some of them built into commer-
cially available products. Most of these products seek to enhance the SNR
for a talker who is addressing the array from within a specified sector. There
is also a considerable body of published work on adaptive array processing,
and this is introduced below.

In fact, by using adaptive array processing, it is possible to do rather more
than simply improve the directional gain of a microphone array. For example,
it becomes possible to “null out” noise sources, as discussed in more detail
below. This is not to imply that it is generally possible to reduce the inter-
fering noise to silence: the depth of a null (noise reduction in dB) depends
on a number of factors, such as the reverberance of the noise and the angular
separation of the noise source and the talker,

 

11

 

 but nevertheless useful reduc-
tions are possible in many instances.
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Griffiths-Jim Beamformer

 

One scheme for adaptively adjusting the coefficients of Equation (7.4) is the
Griffiths-Jim beamformer (GJB), as described, for example, in Reference 7.
A simplified system diagram is shown in Figure 7.4. The input data is
combined in two ways to give:

• Delay-sum combined signal, 

 

e

 

• One or more (up to 

 

M

 

 – 1) reference signals 

 

x

 

i

 

Noise reduction is then effected by means of an LMS-type algorithm,
similar to that described in Chapter 8 for use in echo cancellation. The
“reference signals” are linear combinations of the microphone inputs: the
intention is that each reference signal should correspond to a different noise
source and should also be relatively free of speech. This is the purpose of
the “blocking matrix” 

 

B

 

 shown in Figure 7.4: clearly, we need some prior
knowledge of the operating conditions in order to design 

 

B

 

 suitably. To take
a very simple example, if the array consists of just two well-matched micro-
phones, we could choose a blocking matrix, which simply calculates the
reference signal to be the difference between the two microphone inputs.
The “constraint filter,” which is shown in Figure 7.4, is included for com-
pleteness; for example, it could be a simple delay (necessary to accommodate
the adaptive parts of the system), or it could be used to filter out-of-band
noise. If the noise source is situated roughly end-on to the two microphones,

 

FIGURE 7.4

 

Griffiths-Jim beamformer.
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the present author has been able to achieve at least 10 dB of noise rejection
without much difficulty with this scheme. This could be a practical method
of combating noise from a source that is inaccessible to more direct ways of
getting a reference signal (see Chapter 1 for the relevant theory). As with
the echo cancellation algorithm described in Chapter 8, adaption will be
adversely affected by speech. In order to complete the system, some form
of speech detection is necessary so that adaption takes place only when no
speech is present.

 

Griffiths-Jim Beamformer with Adaptive First Section

 

The difficulty with the GJB as described above is that, in a typical operating
environment, various factors such as microphone mismatch and multipath
reflections will ensure that there is leakage of speech into the reference signal.
It is essential for successful operation of the GJB that the reference signal
should be free of speech (in practice, a small amount may be tolerated, but
more than this will introduce unwelcome distortion into the final output).
One approach to achieving “clean” reference signals is to make the first
section of the GJB adaptive: We use adaptive filters to cancel noise, so why
not use an adaptive filter to cancel speech? This type of GJB is more fully
explained in Reference 7, and Figure 7.5 shows a simplified schematic of
such a system for two microphones (the system described in Reference 7 can
have any number of microphones). Van Comperolle and Van Gerven

 

7

 

 report,
however, that they did not obtain significantly better results from this than
with the simpler GJB discussed in the previous section. One possible reason
for this is that adaption of the first section is affected by uncanceled noise
mixed with the speech signal. This means that adaption can take place only
when a high speech signal-to-noise ratio is detected; hence, convergence and
tracking are very slow, and because of the noise only partial elimination of
speech is achieved from the reference signal.

 

FIGURE 7.5

 

GJB with adaptive first stage.
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Systems similar to GJB and GJB with adaptive first section, in that they
contain an adaptive noise subtraction path, are frequently referred to in the
literature as 

 

generalized sidelobe cancellers

 

. The name comes from the general
polar diagram shown in Figure 7.1: if the main beam of the array is pointing
toward the main talker, and the main noise sources are “in the sidelobes,”
then the system can be said to reduce or cancel the sidelobe levels in the
directions from which the noise is coming, hence, the name generalized
sidelobe canceller.

 

Theoretical Background

 

This is a good point in the chapter at which to step back and look at the
multimicrophone problem from a distance in order to gain a better under-
standing of potential noise cancellation performance and also of possible
limitations. Suppose that we have several microphones (indexed by 

 

i

 

), which
provide data streams 

 

y

 

i

 

. Assume also that there are several talkers producing
speech streams 

 

s

 

j

 

 and noise sources producing noise streams 

 

n

 

k

 

. Then the
signal at microphone 

 

i

 

 can be represented by:

(7.7)

where 

 

G

 

ij

 

 is the acoustic transfer function (however represented) from talker

 

j

 

 to microphone 

 

i

 

, and 

 

H

 

ik is the acoustic transfer function from noise source
k to microphone i. The transfer functions Gij and Hik, as a matter of practi-
cality, are assumed to be constant, or at least to vary very slowly relative to
the speech data. Here, in order to keep the notation as simple as possible,
I am using single symbols (y, s, n, etc.) to represent vectors or sequences,
“multiplication” to represent linear operations (e.g., convolution), and sub-
scripts as identifiers for microphones, talkers, and noise sources. As in the
previous sections, we want to find a linear combination of the microphone
data yi so that the noise data nk is as far as possible canceled and the speech
data sj enhanced. So, as before we seek vectors Qi which optimize the linear
combination

(7.8)

against certain criteria, which are discussed below. Substituting Equation
(7.7) into Equation (7.8) gives

(7.9)

y G s H ni ij j
j

ik k
k

= +Â Â

e Q yi i
i

= Â

e Q G s Q H ni ij j
i j

i ik k
i k

= +Â Â
, ,
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It follows that for optimum quality (speech undistorted by room effects,
noise “nulled”) we must have:

(7.10)

If the first part of Equation (7.10) holds for any talker j, it means that the
particular speech stream is transmitted with no reverberation effects. If the
second part of Equation (7.10) holds for any particular noise source, k, then
that source is effectively canceled. In practical applications, the transfer
functions Gij and Hik are inaccessible: it is often difficult to measure them in
laboratory conditions, let alone estimate them in real time.

Consider now the special case of two microphones with a single talker
and a single noise source. Assume that one microphone gives an adequate
response in the absence of noise, so that the corresponding transfer function
may be assumed to be the identity. Then the microphone outputs can be
described by

(7.11)

If we can get from this a data stream that consists of noise without speech,
then we might be able to use it as the reference signal in an LMS-type
adaption scheme. Therefore we define

(7.12)

and attempt to find HS such that

(7.13)

and the output of the system is

(7.14)

This fits into our general scheme if we define

(7.15)

Q G j

Q H k

i
i

ij

i
i

ik

Â
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If the two microphones are equidistant from the talker, then we can assume
G = 1, and we have a special case of the GJB as described above. Although
this algorithm is very similar to that described in Chapter 8, it requires a
different interpretation. In particular, HS does not represent a single physical
quantity, such as an impulse response, and the optimum length for it may
be much longer than the reverberation time of the room, enclosure, or space
that contains the microphones and the talker. If the transfer functions Hi and
G are represented in the z-domain, then manipulation of the above equations
shows that HS is a polynomial approximation to the rational function H1/(H1

- GH2). Consequently, it may be shorter or, more likely, longer than the length
suggested by measurements of the room acoustics.

The above analysis makes a number of implicit assumptions. For example,
if it were for a hands-free conference phone, then it would presuppose (apart
from the ambient noise) a fairly calm and controlled working environment.
For example, if there are two talkers, they should not talk at once (a different
analysis will be needed if they do this habitually), but the conversation
should flow naturally from one talker to the other with only a small overlap
of speech. On the other hand, the analysis would allow intermittent or
impulsive sounds, or other acoustic events (e.g., door slam, window open,
workbench, serving hatch), as long as the locations of the noise source and
of the talkers did not change.

The algorithm just described can be viewed as a special case of the gen-
eralized sidelobe canceller as described in “Griffiths-Jim Beamformer.” As
we noted in that section, the generalized sidelobe canceller can be very
effective against discrete sources. In the case of a diffuse sound field, such as
may be obtained in a very reverberant room, however, the theoretical noise
reduction of this type of algorithm has been shown to be less than 1 dB.11

To achieve good noise reduction performance in such an environment, a
different algorithmic approach is required.

Microphone Placement

The theoretical analysis in the previous section holds for arbitrary arrays of
microphones. The analysis does not, however, guarantee the existence of a
useful solution to the basic signal processing problem: how to choose the
coefficients for Equation (7.8), which give a substantial noise reduction while
simultaneously preserving or enhancing speech quality. In this section, we
explore how the choice of microphones, and how to arrange them, will
improve our chances of success in solving this basic problem. We look at
system designs that more closely integrate the microphone array design and
the algorithm design in order to enhance the quality of the output, even with
the most basic signal processing algorithm.
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In general, a beamforming solution is frequency dependent, so that the
output speech may have noticeable spectral coloring, or, even worse, suffer
partial cancellation. Hoffman and Buckley12 describe an adaptive scheme for
optimizing the factors Qi of Equation (7.8) in such a way that broadband
noise reduction is achieved while avoiding the risk of canceling part of the
desired signal. The particular example that they describe in detail is a seven-
element head-worn array for hearing enhancement.

An alternative to adaptive beamforming is to start with a theoretical beam
pattern, which defines the desired response, attainable only in ideal circum-
stances,13 and then use a calibration procedure to calculate the filter coeffi-
cients, Qi , which give a response close to the desired. A practical approach
to calculating the coefficients for the ideal beamformer (before applying any
procedure to compensate for the limitations of actual microphones) is given
elsewhere.14 These two papers are concerned with far-field effects, such as
may be experienced outdoors or in a very large room.

The frequency–sensitivity of array geometry has already been mentioned:
this is a function of the microphone separation. This suggests that an array
with several different separation distances may be less sensitive to frequency.
One such is the logarithmic array, where the spacing increases exponentially,
as illustrated in Figure 7.6. Everything that has been discussed in previous
sections applies to logarithmic arrays as much as any other kind. Besides
flatter frequency response, another motivation for employing logarithmic
arrays is that spatial aliasing is less likely to occur than with equally spaced
microphones. Spatial aliasing is said to occur when an array, with its asso-
ciated processing, has more than one main beam at a certain frequency. To
put this another way, the polar diagram (as in Figure 7.1) has one or more
sidelobes of size and width comparable to the main beam. The array is
therefore very receptive to noise from these directions, and clearly this is a
situation we would wish to avoid. The reasons why logarithmic arrays are
less susceptible to spatial aliasing are treated in the literature on radar
antenna theory and are beyond the scope of this chapter.

FIGURE 7.6
Logarithmic microphone array.

Beamforming
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Combination with Other Noise Reduction Techniques

In many applications, the capabilities of multimicrophone processing can be
extended by combining it with other noise reduction filters, such as single-
channel speech filters as described in Chapter 6 or echo cancellers (see
Chapter 8). The simplest approach is to apply these different processes in
cascade. However, a number of investigators have explored the benefits that
might come with closer integration. Consider for example the coherence
between microphone channels. In probability theory, the coherence of two
variables is a measure of the linearity of any relationship between them. For
example, Meyer and Simmer15 show that in the case of interior car noise the
coherence between microphone channels generally decreases both as fre-
quency increases and also as the distance between the microphones
increases. Hence, it may be desirable to balance the system so that the lower
frequencies, where coherence is higher and consequently adaptive filtering
is more likely to be effective, are dealt with by beamforming or sidelobe
canceling. Meanwhile, the upper frequencies, where coherence is lower and
hence adaptive filtering is less effective, can be dealt with more appropriately
by simple beamforming (e.g., delay-sum) and applying one of the single-
channel methods described in Chapter 6.

For some applications, it will be desirable to combine microphone array
processing with an acoustic echo canceller: one example would be a confer-
ence phone. Two distinct approaches to “cascading” come to mind. Concep-
tually, the simpler approach is to apply a separate echo canceller to each
microphone input channel in turn. This approach can result in a heavy
processing load, especially if the microphone array is a large one. An alter-
native approach is for the echo canceller to follow the microphone array
processing. In order to get the optimum performance from this second
approach, two issues need to be addressed:

1. The microphone array processing (e.g., adaptive beamforming)
will extend the echo response that must be modeled within the
echo canceller (see Chapter 8), and so it may be necessary to pro-
vide additional data memory.

2. Echo cancellers require this echo response to be linear (see Chapter
8), and so the microphone array processing must also be linear.
The multimicrophone techniques discussed in this chapter gener-
ally meet the linearity condition, especially when they are “well-
converged.”

In addition, there may be some synergy that can be exploited between the
microphone array processing and the echo cancellation in order to improve
echo canceller performance further. For example, if the microphone array
processing can steer a null in the direction of the loudspeaker, the acoustic
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echo will be reduced, greatly increasing the echo cancellation performance
of the system during “double-talk” (see Chapter 8).

Inverse Filtering and Dereverberation

We have thus far discussed the second part of Equation (7.10), ignoring the
first part. Consider now the first part of Equation (7.10), in the context of
room reverberation, which can be considered to be a form of noise interfer-
ence. If we can find a set of Qi that solve this equation, then we shall have
removed the effect of room reverberation completely. The effect of reverber-
ation is familiar to anyone who has listened to a call made from an office
speakerphone. The person who is speaking is often some distance from the
microphone so that the ratio of direct to indirect transmission of sound to
the microphone is reduced compared with a microphone held close to the
mouth: the result is that the speech can become indistinct and hard to follow.
With a single microphone, the resulting signal is

(7.16)

In order to remove the effect of reverberation, we need to find a transfer
function H such that

(7.17)

This is not generally feasible, however, since the transfer function G is not
always invertible. A detailed investigation of this point is given in Neely
and Allen.16

Miyoshi and Kaneda17 approached this problem of invertibility by using
two microphones. Their approach is to find Qi such that

(7.18)

where G1 and G2 are the transfer functions from the talker to each micro-
phone. If the Qi and Gi are interpreted as z-transforms, i.e., as polynomials
in z–1, then it is a well-known consequence of the Euclidean algorithm for
polynomial division that a solution for Equation (7.18) can be found, pro-
vided that the Gi have no common factor. Moreover, Q1 and Q2 are of lower
order than G2 and G1, respectively (this information about the orders of Q1

and Q2 is of practical value: it gives an indication of how much processor
memory to allocate). Miyoshi and Kaneda17 test their theory in an experiment
using one microphone and two loudspeakers. It is interesting to note that
their experimental approach uses the principle of reciprocity mentioned in

y Gs=

Hy s=

Q G Q G1 1 2 2 1+ =
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“Basic Notions,”3 above. In a theoretical analysis of a system of microphones
and loudspeakers, it may be more immediately practical to study the corre-
sponding system in which microphones are replaced by loudspeakers and
vice versa.

In order to solve Equation (7.18), we need to know the Gi: that is, the
room needs to be calibrated. We also require that the Gi have no common
factors, and that Equation (7.18) is “well conditioned” (i.e., the coefficients
are such that a numerical solution is well defined with the precision of the
DSP hardware available to us): any practical implementation designed for
use in any room or enclosure must have some means to ensure this. The
approach to dereverberation that I have outlined above has been taken
further,18,19 but it would appear that a practical implementation is some
way off.

Signal Separation

Suppose the noise we wish to cancel or reduce is in fact not “noise” at all
but another talker, who is either present in the room or transmitted via radio,
television or public address system. The noise reduction solutions discussed
thus far in this chapter depend crucially on the ability to distinguish between
speech and nonspeech (in a practical system, it is usually necessary to include
a “don’t know” category wherein no adaption of any kind takes place: this
is not usually an impediment to good performance). If, however, the inter-
fering noise is speechlike, it becomes very difficult to control a generalized
sidelobe canceller adequately: it may even enhance the interfering speech at
the expense of the main talker. Blind source separation techniques seek to
distinguish the principal sources of sound and to output each one as if the
others were not there. Unlike echo cancellation, there may be no reference
signal to identify one or other of the interfering sources, hence the term blind
source separation.

The usual approaches to the source separation problem are based on the
assumption that the sound from the various sources is uncorrelated. Micro-
phones are arranged, not necessarily on beamforming principles, but so that
each picks up a different mixture of the various sources.7 The microphone
inputs are processed to provide several outputs with minimal cross correla-
tion. The user of the system can then select one or more of the separated
outputs for listening, recording, transmission, or further processing. In many
practical situations, it can be further assumed that the sources are non-
stationary (in the statistical sense) and at least one investigator sees this as
a promising line of attack.20

Blind source separation is a large research field in its own right: a detailed
introduction can be found in Chapter 15 of this volume.
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Small Arrays

This chapter has implicitly concentrated on small-scale applications of micro-
phone array technology. However, I have avoided being too specific about
how many microphones are being used. There is great interest in small
arrays, typically of two to four microphones, for use in consumer products
such as car phones, voice input to computers or other appliances, hearing
aids, etc. The techniques that have been described so far can give good results
in some of these situations: in other situations, as has been mentioned, there
may be theoretical limits on what can be achieved.

Some actual acoustic measurements are reported in the paper by Hoffman
et al.21 They employ a four-microphone logarithmic array, 24.5 cm long, broad-
side on to the speech source. The outputs are processed by a generalized
sidelobe canceller of their design. Their measurements show that, with a single
interfering source, a SNR enhancement as much as 15 dB can be achieved.
They found, however, that this performance level decreases as the talker
direction and noise source direction get closer together. Their work illustrates
that in order to get the best performance out of a given microphone array (as
long as this is consistent with the manufacturer’s instructions), the user should
try to arrange things so that talker, noise source, and array are as far from
collinear as possible; in other words, the talker and noise should be roughly
90∞ apart relative to the array. Greater noise reduction is expected from arrays
with more microphones (see “Delay-and-Sum Beamforming,” above).

The recordings that accompany this chapter (available at http://www.crc-
press.com/e_products/download.asp?cat_no=0949) were made with com-
mercially available multimicrophone systems and illustrate the kind of
performance that is currently achievable with arrays of from four to eight
microphones.

Future Developments

This chapter has been a very brief introduction to a vast subject, and it has
not been possible to cover any of the points of detail that must be addressed
in order to design a successful system. Many of these points are covered in
the references at the end of this chapter. An extensive treatment of the subject
of microphone arrays is given in Stefaan Van Gerven’s thesis,22 which at the
time of writing is available as a download in PostScript format from
http://www.esat.kuleuven.ac.be/~spch.

We have noted that multimicrophone systems depend for their success on
the ability to distinguish between speech and noise: in simple systems, this
is done spatially, for example, by using a fixed beam direction. This is
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excellent for situations where the talker/microphone geometry stays fairly
constant (e.g., voice input to computer in a private office) but is not as good
for situations where talkers and noise sources may overlap in direction (e.g.,
voice input in shared offices, conference phones, media interview, vehicle
interiors). As already pointed out, many forms of array processing embody
adaptive algorithms that require some form of speech/noise discrimination
along the timeline. It would appear, therefore, that one route to improved
performance is to increase the ability to distinguish speech from different
kinds of noise: the development of more powerful processors and intelligent
software is making this possible.
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Echo in Communications

 

The Problem of Echo

 

Historically, echo controllers were first developed for use in long-distance
telecommunications in order to control 

 

line echo. 

 

Line echo arises when a signal
is reflected from a junction point (such as a two- to four-wire hybrid; see
Reference 1; Figure 8.1), so that talkers hear their own voices reflected back
down the line. There can be a significant time delay from uttering a word to
hearing the same word repeated back, which adds to the disruptive effect of
the echo on the flow of conversation. This has been quantified, and “tolerance
curves” of echo loudness vs. time delay

 

2

 

 have been drawn up. In practical
terms, the echo level must be reduced by at least 40 dB below normal speech
level in order to restore conversational quality. The techniques that are used
to control line echo have been successfully extended to control 

 

acoustic echo.

 

A particular instance of acoustic echo is found in the hands-free telephone,
which is being used increasingly in road vehicles. In this case, the microphone
picks up sound from the loudspeaker and transmits it back to the far-end
talker (Figure 8.2). Modern digital mobile networks have a significant time
delay because of the need for speech compression and coding for transmission
(see, for example, Reference 3), and so the requirement for acoustic

 

 

 

echo
cancellation is at least as great as for network or line echo cancellation. Other
possible applications of acoustic echo cancellation include a voice-controlled
audio system: in this case, the microphone will pick up sound from the audio
loudspeakers which will tend to interfere with the recognition of voice com-
mands. Although there is no “echo” here to be heard, the interfering sound
still needs to be removed from the microphone input, and an echo canceller
of the type described in this chapter is one way to do this.

 

FIGURE 8.1

 

How echo arises in a telephone network.

 Telephone Telephone
Telephone Network

2-wire to 4-wire

hybrid (echo source)
2-wire to 4-wire
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VOX, the Simple Solution

 

The simplest approach to echo suppression is to use a 

 

voice-operated switch,

 

or VOX. This simply permits only the “send” or “receive” path to be open,
not both as for a normal conversation. The switch is controlled by means of
the speech level: the conversation goes to the end with the higher level. A
well-designed VOX can be surprisingly unobtrusive in use, but there is
always the possibility that a sudden loud noise can “snatch the link.” Also,
leading-edge “clipping” (not to be confused with “amplitude clipping”) of
the beginning of words may be heard, which means that initial consonants
may be shortened or lost altogether. This tends to happen most often when
the conversation passes from one talker to the other and may not even be
noticed by the persons actually talking. If other persons are present, however,
who are not speaking at that moment, as in a telephone conference, they
generally will notice and may find the conversation more difficult to follow
as a result of the clipping. True 

 

double talk

 

, the overlap of both parties’ speech
as the conversation passes from one to the other, is not possible. We say that
a system incorporating a VOX is 

 

half duplex. 

 

A system where both parties
can speak at once and hear each other is 

 

full duplex. 

 

More formally, it is
stated

 

4

 

 that: “In [full] duplex operation, attenuation of the conversation
partner either does not occur or is unnoticeable.”

 

Echo Cancellation Definitions and Required Performance

 

An 

 

echo canceller

 

 is a device for canceling echo in speech communications
which permits double talk. This implies that it employs some kind of filtering

 

FIGURE 8.2

 

Definition of main terms relating to acoustic echo cancellation.
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algorithm that blocks the echo while transmitting near-end speech. Any other
sort of echo control device or VOX is generally called an 

 

echo suppressor. 

 

The
most important performance measure of an echo canceller is its 

 

echo return
loss enhancement 

 

(ERLE). This is defined as the attenuation of echo by the
echo canceller, expressed in dB. The terminology comes from the origins of
echo cancellation in networks: the 

 

echo return loss

 

 (ERL) is the natural atten-
uation of echo between two points, so that:

ERLE = ERL

 

with echo canceller

 

 – ERL

 

without echo canceller

 

(8.1)

Performance measures for echo cancellers are generally frequency
weighted: the weighting most often used is defined elsewhere.

 

5

 

 For speech
telephony, it consists of a 1/

 

f

 

 weighting of frequencies in the range 

 

f 

 

= 300
to 3400 Hz. Frequencies outside this “telephone band” are ignored.

The performance that is required of echo cancellation algorithms is not
always specified directly. In the case of a hands-free telephone, what is
specified is the 

 

terminal coupling loss

 

 (TCL), which is the overall attenuation
of the echo resulting from the acoustic coupling of the terminal combined
with the effect of the echo canceller. In other words, TCL represents the echo
attenuation across the hands-free equipment from receive input to send
output (point A to point B in Figure 8.2), so that, in decibels,

TCL

 

with echo canceller

 

 = TCL

 

without echo canceller

 

 + ERLE (8.2)

The most commonly invoked standards for echo control are set out in ITU-
T Recommendations G.167 and G.168.

 

6,7

 

 These must be supplemented by the
special requirements of particular types of networks, such as GSM.

 

3

 

 A typical
requirement is that, using a special test signal or “artificial voice,”

 

8

 

 the TCL
of a system using an acoustic echo canceller must reach 20 dB by 1 s after
start-up and 40 dB by 2 s after start-up.

A DSP implementation of an echo canceller will introduce time delays: the
microphone signal will be delayed as it passes through the processor, and
in some implementations, the loudspeaker signal will also be delayed. Most
network standards impose strict limits on these delays. For example, for a
hands-free kit that is connected to a GSM network,

 

3

 

 the two delays (micro-
phone and loudspeaker) must add up to no more than 39 ms.

These published performance requirements are in effect a minimum. Echo
at the prescribed minimum TCL levels is often still audible. This, together
with the competition between suppliers of echo cancellation equipment and
software, means that there should in practice be no audible echo at all. The
artificial voice mentioned above may be generated using the P.50 Artificial
Voice code, available at http://www.crcpress.com/e_products/down-
load.asp?cat_no=0949. Typical wavefiles produced using this software are
provided on this site as Audio 9 Male Artificial Voice.wav and Audio 10
Female Artificial Voice.wav.
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Adaptive Echo Cancellation

 

Basic LMS Algorithm

 

The disadvantages of the VOX are becoming increasingly unacceptable to
users. It is clearly desirable to somehow subtract the echo from the “near-
end” signal so that conversation flows naturally. The existence of cheap
digital signal processing (DSP) hardware makes this a practical reality. Sup-
pose the far-end speech, in sampled form, is represented by the data stream

 

x

 

n

 

, 

 

n

 

 = 0, 1, 2, and so on. Then the sound received at the microphone can be
represented by the data stream

(8.3)

where 

 

y

 

n

 

 denotes the data stream received by the microphone, 

 

h

 

k

 

 (

 

k 

 

=

 

 

 

1, …,

 

N

 

 – 1) is a model, usually called the 

 

impulse response

 

, of the acoustic path
from loudspeaker to microphone, and 

 

s

 

n

 

 is the near-end speech. This can be
represented more succinctly by the notation

(8.4)

where 

 

ƒ

 

 is used to denote the convolution operation written out more fully
in Equation (8.3). It follows that if we have an estimate of the impulse
response and access to a copy of the loudspeaker drive signal, then we can
aim to cancel the echo.

Suppose that 

 

h

 

est

 

 

 

is the estimate of 

 

h 

 

which is stored in our DSP and then
we output to the “send” path the signal

(8.5)

If there is no speech at the near end this is a measure of the error in the
adaption routine that estimates the vector 

 

h

 

 and tracks changes. The adaption
scheme most commonly used is a variant of the “least mean squares” (LMS)
method described in detail elsewhere

 

1

 

 (see also Chapter 1 of this volume).
At each iteration, we update 

 

h

 

est

 

 to

(8.6)

where 

 

k

 

 is the index of elements of 

 

h

 

est

 

, 

 

m

 

 

 

is the step-size, 

 

e

 

n

 

 is the error at
sample point 

 

n

 

, and 

 

x

 

n

 

 is the value of the speaker drive signal at sample
point 

 

n. 

 

Most authors call 

 

x

 

 the 

 

reference 

 

signal. A simple echo canceller

y s h xn n k n k
k

N

= + -
=

-

Â
0

1

y s h x= + ƒ

e y h x= - ƒest

h h e x k , ,Nk k n n kest est  , for = - = --m 0 1K
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model, based on this principle and coded in ANSI C, accompanies this
chapter as the Echo Canceller code, available at http://www.crcpress.com/
e_products/download.asp?cat_no=0949.

The basic LMS algorithm described above is simple and robust and is
popular for these reasons. However, it needs some refinement in order to
make a practical echo canceller. First of all there is the computational load

 

.

 

The path length 

 

N

 

 can be of the order of 512 sample points or more. With
the data sampled at 8 kHz, this corresponds to a decay time of 64 ms, which
is typical for a hands-free phone used in a car interior. Other applications,
such as conference phones, may demand a greater path length due to the
size of the room in which they are being used (see “Echo Path Length,”
below). Counting the number of “adds” and “multiplies” in Equations (8.5)
and (8.6) and assuming a sample rate of 8 kHz, then we see that the processor
has to perform something of the order of 24 million arithmetic operations
per second. This processor is generally required to perform other functions
simultaneously, such as speech coding, so this may well lead to an excessive
computational load. This load can be reduced considerably by using a fre-
quency domain algorithm. Frequency-domain methods for performing con-
volutions take advantage of the 

 

fast Fourier transform 

 

(FFT — see Chapter 1)
and are described in the standard reference works on signal processing.

 

9  The
disadvantage of frequency-domain methods is that they introduce an addi-
tional time delay, as the input data has to be accumulated into blocks of
points before it can be used. An input block is typically 64 samples long,
equivalent to a delay of 8 ms at 8 kHz sample rate. However, if the DSP is
already running other programs that require a block input (a speech coder
for instance), it may be possible to minimize or even eliminate the 

 

additional 
delay by designing the echo canceller to use a compatible block size. A
frequency-domain echo canceller that does this has recently been patented. 10

 

A good general survey of the present state of adaptive algorithms for echo
cancellation is given by Breining et al.

 

11 

Echo Path Length 

The echo path length,  N  (as used in Equation [8.6]), is often quoted in
manufacturers’ data sheets. It can be said to correspond roughly to the
reverberation time of the enclosure (e.g., room, office, vehicle interior) in
which the echo canceller is to be used, and defined as the time for an
impulsive sound to decay to 60 dB of its original level. 11  A typical impulse
response is illustrated in Figure 8.3, which shows three main features: a pure
delay (the propagation time from loudspeaker to microphone), reverberation
from reflecting surfaces within the enclosure, with an exponentially decaying
amplitude, and a long tail. The signals are generally digitized with 16-bit
precision, so that the relative accuracy of the tail as estimated by 

 

h

 

est

 

 will be
fairly low, especially as its amplitude approaches only a few bits. An adaptive
echo canceller will, therefore, generally work best if the modeled impulse
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response is somewhat shorter than the actual one: the data at the end of the
echo tail is too inaccurate to be useful.

 

Stability

 

The standard texts and references on signal processing give detailed treat-
ments of the stability of the LMS method. One point to be aware of concern-
ing echo cancellers is that if the 

 

h

 

est

 

 is much longer than the actual echo path
then there is the risk of numerical instability as errors build up in the
redundant tail-end of 

 

h

 

est

 

. The modeled echo 

 

h

 

est

 

 

 

ƒ

 

 

 

x

 

 in Equation (8.5) then
grows without limit: it no longer matches the echo, and the instability is
observed as a constantly increasing output, unrelated to the microphone
input level. This may appear unlikely to occur in practice, but it can often
be induced by inputting a sine wave at the far end (modem and fax signals
are modulated sine waves): the microphone receives the echo, which is a
sine wave of the same frequency. It can easily be shown that for this particular
case, in the absence of any other far-end data, the “

 

h

 

est

 

” needed for echo
cancellation is much shorter than the actual one. This is especially so if the
period of the sine wave corresponds to an exact number of sample points
(e.g., a 1000-Hz sine wave sampled at 8 kHz has a period of eight sample
points). The echo canceller must be designed so that any instability, which
might result from this or any other cause, is “caught” before the output
builds to an unacceptable level (see the section “Howling Detection,” below).

 

FIGURE 8.3

 

Typical impulse response of car interior (Chevrolet Blazer), sampled at 8 kHz, showing main
features.

Sample number

Amplitude
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Some Factors That Limit Performance

 

The type of echo cancellation being discussed here is a special case of adaptive
filtering, in which the far-end talker is being used as the “calibration signal”:
we are using only a subspace of all the theoretical far-end signals. This means
that the estimation of 

 

h

 

est

 

 is at best partial. The echo canceller may be achieving
good performance for a particular talker, but it is often observed that if a
second talker comes on the line at the far end, then echo may break through
for a short time until the algorithm readapts. Another factor that limits per-
formance is the presence of noise at the near end: this includes acoustic noise,
which can be severe in road vehicles, and electrical noise in the circuitry,
which precedes the DSP processor. The basic assumption of a linear impulse
response in Equation (8.3) may be optimistic. It is quite common for users to
turn up the volume on hands-free speakers to levels at which distortion
occurs. In this situation, the adaptive algorithm will generally attempt a best
least-squares fit, but inevitably some echo will leak through.

 

Double Talk

 

In normal conversation, there is frequent overlap of the speech from each
party

 

. 

 

A study

 

12

 

 has found that, for the purposes of telephone engineering,
conversational speech can be broken down into:

 

Talk-spurts

 

 (i.e., by one party): Average duration roughly 1 s (38.53%
of the time)

 

Pauses

 

 (by one party): Average duration roughly 1.6 s (61.47% of the
time)

 

Double-talk

 

 (both parties): Average duration roughly 0.23 s (6.59% of
the time)

 

Mutual silence

 

 (both parties): Average duration roughly 0.5 s (22.48%
of the time)

These figures, which are averaged from English, Italian, and Japanese
studies, may seem surprising. In natural speech, individual words are not
generally demarcated by silence as suggested by the written word, but they
tend to follow one from another with very little break. A short sentence can
easily last only 1 s. The degree of overlap, or double talk, may not seem very
great, but experience shows that there is often enough double talk to under-
mine the adaption process of the echo canceller. To understand this, refer to
Equations (8.4 through 8.6): the estimate 

 

h

 

est

 

 will converge to the “true”
impulse response 

 

h

 

 only if the microphone input consists of loudspeaker
echo and nothing else. The presence of near-end speech will increase the
error in the 

 

h

 

est

 

, which may result in breakthrough of echo. Furthermore, test
engineers will use more aggressive “conversation,”

 

6,7

 

 in which “speech” (both
real and artificial) is played into both ends of the system simultaneously.
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To prevent deconvergence, a robust echo canceller should suspend the
adaption process while there is near-end speech. Meanwhile, the basic fil-
tering of Equation (8.5) should carry on with the coefficients 

 

h

 

est

 

 temporarily
frozen. In order to do this, the near-end speech has to be detected. However,
if the filter is not well adapted — for example, at start-up, when the echo
canceller is first switched on, or if the echo path has changed — then this
speech has to be distinguished from far-end echo. The means by which an
effective echo canceller can detect near-end speech and distinguish it from
far-end echo is called a 

 

double-talk detector

 

.
The simplest form of double-talk detector is designed to trigger when

microphone and reference signal pass a preset threshold. This, however, is
not always satisfactory for several reasons:

• Provision must be made for fast adaption at start-up and for
changes in echo path when the echo level may be over the preset
threshold.

• Near-end noise may be mistaken for speech. If this noise is persis-
tent (e.g., car noise), the echo canceller may be more effective if the
adaption is 

 

not 

 

suspended.
• Thresholds based on 

 

actual

 

 levels rather than on 

 

ratios

 

 of levels
make product design and application engineering difficult; for
example, microphone gains may vary considerably within a pro-
duction batch.

The most successful approaches to double-talk detection look for correlation
between the reference signal and the microphone signal.

 

13

 

 It could be argued
that this is exactly what the LMS adaption algorithm does. However, some-
thing is needed that will react much faster than LMS, not just to disable the
adaption, but also to control the nonlinear features described in the following
paragraphs. Moreover, the double-talk detector must not substantially add
to the DSP processing load. A recent contribution to this subject has been
given by Gänsler et al.

 

14

 

 Also, as has been seen, an effective echo canceller
needs some means, however elementary, of distinguishing near-end speech
from noise and taking the appropriate action.

 

Impulse Response Change

 

The design of any adaptive echo canceling algorithm implicitly assumes that
the impulse response, 

 

h, changes, if at all, much slower than the rate of
adaption. In practice, rapid changes of echo path will occur: the microphone
may get moved, the loudspeaker volume may be turned up, or the near-end
talker may move. This will cause an increase in echo. This echo resembles
speech, but an effective double-talk detector as discussed in the previous
paragraph will not be deceived by this and adaption will continue. If, how-
ever, as often happens in the course of an impulse response change, the
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microphone is brushed, tapped, or struck, the noise this makes will almost
certainly be treated as double talk (because it is clearly uncorrelated with
any far-end speech). So, even with a well-designed double-talk detector, the
recovery of full echo cancellation performance will be delayed.

More generally, if double talk and impulse response change occur
together, there may be a prolonged breakthrough of echo. The solution to
this problem, which is the subject of active research, will be a compromise
allowing some adaption if the echo can be detected and separated from
near-end speech: it is inevitable that there will either be breakthrough of
echo in this case, or the risk of speech attenuation if nonlinear processing
(NLP) is being used.

Practical Considerations for Hands-Free Telephony:
Nonlinear Processing

The Need for NLP: The Center Clipper

The above discussion has shown that there are a number of factors that limit
the performance of an adaptive echo canceller. Published standards typically
require (by implication) an ERLE of at least 40 dB for far-end single talk,
relaxing this to 30 dB during double talk. The convergence time of 2 s
required by these standards is also difficult to achieve. In theory, it may be
possible to reduce the convergence time to zero by storing the previously
calculated hest in nonvolatile memory, but there is no guarantee that the actual
impulse response will stay constant between uses of the echo canceller.
Typical operating conditions, with ordinary audio equipment, limit the
achievable ERLE to no more than about 30 dB. Furthermore, as pointed out
in “Echo Cancellation Definitions and Required Performance,” above, echo
at these levels is often clearly audible to the far-end talker, and competition
between suppliers means that this is unacceptable. In practice, there must
be no audible echo.

It follows that the echo canceller must be supplemented by additional
processing in order to achieve the desired levels of performance. This is
given the generic name of NLP. The simplest additional device of this kind
is a center clipper. Figure 8.4 illustrates the principle of operation. Applied
to the output signal en calculated by Equation (8.5), the new output
becomes:

(8.7)e
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The threshold d is adaptive, so that it is zero when there is near-end speech.
Many refinements of this basic idea are possible, including frequency-
domain versions. This simple model does, however, show the main features:

• Signals below the threshold are squelched completely.
• Large signals suffer a loss, which in terms of dB is relatively small,

so the center clipper is forgiving of errors in the double-talk
detection.

• The residual signal is whitened: this is a by-product of the process,
which often makes it possible for a careful listener to determine
whether a center clipper is being used.

These points are illustrated in the wavefiles (Audio 1–4) accompanying this
chapter, available at http://www.crcpress.com/e_products/download.asp?
cat_no=0949.

Additional Measures: Loss Insertion

Even more basic than center clipping is loss insertion, which is a loss inserted
into the send path that is sufficient to achieve the desired ERLE. Note that
the path should not be closed completely: users like to have some low-level
sound to give the feeling that the line is “live.” Another possibility is the
addition of a single-channel speech filter as described in Chapter 6, to precede
any center clipping or loss insertion. This has a squelching effect on residual
echo, especially during double talk. Loss insertion and center clippers must
come off during double talk (so that near-end speech is not attenuated), and
so the speech filter is the main way of boosting ERLE at this time.

FIGURE 8.4
Transfer function of simple center clipper with threshold d.
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These measures (center clipper, loss insertion, speech enhancement filter)
can all be combined to ensure that the far-end talker hears no echo. Figure
8.5 shows how they fit together as a system. What distinguishes this
approach from the old VOX is the level of control, so that the near-end talker
can break in at will and enjoy conversation that is of full-duplex quality. In
order to achieve good performance, there are some subtleties of design that
can be employed:

• The clipper threshold and inserted loss are controlled by the pres-
ence of far-end speech. They should have a slight “hangover” so
that when a far-end speech burst ends, the residual echo that fol-
lows is still caught.

• The NLP parameters must not be too aggressive or the near-end
speech will be subject to “leading edge clipping.” This is illustrated
in the Audio 5 wavefile accompanying this chapter, available at
http://www.crcpress.com/e_products/download.asp?cat_no=0949.
Loss of initial consonants will reduce the intelligibility of speech and
so is not acceptable.

• Note that the single-channel speech enhancer must come before
the other NLP processes because this kind of filter generally works
best with stationary noise: the NLP features tend to make the
residual signal less stationary.

These features are generally controlled by proprietary methods that cannot
be disclosed here. It can be said, however, that effective and unobtrusive use

FIGURE 8.5
System diagram showing sequence of operations of echo canceller combined with speech filter,
nonlinear processing and comfort noise.
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of NLP depends on a good adaptive algorithm, without which echo control
reverts to a VOX.

 

Comfort Noise

 

Adding the above features does not, however, solve all the problems of
acoustic echo cancellation. If there is background noise at the near end,
applying NLP results in far-end talkers hearing this noise with breaks that
match their speech pattern. Hearing breaks in the noise that are synchronized
with one’s own speech can be more unpleasant and annoying than hearing
the noise continuously. This disjointed background noise is audible even
when noise cancellation techniques are being applied (see Chapter 6), as
these techniques will always leave some residual noise. One way to combat
this effect is to generate pseudorandom noise which matches the spectral
characteristics of the background noise and use it to fill the holes left by the
removed echo. This artificial noise is called 

 

comfort noise.

 

 Figure 8.5 shows
how comfort noise generation fits in with the rest of the system. The wave-
files Audio 6, 7, and 8 accompanying this chapter (available at
http://www.crcpress.com/e_products/download.asp?cat_no=0949) illus-
trate the difference that comfort noise makes to the perceived quality of an
echo canceller.

 

Voice over Internet Protocol Applications

 

Voice over Internet protocol (VoIP) is becoming increasingly important as a
means of communication (see Chapter 11 and Reference 15). With VoIP goes
the use of personal computers (PCs), with their sound cards, as communi-
cations terminals, often in hands-free mode. Acoustic echo cancellers of the
type discussed in this chapter are equally applicable for this kind of tele-
phony, but they need some modification to be effective in this context. This
is basically because the processor chips used in PCs have a different archi-
tecture and a different function from the DSP chips used in communications
applications. One result of this is that the microphone and loudspeaker
signals will be subject to variable delays within the processor, which con-
trasts with a DSP in which signal delays are effectively constant, fixed by
the software design. This means that, in the case of the PC processor, the
impulse response 

 

h

 

 that must be estimated within the echo canceller algo-
rithms (Equations [8.4 through 8.6]) is varying. The variation can, however,
be compensated for: the precise details depend on the processor type, the
operating system, and the VoIP software package that is being implemented.

 

Howling Detection

 

A modern acoustic echo canceller is designed to minimize the risk of insta-
bility, however, any particular design that is in service will accumulate
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millions of hours of continuous use. It is possible, even likely, that instability
will occur at some time during the life of a particular design. Since it is not
possible to predict every possible combination of circumstances, it is desir-
able to incorporate a feature which will detect instability and take action
promptly. For example, the echo canceller could detect the situation where
the output signal power exceeds the input power by a specified level over
a number of iterations; this should catch the instability before amplitude
clipping is reached. The appropriate action is to reset the h vector to zero
(or recover the start-up h vector stored in nonvolatile memory) and begin
the adaption afresh.

Performance Assessment

Standard tests of performance are given in ITU-T Recommendations G.167
and G.168 for acoustic echo cancellation and line echo cancellation, respec-
tively;6,7 these mostly measure ERLE in very specific circumstances. In addi-
tion to these tests, the time delay in the microphone path, which is due to
the echo canceller, can be measured by seeking the maximum cross correla-
tion between microphone input and echo canceller output. These “objective”
tests, as they are called, only give snapshots of the system performance.

In the development of an actual echo cancellation product there will be
extensive testing by both expert listeners and members of the public and
their opinions will be used to inform the design process. Much use is made
of recorded conversations taken from a hands-free terminal. This introduces
the notion of third-party listening16: the participants in a conversation may be
perfectly happy with the audio quality that they are getting because some
of the artefacts may be inaudible to them. For example, as already mentioned
in “VOX, the Simple Solution,” above, a talker may be unaware of speech
clipping if both parties are speaking simultaneously. However, this clipping
may be very apparent to someone who is “listening in” to the conversation.
The implication for future product development is that the quality required
of an echo canceller for a conference phone application, where there may be
several users at each end, is much greater than for a car phone with only a
single user at each end.

Line Echo Cancellation

As already mentioned, echo can arise within communication networks, and
it can be dealt with by essentially the same methods as for acoustic echo.
Network operators place echo cancellers at switching centers and users are
generally unaware of their operation. The echo typically consists of a rela-
tively small number of single reflections. The precise timing of these reflec-

0949_frame_C08  Page 212  Tuesday, March 5, 2002  1:29 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



tions will not be known in advance because they depend on the routing of
calls, so the algorithm still represents the impulse response as a vector h.
The small number of reflection points means that the h vector will consist
largely of zeros (in contrast, an acoustic echo path is characterized by a very
large number of multiple reflections, so that most elements of the h vector
have some significance — see Figure 8.3). Algorithm designers can exploit
this sparseness of h in order to achieve faster adaption than for an acoustic
echo canceller.13

The performance requirements for line echo cancellers7 are very similar to
those for acoustic echo cancellers. There are, however, important differences:
the permitted group delay across a line echo canceller is less than 1 ms.7 This
means that algorithms that take block input are effectively precluded from
use in line echo cancellation except when the echo canceller is used in
conjunction with other processing that handles blocks of data. For example,
at the interface between a cellular mobile network and a fixed network there
may be equipment to decode speech signals from compressed form into
pulse code modulated (PCM) form. The data will be in block form prior to
transmission and there may be opportunity here to use block time-domain
or frequency-domain algorithms for line echo cancellation.

Another important difference between line (or “network”) and acoustic
echo cancellers is that not all signals will consist of speech. There will be fax
and data signals, which consist of modulated tones. For fax and low-rate
data the echo canceller is required to perform in the same way as it does for
speech7 in order to prevent corruption of data interchanges. For higher-rate
data signals, detected by the tone frequency and phase-switching pattern,
the echo canceller is required to disable itself (full details are given in Ref-
erence 7). In these cases, there is special-purpose echo control built into the
modems that originate these data signals.

In some mobile (cellular) networks there is a requirement for the mobile
terminal to have a line echo canceller to cancel any speech echo that is
reflected back via the radio link. This is not a universal requirement and is
generally found only with the older analog networks. Modern digital net-
works (such as GSM and CDMA) use different frequencies and/or coding
for uplink and downlink so that echo is not picked up at all. Nevertheless,
the older network standards are still in operation in many places, and equip-
ment manufacturers may require their DSP suppliers to provide both line
and acoustic echo cancellation for this reason.

Stereophonic Echo Cancellation

Suppose that the voice input system that we are working with has several
loudspeakers with different inputs (the systems already discussed will work
for the case where a number of loudspeakers are fed with an identical mon-
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aural signal). In such a case, referring to Equation (8.5), the echo can be
canceled by storing a separate impulse response vector hi for each loud-
speaker channel. The echo is canceled by performing the calculation

(8.8)

where xi is the reference signal vector corresponding to loudspeaker channel
i, y the microphone signal, and e the output signal before any NLP or other
processing. Analogous to the simple case discussed earlier, the equation for
coefficient update is:

(8.9)

The other features (e.g., NLP, speech filter, comfort noise) may be added to
the output channel if desired. Thus far, this appears to be a straightforward
extension of single-channel echo cancellation. Now suppose that the xi are
related stereophonically, that is, each loudspeaker channel corresponds to a
different far-end microphone. The case of a single far-end talker can be
represented as a single source s with microphone transfer functions gi so that

(8.10)

This means that the adaption algorithm is trying to solve the equation

(8.11)

where  is the actual impulse response of the ith loudspeaker–microphone
path. This does not in general have a unique solution in the hi (one equation,
several unknowns). Since this is a linear system, the calculated hi may (and
probably will) grow without limit, leading to problems with adaption,
including stability. A number of methods have been proposed to deal with
this,17 not all of them very satisfactory, as they entail modifications to the xi

to make them less correlated. The use of a leakage term in the adaption
equation has been proposed (a standard DSP procedure18) so that Equation
(8.9) becomes

(8.12)

where the leakage factor l is a small positive number. This will ensure a
unique value of h, which will still give reasonable performance. It has been
pointed out that Equation (8.10) may not hold in many instances on account

e y h xi i
i

= - ƒÂ
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of other factors, such as the use of nonlinear coding for transmission.19 In
this case, the xi are not in a linear relationship, and stereophonic echo can-
cellation as described above may work well without the need for special
features.

Current and Future Developments

Research and development of echo cancellers continues, as higher levels of
performance are demanded and communications networks continue to
grow. The ultimate goal is for speech communication and voice input (e.g.,
to a recording device or speech recognition engine) to become as easy and
natural as a face-to-face conversation.

New developments are continually being announced by researchers and
manufacturers. Two conference series are of particular relevance to this field:
the annual IEEE-sponsored International Conference on Acoustics, Speech
and Signal Processing (ICASSP) and the biennial International Workshop on
Acoustic Echo and Noise Cancellation (IWAENC). The proceedings of
IWAENC ’99 have been published in book form.20
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Section IV:

 

Special Applications
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Introduction

 

As computing, communication, and other electronic devices become physi-
cally smaller and attempt to perform increasingly complicated functions,
traditional interfaces such as buttons, keyboards, etc. become difficult to use.
Speech is a much more natural and simpler interface for such devices, espe-
cially if they are to be remotely operated. Viable technology currently exists
for the deployment of speech-enabled devices in controlled environmental
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conditions. However, as these devices are deployed in increasingly difficult
operating conditions that are open to uncontrolled noises and acoustical
disturbances, the performance of speech recognition systems degrades
greatly. This chapter and Chapter 10 are concerned with the subject of devel-
opment of techniques that reverse this degradation.

Broadly, techniques that enhance environmental robustness for speech
recognition systems can be divided into two categories: techniques that
operate on speech signals or the features derived from them prior to the
recognition process, and techniques that modify the recognition system to
perform optimally on incoming noisy speech signals. In this chapter, we
review techniques that modify incoming signals or feature vectors. Tech-
niques that modify the structure or parameters of the speech recognition
system are discussed in Chapter 10.

For the benefit of readers with a limited background in speech recognition
technologies, we begin by reviewing the formulation of automatic speech
recognition as a statistical pattern classification process and by discussing
how environmental disturbances adversely affect classifier performance.
Later sections describe selected signal and feature compensation techniques
in current usage, which were chosen on the basis of their efficiency and
generality.

 

Speech Recognition as Statistical Pattern Classification

 

Automatic speech recognition systems are pattern classifiers designed to
solve a rather specific statistical pattern classification problem. A simple
example of a statistical pattern classification problem is that of determining
the member of a set of  classes  to which a specific vector 
belongs, knowing that it does belong to one of the classes.

Let  be the known distribution of all vectors belonging to class
. Let  be the fraction of all data points that belong to class ;  is also

known as the 

 

a priori

 

 probability of . It can be shown that if the data vector
 is assigned to a class according to the following rule

 

1

 

:

(9.1)

the expected classification error is minimum. In other words, given an infi-
nitely large set of data points to classify, the total number of misclassified
points will be minimum if the classification rule above is followed. Pattern
classifiers based on the above rule are known as Bayesian classifiers. If the
criterion for classification is other than that of minimum expected classifica-
tion error, e.g., that of minimizing the expected 

 

cost

 

 of classification (known
as minimum risk classification), where the cost may be any function of the
output of the classifier, the actual classification rule can vary from the one
given above, but its 

 

form

 

 will still be very similar.

N C1 C2 º CN, , , Xs

P X Ci( )
Ci a i Ci a i

Ci

Xs

Xs Ci    if  a iP Xs Ci( ) a jP Xs Cj( )  for all j iπ>Æ
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Speech recognition is the problem of determining the sequence of words
that were spoken in an utterance, given the recorded signal for that utterance.
We can consider the set of all signals that are instances of a particular word
sequence to form the class of signals representing that word sequence. Hence,
there is a class of signals associated with every possible sequence of words
in a language. Statistical speech recognition can be stated as the problem of
determining to which of these classes a given signal belongs. This problem
can now be treated as an instance of the Bayesian classification problem.

Casting this problem in more formal terms, we let 

 

W 

 

represent an arbitrary
sequence of words. Let  represent the distribution of the class of
signals belonging to the word sequence 

 

W

 

, where  now represents an
arbitrary signal. The speech recognition problem can then be stated as:

(9.2)

where  and  represent different instances of . This can be rewritten as

(9.3)

where  is the signal for the utterance that must be recognized.  is
the 

 

a priori

 

 probability of the word sequence  and is given by a 

 

language
model.

 

 The language model and the 

 

a priori

 

 probabilities of word sequences
are largely irrelevant to the subject matter of the rest of this chapter and will
not be discussed here. The interested reader can find details of this topic
elsewhere.

 

2

 

Ordinarily, speech recognition systems do not store the value of 
separately for every . Instead, words are considered to be defined as
sequences of elements from a small set of 

 

subword units

 

, i.e., 

 

W

 

 = 

 

W

 

a

 

, 

 

W

 

b

 

,
W

 

c

 

,

 

 … and

(9.4)

The number of unique subword units is significantly less than the number
of actual words that the system must recognize. The probability distributions
for 

 

W

 

a

 

, 

 

W

 

b

 

, 

 

W

 

c

 

, … are obtained by associating a statistical model with each
of these units, and learning the parameters of those statistical models.
Although any type of statistical model may be used for this purpose, the
model that is currently the most popular for speech recognition is the hidden
Markov model (HMM).

 

3

 

Typically, recognition is performed on the basis of the observed vectors of
a sequence of 

 

feature vectors 

 

derived from the digitized speech rather than
the signal itself. Ideally, these feature vectors would be chosen to be repre-
sentative of the characteristics of the speech signal that are most essential
for recognition, while not representing other redundant information. The

P X W( )
X

Xs A  if P A( )P Xs A( ) P B( )P Xs B( )  for all  A Bπ>Æ

A B W

Xs A : AÆ maxW P W( )P Xs W( ){ }arg=

Xs P W( )
W

P Xs W( )
W

P X s W( ) P X s Wa Wb Wc º, , ,( )=
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most commonly used features are 

 

cepstral coefficients

 

. The cepstral represen-
tation of a speech signal is derived by segmenting it into a number of
overlapping segments, called 

 

frames

 

, and deriving a cepstral vector for each
frame. Denoting a speech signal that is a function of time , as , the speech
signal in the 

 

i

 

th frame as , and the feature vector for the 

 

i

 

th frame as ,
the cepstral representation  is

(9.5)

i.e., it is the discrete cosine transform of the log of the Fourier transform of
the data. In practice, modified versions of cepstral coefficients such as Mel
frequency cepstral coefficients (MFCC)

 

4

 

 are used.
We use the notation  to represent the generalized transformation that

is applied to  to derive the feature vector . The entire sequence of feature
vectors for  can be represented as

(9.6)

Recognition is thus performed using  rather than  as

(9.7)

 

Effect of Noise on Speech Recognition Systems

 

The effect of corrupting noise is to transform the clean speech signal  into
a noisy signal. We use the notation  to represent the noisy signal and 
to represent the corrupting transformation, so that .  can
range from the simple addition of a noise signal  to the speech signal ,
to other linear or nonlinear transformations such as convolution, clipping,
or compression. Features derived from the noisy signal are thus given by

.
Ideally, a recognition system used to recognize the noisy speech  would

also be trained with noisy speech, since the distributions of word sequences
for optimal recognition of  must be , i.e.,  and
not . If a recognizer is trained with feature vectors of clean speech,
the distribution learned for ,  would differ from ,
introducing a mismatch. This mismatch causes degradation of recognition
performance. The greater the mismatch, the larger the degradation. Figure
9.1 shows some plots that are representative of this problem.

In a typical situation, however, the noise conditions and therefore the
corrupting transformation  affecting the speech signal can be diverse,

t st

st
i fs

i

fs
i

fs
i DCT DFT st

i( )( )log( )=

F st
i( )

st
i fs

i

st

fs fs
1 fs

2 fs
3 º, , ,[ ] F st

1( ) F st
2( ) F st

3( ) º, , ,[ ]= =

P fs W( ) P st W( )

Xs A : AÆ maxWP W( )P fs W( )arg=

st

yt Tn  ( )
yt Tn st( )= Tn  ( )

nt st

F yt( ) F Tn st( )( )=
yt

yt P F yt( ) W( ) P F Tn st( )( ) W( )
P F st( ) W( )

W P F st( ) W( ) P F yt( ) W( )

Tn  ( )
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and can vary from utterance to utterance. In many situations it may even be
impossible to predict or determine the exact corrupting transformation
affecting the speech signals, rendering it difficult, if not impossible, to train
the recognizer optimally for every utterance to be recognized.

In the absence of reliable a priori information about the nature of the
corrupting transformation , it is common to train speech recognition
systems using speech signals that are assumed to represent the entire range
of operating conditions under which they must operate.

Even when  is largely constant across the data on which the system
is trained and which it recognizes, it still degrades recognition performance.
This is because, as the level of noise in the signals increases, the different
signals increasingly resemble the noise. As a result, the distinctions between
the various sounds fade and they begin to resemble each other increasingly.
As a result, even the optimal recognizer for noisy speech cannot perform as
well on noisy speech as the optimal recognizer for clean speech performs
on clean speech. The curve representing the “matched recognizer” in Figure
9.1 illustrates this point.

Different types of noises affect speech recognition systems differently. Fig-
ure 9.2 shows how a typical speech recognition system performs in a typical
experiment when the speech to be recognized is affected by stationary
(white) noise and by nonstationary noise (music). Music does not degrade
recognition accuracy as severely as stationary noise. Nonstationary noises
in general do not challenge recognition systems as much as stationary noises
do because at a given average signal-to-noise ratio (SNR), the instantaneous
SNR tends to be greater over large portions of the signal due to the

FIGURE 9.1
Typical plot of recognition accuracy as a function of the signal-to-noise ratio (SNR). The lower
curve is for a “mismatched” recognizer, where the recognition system has been trained on
clean speech, but the test speech is noisy. The upper curve is for a “matched” recognizer,
where the recognition system has been trained with speech that had been subjected to the
same level of noise as the test speech. (From Raj, B., Reconstruction of Incomplete Spectro-
grams for Robust Speech Recognition, Ph.D. thesis, Carnegie Mellon University, Pittsburgh,
PA, 2000. With permission.)
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time-varying nature of the noise. Nevertheless, it is generally more difficult
to compensate for the effects of nonstationary noise.5

Compensating for the Effects of Noise

As stated above, the presence of noise generally causes the distributions
characterizing the speech sounds to be recognized to differ from the corre-
sponding distributions that were used to train the speech recognizer, which
in turn causes recognition accuracy to degrade. This degradation in accuracy
can only be reduced by reducing the difference between the actual distribu-
tions of the test data and those used by the recognizer. In terms of the
notations used in the earlier section, to minimize the degradation in perfor-
mance due to noise, the difference between  and  must
be minimized for all W. This can be achieved in several ways:

1. Signal compensation: This is performed by applying a transforma-
tion  to the degraded speech signal  such that .
Recognition is then performed using , the features of the trans-
formed signal . The distribution of the test data for any word
class W is now . The more closely 
approximates , the closer the two corresponding distributions are,
and the better the performance that is achieved on .

2. Feature compensation: This is done by transforming the features
computed from the noisy speech, , with some transformation

FIGURE 9.2
Recognition accuracy obtained for speech corrupted by white noise, and for speech corrupted
by a segment of music, at various SNRs. SNRs have been measured as the average signal-to-
noise ratio over entire utterances. (From Raj, B., Reconstruction of Incomplete Spectrograms for
Robust Speech Recognition, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, 2000.
With permission.)

SNR (dB)
5 10 15 20 25

R
ec

o
g

n
it

io
n

 A
cc

u
ra

cy
 (

%
)

20

40

60

80

100

0

Music
White Noise

P F yt( ) W( ) P F st( ) W( )

C  ( ) yt zt C yt( ) stª=
F zt( )

zt

P F zt( ) W( ) P F st( ) W( )ª zt

st

F zt( )

F yt( )

0949_frame_C09  Page 224  Wednesday, January 22, 2003  4:54 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



, such that fz = C(F(yt)) ª  F(st). Recognition is then performed
with the transformed features fz instead of with . The distri-
bution of word classes on the transformed features is now 

. Once again, the better  approximates , the
better the recognition performance that is achieved with it.

3. Model compensation: This is done by transforming the state dis-
tributions using some transformation  such that 

. This is different from the previous two methods
where the compensation was effected by modifying the incoming
test data to reduce the mismatch between its distributions and
those learned by the recognizer. Here, the distributions learned by
the recognizer are transformed such that they better match those
of the data to be recognized. Recognition is now performed using

. As before, the better this approximates ,
the better the recognition performance that is achieved.

4. Matched condition techniques: In matched condition techniques
we attempt to explicitly match the distributions used by the rec-
ognizer to those of the test data. In matched training, this is achieved
by training the recognizer on data that have been corrupted in an
identical manner to the test data. In missing feature methods, we
attempt to use only those components of the data whose distribu-
tions explicitly match the distributions modeled by the recognizer,
and treating the mismatched components as missing.

In the remaining sections of this chapter, we describe signal and feature
compensation approaches in detail; we discuss the complementary model
compensation and matched condition approaches in Chapter 10. We note
that the transformations used in these methods are not necessarily simple
and may not have a closed-form formulation, relying on iterative procedures
for their solution.

Signal Compensation

In signal compensation, we attempt to modify the noisy signal  with a
transformation  such that the distributions of the modified noisy signal,

, resemble those of , the data used to train the recognizer. When
the goal is to transform the noisy signal to resemble clean speech, these meth-
ods are also called signal enhancement methods. Many different transformation
operators  have been proposed over the years, motivated by, for example,
differing assumptions about the type of noise or other sources of degradation,
and the type of features to be extracted from the signal for recognition. In this
section we discuss some of the most widely used signal compensation
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algorithms: linear spectral subtraction (LSS),6 nonlinear spectral subtraction
(NSS),7 and Wiener filtering.8 The complementary technique of enhancement
through the use of multiple microphones is discussed in Chapter 7.

Linear Spectral Subtraction

Linear spectral subtraction, also referred to simply as spectral subtraction,6 is
a method of canceling additive uncorrelated noise from a noisy speech signal.
In spectral subtraction, signals are separated into speech and nonspeech
regions by a variety of techniques, and all regions deemed to be nonspeech
are used to estimate the noise spectrum. Signal compensation is performed
by subtracting the estimated noise spectrum from the spectrum of the noisy
speech to obtain an estimate of the clean speech spectrum.

More specifically, let  represent the Fourier transform of the tth frame
of incoming noisy speech and let the kth component of  be referred to
as . Since the Fourier spectrum is complex, it can be represented in
polar coordinates as

(9.8)

where  is the magnitude of ,  is its phase, and the
parameter t  can take any value, since it does not modify the equation in any
manner. Compensation is performed in two steps:

1. Noise update step: This step involves estimating the spectrum of
the corrupting noise. The most common method used for this has
the following rule for estimating the magnitude of the kth fre-
quency component of the noise spectrum in the tth frame, :

(9.9)

The parameter l , called the noise update factor, lies between 0 and
1 and controls how rapidly the noise estimate is permitted to
change in response to changes in the time-varying noise. Large
values of l  permit the noise estimate to change rapidly, but can
result in poor estimates of the noise spectrum. Low values of l , on
the other hand, provide more robust estimates of the noise spec-
trum for stationary or slowly varying noise, but do not permit the
algorithm to track noises that change quickly. b is a threshold factor
used to identify the putative onset of speech.

2. Noise cancellation step: Once the estimate of the noise spectrum
is known, the estimate of the magnitude of the clean speech spec-
trum  is obtained from the noisy spectrum as

Y t( )
Y t( )

Yt t k,( )

Y t k,( ) Y t k,( ) ei Y t k,( )– Y t k,( ) t( )
1
t
---

ei Y t k,( )–= =

Y t k,( ) Y t k,( ) Y t k,( )–

N t k,( )

N t k,( ) t 1 l–( ) N t 1– k,( ) t l Y t k,( ) t+     if  Y t k,( ) b N t k,( )<

N t 1– k,( ) t               otherwiseÓ
Ì
Ï

=

Ŝ t k,( )
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(9.10)

where a is an oversubtraction factor that compensates for errors in
the estimation of the noise spectrum and is typically set to be
between 1 and 3. g, the spectral floor factor, is a small positive
constant that ensures that the spectral estimate never becomes
negative. The entire spectrum is obtained by combining the com-
pensated spectral magnitudes and the original phase as

(9.11)

The spectrum can then be inverted to obtain the estimated clean
speech signal for the tth frame or used directly to obtain cepstral
coefficients or other features.

The noise spectrum must be initialized with nonzero values in some fash-
ion. This is typically done by assuming that the initial portion of any utter-
ance contains only noise, and using the average spectrum over the first few
frames in the utterance to initialize the noise spectrum.

The value of t  determines the exact form of spectral subtraction being
applied, with 1 and 2 being the most commonly used values. Equation (9.10)
estimates the power spectrum of the noise (PSUB) when t  equals 2, and the
magnitude spectrum of the noise (MSUB) when t  equals 1. MSUB is known
to be more effective than PSUB for speech recognition.9

The noise estimate obtained for spectral subtraction can be very sensitive
to variations in the noise spectrum. One common problem is that the esti-
mated energy in the noise spectrum can be greater than the energy in the
noisy speech itself, resulting in negative values for the estimated magnitude
spectrum of clean speech. While the spectral floor factor g eliminates negative
magnitude spectra, the estimated noise spectrum may still not be represen-
tative of the true noise spectrum, rendering spectral subtraction ineffective.
Since frequency bands are processed independently, the arbitrary occurrence
of peaks and zeros in the spectrum can result in an unpleasant perceptual
effect in the reconstructed speech commonly referred to as musical noise.10

Nonlinear Spectral Subtraction

Nonlinear spectral subtraction (NSS)7 attempts to improve the noise cancel-
lation of spectral subtraction by making the oversubtraction factor for any
frequency band dependent on the local SNR. The estimate of the noise
spectrum is made more robust by separating it into two components, an
instantaneous component  and a long-term component . Signal
compensation is recast as a filtering operation. A smoothed spectral estimate

Ŝ t k,( ) t Y t k,( ) t a N t k,( ) t    if  Y t k,( ) t a N t k,( ) t g Y t k,( ) t>––

g Y t k,( ) t              otherwise                                    Ó
Ì
Ï

=

Ŝ t k,( ) Ŝ t k,( ) ei Y t k,( )–=

N t k,( ) N t k,( )
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of the noisy speech signal  is used along with the instantaneous
spectrum  in order to obtain robust estimates of the compensating
filter. The instantaneous spectrum of the noisy signal  is simply the
Fourier spectrum of the tth frame of the noisy signal. The magnitude of the
instantaneous spectrum of the noise is obtained as

(9.12)

where b is a threshold factor. , the smoothed spectrum for the noisy
speech at frame t, is computed as a weighted average of the smoothed
spectrum at t – 1 and the current instantaneous spectrum. Similarly, ,
the long-term spectrum for the noise at t, is computed as a weighted average
of the long-term spectrum at t – 1 and the instantaneous noise spectrum at t:

(9.13)

where, typically,  and . To compensate the signal
in the tth analysis frame, a filter H(t, k) is constructed as

(9.14)

where  is a noise subtraction term computed using the following
nonlinear function:

(9.15)

where , , and  are defined as

(9.16)

(9.17)

(9.18)

. The denominator in Equation (9.18) represents
the peak estimate of the noise. M represents the time window over which

Y t k,( )
Y t k,( )
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the peak noise spectra are estimated (typically about 40 frames). The param-
eters of the sigmoid control the degree of oversubtraction and are typically
set such that . The spectrum of the clean speech
signal can now be estimated as

(9.19)

The estimated spectrum can now be inverted to obtain the estimated clean
speech signal.

Although the above formulation reduces the incidence of many of the
problems faced by regular spectral subtraction, negative estimates of the
magnitude spectrum of clean speech are still possible unless they are explic-
itly excluded by forcing a positive minimum. In general, however, the recon-
structed signal does not exhibit the musical tone artifacts that occur in linear
spectral subtraction.

Wiener Filtering

The Wiener filter is a linear filter with an impulse response that is designed
to minimize the expected squared error between the clean speech signal and
the filtered noisy speech signal.8 It can be shown that in the most generic
case the frequency response of the optimal filter is given by

(9.20)

where  is the spectrum of the cross correlation between the clean
speech signal  and the noisy signal .  is the power spectrum of .
A Wiener filter can be implemented as a finite impulse response (FIR) filter
with an impulse response that approximates the impulse response implied
by Equation (9.20) most closely (and hence tends to minimize the squared
error between the clean speech and the filtered noisy speech). However, it is
more common to implement the Wiener filter directly in the spectral domain.

The design of the filter requires knowledge of . If it is assumed that
the noise corrupting the speech signal is additive and uncorrelated to the
speech, it can be shown that

(9.21)

where  is the power spectrum of the noise. The optimal Wiener filter
in this case is given by

(9.22)

N t k,( ) L t k,( ) 3N t k,( )£ £
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In practice, the power spectrum of the signal and the noise are both
unknown and must be estimated. The implementation is similar to that of
spectral subtraction. The speech signal is segmented into overlapping frames
and windowed. A separate filter is then built for every frame as

(9.23)

where  is the estimate of the spectrum of the noise in the tth frame
and  is the corresponding spectrum of the noisy speech signal. The
numerator in Equation (9.23) can sometimes become negative due to esti-
mation errors. To prevent this, the equation for the filter is usually modified
to

(9.24)

where  is a small positive number. The spectrum of the clean speech signal
is estimated simply as

(9.25)

The estimated clean speech spectrum can be inverted to obtain the clean
speech signal. Alternately, the estimated power spectrum of the clean speech
signal can be derived directly as

(9.26)

from which cepstra or other related features for recognition can be derived.
Wiener filtering can be viewed as a special case of LSS, since the estimated

spectrum of the noise signal is effectively subtracted from the spectrum of
the noisy speech. Estimates of the noise spectrum can be obtained using any
of the heuristics that are used in spectral subtraction.

Feature Compensation

In feature compensation methods, the features  computed from the noisy
speech are modified by a transformation  such that the distributions of
the transformed features  better match the distributions used
by the recognizer. Feature compensation algorithms can be categorized as

H t w,( ) Sy t w,( ) 2 Sn t w,( ) 2–

Sy t w,( ) 2
------------------------------------------------------=

Sn t w,( )
Sy t w,( )

H t w,( ) max Sy t w,( ) 2 Sn t w,( ) 2– a Sy t w,( ) 2,( )
Sy t w,( ) 2

-----------------------------------------------------------------------------------------------------=

a
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Ŝs t w,( ) 2
H t w,( ) 2 Sy t w,( ) 2=

F yt( )
C  ( )

fz C F yt( )( )=

0949_frame_C09  Page 230  Wednesday, January 22, 2003  4:54 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



stereo based or parametric. Stereo-based algorithms use a small “adaptation”
set of signals that have been simultaneously recorded in the noisy recording
environment and over a clean channel (i.e., a head-mounted, close-talking,
noise-canceling microphone). Such data are usually referred to as stereo data.
The stereo adaptation data are used to learn statistical relationships between
the feature vectors of the noisy utterances and their clean counterparts. These
are then used to compensate for the noise in test utterances. In parametric
algorithms, the effects of noise on the features of clean speech signals are
analytically characterized by a function with a small set of statistical param-
eters. This function is used in conjunction with the noisy test utterance and
the known distribution of the feature vectors of clean speech to estimate the
statistical parameters that represent the noise which are then used to com-
pensate the features of the noisy test utterance.

In the following sections, we describe a typical stereo-based algorithm,
multivariate Gaussian-based cepstral normalization (RATZ),11 and two paramet-
ric algorithms, vector Taylor series (VTS)11 and codeword-dependent cepstral
normalization (CDCN).9 Several other feature compensation algorithms such
as probabilistic optimal filtering (POF)12 and Kalman filter-based
compensation13 have also been proposed in the literature. However, most
of these algorithms are related to the algorithms described here in the gen-
eral principles of their design.

Multivariate Gaussian-Based Cepstral Normalization

In multivariate Gaussian-based cepstral normalization (RATZ), an adapta-
tion corpus of stereo recordings is used to learn the relationship between the
feature vectors of clean and noisy speech. The feature vectors usually con-
sidered are cepstral vectors (hence the term “cepstral normalization”).

RATZ is performed in two stages. In the first learning stage, the parameters
of a Gaussian mixture distribution representing the distribution of the feature
vectors of clean speech are learned. The likelihood of any feature vector 
is represented by this distribution as

(9.27)

where d is the dimensionality of , K is the total number of Gaussians in
the mixture, ck is the a priori probability (or mixing weight) of the kth Gaus-
sian,  is the mean of the kth Gaussian, and  is the covariance matrix
of the kth Gaussian in the Gaussian mixture distribution.  is usually
assumed to be a diagonal matrix. The values of , , and  are estimated
from the feature vectors of a training corpus of clean speech (which could
be the clean component of the stereo data) using the expectation maximiza-
tion (EM) algorithm.14 To simplify notation in the rest of this chapter, we will
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use the term  to denote the value of a Gaussian with mean m and
variance , at X. Using this notation, we can rewrite Equation (9.27) as

(9.28)

The RATZ algorithm assumes that the corrupting noise modifies the dis-
tribution of clean speech by modifying the means and variances of the
individual Gaussians in the mixture. The overall distribution itself remains
a mixture of Gaussians. The modified mean of the kth Gaussian is computed
from the stereo corpus as

(9.29)

where  is the correction term for the kth Gaussian given by

(9.30)

 represents the tth feature vector of the clean component of the stereo
corpus and  is the corresponding feature vector of the noisy component.
The modified variance of the kth Gaussian is computed by:

(9.31)

When  is assumed to be a diagonal matrix,  is also diagonal. 
represents the a posteriori probability that  belongs to the kth Gaussian in
the mixture and is given by

(9.32)

In the second compensation stage of RATZ, the parameters of the distribu-
tions of clean speech, and those of the noisy speech are used to compensate
the feature vectors of incoming noisy test data for the noise. This is done by
estimating the clean counterpart of every feature vector in the noisy utterance
using a minimum mean squared error (MMSE) estimator. Given a noisy
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feature vector , the MMSE estimate of the clean counterpart  computed
by RATZ is given by

(9.33)

where  is the a posteriori probability of the kth Gaussian, given the
noisy feature vector , and is given by

(9.33)

All the feature vectors of the noisy utterance are replaced by their estimated
clean counterparts computed using Equation (9.33). The sequence of esti-
mated clean vectors is used for recognition.

Vector Taylor Series Compensation

The vector Taylor series (VTS) algorithm11 assumes that the corrupting influ-
ences on the clean speech signal are an unknown linear time-invariant filter
and an unknown additive stationary noise signal that is uncorrelated with
the speech signal (Figure 9.3).

Under these assumptions, the effect of the noise and the filter on the power
spectrum of the utterance is given by

(9.35)

where  is the power spectrum of the noisy speech,  is the power
spectrum of the clean speech,  is the frequency response of the linear
filter and  is the power spectrum of the additive noise. It can easily
be shown that the relationship between the log spectrum (i.e., the logarithm

FIGURE 9.3
Block diagram representation of the linear filter-additive noise model of noise corruption.
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of the power spectrum) of the noisy speech and that of the clean speech is
given by

(9.36)

where ,  and . Note the
slight change in notation here. Y, S, and H now represent log spectra, and 
has been dropped for brevity. For notational simplicity, we will also denote
the term to the right in Equation (9.36) as F(S, H, N) in the rest of this section.
If the channel parameter H and noise parameter N were precisely known,
Equation (9.36) could be inverted to obtain S from Y. However, they are not
usually known beforehand and must be estimated.

For the purposes of estimation, it is assumed that the linear filter affecting
the speech signal is constant across all analysis frames and can be charac-
terized by a single channel parameter H. On the other hand, the noise log-
spectrum in Equation (9.36) is assumed to vary from frame to frame. This
accounts for the fact that the precise noise sample affecting the speech signal
varies from analysis frame to analysis frame even when the noise is station-
ary. The distribution of the log-spectra of the noise in the various analysis
frames is assumed to be Gaussian with mean  and variance . Thus, the
parameters that must actually be estimated are H, , and .

In order to estimate these parameters, it is assumed that the probability
distribution function (PDF) of the log-spectral vectors of clean speech can
be characterized by a mixture of Gaussians.

(9.37)

The covariance matrices, , are assumed to be diagonal. The parameters
of this distribution can be learned from the log-spectral vectors of a corpus
of clean speech using the EM algorithm.14

The VTS algorithm assumes that the effect of the noise and the linear filter
is to change the means and variances of the Gaussians in Equation (9.37) to

 and , which are given by

(9.38)

(9.39)

where  and  are the derivatives of F(S, H, N)
with respect to S and N, respectively, at . The likelihood of any
noisy vector Y is therefore assumed to be
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(9.40)

H, , and  are estimated such that the total likelihood of the log-spectral
vectors in the noisy utterance, as computed using Equation (9.40), is maxi-
mized. Direct solutions to this estimation problem are not possible. Estima-
tion is performed, instead, by approximating F(H, N, S) by a truncated Taylor
series expansion. This results in an iterative algorithm, the derivation of
which is beyond the scope of this chapter and can be found elsewhere.11

Here, we only describe the key steps of the algorithm, which are as follows.
We represent the ith estimate of the parameters as , , and , respec-

tively. To obtain the (i + 1)th estimates, we define the variables , , and
 as

(9.41)

We denote the a posteriori probability of the kth Gaussian, given any noisy
vector , as , where

(9.42)

We denote the tth vector in the sequence of noisy log-spectral vectors as
. To simplify notation, we denote  as  and define the

following set of variables:

(9.43)

The  estimate of H and  are now obtained as

(9.44)
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To obtain the  estimate of , we first define the following variables:

(9.46)

The estimate is then defined simply as

(9.47)

The channel parameter is usually initialized as the difference between the
average value of the log spectral vectors of the noisy speech and the global
mean of the PDF of the log spectra of clean speech. The mean and variance
of the noise are initialized as the mean and variance of all noisy speech
vectors whose total energy lies below a threshold. Updated estimates of the
noise and channel parameters are obtained by iterations of Equations (9.44),
(9.45), and (9.47). Each iteration is expected to result in estimates of the
parameters that increase the total likelihood of the noisy vectors as computed
using Equation (9.40). Iterations are continued until the likelihood converges,
i.e., it does not increase further with additional iterations. In practice, only
two or three iterations of the algorithm need be run and likelihood conver-
gence is not required. The estimation process in VTS is sometimes prone to
instability. To account for this all estimates are constrained to lie within an
empirically determined range of values.

Once the final estimates of the noise and channel parameters, , ,
and  have been obtained, every noisy log-spectral vector is replaced by
an MMSE estimate of the corresponding log-spectral vector of the underlying
clean speech signal, which is obtained as:

(9.48)

where  is the a posteriori probability of the kth Gaussian computed
using the final estimates of the noise and channel parameters in Equation
(9.42). Recognition is now performed with features derived from the esti-
mated clean speech log-spectral vectors.

Codeword-Dependent Cepstral Normalization

Codeword-dependent cepstral normalization (CDCN)9 is very similar to VTS
in that the corrupting influences on the speech are modeled as a constant
linear filter and stationary additive noise. The major difference between VTS
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and CDCN is that CDCN compensation is based on modeling the effect of
noise on the mean values of speech features, while VTS incorporates an
explicit characterization of the effects of noise on the variance of these fea-
tures as well. In addition, CDCN compensation is performed directly on the
cepstra of noisy speech rather than on log-spectra as is the case for VTS. The
relationship between the cepstrum of a noisy segment of speech y, and that
of the underlying clean speech s, is easily obtained by taking the discrete
cosine transform (DCT) of both sides of Equation (9.36) as

(9.49)

where , , , , and
IDCT denotes inverse DCT. The same relation can also be expressed as

(9.50)

Both forms of the relation are used in the CDCN algorithm. Equation (9.49)
is used in the estimation of the channel parameters, and Equation (9.50) is
used to estimate the noise. h is assumed to be relatively constant from frame
to frame. The noise is assumed to be characterized entirely by the vector n
and no explicit variance is associated with it, although it is acknowledged
that the exact noise sequence can vary from analysis window to analysis
window. Both h and n are unknown and must be estimated.

In order to estimate these parameters, it is assumed that the probability
distribution of the cepstral vectors of clean speech can be characterized by
a mixture Gaussian:

(9.51)

where, as in VTS, all covariance matrices , are assumed to be diagonal.
CDCN assumes that the effect of the noise and linear filter is to change the
means of the Gaussians in Equation (9.51) to , which is given by

(9.52)

The likelihood of any noisy vector y is therefore assumed to be given by

(9.53)

Both h and n are estimated such that the total likelihood of all the cepstral
vectors in the noisy utterance, as computed using Equation (9.53), is maxi-
mized. This leads to the following iterative solution.9
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We represent the ith estimate of  and  as  and , respectively. The
a posteriori probability of the kth Gaussian for any noisy cepstral vector ,
based on these values, is given by

(9.54)

In order to obtain the (i + 1)th estimate of the channel  and noise , we
represent the tth cepstral vector of the noisy utterance as , and define
the variables  and  as

(9.55)

(9.56)

The (i + 1)th estimates  and  are now given by

(9.57)

(9.58)

In order to initialize the algorithm, the channel is usually initialized as the
difference between the average value of the noisy cepstral vectors and the
global mean of the distribution of the cepstral vectors of clean speech. The
noise is initialized as the mean of the cepstral vectors of speech frames whose
total energy lies below a threshold. Equations (9.57) and (9.58) are then
iterated until the likelihood of the noisy utterance converges. As in VTS, in
practice, it is sufficient to run two or three iterations of the algorithm and
likelihood convergence is not required.

Once the final estimates of the noise and channel parameters,  and 
have been obtained, every noisy cepstral vector is replaced by an MMSE
estimate of the corresponding cepstral vector of the underlying clean speech
signal:

(9.59)

where  is the a posteriori probability of the kth Gaussian computed
using the final estimates of the noise and channel parameters in Equation
(9.54). Recognition is now performed with the estimated clean speech cepstra.
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Cepstral and Spectral High-Pass Filtering

Cepstral high-pass filtering provides a remarkable amount of robustness at
almost zero computational cost. Approaches based on cepstral high-pass fil-
tering can compensate for the effects of both linear filtering and additive noise.

Cepstral mean normalization (CMN) is one of the most common ways of
accomplishing cepstral high-pass filtering. It is a very simple procedure
whereby the mean of the cepstral vectors in any utterance is subtracted out
of all the cepstral vectors. If we represent the tth cepstral vector in an
utterance with T cepstral vectors as , CMN can be denoted as

(9.60)

The recognition system is now both trained and tested using  instead of
. CMN effectively subtracts the short-term average of cepstral vectors from

the incoming cepstral coefficients, which cancels out any long-term average
shift in the values of the vectors that has been introduced by environmental
effects. Because the operation of convolution in the time domain maps into
addition in the cepstral domain, cepstral high-pass filtering can, in principle,
compensate completely for the effects of stationary unknown linear filtering,
provided that the impulse response of the filter characterizing the degrada-
tion is not significantly greater in duration than the frame length.

The other popular high-pass filtering approach is the well-known relative
spectral processing (RASTA),15 which was originally motivated by a desire to
emphasize the transient components of the speech signal, as is done by the
peripheral auditory system. The difference equation

(9.61)

implements a causal version of the original RASTA filter. Although this dif-
ference equation actually specifies a bandpass filter, its high-pass section can-
cels long-term shifts in cepstral coefficients in a fashion similar to that of CMN.

High-pass filtering can also be applied directly in the power spectral
domain to compensate for the effects of additive noise in a similar fashion.
Morgan and Hermansky have proposed the J-RASTA method,16 which uses
high-pass filtering approaches to compensate jointly for the effects of addi-
tive noise and linear filtering by passing incoming spectral coefficients
through the transformation

(9.62)

before applying Equation (9.61) or Equation (9.60) to the output coefficients
. This transformation is linear for small values of , causing spectral
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coefficients to be high-pass filtered directly at low SNRs which tends to com-
pensate for the effects of additive noise. At larger values of  the spectral
coefficients are transformed into log-spectral coefficients, and the high-pass
filtering operation now compensates for the effects of linear filtering.

Discussion of Relative Merits of the Methods

Although several methods have been described in this chapter, not all of
them are equally applicable in all situations. For example, in situations where
the speech recognizer is an externally provided module (as in the case of
commercial recognition engines) and no access has been provided to the
features that the recognizer computes from the speech signal, it is only
possible to use signal compensation methods. Even in systems where one
has access to the features, it may still not be possible to use the feature
compensation methods described in this chapter if the features used are not
based on log-spectra or cepstra. Once again, only signal compensation meth-
ods can be applied.

Among the signal compensation methods, linear spectral subtraction (LSS)
is easily the simplest to implement and the least expensive in terms of
computational resources. It is very effective where the noise corrupting the
signal is actually additive and varies slowly with time, as in the case of
automotive noise. Table 9.1 shows the recognition performance obtained on
noisy speech with and without LSS compensation. LSS is observed to result
in large improvements in accuracies over the baseline (where no compensa-
tion is performed), although a large component of the corruption is due to
linear filtering, which it is not expected to compensate for.

TABLE 9.1

Word-Recognition Accuracies on Speech Recorded 
Using a Close-Talking Microphone (CLSTK) and 
Crown PZM (CRPZM) Desktop Microphone in a Noisy 
Environment

CLSTK (%) CRPZM (%)

BASELINE 85.3 18.6
LSS (MSUB) N/A 63.6
CDCN 85.3 74.9

Note: The recognizer was trained using CLSTK speech. Rec-
ognition accuracies obtained without compensation
(baseline) and with LSS and CDCN compensation of
the test data are shown.

Source: From Acero, A., Acoustic and Environmental Robust-
ness in Automatic Speech Recognition, Ph.D. thesis, Carnegie
Mellon University, Pittsburgh, PA, 1990. With permission.

Jxt
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NSS is essentially an enhanced version of LSS, and performs better. Table
9.2 compares the performance of LSS and NSS on speech corrupted by the
noises of moving cars. NSS is, however, rather more expensive computation-
ally than LSS and the implementation is somewhat more involved. Both LSS
and NSS are ineffective when the characteristics of the corrupting noise
change quickly with time, or when the noise is not strictly additive (e.g., if
the signal has undergone any kind of nonlinearity).

Wiener filtering, in the form presented in this chapter, is essentially a form
of spectral subtraction. However, several enhanced versions of the algorithm
have been proposed in the literature (e.g., References 17 and 18). These
methods have generally proved to be more effective than spectral subtrac-
tion, but are also significantly more expensive computationally. They also
fail when the noise is not additive or if it is nonstationary.

Feature compensation methods are generally much more effective than
signal compensation methods. For example, we see in Table 9.1 that CDCN,
which is a feature compensation method, results in much better recognition
than LSS, which is a signal compensation method. Feature compensation
methods are useful when one has control over the features going into the
recognizer, but not on the parameters of the statistical models used by the
recognizer themselves. Figure 9.4 compares the performances of RATZ, VTS,
and CDCN on speech corrupted by white noise when the recognizer has
been trained with clean speech. Of the feature compensation methods, RATZ
is computationally the cheapest, since there is no estimation of parameters
performed during recognition. It is also at least as effective as the other

TABLE 9.2

Recognition Accuracy on Speech Recorded in Cars 
Moving at Various Speeds

Database NO COMP. (%) LSS (%) NSS (%)

MATRA 90 74 96.2 98.6
MATRA 130 54 93.3 96.8
ENST 110 64.5 90 94.9
CSELT 70 99.2 100 100
CSELT 130 83 98.4 99.7

Average 94.8 95.6 98
Std. Dev. 20.7 5.6 2.9

Note: The acronyms in the name of the database refer to
the organization that collected the data and the
numbers beside the acronyms indicate the speed
of the car in kilometers per hour. The recognizer
was trained on data collected in a parked car. NSS
is observed to halve the percentage of wrongly
recognized words as compared to LSS.

Source: From Lockwood, P. and Boudy, J., Experiments
with a nonlinear spectral subtractor (NSS), hidden Mark-
ov models and the projection, for robust speech recogni-
tion in cars, Speech Communication, 11, 215–228, 1992.
© 1992 by Elsevier Science. With permission.
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methods and has the added advantage that it does not explicitly assume any
particular form for the corrupting transformation. However, the requirement
of stereo adaptation data for learning the relationship between the feature
vectors of clean and noisy speech may sometimes be unrealistic. VTS and
CDCN do not require stereo data and estimate the noise and channel param-
eters based only on the noisy utterance. The trade-off is that this estimation
is computationally expensive. Of the two, CDCN is computationally less
expensive, and has the added advantage that it has been observed to be
effective even when the recognizer has not been trained with clean speech.
VTS, on the other hand, is more effective than CDCN, but only when the
recognizer has been trained with clean speech. However, both VTS and
CDCN become ineffective if the corrupting transformations on the signal
cannot be properly modeled as the combination of a linear filter and additive
noise. Even when the model is appropriate, they are ineffective if the noise
is nonstationary, although enhancements to the VTS algorithm have been
proposed that are effective for time-varying noises.13

Of all the methods presented in this chapter, CMN is perhaps the most
ubiquitous. It has been shown to improve recognition performance across the
board under all kinds of conditions even when other compensation methods
are applied or when there is no noise. Most speech recognition systems apply
CMN or RASTA by default. All results in Figure 9.4 were obtained, for
example, on a system where CMN was also performed. Figure 9.5 shows a
typical comparison of performances obtained with and without CMN.

It must be noted that there are several other important techniques (e.g.,
References 19 and 20) within the categories mentioned in this chapter. The
treatment in this chapter is not exhaustive and is only meant to give the
reader a first glimpse of the kinds of algorithms and methods used for noise
robustness in speech recognition systems. Several review papers and books
(e.g., References 21 through 23) provide more comprehensive accounts of
other techniques used.

FIGURE 9.4
Recognition accuracy on speech corrupted by white noise as a function of the SNR when various
feature compensation algorithms are applied. The recognition system was trained with clean
speech. The baseline recognition accuracy obtained when no compensation is applied is also
shown. (From Raj, B. et al., Cepstral compensation by polynomial approximation for environ-
ment-independent speech recognition, Proc. ICSLP, 1996. © IEEE. With permission.)
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Introduction

 

In this chapter we describe some important model compensation and
matched condition techniques used in speech recognition systems. As men-
tioned in Chapter 9, model compensation methods modify the statistical
models used to recognize noisy speech, in order to reduce the mismatch
between the distributions of the noisy speech and those used by the recog-
nizer. Matched condition techniques, on the other hand, attempt to perform
recognition based only on those components of the noisy speech that are
matched with the recognizer. Some key model compensation techniques that
we describe in this chapter are model decomposition, parallel model com-
bination (PMC), maximum likelihood linear regression (MLLR), maximum

 

a posteriori

 

 (MAP) adaptation, and extended maximum 

 

a posteriori

 

 (EMAP)
adaptation. Under matched condition techniques, we primarily describe
missing feature methods.

Most of the compensation methods described in this chapter assume that
the recognizer uses hidden Markov models (HMMs) to model speech. Since
most model compensation and matched condition techniques take into con-
sideration the specific model used by the recognizer, we begin with a brief
description of HMMs.

 

Hidden Markov Models

 

In the HMM representation of speech, it is assumed that each sound unit has
several states. Every instance of the unit is assumed to consist of subsegments,
each belonging to one of these states. The distribution of the data vectors in
subsegments belonging to any state is called the 

 

state output distribution

 

 of
that state. The model assumes that the underlying process that generates the
sounds follows a sequence of states, generating a sequence of stochastic
observation vectors with characteristics that are specified by the state output
distributions of these states. The model follows the Markovian assumption
that the 

 

a priori

 

 probability that a vector belongs to a state  is dependent
only on the identity of the state  that the previous vector belonged to. This
is called the 

 

state

 

 

 

transition probability

 

 of transiting from state  to state . The
pattern of allowed state transitions within an HMM is called its 

 

topology

 

.
Figure 10.1 shows the topology of a typical three-state HMM.

The statistical parameters of an HMM are its set of state transition prob-
abilities and the set of state output distributions. For any state, the transition
probabilities from that state to any other state must sum to 1. In speech
recognition systems, the state output distributions are usually modeled as
Gaussians or mixtures of Gaussians (e.g., see Reference 1). Typically, these

j
i

i j
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Gaussians are assumed to have diagonal covariance matrices for computa-
tional efficiency. If we represent the state output probability of the 

 

k

 

th state
of the HMM for unit  by , where  represents any feature vector
that belongs to that state then

(10.1)

where  denotes a Gaussian mixture distribution corresponding
to the 

 

k

 

th state with parameters . The Gaussian mixture has the form

(10.2)

where  is the 

 

mixture weight

 

 of the 

 

j

 

th Gaussian , with
mean  and variance .

In most speech recognition systems the basic sound units modeled by
HMMs are 

 

subword

 

 units, i.e., sound units that are smaller than words, which
can be used to compose words. HMMs for longer units, such as words or
word sequences, are obtained by concatenating the HMMs for the constituent
subword units. Figure 10.2 shows such a construction.

Although the topology of the HMM can be learned from data,

 

2

 

 it is usually
prespecified. The state transition probabilities and the parameters of the state
output distributions for the HMM of any unit are learned from examples of
that unit. The examples used are referred to as “model training data” or

 

FIGURE 10.1

 

A three-state Bakis topology HMM with a nonemitting terminating state. In this topology, the
system can skip from state 1 to state 3, bypassing state 2 completely. This implies that although
the most general realization of the sound has three distinct stages, some realizations may not
exhibit the second stage.

 

FIGURE 10.2

 

Concatenation of HMMs representing subword units to create a longer HMM.

1 2 3

U PU k, X( ) X

PU k, X( ) M X LU k,;( )=

M X LU k,;( )
LU k,

M X LU k,;( ) cU k j, , G X mU k j, , FU k j, ,,;( )
j

Â=

cU k j, ,

2p( )d FU k j, ,

-----------------------------------e
0.5 X mU k j, ,–( )T FU k j, ,

1–
X mU k j, ,–( )–

j
Â=

cU k j, , G X mU k j, , FU k j, ,,;( )
mU k j, , FU k j, ,

Unit 1 Unit 3Unit 2

 

0949_frame_C10  Page 247  Tuesday, March 5, 2002  1:43 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



   

simply “training data.” Any speech signal, or 

 

utterance

 

, is now recognized
using the following rule:

(10.3)

where  represents the sequence of feature vectors for that utterance, 
represents word sequences, and  represents the recognized word
sequence.  represents the probability of  given by the HMM for

 and is given by

(10.4)

where  is the joint probability of observing vector
sequence , and the 

 

t

 

th vector in the sequence belonging to state . This
can be derived using the Baum-Welch algorithm,

 

1

 

 which can also be used to
derive , the 

 

a posteriori

 

 probability that the 

 

t

 

th vector belongs to state 

(10.5)

The 

 

a posteriori

 

 probability of the 

 

j

 

th Gaussian in the state output distribution
of state  is given by

(10.6)

In practice,  in Equation (10.3) is approximated as:

(10.7)

where  represents a state sequence, i.e., a sequence of states, one for every
feature vector in :

(10.8)

where  is the total number of vectors in . Equation (10.7) can be computed
using the Viterbi algorithm,

 

3

 

 which is much less computationally expensive
than the Baum-Welch algorithm.
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Model Compensation

In model compensation methods, the distributions of speech vectors that
are modeled by the recognizer are transformed to represent the distribu-
tions of the noisy test speech. The transformation may be such that it
modifies the basic structure of the statistical model, i.e., the HMM, e.g.,
model decomposition,4 or merely modifies its state distributions, without
affecting the topology. The latter type of transformations can either be based
on analytical characterizations of the effect of noise, e.g., PMC, or on empir-
ical evidence obtained from noisy data. Methods based on empirical evi-
dence can further be categorized as those that modify parameters based
only on the empirical evidence obtained from noisy data, e.g., MLLR,5 and
those that use a priori information about the statistical distribution of
parameters of state distributions, e.g., MAP6 and EMAP7,8 adaptation. In
the following section we briefly describe the model decomposition, PMC,
MLLR, MAP, and EMAP methods.

Model Decomposition

In model decomposition,4 corrupting noises and clean speech are both mod-
eled explicitly using HMMs. The HMMs for the speech and the noises are
trained independently of each other. During recognition the noise and the
speech are simultaneously recognized using the noisy speech samples by
constructing “compound” HMMs from the HMMs for the noise and speech.

Consider a speech HMM with  states and a noise HMM with  states.
At each instant of time, the noise could belong to any of the  noise states.
The clean speech could belong to any of the  clean speech states. Since the
observed noisy speech is a combination of clean speech and noise, it can
belong to one of  states. Consequently, the compound HMM for the
noisy speech has  states, each of which is a combination of a state from
the speech HMM and one from the noise HMM. Transitions are allowed
between any two states of the compound HMM if transitions are also per-
mitted between the corresponding component states of the noise and clean
speech HMMs. If we represent the state obtained by combining state  of
the noise HMM and state  of the clean speech HMM as state , and
the transition probability between any state  and any state  as , the
transition probability between state  and state  is given by

(10.9)

Figure 10.3 shows the topology of a typical compound HMM. The state
output distribution of any state  must be computed from the distri-
butions of states  and , based on the relationship between the feature

K L
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vectors of the noisy speech and those of the clean speech and the noise.
When the feature vectors used are log-spectral vectors, and the noise is
assumed to be additive and uncorrelated with the speech, the relationship
between any log-spectral vector  of the noisy speech and the corresponding
log-spectral vectors of the clean speech  and the noise  is given by

(10.10)

For model decomposition this is usually approximated as

(10.11)

If the state distribution of state  of the noise HMM is represented as
 and that of state  of the clean speech HMM as , then the

approximation in Equation (10.11) gives us the following form for the state
probability of the compound state 

(10.12)

When the state distributions are Gaussians or Gaussian mixtures, Equation
(10.12) is easy to compute. Recognition is now performed using the com-
pound HMMs for the noisy data. In practice, compound HMMs are not
explicitly constructed. Rather, compound states are composed dynamically

FIGURE 10.3
Combining two-component HMMs A and B to construct the compound HMM AxB. In the
compound HMM, the empty circles represent states that are combinations of states with self-
transitions, shaded circles are combinations of a state with self-transition and a state with no
self-transition. The solid circle represents the combination of two states with no self-transitions.
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during recognition. Since the speech recognizer would derive the best state
sequence in the compound HMM along with the hypothesized word
sequence, the best sequence of states through the noise HMM is also implic-
itly obtained. This can be used to obtain an estimate of the dynamics followed
by the noise along with the hypothesized word sequence.

Parallel Model Combination

In PMC,9 the distributions of the clean speech are modified to approximate
the distributions that optimally represent the noisy test speech. These dis-
tributions are modeled by HMMs whose state distributions are Gaussian
mixtures. Once again, it is assumed that the noise is additive and uncorre-
lated with the speech and that any filtering effects on the signal can be
modeled by a linear filter. The HMMs for the various sound units are trained
with the cepstral vectors of clean speech. The HMM for the noise signal is
trained using the cepstra of separately recorded instances of the noise. In
most practical implementations of PMC, however, the noise is assumed to
be modeled by a Gaussian mixture, and not an HMM, which can be viewed
as an HMM with only one state. The parameters of the noise and clean speech
HMMs are used along with an analytical model of the effect of noise on the
feature vectors of clean speech to determine the optimal distributions to
represent the noisy speech.

In a speech recognition system, in addition to cepstra, higher-order fea-
tures such as difference and double-difference cepstra are also used. The tth
difference cepstral vector, , is computed as . The
tth double-difference cepstral vector, , is computed as 

. Typically . For PMC, it is assumed that .
The entire tth feature vector actually used by the recognizer is given by

(10.13)

It is assumed that any feature vector  derived from the noisy speech
has two components, a clean speech feature vector  and a noise feature
vector . The cepstral components of these feature vectors are assumed
to be related in the following manner:

(10.14)

where  represents the natural logarithm,  represents the cepstral vec-
tor representing the time-invariant linear filter, and  and  represent the
transform matrices for the discrete cosine transform and the inverse discrete
cosine transform, respectively. The following relations can now be derived:9

(10.15)
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(10.16)

The complete noisy feature vector is given by .
The distribution of  clearly depends on the distributions of  and

. If the HMM for clean speech has  states and that for the noise has
 states, then  can have one of  distributions and  can have one

of  distributions at any time instant. Thus,  can be in one of 
states with the distribution:

(10.17)

where  represents the state of ,  represents the state of , and
 represents the corresponding state of . For any value of

 the region of the integral  covers all  pairs that give rise to
that value of . The integral in Equation (10.17) has no closed form when

 and  are Gaussian mixtures.
In PMC, it is assumed that the distribution of  can also be well

modeled by a Gaussian mixture. Therefore, instead of attempting to explic-
itly solve Equation (10.17), the Gaussian mixture distribution of  is esti-
mated using fabricated examples of noisy speech feature vectors. The
fabrication is done by generating examples of clean speech feature vectors
and noise feature vectors using the state distributions of  and , respec-
tively, and combining them using Equations (10.14), (10.15), and (10.16). For
computational expediency, it is usually assumed that  has exactly
as many Gaussian components as . The EM algorithm10 is used to
compute the parameters of , which is initialized with the param-
eters of . Recognition is now performed with .

Maximum Likelihood Linear Regression

In MLLR,5 model parameters are modified to better fit the noisy test data
based on empirical evidence derived from samples of the noisy speech.
Specifically, the means of the Gaussians in the state output distributions of
the recognizer are modified by a simple transform that results in rotation
and translation of the mean vectors (i.e., an affine transform). The parameters
of this affine transform are learned from the test data.

Representing the state output probability of the ith state of the HMM for
unit  by :
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(10.18)

where  represents a Gaussian with mean  and vari-
ance , as in the section “Hidden Markov Models.” In MLLR we assume
that, in order to best represent the noisy speech, this gets modified to

(10.19)

where the relationship between  and  is given by the affine trans-
form

(10.20)

Note that in the formulation in Equation (10.20), the same affine parameters
A and B are applied to the means of all Gaussians of all states of all the
sound units (i.e., they are independent of , , and ). In more refined
versions of MLLR, a single  and  may be applied only to a subset of the
Gaussians in the recognition system, requiring several sets of affine param-
eters to adapt all the Gaussians in the system.5

The matrix  and the vector  are estimated from examples of noisy data,
which are called the adaptation data. Since the distributions of the states in
the HMMs for the sound units must be modified, the transcriptions of the
adaptation data are also required. The transcriptions may either be provided
to the system, or be obtained through a preliminary attempt at recognizing
the noisy speech. The former case is referred to as supervised MLLR adapta-
tion of acoustic models. The test data in this case are different from the
adaptation data. The latter case is known as unsupervised MLLR adaptation.
Here the test data and the adaptation data are identical.

The parameters  and  are estimated to maximize the likelihood of the
noisy adaptation data computed using HMMs whose state distributions
have been modified as in Equation (10.19). Direct maximization of the like-
lihood is not possible and an EM-based iterative solution is used, which is
as follows.

Let  be the word sequence, or transcription, corresponding to the adap-
tation data. Let  and  represent the estimates for  and  after the ith
iteration. Let  represent the tth vector in the sequence of feature vectors
for the adaptation data. Let  represent the a posteriori probability
that  was generated by the kth Gaussian of the jth state of the HMM
for , computed using  and . As mentioned in the section “Hidden
Markov Models,”  can be computed using the forward-backward
(or Baum-Welch) algorithm.1 The (i + 1)th iteration of  and  can be
obtained by jointly solving the following equations:
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(10.21)

(10.22)

where  and  are the covariance matrix and mean, respectively, of the
kth Gaussian in the state output distribution of the jth state. Note that the
subscript  has been dropped for notational simplicity.

The solution for  and  can be significantly simplified if the cova-
riance matrices of all Gaussians are diagonal. Let  represent the element
in the jth row and lth column of , and  the jth element of . Let

 represent the lth diagonal element of . Similarly, let  represent
the lth component of . Let  represent the lth component of .

We can now solve for each row of the matrix  and the corresponding
element of  independently of all other terms in them. To solve for the
nth row of , i.e., , where  is the dimensionality of the
feature vectors, and the corresponding element of , , we define a

 matrix  such that , the element in its lth row and mth
column is given by

(10.23)

We define a  dimensional vector  such that its lth element  is
given by

(10.24)

Solving

(10.25)

results in the  dimensional vector . The nth row of  and
the corresponding elements of  are now given by
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(10.26)

where  represents the lth component of . All elements of  and 
can now be estimated in this manner. Since this is an iterative algorithm, the
affine parameters must be initialized.  is usually initialized as an identity
matrix and  with the zero vector.

Typically, one or two iterations of the EM algorithm are sufficient to obtain
good estimates of  and . The means of all the Gaussians in the recognizer
are now transformed as in Equation (10.20) and the transformed means are
used for recognition.

Maximum a posteriori Adaptation

In MAP adaptation,6,11 model parameters are reestimated based on examples
of the noisy data and prior knowledge of the distributions of the parameters.
Mathematically, the reestimation of the model parameters can be repre-
sented as

(10.27)

where  represents an arbitrary set of model parameters and  is the MAP
estimate of the model parameters that best represent the noisy data .

 is the likelihood of the noisy data when  are the model parameters.
 represents the a priori distribution of model parameters. The nature of

this distribution may be best explained by noting that the value of  that
best represents any given noise condition differs from the best value of 
for any other noise condition. If we were to gather the  values for every
possible noise condition and compute their distribution,  would be that
distribution. In reality, this distribution can never truly be known and must
be approximated. The term within the brackets on the right hand side of
Equation (10.27) represents the a posteriori distribution of . The value of 
at which this term is largest is the MAP estimate for .

Typically, the means of the various Gaussians in the HMM are adapted
using noisy adaptation data for which transcriptions are available. The Gaus-
sians are assumed to be independent of each other. As a result, the joint a
priori distribution of the means of all the Gaussians is simply the product of
the a priori distribution of the individual mean vectors. MAP estimation of
all the means can be achieved by simply adapting each of the means inde-
pendently of all others.

The a priori distribution of the mean vectors of any Gaussian is also
assumed to be Gaussian. Representing the mean of the kth Gaussian of any
state  as , the a priori distribution of the mean can be represented as

an l,
i 1+ Zl   0 l d£ £=

bn
i 1+ Zd 1+            =

Zl Z Ai 1+ Bi 1+

A0

B0

A B

l̂ maxl P Y l( )P l( ){ }arg=

l l̂
Y

P Y l( ) l
P l( )

l
l

l
P l( )

l l
l

q mq k,

0949_frame_C10  Page 255  Tuesday, March 5, 2002  1:43 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



(10.28)

where  and  are the mean and variance of the a priori distribution
of . These parameters must be known beforehand and must be learned
in advance. In order to learn  and , we need well-trained state
distributions for the state , trained under different noise conditions. Let

 represent the mean of the kth Gaussian of , under the nth noise
condition. Let  represent the mean of the state when the system has been
trained by pooling all the noisy data together. This mean is then identical to
the estimate of the mean of the a priori distribution of the means:

(10.29)

The variance of the a priori distribution of the means can simply be estimated as

(10.30)

where  is the number of noise conditions for which  is available.
The summation is over all types of noise. The variance given by the above
equation can sometimes underrepresent the true variance, especially when
the types and number of noise conditions available are small. Therefore, the
variance is sometimes estimated as

(10.31)

where  is the mean of the kth Gaussian estimated using all but the nth
noise condition.

The MAP estimate of  is now obtained in an iterative manner. Let 
represent the tth vector in the sequence of feature vectors for the adaptation
data being used to obtain the MAP estimates of the means. Let  rep-
resent the a posteriori probability that  was generated by the kth Gaussian
of , computed using the MAP estimates of the means that were obtained
in the ith iteration.  can be obtained using the Baum-Welch algorithm.
We define the quantities  and  as

(10.32)

(10.33)
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 is the total expected number of vectors associated with the kth Gaussian
of state  and  is an estimate for  based only on the observed
adaptation data (without considering the a priori distribution). The (i + 1)th
estimate of , , is now obtained as

(10.34)

where  is the variance of the kth Gaussian of . Note that when  is
very large,  is simply . When it is very small,  becomes the
mean of the a priori distribution, .

The algorithm is initialized by setting the initial value  to the
unadapted means. Typically, one or two iterations are sufficient to obtain
good estimates of the adapted means. MAP estimates can also be obtained
for the variances and mixture weights of the Gaussians. However, most of
the improvement in performance is obtained from adapting the means and
usually only these are adapted. The interested reader is referred to References
6 and 8 for details of MAP adaptation of variances and mixture weights.

One common problem with MAP estimation as described above is that
it is frequently not possible to match the kth Gaussian of a state in the HMM
for one noise condition with the kth Gaussian of the corresponding state
for a different noise condition, due to variations in indexing in the HMMs
for the various noise conditions. As a result, it is not possible to learn 
and , the parameters of the a priori distributions of the means. To
circumvent this problem, instead of adapting each of the Gaussians in any
state  individually, the mixture Gaussian distribution for  is collapsed
into a single Gaussian. The parameters of this single Gaussian are now
given by

(10.35)

The parameters of the a priori distribution of  can be obtained by
similarly collapsing the mixture Gaussians in the state distributions of all
the noise conditions from which they are learned. MAP adaptation can now
be performed for . The MAP estimates of the means of the individual
Gaussians in the original Gaussian mixture for  are then obtained as

(10.36)

where  is the MAP estimate of .
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Extended Maximum a posteriori Adaptation

MAP adaptation has the shortcoming that the parameters of the various
Gaussians in the state output distributions are adapted independently of
each other. As a result, in order to properly adapt all the Gaussians to the
noisy data, it is necessary to have adaptation data that contain vectors rep-
resenting each of them. In practical situations, however, the amount of adap-
tation data available is limited and this condition is not usually satisfied,
making the adaptation incomplete.

EMAP adaptation7 tackles this problem by utilizing the correlations
between the parameters of the various Gaussians in the adaptation proce-
dure, thereby making it possible to adapt the means of any Gaussian even
if there are no adaptation data associated with it.

In EMAP adaptation, the means of all the Gaussians in all the states are
concatenated into a single extended mean vector  as follows:

(10.37)

where  represents the mean of the jth Gaussian in the ith state in the
recognizer.  represents the total number of states in the recognizer. We also
define an extended covariance matrix , as this will be required for the
EMAP estimation.

(10.38)

where  represents the covariance matrix of the jth Gaussian in the ith
state in the recognizer.  is a block diagonal matrix whose diagonal blocks
are the various s.

The a priori distribution of  is also assumed to be Gaussian with mean 
and variance . These are learned from the extended mean vectors of HMMs
trained under various noise conditions. If we let  represent the extended
mean vector for the nth noise condition and  as the extended mean vector
of the HMM trained by pooling all the noisy data together, we have

(10.39)

(10.40)

where  is the number of noise conditions for which  is available. As in
the case of MAP, the variance given by Equation (10.40) can underrepresent
the true variance. Therefore, Equation (10.40) is sometimes modified to
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(10.41)

where  represents the extended mean vector of the HMM trained using
all but the nth noise condition.

As in the case of MAP, EMAP estimation is also iterative. Let  repre-
sent the tth vector in the sequence of feature vectors for the adaptation data
being used to obtain the EMAP estimates of the means. Let  represent
the a posteriori probability that  was generated by the kth Gaussian of
state , computed using the EMAP estimates of the means that were
obtained in the ith iteration. We define the quantities  and , the
extended vector , and the extended matrix  as

(10.42)

(10.43)

(10.44)

(10.45)

where  is a  identity matrix, i.e., a  matrix where all diagonal
elements are 1 and all off-diagonal elements are 0. The (i + 1)th estimate of
the extended mean is now obtained as

(10.46)

Once again, we observe that as the amount of evidence from the adaptation
data increases, i.e., as the components of  get larger, the estimate asymp-
totically approaches , the estimate obtained from the data alone without
considering the a priori distributions.

The algorithm is initialized by setting the initial value  to the unadapted
means. Typically, one or two iterations are sufficient to obtain good EMAP
estimates of the means. The adapted means of the individual Gaussians can
now be obtained from the adapted extended mean vector. Although EMAP
estimates can also be obtained for the variances and the mixture weights of
the Gaussians, these involve more detailed procedures and are prone to
estimation errors. They are, therefore, not usually performed. Details about
these procedures can be found in Reference 8.

One problem with EMAP is that, as in MAP, sometimes the parameters of
the a priori distribution of the means cannot be uniquely obtained due to
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noncorrespondence of indices of the Gaussians in the state output distribu-
tions of the HMMs for the various noisy conditions from which these param-
eters are learned. The solution used to tackle this problem is also similar to
the one used in MAP: the mixture Gaussian distributions of the various states
are collapsed into a single Gaussian and the means of these single Gaussians
are adapted. The difference between the adapted and unadapted mean for
any state is then added back to the means of each of the Gaussians in the
original Gaussian mixture distribution for that state.

A second problem is that the matrix  is very large and inverting it may
be computationally intractable. Workarounds have been proposed that use
only the largest correlations in  to reduce the rank of the overall solution.
More details of these approaches can be found in Reference 8.

Matched Condition Techniques

In matched condition techniques, recognition is performed using a recog-
nizer that is exactly matched to the noisy test data. This is achieved either
by explicitly training the recognizer on data that are similar to the test data
being recognized, or by performing recognition based only on those com-
ponents of the test data that are matched with the recognizer. In this section,
we briefly describe matched condition and multistyle training, which are exam-
ples of the former method, and some missing feature techniques, which are
examples of the latter.

Matched Condition and Multistyle Training

The simplest solution to optimal recognition of noisy speech is to train the
recognition system with speech that has been corrupted by noise in an
identical manner to the test speech. This is referred to as matched condition
training. Unfortunately, it is frequently difficult, if not impossible, to obtain
sufficient quantities of training data that have been recorded under noise
conditions identical to those that are expected in the operating environment.
The alternative is to train the system using large quantities of training data
from varied noise environments. The diversity of the training data is
expected to help account for the noise conditions of the test data even if
those precise noise conditions were never seen. This approach is referred to
as multistyle training12 and, when sufficient types of noise conditions are
available, has also been proved to be highly effective.

Missing Feature Techniques

In missing feature methods, only those components of the test data that
match the distributions modeled by the recognizer are used. Mismatched

F

F
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components are deemed to be unreliable, or “missing,” and are either
ignored completely or are discarded and reconstructed on the basis of
reliable components. Reliable and unreliable components are usually iden-
tified in time-frequency representations or spectrographic representations
of the speech signal.

Signal representations used in missing feature analysis typically consist of
a sequence of spectral (or log-spectral) vectors derived from the speech
signal, one for each analysis segment, or frame, in the speech signal. When
test data are recorded in a noisy environment, the components of the features
that are most affected by the corrupting noise are those for which the local
signal-to-noise ratio (SNR) is low. In missing feature methods, the recognizer
is usually trained using clean speech. Hence, the judgement of whether or
not (or the extent to which) a particular feature component is reliable or
unreliable is made on the basis of local SNR, with components less than
some specified threshold considered to be unreliable and treated as “miss-
ing.” Recognition is then performed using an “incomplete” spectrogram of
the noisy speech signal that is composed of incomplete log-spectral vectors.
Figure 10.4 shows a typical incomplete spectrogram derived from the spec-
trogram of a noisy speech utterance.

The regions of the spectrogram considered to be unreliable are actually
not completely devoid of information regarding the underlying speech
signal. If the corrupting noise is additive and uncorrelated to the speech,
the value of any unreliable component establishes an upper bound on the
value of that component of the underlying clean speech signal. If we rep-
resent the jth frequency component of the ith frame of a clean speech signal
as , and the same component of the signal after corruption by noise
as , then . This information can also be utilized by
missing feature methods.

There are two approaches to performing recognition with incomplete spec-
trograms. In the first approach, the recognizer is modified to perform rec-
ognition directly with incomplete spectrograms. Marginalization13 and class-
conditional imputation14 are examples of such methods. In the second
approach, the unreliable regions of the incomplete spectrogram are recon-
structed based on the values of the reliable regions and the known statistical
properties of clean speech spectrograms. Covariance-based reconstruction15 and
cluster-based reconstruction15 are examples of such methods.

The most important step in missing feature methods is that of identifying
unreliable regions of the spectrogram. This is a difficult problem which is
usually solved by maintaining a running estimate of the spectrum of the
noise and using it to estimate the local SNR of the spectrographic elements.
Unreliable elements are identified based on the estimated SNR.16 An alter-
nate approach treats the problem of identifying unreliable elements as one
of classification.17 In the following subsections, we briefly describe these
methods. In subsequent sections, we describe marginalization, class-condi-
tional imputation, covariance-based reconstruction, and cluster-based
reconstruction.

S i j,( )
Y i j,( ) Y i j,( ) S i j,( )≥
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FIGURE 10.4
The top panel shows the spectrographic representation of an utterance that has been corrupted
to 15 dB by white noise. The bottom panel shows the same figure when all time-frequency
elements with SNR less than 0 dB have been erased. Only the remaining incomplete spectro-
gram is available for recognition. (From Raj, B., Reconstruction of Incomplete Spectrograms
for Robust Speech Recognition, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, 2000.
With permission.)
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Identifying Unreliable Components

An unreliable component of a spectrogram is generally defined as one with
a local SNR that lies below a threshold. The optimal value of this threshold
is usually about 0 dB. In practical situations, the unreliable components must
be identified without a priori knowledge of the true SNR of the spectro-
graphic elements. The matrix of tags that indicates the reliability of compo-
nents is called a spectrographic mask.

Mask Estimation Using Running Noise Estimates

Here a running estimate of the noise spectrum is obtained. This is usually
done using the following rule to estimate , the magnitude of the kth
frequency component of the noise in the tth frame:

(10.47)

This is the same rule used in spectral subtraction discussed in Chapter 9. l
usually lies between 0 and 1 and  lies between 2 and 5. The estimated noise
spectrum can be used to estimate the SNR of any spectrographic element as

(10.48)

All elements for which this value lies below a threshold are considered
unreliable.16

Mask Estimation Using a Binary Classifier

In this method, a classifier is used to identify unreliable elements of the
spectrogram. Each element in the spectrogram of the noisy speech is repre-
sented by a vector of features. The features are chosen to exploit character-
istics of the speech signal that distinguish it from noise. Such features
represent information such as the harmonicity and periodicity of the signal,
subband energy levels, and spectral contours. The specific details of the
features used are beyond the scope of this text and can be found in Reference
17. A classifier is trained using the feature vectors of spectrographic elements
from a training corpus of noisy speech for which the identity of the unreliable
elements is known beforehand. The feature vectors of the reliable and unre-
liable elements are used to train two corresponding mixture Gaussian dis-
tributions. A spectrographic element of the noisy test speech is identified as
reliable if

(10.49)
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where  represents the feature vector for that element,  is the
likelihood of the element computed using the mixture Gaussian for the
reliable elements, and  is the likelihood computed using the mixture
Gaussian for the unreliable elements.  is an empirically determined con-
stant. Additional details of classifier-based mask estimation can be found in
References 15 and 17.

Recognition with Incomplete Spectrograms

Recognition with incomplete spectrograms can be performed either by mod-
ifying the recognizer to work directly on incomplete spectrograms or by
completing the spectrograms prior to recognition by reconstructing the miss-
ing regions. In the following sections, we describe two methods from the
former category, marginalization and class-conditional imputation, and two
methods from the latter category, covariance-based reconstruction and clus-
ter-based reconstruction.

Marginalization

In marginalization,13 the recognizer is modified to consider only reliable
components of log-spectral vectors, and the bounds on the true values of
unreliable components implied by their observed noisy values. The recog-
nizer uses these to compute the likelihoods of states. When the Gaussians
in state output distributions have diagonal covariance matrices, this is
achieved by modifying the manner in which Gaussian likelihoods are com-
puted. The likelihood of the kth Gaussian of state  for any incomplete log-
spectral vector  is now computed as:

(10.50)

where  is the ith component of , the product index  goes over
all reliable components of  and the index u goes over all unreliable
components of .  and  are the mean and variance of the ith
dimension of the kth Gaussian of . The likelihood of state  is computed as

(10.51)

The modified likelihood given by Equation (10.51) is used to compute state
likelihoods during recognition.
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Class-Conditional Imputation

In class-conditional imputation,14 when computing the likelihood of any state
q for an incomplete log-spectral vector during recognition, the unreliable
components of that vector are estimated using the mixture Gaussian state
distribution of . To estimate an unreliable component  of a vector

, we define  and  as in Equations (10.49) and (10.50),
and  and  as

(10.52)

(10.53)

The unreliable component  is now computed as

(10.54)

The estimate  is now used in place of the unreliable element 
when computing the likelihood of state  during recognition.

Covariance-Based Reconstruction

In covariance-based reconstruction,15 unreliable spectrographic elements are
estimated based on the values of adjacent reliable elements, using the known
covariances between them. These covariances are estimated beforehand from
the spectrograms of clean speech utterances. In order to estimate these cova-
riances, it is assumed that the sequence of log-spectral vectors in any spec-
trogram are the output of a stationary Gaussian random process. Under this
assumption, the mean value of any time-frequency component is indepen-
dent of the time, and the covariance of any two elements of the spectrogram
is dependent only on their positions relative to each other, with no reference
to where they occur within the spectrogram. The means and covariances can
be estimated from the clean speech spectrograms as

(10.55)

(10.56)
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where  is the total number of log-spectral vectors in the spectrograms and
 represents the kth frequency component of the tth log-spectral vector

in a spectrogram.
In order to reconstruct the unreliable components of a log-spectral vector

, they are arranged into a vector . All reliable components in the
spectrogram that have a high covariance with any of the components of 
are arranged into a vector . An estimate of , called , is obtained
as the value where the Gaussian distribution of , conditioned on 
and the bounds on , peaks. This value of  is the bounded MAP
estimate of  and can be estimated using the following iterative proce-
dure for obtaining bounded MAP estimates:

1. Initialize all the components of  as 
2. To obtain the (i + 1)th estimate of , construct an extended

vector  with all the components of  and all components
of the current estimate of  except the kth element. Construct
the mean vector , and the covariance matrix  for 
using the means of the components of  and the covariances
between its components. Construct the cross-covariance vector

 between  and  using the covariances between
 and the components of . The (i + 1)th iteration,

 is now given by

(10.57)

3. Repeat step 2 for all components of  and iterate until  does
not change any more.

The unreliable components of all the log-spectral vectors in the spectro-
gram are estimated using the above procedure. Once a complete recon-
structed spectrogram is obtained, it can either be used directly for
recognition, or other features such as cepstra can be derived from it and used
for recognition.

Cluster-Based Reconstruction

In cluster-based reconstruction,15 the unreliable components of any log-spec-
tral vector are reconstructed based on the reliable components of that vector
and the known distribution of the log-spectral vectors of clean speech. This
is accomplished by computing a mixture Gaussian distribution from the log-
spectral vectors of the spectrograms of a training corpus of clean speech.
The Gaussians of this distribution are all assumed to have diagonal covari-
ances. Once the distribution has been computed, a secondary full covariance
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matrix is also computed that is common across all the Gaussians in the
distribution. The distribution and the covariance matrix can both be com-
puted using the EM algorithm.10

In order to reconstruct the missing components of any log-spectral vector
, the unreliable and reliable components of the vector are separated out

into two vectors  and . A separate estimate of  is obtained for
each of the Gaussians in the mixture based on , the mean of that Gaus-
sian and the global covariance matrix. The estimate is obtained using the
bounded MAP procedure described in “Covariance-Based Reconstruction.”
Let us represent the estimate of  obtained for the kth Gaussian as .
We now define the term  as:

(10.58)

where  and  represent the mean and variance of the jth dimension
in the kth Gaussian. The index r goes over all reliable components of 
and u goes over all unreliable components. We define  as

(10.59)

The estimate of the unreliable components of  is now obtained as

(10.60)

The estimated values of the unreliable elements are now used to recon-
struct a complete spectrogram. The reconstructed spectrogram can either be
directly used for recognition or can be used to derive other features such as
cepstra that can be used for recognition.

Discussion of Relative Merits of the Methods

All methods described in this chapter attempt to recognize noisy speech with
an optimal recognizer. In principle, such methods must work better than
methods that modify the data.18 However, most of these methods require
access to the parameters of the HMM, which may not be available. For
example, commercial recognizers often do not permit the user to access or
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modify the recognizer components. Model compensation methods usually
also require more computation than feature compensation methods and may
introduce latencies due to the time taken to adapt the models. When these
constraints do not pose a problem, model compensation methods are clearly
the methods of choice. In fact, most commercial recognizers include model
compensation and adaptation modules that allow the user to adapt the
recognizer to the operating noise conditions (and also to the speaker).

In this section, we discuss the relative advantages and disadvantages of
the methods described in this chapter. We support our observations with
results from various published sources. It must be noted, however, that the
various results presented cannot always be compared directly with each
other, since they pertain to different tasks of different complexities, over
different operating conditions, with different recognizers and databases. This
discussion must only be interpreted as representing general trends.

Not all methods described in this chapter are equally effective in all situ-
ations. For instance, model decomposition and PMC are only effective if the
corrupting transformation is adequately modeled by a linear filter and addi-
tive noise. Model decomposition is historically the older method. Its original
formulation provided a theoretically sound mechanism for compensating
for time-varying noises and was highly effective. Table 10.1 shows some
typical early experimental results with this method.

In the original formulation of model decomposition, state output distribu-
tions of the compound HMMs were computed using a noise-masking–based
relation between the log-spectra of the noisy speech and those of clean speech
and noise. This method results in highly accurate models of the distributions
of the log spectra of noisy speech.9 It cannot be translated to derive similar
relationships between cepstra, and it becomes necessary to perform recog-
nition with log-spectra. However, recognition systems perform much better
when recognition is based on cepstra.19 PMC is an effective means of per-
forming model decomposition in cepstra-based speech recognizers. Instead
of translating the noise-masking relations to the cepstral domain, state out-

TABLE 10.1

Number of Errors Made in Recognizing 300 Words of a Digits
Task That Have Been Corrupted by Machine Gun Noise
to Various SNRs

Database +21 dB +15 dB +9 dB +3 dB –3 dB

Baseline 254 306 377 691 1028
Model Decompensation 6 17 42 81 289

Note: The errors include misrecognition of words and spurious insertions.
The recognizer has been trained on the log-spectral vectors of clean
speech.

Source: From Varga, A.P. and Moore, R.K., Hidden Markov model decom-
position of speech and noise, Proc. ICASSP90, 1990, 845–848. © 1990 IEEE.
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put distributions of the compound HMM are obtained using Monte Carlo
methods or numerical integration. Since recognition is now based on cepstra,
both baseline and noise compensation performance can be expected to be
better. Table 10.2 shows improvements in recognition accuracies obtained on
speech corrupted by Lynx noise by PMC compensation.

When the corrupting transformation cannot be well modeled as a linear
filter and additive noise, neither PMC nor model decomposition can be
expected to be effective. This is the case, e.g., when speech is transmitted
over telephone channels, or compressed using standard codecs.

MLLR, on the other hand, is effective across a wide range of operating
conditions, and is probably the most consistently effective compensation
technique available to date. Table 10.3 shows the improvement in recogni-
tion performance obtained on the very difficult “speech in noisy environ-
ments” (SPINE)20 database. No other compensation method was effective
on this database.21 Even when the linear–filter–additive–noise model is
applicable to the corrupting transformation and PMC can be applied, MLLR
can further improve recognition performance by adapting the state output
distributions computed using PMC. Table 10.4 shows some results that
support this observation.

Like MLLR, MAP uses noisy adaptation data to adapt HMM parameters.
However, unlike MLLR, it also uses a priori information about the distribu-
tions of the values of the parameters being estimated. MAP attempts to
estimate many more parameters than MLLR, and the degree of adaptation
is greatly dependent on the amount of adaptation data available. As a result,
MLLR is more effective than MAP for small amounts of adaptation data,
whereas MAP is more effective in the reverse situation. Figure 10.5 shows
the behavior of MLLR and MAP with increasing amounts of adaptation
data. Table 10.5 shows typical results with MAP adaptation when sufficient
adaptation data are available. A detailed comparison of MAP and MLLR
techniques for adaptation to new operating conditions can be found in
Reference 22.

MAP attempts to adapt all parameters independently of each other. EMAP,
on the other hand, uses the correlations between parameters to aid adapta-
tion and is expected to require less data than MAP. Consequently, for any
given amount of noisy adaptation data, EMAP can be expected to perform

TABLE 10.2

Word Error Rates for Three Different Test Sets from the DARPA 
Database Corrupted to 18 dB by Lynx Helicopter Noise

Test Data Feb. 89 (%) Oct. 89 (%) Feb. 91 (%) Average (%)

Baseline 38.7 32 33.4 34.7
PMC 7.5 8.1 6.4 7.4

Source: From Gales, M.J.F. and Young, S.J., Robust continuous speech
recognition using parallel model combination, IEEE Trans. Speech and
Audio Proc., 4(5), 352–359, 1996. © 1996 IEEE.
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better than MAP. Table 10.6 shows some results to this effect. In general,
however, the full potential improvement of EMAP is not achieved due to
the difficulty in accurately estimating the large number of a priori parameters
required by it. Several solutions have been proposed to reduce the number
of parameters required by EMAP to improve its performance.8 Unsupervised
adaptation, where the transcriptions of the adaptation data are obtained by
recognition, is not usually as effective for MAP or EMAP as it is for MLLR.

Matched training is not always possible, since sufficient training data that
have been recorded under identical recording conditions to the noisy test
data are rarely available. Under such conditions, multistyle training is

TABLE 10.3

Error Rates for SPINE1 Data before and after 
MLLR Adaptation

Feature Baseline (%) MLLR (%)

WMFC 35.1 33.3
PLP 38.0 34.8
LMFC 47.4 40.1

Note: Results are shown for recognition systems
trained with three different types of features.
WMFC, PLP, and LMFC stand for “wide-band
mel-frequency cepstra,” “perceptual linear pre-
diction cepstra,” and “lowpass filtered mel-fre-
quency cepstra,” respectively, three variants of
the basic cepstral parameters.

Source: From Singh, R., Seltzer, M., Raj, B., and Stern,
R.M., Speech in noisy environments: Robust automatic
segmentation, feature extraction, and hypothesis com-
bination, Proc. ICASSP2001, 273–276, 2001. © 2001 IEEE.

TABLE 10.4

Word Error Rate on the DARPA Spoke-5 Data

No Adapt (%) MLLR (%)

Baseline 17.4 12.1
PMC 10.6 8.6

Note: The first and second rows represent baseline
models and models that have been compensat-
ed using PMC, respectively. The columns show
the type of adaptation performed on these mod-
els. Baseline performance, performance after
MLLR adaptation, performance after PMC com-
pensation, and performance with MLLR adap-
tation of PMC-compensated models are shown.

Source: From Woodland, P.C., Gales, M.J.F., and Pye,
D., Improving environmental robustness in large vo-
cabulary speech recognition, Proc. ICASSP96, 65–68,
1996. © 1996 IEEE.
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frequently done. Table 10.7 shows recognition accuracies obtained on data
recorded over a Crown PZM microphone, using matched, mismatched, and
multistyle trained recognizers. For Crown PZM data multistyle training is
superior to training with clean speech only. In Table 10.7, the performance
with multistyle training is worse than that with a fully matched recognizer.
However, in many practical situations, the performances are comparable.

Missing feature methods have not been extensively evaluated, since they
are relatively new. In pilot experiments, they have demonstrated great poten-
tial for improving the noise robustness of recognition systems. Of the missing
feature methods, marginalization and class-conditional imputation work by

FIGURE 10.5
The effect of increasing amounts of adaptation data on recognition accuracy. Data from the
DARPA Wall Street Journal (WSJ) database were used in this experiment. (From Doh, S.-J.,
Enhancements to Transformation-Based Speaker Adaptation: Principal Component and Inter-
Class Maximum Likelihood Linear Regression, Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA, 2000. With permission.)

TABLE 10.5

Recognition Accuracy with and without MAP 
Adaptation on Two Sets of Data

No Adaptation (%) MAP (%)

Set1, single mic 52.8 91.0
Set1, 6 mics 74.9 98.3
Set2, single mic 40.4 87.4
Set2, 6 mics 57.3 96.3

Note: Each set has two subsets, one in which only a
single microphone in used, and a second
where an array of six microphones has been
used to improve the SNR of the signal.

Source: From Omologo, M., Svaizer, P., and Matasso-
ni, M., Environmental conditions and acoustic trans-
duction in hands-free speech recognition, Speech
Communication, 25, 75–95, 1998. © 1998 by Elsevier
Science. With permission.
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directly modifying the recognizer. For these methods, recognition must be
performed using log-spectral vectors. Since these methods utilize the optimal
recognizer for the incomplete spectrograms of noisy speech, they outperform
methods that reconstruct unreliable elements when recognition is performed
with log-spectra. However, reconstruction methods such as covariance-
based reconstruction and cluster-based reconstruction result in complete
spectrograms from which cepstra can be derived. Recognition results
obtained with these cepstra can be significantly superior to those obtained
with marginalization or class-conditional imputation. Figure 10.6 shows rec-
ognition accuracies obtained using all four missing-feature methods
described in this chapter.

Apart from the selected methods described in this chapter, several other
important techniques within the categories mentioned have been described
in the literature. Most of these methods are similar to, or based on, the
techniques described here. For example, variations to PMC have been

TABLE 10.6

Relative Improvements in Word Error Rate Due to MAP and 
EMAP Adaptation of Means

Error Rate (%) Improvement (%)

Baseline (no adaptation) 7.16 —
MAP adaptation of means 6.47 9.6
EMAP adaptation of means 6.28 12.3

Note: In this experiment the recognition system was adapted to
speakers, rather than to noise conditions. The DARPA H2
database was used for the experiment. Common correction
terms were estimated for groups of states in order to reduce
the total number of parameters to be estimated.

Source: From Zavaliagkos, G., Maximum a posteriori Adaptation Tech-
niques for Speech Recognition, Ph.D. thesis, Northeastern University,
Boston, 1995. With permission.

TABLE 10.7

Recognition Accuracies Obtained with Matched, 
Mismatched, and Multistyle Trained Models on 
Clean Speech (Recorded over a Close-Talking 
Microphone), and Speech Recorded over an Open 
Desktop Crown PZM Microphone

CLSTK (%) CRPZM (%)

CLSTK 85.3 18.6
CRPZM 36.9 76.5
Multistyle 78.5 67.9

Source: From Acero, A., Acoustic and Environmental Ro-
bustness in Automatic Speech Recognition, Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, PA, 1990. With
permission.
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proposed that attempt to make it more effective or faster.9 Other model
decomposition techniques use Taylor series expansions to model the state
output distributions of the compound HMMs.23 Several variants of MLLR
have been proposed that use multiple sets of affine parameters for adaptation
(e.g., see Reference 24). Other methods have combined MLLR and MAP to
obtain MAP estimates of MLLR parameters.25 Still other methods deal with
robust estimation of MLLR parameters based on principal component anal-
ysis of model parameters.26 EMAP-style variants of MLLR utilize the corre-
lations between different groups of model parameters to estimate multiple
sets of affine parameters for MLLR.26 Several variants of the MAP and EMAP
algorithms have also been proposed that attempt to adapt the various HMM
parameters more robustly (e.g., see Reference 8). However, although there
exist many noise robustness techniques as described in this chapter and
elsewhere, no single method is expected to be equally effective in all noise
conditions. The actual technique used must always be tailored to the
expected operating conditions and the techniques described can at best be
used as points of departure in doing so.

FIGURE 10.6
Recognition accuracy of various missing feature methods on speech corrupted by white noise
to various SNRs. The top panel represents accuracies obtained when recognition is performed
with log-spectral vectors. The bottom panel shows recognition accuracies obtained using cep-
stra. In all experiments, unreliable components of spectrograms have been identified using a
classifier. (From Raj, B., Seltzer, M., and Stern R.M., Robust speech recognition using missing
features: the case for restoring missing input features, Proc. CRAC Workshop, Aalborg, Denmark,
2001. With permission.)
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Introduction

 

In many ways, noise reduction techniques in a Voice over Internet Protocol
(VoIP) environment mirror those used in traditional voice transmission sys-
tems. In other words, as long as public switched telephone network (PSTN)
technologies are used in tandem with VoIP technologies — and in almost
all cases, they are — PSTN-like noise reduction is required. However, when
voice signals are encoded, packetized, and transmitted (even for part of the
voice path) across a VoIP network, other network behaviors and impairments
come into play that might or might not be adequately handled by traditional
telephony noise reduction and cancellation techniques. Across a VoIP net-
work, voice signals are encoded in new ways and are transported from point-
to-point across networks designed for non-real-time traffic. In addition, VoIP
networks are often not subject to historical and, until relatively recently (due
to the deregulation of the late 1990s), regulatory standards and constraints.

 

1

 

As a result, an interesting and challenging host of noise sources emerge.
Noise reduction in VoIP networks must take these new sources into account.

Noise is 

 

any

 

 interfering sound. In the context of VoIP, a broader definition
is perhaps required. Noise can be more generally defined as 

 

distortion

 

. In
other words, noise can be thought of as any undesirable characteristic that
degrades the signal of interest. Given this definition, in a VoIP environment
there are two types of distortion: additive and subtractive (see the section
“Additive vs. Subtractive Distortion”). And along with the signal distortion
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described here (which clearly affects 

 

sound quality

 

), VoIP network behavior
can impact 

 

conversational quality

 

 in ways not often seen in most PSTNs.
Strictly speaking, VoIP does 

 

not

 

 introduce any “new” sources of noise or
distortion that do not already exist in one form or another on other commu-
nications networks. For example, IP networks have always exhibited packet
loss and jitter (delay variation). PSTNs produce analog channel noise and
echo and always have. Quantization distortion, attenuation/level problems,
low-bit rate codec distortion, and so on have all existed for some time. It is
the relatively new and unique combination of real-time voice with nonreal-
time data network behavior, 

 

and

 

 the interworking of VoIP with traditional
PSTNs that create the new challenges of voice and conversational quality.
Because of this, noise 

 

avoidance

 

 in a VoIP environment is as important as
noise 

 

reduction

 

.
This chapter briefly describes VoIP technologies and deployments, intro-

duces in more detail the signal distortion and conversational quality impair-
ments that VoIP exhibits, and discusses some of the techniques being used
to ameliorate these impairments. Finally, this chapter provides an examina-
tion of measurement techniques that target the unique VoIP environment.
Note that this chapter approaches noise reduction (and avoidance) from a

 

system

 

 point of view. Detailed descriptions of network components, pro-
cesses, or noise reduction techniques can be found in the reference material
or in other parts of this book.

 

VoIP Overview

 

VoIP refers to an expanding family of voice processing and transport tech-
nologies that seek to take advantage of existing data network infrastruc-
tures. VoIP networks promise to reduce the cost of local and long distance
telephone calls for individuals and businesses alike, and they have the
potential to provide unique new services and hasten computer–telephony
integration. Relative to traditional telephone networks and data communi-
cations networks, VoIP is still in its infancy. But as voice and data service
providers look for new ways to improve service offerings while increasing
profits and reducing costs, VoIP stands a good chance of becoming one of
the most important voice processing and transport technologies in the com-
munications industry. To be widely accepted and deployed, however, VoIP
must address several significant challenges. One of these challenges is
matching the signal and conversational quality that is consistently delivered
by PSTNs and to which telephone customers have become accustomed.
Related to the challenge of achieving acceptable sound and conversational
quality is the technical challenge of integrating and interworking VoIP with
existing voice networks.

 

2
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With regard to voice signal quality, one of the primary differences between
the PSTN and the VoIP network is that the PSTN provides a dedicated voice
channel of consistent bandwidth for each voice call, whereas a VoIP network
provides best-effort voice packet delivery consistent with IP network behav-
ior. Another way of looking at this difference is that PSTN voice channels
are designed with the voice signal in mind (i.e., they have just the right
amount of bandwidth and the right frequency response to minimally support
a conversational quality voice signal). IP networks, on the other hand, were
never really designed for real-time, dedicated bandwidth applications like
voice. This difference affects virtually all aspects of noise and distortion
avoidance for VoIP implementations and VoIP/PSTN integration. Another
interesting difference is the fact that PSTNs provide call setup and manage-
ment intelligence in the core of the network (via SS7 signaling and central
office processing), whereas VoIP networks have pushed this intelligence to
the edge of the network where it resides in VoIP endpoints such as personal
computers or IP/ethernet telephones. This can also impact voice quality,
because the network core is no longer as tightly controlled or regulated.

This section provides a basic overview of VoIP implementations and tech-
nologies, showing where noise and distortion issues can arise. Douskalis

 

2

 

and Minolli and Minolli

 

3

 

 provide more detailed information about the tech-
nologies, implementations, and measurement techniques for VoIP.

 

VoIP Implementations

 

In its most basic and generic form, a VoIP network consists of user endpoints
(e.g., telephone, fax, modem, VoIP computer terminal) connected to media
gateways which, in turn, are connected to the IP signaling and media trans-
port network. This basic architecture is shown in Figure 11.1.

Because a VoIP network must provide ubiquitous call access, it is almost
certainly connected to and integrated with various other voice transport
networks including cellular, integrated services digital network (ISDN),
PSTN, and proprietary enterprise data and voice networks. Depending on
the VoIP protocols and equipment used, other devices can be deployed and
implementations can become quite complex. Please note that in Figure 11.1
and in the remainder of this chapter, PSTN generally refers to any analog
voice circuit ranging from an analog telephone connected to the analog
foreign exchange station (FXS) port of a VoIP gateway or router to an analog
telephone connected to a service provider’s local loop and central office.

There are various places in a typical VoIP and/or VoIP/PSTN implemen-
tation that can cause, or make worse, noise and signal distortion. Figure 11.2
identifies the main sources of voice signal impairment: IP network behavior
and processing, VoIP network processing, and PSTN/VoIP integration. This
chapter focuses primarily on these three sources of distortion. Remember,
however, that PSTN-specific impairments can and do affect VoIP signal
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FIGURE 11.1

 

Basic VoIP implementation.

 

FIGURE 11.2

 

Sources of voice quality impairments. (Copyright 2001, Agilent Technologies, Inc. Reproduced
with permission.)
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quality when VoIP networks and PSTNs are involved in the same voice
signal path.

 

VoIP Protocols

 

An increasing number of VoIP protocols provide the signaling, call services,
audio/video stream transport and, in some cases, quality of service needed
to successfully place and answer VoIP telephone calls. Two of the more
commonly implemented protocols are the complex and feature-rich ITU-T
Recommendation H.323 and the simpler Session Initiation Protocol (SIP).
These protocols share a common basic protocol stack as shown in Figure 11.3.

Whether the VoIP protocol is H.323 or SIP, the protocol stack has some
common characteristics. IP is carried over the physical and network trans-
port layers. User datagram protocol (UDP) and transport control protocol
(TCP) are encapsulated into IP packets. VoIP-specific protocol packets are
encapsulated into UDP or TCP depending on the particular signaling func-
tion. Digitized and packetized voice handled by real-time transport protocol
(RTP) and real-time transport control protocol (RTCP) is encapsulated into
UDP datagrams. In the context of voice signal distortion, it is the
IP/UDP/RTP portion of the stack that is the most interesting. Aspects of the
VoIP signaling stack (H.323, SIP) also affect voice signal quality to some
extent because characteristics of the voice channel are often defined by the
signaling process when calls are set up. Finally, RTCP plays a role in main-
taining the quality of a VoIP call, because it can be used to gather information
about delay, jitter, and packet loss.

 

General Noise/Distortion Issues in VoIP

 

Before exploring VoIP-specific distortion issues and how they are dealt with,
a few basic concepts should be introduced. Although these concepts are not

 

FIGURE 11.3

 

VoIP protocol stack(s).
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necessarily limited to VoIP applications, they do, however, affect VoIP signal
quality. In fact, early VoIP network designers have all too often failed to meet
existing standards for voice quality that apply to any voice network regard-
less of the underlying technology.

 

4

 

General Telephony Impairments

 

As described in the previous section, VoIP networks almost always interface
with some aspect of the PSTN. This means that most PSTN impairments can
impact voice and conversation quality on interconnected VoIP networks. For
example:

 

5

 

• Signal level is arguably 

 

the

 

 most important factor affecting per-
ceived voice quality. Clearly, if signal levels are too low, users
cannot understand what is said, and if levels are too high, clipping
(distortion) can occur.

• Circuit noise and background noise have many sources from both
the analog and digital portions of a telephony network. Since much
of this noise is outside the voice band, it can cause some problems
for VoIP vocoders if not eliminated via adaptive noise filters or
other techniques.

 

6

 

• Sidetone is in fact a form of intentional echo that occurs at the
telephone set. It is designed into telephone sets so that users can
regulate their own voice levels and receive the necessary feedback
that the circuit over which they are speaking is still “alive.” A
similar phenomenon is addressed in VoIP networks in which voice
activity detectors (also called silence suppressors) are used. In this
case, artificial background noise is actually injected into the voice
circuit during silent periods between speech utterances to provide
feedback that the circuit is still active.

• Attenuation and group delay distortion are impairments that are
dependent on the frequency characteristics of a particular voice
channel. Similar to analog circuit noise, attenuation, and group
delay distortion can cause unpredictable effects when coupled with
low-bit rate perceptual codecs used in VoIP.

 

6

 

• Absolute delay is the time it takes for a voice signal to travel from
talker to listener, and delay values typical of PSTNs (tens of milli-
seconds) have little effect on perceived voice quality if there is no
echo or if echo is adequately controlled. However, due to signal
processing, VoIP networks introduce unavoidable delays of 50 ms
and above which can expose echo (as described below) and affect
conversational quality.

• Talker and listener echo can be problematic in traditional PSTNs
and have been around for many years. In most situations, this echo
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is not perceptible because it returns to the talker/listener too
quickly to be distinguished from regular speech. However, when
larger end-to-end delays are introduced by VoIP processing, exist-
ing PSTN echo can become a real problem.

• Quantizing and nonlinear distortion occurs in digital systems when
an analog signal is encoded into a digital bit stream. The difference
between the original analog signal and that which is recovered after
quantizing is called quantizing distortion or quantizing noise.
High-quality PCM encoders used in PSTNs exhibit a predictable
level of quantization noise and can, therefore, be dealt with in a
relatively straightforward way. However, this assumption cannot
be carried into the VoIP domain because voice-band codecs (vocod-
ers) operate on a different premise and produce nonlinear distor-
tion. Thus, in VoIP environments, quantization noise cannot always
be measured or eliminated in the same way.

 

6

 

Because such PSTN impairments as described above can have an unpre-
dictable effect on voice signals processed and transported across VoIP net-
works, aggressive noise reduction on circuits known to interface with VoIP
networks should probably be employed.

 

Additive vs. Subtractive Distortion

 

All voice transmission systems are subject to the effects of both additive
distortion (e.g., circuit noise, background noise) and subtractive distortion
(e.g., transient signal loss, severe attenuation). For VoIP systems, however,
these types of distortion are even more significant. Because perceptual codecs
play such an important role in VoIP applications (as described in “VoIP
Processing”), noise added to the voice signal prior to encoding can have
unpredictable effects depending on whether the noise has frequency com-
ponents within the voice band or not and depending on the type of encoding
used. In VoIP, traditional subtractive distortion such as excessive attenuation
is now accompanied by the effects of packet loss where discrete portions of
the encoded voice signal simply disappear. Again, due to the use of low-bit
rate codecs to preserve network bandwidth, this packet loss can be particu-
larly disruptive. An equally interesting and related source of distortion is
error concealment in which subtractive distortion such as packet loss is
actually compensated for by 

 

intentional

 

 additive distortion in the form of
predictive packet insertion.

 

7

 

Nonlinearity and Time Variance

 

Two of the primary differences between a PSTN or PSTN-like voice channel
and a VoIP voice channel are the conditions of time variance and linearity.
For the most part, a PSTN voice channel is linear and time invariant (LTI).
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(A voice channel is more or less linear if the voice waveform that enters the
system is reproduced at the receiving end. A voice channel is time invariant
if, once it is set up, its transmission characteristics normally do not change
over time.) A VoIP voice channel, on the other hand, is often nonlinear and
time variant, a condition that makes noise reduction in a VoIP environment
particularly challenging. For example, the end-to-end delay of the digital
encoding/decoding scheme of a VoIP channel can change during a single
telephone call (time variance), resulting in changes in sound and conversa-
tional quality. Modern VoIP codecs (as described in “VoIP Processing”)
encode and decode voice signals in nonlinear ways, because they strive
primarily to preserve the subjective sound quality of a given voice signal
rather than the objective audio waveform. Depending on how these codecs
are implemented (and depending on other network conditions such as packet
loss), significant levels of distortion can be introduced to the voice signal.

 

Human Perception’s Role

 

It is very difficult to separate the quantification of voice quality (i.e., the
evaluation or measurement of noise and distortion) from the subjective
experience of the human talker and listener. Voice quality can really only be
judged relative to the situation being assessed and the human experience of
it.

 

8

 

 Voice circuit designers know that the physiology of the human ear and
the psychology of human perception must be taken into account when
designing voice processing and transmission systems and, therefore, when
detecting and avoiding distortion. Digital signal processing (DSP) and voice
processing design efforts increasingly concern themselves with only those
parts of the voice signal likely to be perceived.

 

9

 

 This selective processing
ultimately reduces transmission bandwidth requirements, benefiting those
who must implement VoIP systems in bandwidth-limited situations. There-
fore, noise reduction and avoidance in a VoIP environment often concerns
itself only with the perceptually important aspects of noise and distortion.

Obviously, the human ear can detect only those auditory signals within a
finite frequency and loudness range. However, cognitive aspects of human
perception play an important role in network design. For example, humans
adapt to very brief auditory drop-outs without losing the meaning or content
of a spoken phrase. Human listeners will perceive a particular voice sample
as having worse quality if a burst of distortion occurs at the end of the sample
as opposed to at the beginning of the sample.

 

8,10

 

 In addition, listeners’ expec-
tation and mood can also affect their assessment of voice quality. These and
other aspects of human perception play a role in noise reduction in VoIP.

 

Listening Quality vs. Conversational Quality

 

As mentioned in “VoIP Overview,” two of the biggest challenges facing VoIP
systems are listening/sound quality and conversational quality. These two
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types of quality are related because end users often do not make a conscious
distinction between them. However, the distinction between the two should
be preserved. Clearly, listening/sound quality is directly impacted by noise
or other types of distortion. It is also clear that a distorted voice signal will
negatively impact a telephone conversation. But several telephony phenom-
ena, further exacerbated by VoIP processing, affect the character of voice
conversations without really affecting sound quality at all. These phenomena
include end-to-end and round-trip network delay, delay variance (jitter), and
echo. Delay and echo will be covered along with sound quality (also called
clarity) in the next section.

 

Primary VoIP Quality Metrics

 

In VoIP environments, three elements (shown in Figure 11.4) emerge as the
primary factors affecting voice listening/sound and conversation quality.

Clarity and delay can be thought of as orthogonal in that they normally
do not directly affect each other. Echo, on the other hand, affects perceived
clarity and, in many cases, can be made more perceptible (and annoying) by
increasing delay. Although Figure 11.4 shows a rough relationship between
clarity, delay, and echo, a strict mathematical relationship does not exist.
Suffice it to say, however, when clarity is good, delay is short, and echo is
reduced, overall voice quality is improved. Often, trade-offs must be made
between these parameters. For example, to decrease delay, VoIP designers
can use less complex encoding schemes, but the clarity of the voice signal
can suffer (i.e., coding distortion can increase).

 

Clarity

 

Clarity generically refers to a voice signal’s fidelity, clearness, lack of distor-
tion, and intelligibility. This is primarily a sound quality metric where the

 

FIGURE 11.4

 

Voice quality metrics. (Copyright 2000, Agilent Technologies, Inc. Reproduced with permission.)
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presence of noise and distortion plays the most significant role. Clarity is a
very subjective metric and is challenging to measure, particularly in VoIP
applications. Traditionally, the clarity of a voice signal or voice channel has
been measured subjectively according to ITU-T Recommendation P.800
resulting in a mean opinion score (MOS). MOS values can range from 1 to
5 with 5 being the best possible score. MOS and other more economical and
objective measurement techniques that take into account human perception
and physiology are described later in “Measuring Noise and Distortion in a
VoIP Environment.” In a VoIP environment, clarity problems are often
caused by packet loss, uncontrolled jitter, and analog circuit noise. Clarity
is also significantly impacted by the codecs used on the voice channel.

 

Delay and Delay Variance (Jitter)

 

End-to-end delay is the time it takes a voice signal to travel from talker to
listener. This voice signal delay is the additive result of VoIP/IP network
processing and packet transport. Delay affects the quality of a conversation
without affecting the actual sound of the voice signal — delay does not
introduce noise or distortion into the voice channel. When end-to-end delay
reaches about 250 ms, participants in a telephone conversation begin to
notice its effects. For example, conversation seems “cold” and participants
start to compensate. Between 300 and 500 ms, normal conversation is dif-
ficult. End-to-end delay above 500 ms can make normal conversations
impossible. In PSTNs, end-to-end delay is typically under 10 ms. In VoIP
networks, however, an unavoidable lower limit on end-to-end delay can be
as much as 50 to 100 ms because of codec operations such as packetization
and compression.

There is, however, one aspect of delay that has the potential to cause voice
signal distortion, and that is delay variance (or jitter). Jitter is the variation
in individual voice packet arrival times at voice gateways. For data networks,
jitter is less of a problem because arriving packets can be buffered for longer
periods of time. For real-time applications such as voice, however, some jitter
can be tolerated, but more stringent upper limits must be imposed. When
packets arrive outside this upper limit, the packets are discarded or ignored
causing what amounts to packet loss. Packet loss directly affects voice signal
distortion (described in more detail in “Packet Transmission”), and it must
be controlled or managed in VoIP systems to reduce its negative effect.

 

Echo

 

Echo is the sound of the talker’s voice returning to the talker’s ear. Echo,
like delay, influences conversational quality more than it does sound quality.
However, echo can significantly affect a talker’s 

 

perception

 

 of sound quality
in much the same way an interrupting burst of noise affects a listener’s
perception of sound quality. In the context of VoIP, echo (which often already
exists on the PSTN but is rarely noticed) is made more noticeable by the
unavoidable delay caused by VoIP processing. The causes and solutions to
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VoIP-exposed echo will be covered later in “VoIP/PSTN Hybrid Network
Implementations.”

 

Specific Noise/Distortion Issues in VoIP

 

This section describes some of the sources of (and solutions to) noise and
distortion that are either created or made significantly worse by VoIP tech-
nologies and implementations.

 

Packet Transmission

 

When voice is introduced into networks not originally designed for real-time
audio transmission, normal network behaviors can suddenly become the
source of significant voice quality impairments. Clearly, the idea of voice
carried over data networks is not new. Asynchronous transfer mode (ATM)
networks provide services, protocols, and quality of service (QoS) processes
designed specifically for this application. Frame relay networks have come
a long way with regard to QoS and voice over frame relay (VoFR) services.
However, IP packets can be encapsulated into a broad range of wide area
network (WAN) data network protocols, not all employing robust QoS and
voice-handling capabilities. A typical voice path could involve a number of
these protocols (carrying VoIP packets). And although there have been sig-
nificant advances in IP QoS, the very fact that IP was designed as a data
network protocol implies that there will be voice quality problems associated
with otherwise normal data network behavior.

This section begins with a brief description of physical layer bit errors and
data link layer frame/cell loss and then describes the two primary packet-
based causes of distortion on a VoIP network: packet loss and jitter. A brief
description of IP QoS follows.

 

Layer 1 Bit Stream Errors/Layer 2 Frame or Cell Loss

 

Bits and bytes can be errored or lost at the physical layer of the open system
interconnection (OSI) data communications stack. Bit error rates, if below
those expected of normally operating T1, E1, DS3, or 10/100 base — T
ethernet networks will not affect the sound of a voice signal in any significant
way (although a single errored sample can produce an audible click or pop).
In fact, if bit error rates become high enough to be truly disruptive, chances
are the integrity of the call itself is at risk. ITU-T recommendation G.821
defines levels of bit error rates for specific media and distance specifications.
It is beyond the scope of this chapter to describe the details of bit errors and
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bit error rates. However, with regard to the effect bit errors can have on VoIP
applications, the following can be said:

 

11

 

• In telephony applications, bit errors generally come in bursts and
are usually caused by clock synchronization problems, electrical
disturbances, and physical layer processing problems.

• Intuitively, one might conclude that evenly distributed low-bit
error rates would have little effect on overall voice quality. How-
ever, voice applications may routinely discard any IP packet that
has even one error, particularly TCP packets. If packet sizes are
large, the resulting packet loss can be debilitating.

• UDP, the portion of the VoIP stack that contains encoded voice, can
be configured to tolerate bit errors. This characteristic is configured
in the operating system and can reduce the packet loss associated
with small numbers of bit error.

Frame or cell errors or loss at the OSI data link layer can also have a
significant impact on the clarity of voice traffic carried by protocols higher
in the stack. Frame relay summarily discards errored frames and relies on
transport layer processes for retransmission, thus increasing jitter and ulti-
mately increasing packet loss. ATM discards cells when QoS or traffic shap-
ing processes are triggered to maintain agreed upon traffic levels, relying on
upper level protocols to recover or retransmit lost data. Typically, if cell or
frame loss at layer 2 is a problem, mere signal quality at the VoIP application
layer will be the least of a VoIP implementer’s worries. Call and channel
reliability is the more significant issue. The good news is that, for the most
part, layer 2 data protocols often provide error correction and run over very
robust physical layers.

 

IP Packet Loss

 

By its very nature, IP is an unreliable networking protocol. In its most basic
(and ubiquitous) form, IP makes no delivery, reliability, flow control, or error
recovery guarantees and can, as a result, lose or duplicate packets or deliver
them out of order.

 

3

 

 IP assumes that higher layer protocols or applications
will detect and handle any of these problems. Obviously, this kind of network
behavior can be problematic for real-time VoIP. When an IP packet carrying
digitized voice is lost, the voice signal will be distorted. Before describing
the kinds of distortion packet loss can create, it is useful to briefly describe
the causes of packet loss:

 

11

 

•

 

Packet damage: 

 

Many applications will discard incoming packets
when presented with one that has been damaged. An example of
packet damage is bit errors due to circuit noise or equipment
malfunction.
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•

 

Network congestion, buffer overflow, and IP routing:

 

 Perhaps the largest
cause of packet loss is packet discard due to network congestion.
When a particular network component receives too many packets
at one time, its receive buffers overflow causing packets to be
discarded. IP networks also deal with network congestion by
rerouting traffic to less congested network paths, but this can
increase delay and jitter.

Typically, when packets are intentionally discarded due to damage or
congestion, networking applications will retransmit the data. This can cause
duplicate packets to be sent, can result in packets arriving too late to be used,
or can cause packets to be received in the incorrect order. For nonreal-time
applications, this kind of network behavior is not catastrophic — in fact, it
is expected. However, late or misordered packets can have, from a VoIP
standpoint, the same effect as lost packets.

Determining the effect packet loss has on voice signal distortion is a com-
plex task and depends on several variables. Fundamentally, lost packets
mean lost voice information resulting in audible dropouts, pops, and clicks.
Generally speaking, more packet loss means more distortion. However, the
location in the packet stream at which packet loss occurs, the type of codec
used (and its bit rate, packet size, compression algorithms, and error con-
cealment methods), and the amount of jitter on the network all contribute
to just how much (and how perceptible) the distortion will be. In “VoIP
Processing,” codec type, packet loss rates, and jitter will be related to specific
distortion measures. However, a few general thoughts are presented here:

• With regard to human perception, there is a difference between a
steady-state and widely distributed packet loss rate and bursty
packet loss. One might expect a steady state of annoyingly percep-
tible distortion would be more disruptive than an occasional burst
of distortion. In addition, the location of the burst affects perceived
voice signal quality as well. For example, in a 60-s call, packet loss
bursts toward the end of the call are perceived to be more disrup-
tive than those that occur near the beginning of the call.

• Low-bit rate, perceptual codecs exhibit more distortion for a given
packet loss percentage than waveform codecs. For example, G.711,
a waveform preserving, linear codec, encodes the most voice infor-
mation (no compression, maximum number of bits for each voice
sample) as compared to most other codecs. Therefore, when a G.711
codec is being used, packet loss has less effect on perceived quality
than with other codecs. On the other hand, perceptual codecs
(G.729, G.723, G.721) encode and decode based on perceptual rel-
evance using compression to reduce the number of bits needed.
Experimental evidence shows that lost packets can have a larger
impact on the voice signal in this case.
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Jitter (Varying Packet Delay)

 

One of the primary causes of practical packet loss is varying packet delay
(jitter) that is not accounted for by network components such as VoIP gate-
ways. In an ideal network, each voice packet arrives at its destination with
the same end-to-end delay. This would allow the receiving gateway to assem-
ble and play out the voice packets once they started arriving. As long as the
end-to-end delay does not exceed about 120 to 180 ms, end users will report
no conversational impairment. However, real IP networks can and do deliver
voice packets with varying end-to-end delay due to multiplexer and switch
operations, queues, routing changes, congestion, and other network behav-
ior.

 

11

 

 For example, when a series of voice packets arrive at the destination
50, 58, 43, 89, 104, and 66 ms, respectively, after each was sent, the receiving
device can have problems reassembling and playing out the voice signal
unless a process is in place to account for this jitter. To account for jitter, jitter
buffers are implemented in voice gateways. Jitter buffers are described in
more detail in “VoIP Processing.”

The key point to remember is that 

 

jitter does not sound like anything to the
end user

 

 unless it is bad enough that packets arrive too late to be used. This
late arrival time results in a situation that for all practical purposes is the
same as packet loss.

 

Solutions to Packet Loss and Jitter — QoS

 

There are various ways that the negative effects of packet loss and jitter can
be avoided or even eliminated. Since many VoIP calls will span WANs as
well as local area networks (LANs), the QoS methods mentioned next involve
aspects of both WAN and LAN networking technologies. Other solutions to
packet loss and jitter involve specific VoIP processing. Examples of QoS
solutions include:

 

12

 

• Overprovisioning involves making sure that the network has much
more bandwidth capacity than it needs, thus ensuring that VoIP
traffic is never subject to congestion or other causes of packet loss
and jitter. This, however, is not practical for large telephony service
providers.

• ATM and frame relay both provide QoS support, with ATM having
the most robust and extensive capabilities (and often the most
expensive), particularly with regard to cell/packet loss and jitter.

• IP type of service (TOS) and filtering provides basic QoS and is
built into the IP protocol. However, this method requires specific
router configurations and may be unsuitable for larger networks.

• Integrated services and resource reservation protocol (RSVP) per-
mit a terminal or voice gateway to request a specific IP quality of
service. However, limited packet loss and jitter control is offered.
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• Differential services (including multiprotocol label switching
(MPLS)) is a relatively new technology that offers both packet loss
control and jitter control.

In addition to the more general QoS methods mentioned above, packet
loss and jitter can be dealt with by VoIP processing such as codec error
concealment in which lost packets are replaced, optimum codec packet size,
and intelligent jitter buffer configuration.

 

VoIP Processing

 

In addition to the voice sound quality problems caused by voice packet
delivery and processing (i.e., IP network performance) discussed in the
previous section, voice quality is impacted by processes that are very specific
to VoIP gateways and other VoIP equipment. Although some of these pro-
cesses are used to solve quality issues of one sort or another, they themselves
can introduce voice distortion or conversation impairments.

 

Codec Characteristics and Performance

 

Perhaps the most important factor with regard to voice signal quality in a VoIP
environment is the voice codec (coder/decoder) implemented in VoIP gate-
ways/routers, IP telephones, and other VoIP terminals. In fact, it is the voice
codec (along with the initial quality of the signal being encoded/decoded)
that defines the best possible voice quality that can be delivered. In other
words, the quality of a voice signal will never be better than what a particular
codec can deliver under optimum conditions, although it can certainly be
worse due to conditions such as background noise or packet loss.

 

4

 

Codec Description

 

Codecs digitize and packetize voice signals prior to their transmission across
an IP network. Some codecs also compress the voice signal to preserve
network bandwidth. Voice codecs are implemented in software and/or hard-
ware and are often rated according to the following parameters:

 

9

 

• Bit rate is a measure of the compression achieved by the codec.
• Delay is a measure of the amount of time a codec requires to process

incoming speech signals. This processing delay is a portion of the
overall end-to-end delay experienced by a voice packet.

• Complexity is an indication of a codec’s cost and processing power.
• Quality is a measure of how speech ultimately sounds to a listener.

Clearly, trade-offs must be considered when deciding which codecs to use
in a given VoIP network or device. For example, in situations where band-
width is at a premium, low-bit rate codecs may be preferred at the expense
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of some signal quality. In other situations, voice quality must be preserved
resulting in higher complexity, cost, and bandwidth requirements.

For telephony applications, there are three categories of codecs:

 

7

 

• Waveform codecs are the most common type and are used ubiqui-
tously in most PSTNs. These codecs seek to reproduce the analog
signal waveform at the receiving end of the call and generally
introduce the least amount of distortion and noise. They also
require the highest amount of bandwidth. ITU-T’s G.711 is the most
common waveform codec.

• Vocoders (also called source codecs) do not seek to reproduce the
analog signal waveform, but instead seek to reproduce the subjec-
tive sound of the voice signal. Vocoders are targeted strictly at voice
signals, use less bits to encode the voice signal (thus, requiring less
bandwidth), and are generally believed to be marginally suitable
for telephony applications (although they have been and are used
in some VoIP environments).

• Hybrid codecs are the most commonly used codecs in VoIP net-
works. Hybrid codecs meld the best characteristics of both wave-
form codecs and vocoders and also operate at very low bit rates.

Both vocoders and hybrid codecs seek, to a lesser or greater extent, to
encode the perceptually relevant characteristics of a voice signal with the
ultimate goal of producing good voice quality using less bandwidth than
the waveform codec. Because of this, the analog voice waveform is not
always reproduced. Traditionally, when the analog waveform is altered from
its original shape, this is thought to represent either additive or subtractive
distortion. All codecs introduce some level of distortion (e.g., quantization
distortion). Whether this waveform distortion results in a degraded voice
signal depends on the quality of the codec and other network conditions. It
can also depend on whether the codec uses noise shaping techniques to
reduce the amount of perceptual noise that is actually encoded, or error
concealment to reduce the negative effects of packet loss.

 

Codecs, Bit Rates, Packet Loss, Jitter, and Voice Quality

 

One generalization that can be made is that lower bit rate codecs introduce
more perceptually relevant distortion (i.e., lower voice signal quality) than
waveform codecs operating at higher bit rates.

 

4,13

 

 Figure 11.5 shows measure-
ment results in which an MOS prediction algorithm — perceptual analysis
measurement system (PAMS) listening quality (Ylq) described in “Objec-
tive/Predictive Testing” — was used to evaluate the speech quality produced
by four different codecs. As bit rates decrease, so too does voice quality (i.e.,
perceptually relevant distortion increases).

Network conditions such as packet loss and jitter also affect the voice
quality produced by a specific codec. It is very difficult to accurately quantify
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the effect packet loss and jitter will have on a particular voice signal passing
through a specific codec. Predictably, as packet loss and/or jitter increases,
so does signal distortion. But whether that distortion will have a significant
impact on perceived quality depends on the type and location of the packet
loss, whether jitter buffers are adequately compensating for varying packet
arrival time, and on error concealment methods used by the codec.

Figure 11.6 shows the results of “distortion” measurements made on an
ITU-T G.729 codec as packet loss percentages were increased.

 

14

 

 The decrease
of perceived signal quality as packet loss increases is consistent with other
experimental results as well as with the experience of VoIP system implement-

 

FIGURE 11.5

 

Listening quality vs. codec bit rate. (Courtesy of Psytechnics, Inc.)

 

FIGURE 11.6

 

Listening quality vs. packet loss. (Courtesy of Psytechnics, Inc.)
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ers. Note, however, that at a specific packet loss percentage, the measured
listening quality spans a broad range. These types of results are also shown
to be true for other codec types under different experimental conditions.

 

13

 

Jitter can also affect the signal quality produced by codecs. Figure 11.7
shows the same G.729 codec measured with increasing amounts of packet
jitter. Again, the spread of measured listening quality is relatively broad, but
the general trend is downward at higher jitter values and is consistent with
other experimental results.

 

13

 

Jitter Buffers

 

As described in “Primary VoIP Quality Metrics,” jitter (packet arrival vari-
ance) does not 

 

sound

 

 like anything as long as receiving VoIP equipment or
processes can handle it. Receiving VoIP devices handle jitter by implementing
a jitter buffer that can smooth out the packet delay variance so real-time
applications can work properly. Basically, a jitter buffer delays the playout of
individual arriving voice packets until enough of them have arrived to play
out contiguous speech. This implies that jitter buffers add delay to the system.

There are two types of jitter buffers:

 

4

 

• Static buffers provide a fixed length playout delay and any packet
that arrives late is discarded. This playout delay is usually config-
urable, but the underlying network must exhibit a predictable jitter
for static buffers to be effective.

• Dynamic jitter buffers are more sophisticated in that they can adjust
the playout delay based on the jitter exhibited by previous packets.
This provides an automatic balancing act between avoiding lost
packets and adding too much delay to incoming packets.

 

FIGURE 11.7

 

Listening quality vs. jitter. (Courtesy of Psytechnics, Inc.)
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Jitter buffers can impact voice quality in a number of ways. For example,
although most dynamic jitter buffers adjust their playout delay during peri-
ods of silence, they can and sometimes do adjust during speech utterances,
causing momentary distortion. Another example is simply a misconfigured
static buffer that does not account for larger jitter values on a network or
introduces too much delay. Again, delay and the potential for packet loss
must be balanced.

 

Voice Activity Detection/Comfort Noise Generation

 

To use bandwidth more efficiently, VoIP networks employ functionality
referred to as silence suppression or voice activity detection. A voice activity
detector (VAD) is a component of a voice gateway or terminal that suppresses
the packetization of voice signals between individual speech utterances (i.e.,
during the silent periods) in a voice conversation. VADs generally operate
on the send side of a gateway, and can often adapt to varying levels of noise
vs. voice. Since human conversations are essentially half duplex in the long
term, the use of a VAD can realize approximately 50% reduction in band-
width requirements over an aggregation of channels.

Although a VAD’s performance does not affect voice signal quality directly,
if it is not operating correctly, it can certainly decrease the intelligibility of
voice signals and overall conversation quality. Excessive front-end clipping
(FEC), for example, can make it difficult to understand what is said. Exces-
sive hold-over time (HOT) can reduce network efficiency, and too little hold-
over time can cause speech utterances to “feel” choppy and unconnected.

Complementary to the transmit-side VAD, a comfort noise generator
(CNG) is a receive-side device. During periods of transmit silence, when no
packets are sent, the receiver has a choice of what to present to the listener.
Muting the channel (playing absolutely nothing) gives the listener the
unpleasant impression that the line has gone dead. A receive-side CNG
generates a local noise signal that it presents to the listener during silent
periods. The match between the generated noise and the “true” background
noise determines the quality of the CNG.

 

VoIP/PSTN Hybrid Network Implementations

 

Thus far, noise and distortion sources have been discussed with regard to
IP network behavior or VoIP-specific processing. Another important source
of signal distortion and conversational quality degradation is the interoper-
ation between a VoIP network and the PSTN.

 

Level/Loss Plans

 

PSTNs are designed with specific signal level, gain, and loss characteristics
depending on where in the network the signal is measured and the type of
equipment across which a signal passes.

 

15

 

 VoIP networks, however, do not
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always adhere to specific loss plans. When voice signals pass from the PSTN
to a VoIP network and back to the PSTN, they may have been attenuated
and then amplified resulting in an increased noise floor. Other problems
such as clipping can occur. Automatic gain control (AGC) is increasingly
being used in VoIP gateways, but AGC can create noise problems of its own.

 

4

 

Transcoding/Multiple Encoding

 

In a pure VoIP network, a single codec type can be used at each end of a
given voice call so the number of times a voice signal is encoded and decoded
is limited to one and the coding and encoding schemes are compatible. This
would limit the unavoidable codec and quantization noise introduced into
the system and would keep end-to-end delay at a minimum. Although this
represents perhaps an optimum network design, it is not always practical.

Because a given voice call will likely traverse multiple VoIP systems or
VoIP/PSTN hybrid networks, it is more common for multiple codecs to be
used and for voice signals to be encoded and decoded multiple times.

 

16

 

 In
these situations, codec and quantization distortion accumulates (often in
nonlinear ways), attenuation distortion is multiplied, and idle channel noise
is added to the signal at each coding stage. In addition to multiple codec
processing, codecs of different bit rates might be used on a single voice signal.

In general, when a voice signal is processed by multiple codecs (particu-
larly of different types) along a single voice path, that voice signal’s clarity
cannot be better than that produced by the “worst” codec. The quality may,
in fact, be noticeably worse if two or more low-bit rate codecs are used. In
addition, because many codecs distort speech in nonlinear ways, the order
in which they encode/decode speech will affect sound quality. Finally, end-
to-end delay can increase significantly when more than one encoding and
decoding process is in the voice path, resulting in increased echo perception
and causing severe conversational quality problems.

 

Echo and Echo Cancellation

 

In most cases, echo is caused by an electrical mismatch between analog
telephony devices and transmission media in a portion of the network called
the tail circuit.

 

15

 

 Specifically, this electrical mismatch occurs in a device called
a hybrid that provides the junction between an analog four-wire ear and
mouth (E&M) trunk line or digital transmission channel and an analog two-
wire foreign exchange office (FXO) line. The hybrid separates send-path and
receive-path signals so they can be carried on separate pairs of wires or
transmission channels. Because the methods used to separate send signals
from receive signals are often not ideal, some of the received signal leaks
onto the send path and is perceived as echo. Another cause of echo can be
acoustic coupling problems (called acoustic echo) between a telephone’s
speaker and microphone, for example, the hands-free set of a speaker tele-
phone, PC terminal, or cellular telephone. Both types of echo are present on
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many PSTN networks, but because they are received at the talker’s ear so
quickly (under 30 ms), they are perceived as sidetone or not perceived at all.

When a VoIP segment is introduced into the voice path, existing (and
usually unnoticed) echo can suddenly become perceptible. It can be assumed
that any echo generated from a near-end hybrid will still return to the talker
too quickly to be perceived. However, far-end echo will be subjected to the
unavoidable round-trip delay introduced into the voice path by VoP network
processing causing existing echo originating from the far-end analog tail
circuit to become perceptible and even annoying to end users.

Although not a source of voice signal distortion in the sense that the trans-
mitted signal is degraded in some way, echo can definitely affect a talker’s

 

perception

 

 of call quality and disrupt conversational quality. It can even be
argued that, as perceived by the talker, the sound of returning echo combined
with the sound of the talker’s voice constitutes a distorted voice signal.

To deal with unwanted echo, functional components known as “echo
cancellers” are deployed in the local exchange, the VoIP gateway, or the VoIP
terminal (e.g., PC, IP telephone), usually as close as possible to the tail circuit
that generates the echo. Referring to Figure 11.8, an echo canceller next to
the hybrid on User B’s side of the network “faces out” at User B and cancels
the echo of User A’s voice that would otherwise be heard by User A.

Modern echo cancellers form a mathematical model of the tail circuit they
monitor, and then use this model (along with representations of the signal
likely to be echoed, e.g., User A’s voice) to estimate the expected echo. This
estimated echo is then subtracted from the speech originating on the tail
circuit side of the echo canceller (User B’s voice). Thus, normal speech is
allowed to pass through the echo canceller, but echoes of received speech are
removed. An interesting characteristic of most modern echo cancellers is their

FIGURE 11.8
Perceived echo’s origination point. (Copyright 1999, Agilent Technologies, Inc. Reproduced
with permission.)
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ability to “adapt” to signal and tail circuit conditions. In other words, at the
start of a voice call, echo cancellers take some finite time to converge on the
echo estimate that will be subtracted from far-end speech signals. For exam-
ple, at the beginning of a VoIP telephone call that terminates through an
analog tail circuit, echo may be perceptible but quickly diminishes as the
echo canceller converges. Echo cancellers are often designed and configured
to expect echo within a specific time window (echo delay) and within a
specific level range (echo return loss). If the echo signal does not fit within
these parameters, the echo canceller can contribute to perceived signal dis-
tortion by failing to remove the echo or by converging on inaccurate echo
estimates. Voice circuits, particularly when VoIP components are used, must
be intelligently designed to exhibit the correct echo return loss and echo delay.

An interesting point of failure (or poor performance) for many echo can-
cellers is when the talker at the far-end interrupts the near-end talker (a
condition known as “double-talk”). Echo cancellers work with the assump-
tion of a linear and time-invariant tail circuit. Double-talk, however, causes
the tail circuit to appear to be nonlinear, resulting in echo canceller diver-
gence (in other words, its echo estimate becomes more inaccurate). In this
case, the interrupting speech can become distorted.

Inconsistent QoS Implementation across Networks

As mentioned in the section “Solutions to Packet Loss and Jitter — QoS,”
IP QoS can be an effective solution to packet loss and jitter, two important
causes of noise and distortion in VoIP environments. However, because VoIP
networks interoperate with PSTNs and other voice transport systems, QoS
mechanisms must be defined on an end-to-end basis, requiring sufficient
network resources to be provided throughout the voice path. This is not an
overwhelming issue for an enterprise network or a single ISP environment
where all resources can be administered through one network manager. But
it is almost impossible to administer when multiple ISPs or service providers
are involved, as is the case in virtually every national or international long
distance call. In addition, this fulfillment of QoS assumes that all equipment
in the network is equally capable of identifying voice traffic and of providing
the required network resources. Although progress is being made on this
front, end-to-end QoS is still the exception rather than the rule in today’s IP
networks because standards for many of these mechanisms have not been
finalized and implemented by equipment manufacturers.

Measuring Noise and Distortion in a VoIP Environment

To reduce or avoid noise and distortion in a VoIP network (or any network
for that matter), it is important to be able to characterize it or measure it in
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some way. Traditionally, voice signal quality testing techniques involved
comparing waveforms on a screen and measuring signal-to-noise ratio (SNR)
and total harmonic distortion (THD) among others. These and other linear
measurements are useful only in certain cases, because they assume that
changes to the voice waveform represent unwanted signal distortion. These
testing methods also assume that telephony circuits are essentially linear
and time invariant. With VoIP and other voice-over-packet networks, par-
ticularly when they use low-bit rate speech codecs such as G.729 and G.723.1,
neither waveform preservation nor circuit linearity can be assumed. Because
of these conditions, specialized testing methods are often used.

VoIP Network Measurement Concepts

Before describing some of the more common measurement techniques used
in VoIP, general measurement concepts need to be covered. Although some
of these concepts apply equally well in other telephony environments, they
are particularly important in VoIP.

Passive Monitoring vs. Active/Intrusive Testing

VoIP network testing is similar to other data and telecommunications testing
in that it consists of passive monitoring and active/intrusive testing:

• Passive monitoring is a testing method in which the test device or
process “listens” to some aspect of the voice traffic (digital or ana-
log) to gather statistics and perform various types of analysis.
Passive monitoring is nonintrusive and does not affect voice traffic
or network behavior. It is often used in digital environments in
which information encapsulated in frames, cells, or packets can be
used to alert test personnel of a problem, or can be analyzed later
to determine problem causes and identify traffic trends. Strictly
speaking, subjective testing such as MOS (described later) can also
be considered passive monitoring. Passive monitoring is often
coordinated from 24¥7 network operations centers (NOC), and is
performed by those tasked with keeping an installed network up
and running.

• Active/intrusive testing usually consists of injecting traffic of some
type onto the voice channel and analyzing either the effect the
traffic has on the channel or the effect the channel has on the traffic.
This “energetic” approach to noise and distortion testing usually
requires more sophisticated test equipment and software capable
of emulating VoIP processes. Active testing is often performed by
those responsible for new VoIP devices and software who do their
work in research and development labs. Active testing is also useful
when isolating the causes of noise and distortion.
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Call Setup, Call Completion, and Services Testing

An important area of VoIP operations and performance that must be tested
involves the signaling that occurs to establish, maintain, and disconnect VoIP
telephone calls. Metrics include percentages of call success/completion, call
services validation, call setup times, and so on. This aspect of VoIP operations
has little direct effect on voice signal quality. However, “negotiations” occur
during some call setup processes between VoIP entities, which can result in
a noise or distortion baseline. For example, SIP signaling protocols negotiate
codecs and other channel characteristics. Protocol analyzers that can deliver
data stream decodes are often used for this type of testing.

Packet Performance Testing

Given the impact packet loss and jitter have on a voice signal carried across
a VoIP network, it is clear that packet delivery performance must be tested.
Test methods can range from monitoring actual IP traffic to find evidence of
packet loss and jitter, to injecting into the network under test-specific packet
streams with specific transmission and payload characteristics. Data com-
munications test solutions that provide VoIP decodes, RTP and RTCP mon-
itoring, and general IP traffic analysis capabilities represent perhaps the best
ways to measure packet performance in a VoIP environment.

Sound Quality, Distortion, and Noise Testing

VoIP testing must also include a direct measure of sound quality, noise, and
distortion. Although VoIP signaling and packet performance are often mea-
sured at network interfaces within the VoIP network itself, sound quality
measurements are performed from the perspective of the end user of the
telephony system. In other words, the quality of the signal received at the
telephone set is what must be measured because this is what the user of the
system will experience. Test devices that can transmit, receive, and analyze
actual voice signals are preferred, although some testing methods use voice-
like signals that emulate the frequency characteristics of voice.

Subjective Testing

Because of the subjective nature of voice signal quality, and because tradi-
tional audio measures are not always useful, new methods have been devel-
oped to evaluate voice clarity in a voice-over-packet environment. Early
methods included mean opinion score (MOS), based on the ITU-T P.800
recommendation. This method requires that relatively large numbers of
human listeners rate voice quality as part of a controlled and well-defined
test process. The advantage of this method is that clarity evaluations are
derived directly from the individuals who experience a voice call. Another
advantage is the statistical validity provided by numerous evaluators.
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However, MOS evaluations can be very expensive, difficult to repeat when
new telephony products need to be tested, and time consuming. Because of
this, software- or hardware-based predictive methods have been developed
to provide objective and repeatable measurement results.

Objective/Predictive Testing

In recent years, algorithms have been developed that can predict MOS
results, avoiding some of the disadvantages of full-blown MOS testing. To
be successful, these algorithms must evaluate the quality of voice signals in
much the same way that nonlinear codecs encode and decode audio signals.
That is, they evaluate whether a particular voice signal is distorted with
regard to what a human listener would find annoying or distracting. Typi-
cally, these algorithms compare “clean” test signals (either actual voice sig-
nals or special voice-like signals) to more or less distorted versions of the
same signal (having passed through some communications system). Using
complex weighting methods that take into account what is perceptually
important, the physiology of the human ear, and cognitive factors related to
what human listeners are likely to notice, these algorithms provide a qual-
itative score that often maps closely to MOS. Two very important clarity
algorithms in use today are:

• Perceptual evaluation of speech quality (PESQ) is based on the
ITU-T P.862 standard that defines the algorithms used to compare
reference speech samples with test samples to measure quality
degradation due to distortion. PESQ replaces a previous perceptual
quality algorithm called perceptual speech quality measure
(PSQM), which was based on P.861.

• PAMS is an algorithm developed and licensed by Psytechnics, Inc.
that compares speech-like samples to obtain listening effort and
listening quality scores.17

Both PESQ and PAMS produce MOS-like scores as well as high-resolution
disturbance values and error surfaces that allow testers to identify distinct
distortion events including packet loss, transient noise spikes, and VoIP
processing problems such as VAD front-end clipping. Figure 11.9 shows
PESQ measurement results in an implementation produced by Agilent
Technologies, Inc.

Another approach to predicting perceived voice quality involves passively
monitoring IP traffic to determine packet loss, jitter, and error burst charac-
teristics. These metrics can then be analyzed mathematically in conjunction
with known VoIP network characteristics such as delay and codec type, and
human cognitive factors to ultimately produce a MOS estimation. Nonintru-
sive measurement techniques of this sort can be embedded into VoIP equip-
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ment or test equipment with relative ease, and they can provide perceptually
relevant distortion measures without producing additional network traffic.10

Conclusions

Reducing noise and distortion in a VoIP environment requires not only an
understanding of traditional voice signal characteristics, processing, and
transmission, but also an understanding of IP network behavior, VoIP-
specific processing, and the interaction between emerging VoIP systems and
existing telephony infrastructures (i.e., the PSTN). Noise reduction, therefore,
involves making design and implementation decisions that balance desired
voice quality with network capacity and cost.
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Introduction

 

Headsets for speech communication are used in a wide range of applications.
The basic idea is to allow hands-free speech communication, leaving both
hands available for other tasks. One typical headset application is aircraft
pilot communication. The pilot must be able to communicate with personnel
on the ground and at the same time use both hands to control the aircraft.

A communication headset usually consists of a pair of headphones and a
microphone attached with an adjustable boom. Headphone design varies
considerably between different manufacturers and models. In its simplest
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form, the headphone has an open construction providing little or no atten-
uation of the environmental noise. In headsets designed for noisy environ-
ments, the headphones are mounted in ear cups with cushions that provide
some attenuation.

The microphone is designed primarily to pick up the speech signal, but if
the headset is used in a noisy environment, the background noise will also be
picked up and transmitted together with the speech. As a consequence, speech
intelligibility at the receive end will be reduced, possibly to zero. To increase
the speech-to-noise ratio (SNR), it is common to use a directional microphone
that has a lower sensitivity to sound incident from other directions than the
frontal direction. In addition to this, the microphone electronics are usually
equipped with a gate function that completely shuts off the microphone signal
if its level drops below a threshold value. The purpose of the gate is to open
the channel for transmission only when a speech signal is present.

Headsets are frequently used in noisy environments where they suffer
from problems of speech intelligibility. Even if an ear cup–type headset is
used, the attenuation is relatively poor for low frequencies. Low-frequency
noise has a masking effect on speech, which significantly reduces the speech
intelligibility.

 

1,2

 

 Several cases have been reported in which the sound level
of the communication signal was increased to hazardous levels by the user
to overcome this low-frequency masking effect.

 

1,2

 

 Ear exposure to the com-
munication system resulted in hearing damage, such as hearing loss, tinni-
tus, and hyperacusis.

 

Passive Headsets

 

This section discusses headsets based on traditional passive ear defenders.
Basic theory for passive ear defenders is introduced and practical issues that
influence the performance of passive headsets are presented.

Traditional passive methods to attenuate noise employ barriers to block
sound transmission and sound-absorbing materials to absorb the sound
energy.

 

2

 

 A passive ear defender — circumaural or closed-back headset — is
based on a rigid ear cup containing sound-absorbing material.

 

2,3

 

 Principally
two ear cups are sealed to the users head via cushions by a spring band over
the head. Passive ear defenders may be equipped with loudspeakers and
boom- or throat-mounted microphone to provide one- or two-way commu-
nication. A closed back passive headset for two-way communication is
shown in Figure 12.1.

The transmission ratio, 
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), for a passive headset at the frequency
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[Hz] is given by:

 

3

 

(12.1)
p f
p f

K
K K f M j fR

i

e

a

a c

( )
( ) ( )

=
+ - +2 22p p

 

0949_frame_C12  Page 306  Tuesday, March 5, 2002  2:13 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



  

where 

 

p

 

i

 

(

 

f

 

) is the sound pressure inside the ear cup, 

 

p

 

e

 

(

 

f

 

) is the external
sound pressure acting on the ear cup, 

 

M 

 

is the mass of the rigid ear cup, 

 

R

 

is the damping in the cushion, and 

 

K

 

c

 

 is the mechanical stiffness of the
cushion. The mechanical stiffness of the air inside the headset 

 

K

 

a

 

 

 

is given by:

(12.2)

Here 

 

c

 

0

 

 and 

 

r

 

0

 

 are the speed of sound in air and the density of air at normal
temperature and pressure, respectively. 

 

A 

 

is the area of the plane surface
enclosed by the external curvature of the headset cup where it is attached
to the cushion and 

 

V 

 

is the volume of air enclosed by the headset cup. Based
on parameters originating from Shaw et al.,
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 the frequency response of the
transmission ratios, 

 

p

 

i
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f
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/p

 

e
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), for two well-designed passive headsets with
different values of cushion damping have been calculated and are shown in
Figure 12.2.

A passive headset produces good attenuation of noise at frequencies above
its eigenfrequency, as

 

 

 

Figure 12.2

 

 

 

illustrates. To maximize the attenuation of
noise at lower frequencies, the parameters of the headset need to be chosen
appropriately. From Equation (12.1), it follows that the transmission ratio
below the eigenfrequency is given approximately by 
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). Hence to
reduce transmission of noise at low frequencies, the mechanical stiffness of
the air inside the headset 

 

K

 

a

 

 should be small, while the mechanical stiffness
of the cushion 

 

K

 

c

 

 should be large. From Equation (12.2), it follows that small

 

K

 

a

 

 

 

can be achieved by increasing the air volume inside the headset cup and
decreasing the area 

 

A

 

, of the plane surface enclosed by its external curvature.
Both approaches to reducing 

 

K

 

a

 

, however, have practical limits. Since a

 

FIGURE 12.1

 

A closed-back passive headset for two-way communication.
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headset cup must often be designed to fit most people, the minimum area
of the plane surface of the headset cup is limited by the fact that the ear cup
must fit most ears. Furthermore, increasing the air volume inside the headset
cup must also be limited so that the headset does not become too bulky and
uncomfortable to wear.

As mentioned above, the mechanical stiffness of the cushion 

 

K

 

c

 

 is also a
factor that influences the low-frequency performance of the headset. By
selecting a cushion material with larger mechanical stiffness, the headset
should theoretically produce greater low-frequency attenuation. However,
in practice, the stiffness acting on the ear cup due to the cushion is limited
by the layer of flesh underlying the cushion. Furthermore, as the stiffness of
the cushion increases, not only does the headset become more uncomfortable
to wear but its ability to provide good sealing around the ear also decreases.
As a consequence of this, air leakage around the ear increases which prevents
further improvement in the low-frequency noise attenuation being realized.

As discussed above, a passive headset designed to provide good low-
frequency noise attenuation is likely to cause the wearer considerable dis-
comfort due to its size, weight, and cushion stiffness. Active noise control
techniques do not have the same limitations and have been proven to be
very successful at improving the low-frequency attenuation achievable with
headsets while at the same time allowing them to be comfortable to wear.

 

4

 

FIGURE 12.2

 

The transmission ratio between the internal and external sound pressure for two well-designed
passive headsets; solid line 

 

R

 

 = 70 Ns/m and dashed line 

 

R

 

 = 140 Ns/m. The eigenfrequencies
of the two headsets shown in this figure are at frequencies of about 100 and 130 Hz.
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Active Noise Control Headsets

 

As discussed above, bulky headsets are required in order to attenuate low-
frequency noise through traditional passive methods.

 

3

 

 Active approaches
can complement these passive methods, and by combining these two
approaches, high noise attenuation over a wide frequency range is made
possible. Indeed, attenuation can be achieved over the entire audible fre-
quency range from 30 Hz up to 20 kHz.

 

4,5

 

This section discusses active control techniques for headset applications.
Both analog and digital controllers are introduced as well as their combina-
tion. Analog feedback controllers are covered first, followed by a discussion
of digital control algorithms. Finally, the combination of analog feedback
controllers and digital controllers, which may be of either feedback or feed-
forward type, are discussed.

Active noise control is based on the principle of destructive interference
between two sound fields, one sound field originating from the primary
noise source, e.g., an engine, and the other generated by a secondary sound
source such as a loudspeaker.

 

6

 

 The loudspeaker produces a sound field of
equal amplitude and opposite phase — 180° out of phase — to the unwanted
sound field. The accuracy of the amplitude and phase of the generated sound
field, the antisound, determine the noise attenuation achievable.

Active noise control works best on low-frequency sounds where the acous-
tic wavelengths are large compared to the space in which the noise is to be
attenuated. In such a case, the antisound is approximately 180° out of phase
in the whole space.

 

6

 

 In general, the closed cavity within the ear cup of a
headset and the eardrum is small compared to the wavelengths of sounds
for which passive noise cancellation is poor and active techniques are of
interest. Using such active control methods, attenuation of noise at frequen-
cies below approximately 1 kHz by up to 20 dB has been achieved.

 

4,5

 

 Such
active control systems have been based on analog and/or digital tech-
niques,

 

4,6

 

 and both approaches are discussed in the following sections.

 

Analog Active Noise Control Headsets

 

Today, most commercial active headsets are based on analog feedback control
technology. This type of headset typically includes a loudspeaker, an error
microphone, and an analog control unit. The error microphone is generally
placed as close as possible to the ear canal, since the objective of the active
control is principally to minimize the perceived sound pressure.

The sound pressure under control, 

 

p

 

c

 

(

 

f

 

), inside an analog hearing protector
can be written as:

(12.3)p f
p f

KC f H fc
i( )
( )
( ) ( )

=
+1
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where 

 

p

 

i

 

(

 

f

 

) is the sound pressure inside the analog hearing protector without
control, 

 

K 

 

is the amplifier gain, 

 

H

 

(

 

f

 

) is the frequency function of the com-
pensation filter, and 

 

C

 

(

 

f

 

) is the frequency function of the control path, i.e.,
the transfer path comprising the loudspeaker, headset cavity, and error
microphone. By letting the amplifier gain 

 

K 

 

assume large values, the mag-
nitude of the denominator in Equation (12.3) becomes large and the sound
pressure under control approaches zero.

In practice, however, the performance of an active feedback control system
is limited by closed-loop stability requirements, i.e., the Nyquist stability
criterion.

 

7

 

 Physical paths, such as the electro-acoustic response of the loud-
speaker and the acoustic path from the loudspeaker to the microphone,
introduce time delay due to propagation time, and this will introduce
increasing phase shift with frequency and thus limit the performance of the
control system. As the net phase shift in the electro-acoustic response of the
loudspeaker and the acoustic path from the loudspeaker to the microphone
approaches 180°, the feedback becomes positive and the magnitude of the
open loop frequency response 

 

KC

 

(

 

f

 

)

 

H

 

(

 

f

 

) for the feedback control system
must be less than one in order to remain stable. Thus, the frequency range
of the control system where the loop gain  can be large is usually
upper limited by the frequency where the net phase shift in the electro-
acoustic response of the loudspeaker and the acoustic path from the loud-
speaker to the microphone approaches 180°.

 

7

 

 By using a compensation filter
to provide phase lag compensation, the low-frequency loop gain of the
feedback control system may be increased as the phase-lag filter attenuates
the high-frequency gain. In this way the gain margin (i.e., the maximum
factor by which the open loop frequency response for the feedback control
system can be amplified without the feedback control system becoming
unstable

 

6,7

 

) of the open loop frequency response for the feedback control
system can be improved, and the phase shift added by the compensation
filter can be minimized.

 

6,7

 

Although different compensation filter designs have been reported,

 

8,9

 

 they
have not been described in detail for commercial reasons. It is clear, however,
that since the cavity enclosed by the headset is likely to vary between dif-
ferent users, it is important to ensure that the design of the controller used
in the active headset is robust to such variations.

 

6

 

 Robustness of digital
controllers regarding variations in the control path is discussed in “Digital
Active Noise Control Headsets.”

To enable radio communication via the headset loudspeaker of an analog
active noise control communications headset, the communication signal may
be injected between the error microphone and the compensation filter, as
shown in Figure 12.3. This results in a sound pressure under control, 

 

p

 

c

 

(

 

f

 

),
given by:

 

8

 

(12.4)

KC f H f( ) ( )

p f
p f

KC f H f
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Here 

 

p

 

s

 

(

 

f

 

) is the sound pressure due to the communication signal, 

 

p

 

i

 

(

 

f

 

) is
the sound pressure inside the analog hearing protector without control, 

 

K 

 

is
the amplifier gain, 

 

H

 

(

 

f

 

) is the frequency function of the compensation filter,
and 

 

C

 

(

 

f

 

) is the frequency function of the control path. If the amplifier gain

 

K 

 

is chosen to be large to produce a large loop gain,  the
sound pressure under control, 

 

p

 

c

 

(

 

f

 

), is given approximately by:

 (12.5)

Hence, the influence of the feedback control on the communication signal

 

p

 

s

 

(

 

f

 

) is reduced significantly, and, in addition, the distortion generally intro-
duced in this signal by filtering caused by the loudspeaker and headset cavity
is also reduced.

Closed-back headsets can be uncomfortable to wear, especially if the
requirements are such that they have to be worn continuously for consider-
able periods of time. For such a headset, heat building up in the acoustic

 

FIGURE 12.3

 

(a) Analog active noise control headset for two-way communication and (b) the corresponding
block diagram of the feedback control system with communication signal injection.
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cavity and the pressure to maintain the acoustic seal around the ear necessary
to provide passive attenuation can cause substantial discomfort. In contrast,
an open-backed headset design, such as the headset type typically used in
combination with portable tape and compact disk (CD) players, offers a more
comfortable headset solution. This type of headset design does not, however,
provide any passive high-frequency attenuation. In addition, it allows large
variability in the acoustic path between the loudspeaker and error micro-
phone.4,10 Thus, the performance of an active open-backed headset typically
falls short of that achievable with an active closed-back headset.4,10

Analog active noise control headsets typically produce an attenuation of
about 20 dB at 100 to 200 Hz, which falls to zero below approximately 30
Hz and above approximately 1 kHz.5 Higher attenuation of narrowband
noise components may be achieved with nonadaptive analog active noise
control headsets by using a more sharply tuned compensation filter.6 How-
ever, as narrowband noise components may be time variable and are likely
to differ between different environments, an adaptive controller is preferable.
Since it is difficult and expensive to implement adaptive controllers that are
analog, digital controllers tend to be used for the control of nonstationary
and stationary narrowband noise.6

Digital Active Noise Control Headsets

This section covers digital active noise control headsets based on both adap-
tive feedforward and adaptive feedback control algorithms for active noise
control headsets. The discussions of both types of algorithms are based on
the well-known filtered-x least mean squares (FXLMS) algorithm. Since this
algorithm was originally defined for feedforward control applications, this
section begins by introducing active noise control headsets of the feedfor-
ward type.

Feedforward Control Systems

Feedforward control systems are theoretically more robust than feedback
control systems. Feedback controllers are generally designed based on a
model of the system to be controlled.7 Variation in the control path may
cause the feedback to become positive and lead to instability of the control
system, i.e., the Nyquist stability criterion is violated.7 In contrast to feedback
control systems, a feedforward system is not based on a feedback control
signal that may introduce this positive feedback and thereby instability.

In contrast to the feedback systems discussed above and in “Feedback
Control Systems,” feedforward control systems rely on the availability of a
reference signal that contains information about the frequency content of the
noise to be controlled.11 The attenuation achievable is related to the amount
of information about the noise to be controlled in the reference signal. The
reference signal is processed by an adaptive digital control system prior to
feeding the loudspeaker. For the control of broadband noise, a broadband
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reference signal can be provided to the digital controller by a microphone
mounted on the exterior of the ear cup. For reducing tonal noise, e.g., gen-
erated by engines and propellers, the reference microphone can be replaced
by a nonacoustic reference sensor, e.g., a tachometer or an optical or inductive
sensor.11,12 In this case, the periodic reference signals can be produced inter-
nally within the digital controller by using the output signal from the non-
acoustic reference sensor. 

There are several advantages in using nonacoustic sensors. For example,
the reference signals based on such sensors will contain only the tonal com-
ponents that are desired to be controlled and the properties of the reference
signals, i.e., frequency and signal power, are known. With reference signals
generated in this manner, the adaptive control becomes extremely selective.
It is possible to determine which frequencies are to be controlled and which
are not. Compared with a reference microphone, a nonacoustic sensor usu-
ally results in a reference signal with a lower noise level, resulting in higher
performance.6,11 In addition, undesired acoustic feedback from the loud-
speaker to the reference sensor, which can cause instability, is also eliminated.
In this case, the controller is purely feedforward, i.e., its performance is
completely unaffected by the action of the loudspeaker.

Acoustic feedback, experienced when using a reference microphone, can
be reduced by electronic techniques. However, this approach requires the
control system to have a complicated structure in order to compensate for
the acoustic feedback.6,11 The acoustic feedback problem is particularly
important for open-back headsets, where significant coupling between the
loudspeaker and the reference microphone is likely to be present. For sta-
tionary noise, i.e., noise whose statistical properties are time invariant, a
convenient estimate of the maximum noise suppression achievable by an
active feedforward noise control system in decibels (dB) is given by

6,11 where  is the coherence function6 between the
uncontrolled noise and the reference signal, which is a measure of the linear
relationship between them. For a coherence  of 0.99, an attenuation
of potentially 20 dB may be achieved.

In broadband active feedforward control it is important that the causality
condition is fulfilled, i.e., the delay introduced by the controller plus the
control path does not exceed the acoustic delay from the reference micro-
phone to the error microphone.6,11 Consequently, in a headset application,
feedforward control of broadband noise requires that the reference micro-
phone be positioned such that it picks up the acoustic noise sufficiently in
advance of its arrival at the ear to allow time for the processing of the noise
signal and for it to be fed to the loudspeaker.

To fulfill the causality condition, a reference microphone mounted on an
adjustable boom attached to the headset may be used. By manually tuning
the microphone boom to point toward the noise source, the acoustic noise
can be arranged to arrive at the error microphone in advance of its arrival
at the ear and hence the causality condition to be fulfilled. However, as the
headset user moves around, the direction of the microphone boom has to

- -10 110
2log ( ( )),g xd f g xd f2 ( )

g xd f2 ( )
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be continuously adjusted to point toward the noise source in order to
continue to fulfill the causality condition. Unfortunately, both this require-
ment for continual manual adjustment of the boom, as well as the need for
the boom microphone in the first place, may cause an active headset based
on a digital controller for broadband applications to be impractical to use.
If the causality constraint is not fulfilled, the system can efficiently only
reduce more deterministic noise, e.g., tonal noise, for which it is always
possible to find a correlation.

We will continue our discussion on feedforward active noise control head-
sets by introducing some important feedforward adaptive control algorithms
suitable for active noise control headsets.

The human ear responds mainly to the mean square value of the pressure
it perceives. Consequently, the “quantity” or “cost” function that most
adaptive active control systems are designed to minimize is the mean
square value of the error microphone signal, which is proportional to the
acoustic energy.6,11

A digital feedforward control system is illustrated in Figure 12.4. In both
broadband and narrowband applications, the control filter is commonly
based on a transversal filter, i.e., finite impulse response (FIR) filter, steered
by the well-known FXLMS algorithm. This algorithm is developed from the
least mean squares (LMS) algorithm and is based on a gradient search
method that relies on the optimization technique known as the method of
steepest descent.6,11 The FXLMS algorithm is given by:6,11

(12.6)

where m is the adaptation step size and

(12.7)

is the filtered reference signal vector, which usually is produced by filtering
the reference signal x(n) with an FIR-filter estimate  of
the physical path between the loudspeaker and error microphone (i.e., the
control path), and M is the length of the adaptive FIR filter, y(n) is the output
signal from the control filter, w(n) = [w0(n),…,wM–1(n)]T is the control filter
weight vector, x(n) = [x(n),…,x(n – M + 1)]T is the reference signal vector,
d(n) is the noise to be controlled, e(n) is the estimation error, i.e., error
microphone signal, and yC(n) is the output of the control path.

In practice, the elements in the filtered reference signal vector  are
produced by filtering the reference signal, x(n), with an FIR-filter estimate
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of the control path  and the product of this filtered
reference signal vector and the estimation error usually produces the
FXLMS algorithm’s gradient estimate, i.e., e(n). However, the gradient
estimate in the FXLMS algorithm’s weight vector adjustment algorithm is
by definition based on a filtered reference signal that is produced by filtering
the reference signal x(n) with the actual impulse response of the control
path.6,11 As a result, the filtered reference signal vector will be an approxi-
mation, and differences between the estimate of the control path and the
true control path influence both the stability properties and the convergence
rate of the algorithm.6,11 Differences between the estimate of the control path
and the actual control path will influence the gradient estimate used in the
algorithm, i.e., e(n), and this will cause the algorithm to adjust its
coefficient vector in a direction that is biased compared with the direction
of steepest descent.6,11

FIGURE 12.4
(a) Feedforward digital active noise control headset for two-way communication and (b) the
corresponding block diagram of the adaptive feedforward control system.
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The algorithm is robust, however, to errors in the estimate of the control
path.6,11 For example, in the case of narrowband reference signals, the algo-
rithm will converge even for phase errors in the estimate of the control path
of up to 90° provided that the step size m is sufficiently small.6,11 Furthermore,
phase errors smaller than 45° will have only a minor influence on the algo-
rithm convergence rate.6,11

In order to ensure stable action of the FXLMS algorithm, it has been found
that the step size m should be selected according to:

(12.8)

where  is the power of the filtered reference signal and D is the
number of samples corresponding to the overall delay in the control path.6,11

In practice, however, the power of a reference signal obtained by, for exam-
ple, a reference microphone, might be time varying. If the reference signal
has a time-varying power, it follows from Equation (12.8) that the upper
limit for the step size m is time varying. Variations in reference signal power
influence the performance, e.g., the stability and convergence speed, of the
FXLMS algorithm.6,11 A common way to improve the performance of the
FXLMS algorithm, regarding variations in the power of the reference signal,
is to replace the fixed step size m with a time varying step size m(n) in the
FXLMS algorithm (Equation [12.6]) according to:

(12.9)

Here m0 is a step-size parameter typically less than two,  is an
estimate of the power of the filtered reference signal, and e is a small positive
number added in order to avoid division by zero if = 0. By using
the time-varying step size given by Equation (12.9) in the FXLMS algorithm,
the normalized FXLMS algorithm is obtained.11

The mean power of the filtered reference signal vector can be updated
according to different update laws.11 One recursive update law for estimating
the signal power is given by11

(12.10)

where L is the block length.
The stability and convergence properties of the FXLMS algorithm are

related to errors in the estimate of the control path. One efficient way to
improve the robustness to errors in the estimate of the forward path is to
use the leaky FXLMS algorithm that is defined by6,11
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(12.11)

where g is a real positive leakage factor, 0 < g < 1.
Some applications of the FXLMS algorithm require long-control FIR filters,

for example, where tonal components that are close in frequency are to be
controlled. Long-control FIR filters result in slow convergence of the adaptive
algorithm and a considerable computational burden.11 To improve the con-
vergence speed and reduce the computational burden in such narrowband
control applications, the complex FXLMS algorithm described below may
be used.

The capacity of an adaptive control system to handle tonal components
that are close in frequency depends on the structure of the controller, i.e.,
how the multiple frequencies are processed. Suitable controllers are generally
based on either a single-filter structure or a parallel-filter structure using
several filters.11 The single-filter structure is based on a composite reference
signal containing all frequencies to be controlled. For tonal components that
are close in frequency, a long-control FIR filter is required resulting in slow
convergence of the adaptive algorithm as mentioned above.11 For the paral-
lel-filter structure, each frequency component is individually processed. This
enables shorter filters, and thereby better convergence performance, to be
achieved. If possible, therefore, the parallel structure rather than the single-
filter structure should be used to achieve efficient and robust control of
frequencies that are close together.12 An example of such a noise field is the
beating sound produced by propellers rotating at slightly difference speeds.

An alternative approach to the FIR-based control system for controlling
tonal noise is a system based on complex arithmetic.12 Here each frequency
is controlled by an adaptive complex weight. The complex FXLMS algorithm
is based on a recursive weight adjustment which is made for each tone
required to be controlled, i.e., for each frequency f to be controlled the
complex adaptive weight wf (n) is updated according to12

(12.12)

where xf (n) is a complex scalar reference signal at the frequency f,  is a
complex control path estimate corresponding to the frequency f, ( · )* denotes
the complex conjugate, mf is the adaptation step size at the frequency f, and
e(n) is the broadband error microphone signal.11,12 The output signal from

the parallel adaptive filter is produced by  where F

is the set of controlled frequencies and R { · } denotes the real part of the
complex quantity wf (n)xf (n). In a practical implementation, R { · } implies that
only the real part is evaluated.

For the same reason as in the case of the FXLMS algorithm of reducing
susceptibility to reference signal power variations, it can be important to
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introduce a normalized version of the complex FXLMS algorithm by using
a time-varying adaptation step size

(12.13)

in Equation (12.12). As in the case of the normalized FXLMS algorithm, the
estimate of mean power of the reference signal  may be updated
according to different update laws.11

Feedback Control Systems

As discussed above, feedforward control systems rely on the existence of
some prior knowledge of the noise to be controlled. This knowledge is
provided by a reference signal that drives the control loudspeaker through
the controller. Generally speaking, the ideal active controller is of this feed-
forward type provided, of course, that a reference signal highly correlated
with the undesired acoustic noise is available.6,11

Active feedforward control is typically well suited to applications where
it is simple and practical to obtain a reference signal of the noise requiring
cancellation. Such a situation is typically found in helicopter and aircraft
cockpits, and consequently the active headsets used in these environments
are often of the feedforward type. In some headset applications, however,
the generation of a suitable reference signal may be impractical or too costly.
For example, there might be a large number of different noise sources with
reference signals produced by tachometers or optical or inductive sensors,
all of which have to be fed to the headset controller.

In such a situation, the use of feedback rather than feedforward control,
for which no reference signal is required, has an obvious advantage. Fur-
thermore, although feedforward control systems are theoretically more
robust than feedback control systems (see “Feedforward Control Systems”),
the performance of the feedforward controller is highly dependent on the
quality of the reference signal, and in many cases a feedback system may
perform equally well or better than a system with feedforward control.

The performance of a feedback controller in broadband applications is
largely determined by the delay in the feedback loop. To obtain high per-
formance, a small delay in the feedback loop is required.6 This delay affects
the length of the prediction interval of the controller, i.e., how far into the
future the controller has to produce an estimate of the error signal.6 Due to
the inherent delay in digital controllers associated with their processing time,
A/D- and D/A-conversion processes, analog anti-aliasing, reconstruction
filtering, and analog feedback controllers, as discussed in “Active Noise
Control Headsets,” are usually preferred for use in broadband applications.
For example, the hardware cost of a fast digital controller that introduces a
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delay comparable to or below that of an analog system makes an analog
controller a more cost efficient solution for broadband control problems.6

However, in narrowband applications the performance of a feedback con-
troller is less sensitive to delays in the control loop, since narrowband signals
exhibit more deterministic behavior. Furthermore, as narrowband noise com-
ponents may be time variable and are likely to differ between different
environments, adaptive control is often required. Consequently, in the case
of nonstationary narrowband noise, a digital feedback controller, which can
provide adaptive control more easily and cost effectively than an analog
controller, is preferable. For example, at the error microphone of an active
noise control headset an adaptive digital feedback controller may provide
up to 20 dB more attenuation of the narrowband noise than can be achieved
with an analog controller.6 An active noise control headset for use in a variety
of environments involving both broadband and narrowband noise is thus
likely to be one which involves both an adaptive digital feedback controller
and an analog feedback controller.6

An adaptive digital feedback controller suitable for use in active noise
control headsets is the internal model control (IMC) controller based on an
adaptive control FIR filter steered by the FXLMS algorithm.6 In Figure 12.5,
a block diagram of this adaptive IMC controller is shown. The adaptive IMC
controller algorithm is obtained by adding the two equations

(12.14)

to those defining the FXLMS algorithm (see Equation [12.6]). Here,  is
an estimate of the noise to be controlled,  is an FIR-filter
estimate of the control path between the loudspeaker and error microphone,

FIGURE 12.5
Block diagram of internal model control (IMC) controller based on an adaptive control FIR filter
steered by the FXLMS.
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y(n) is the output signal from the control filter, and e(n) is the error micro-
phone signal. The relationship between the delayed estimate of the noise to
be controlled  and the reference signal x(n) describes the fact that we
are dealing with an adaptive digital filter in a feedback control system.

This type of controller is based on feedback cancellation; it uses an estimate
of the control path to cancel the feedback.6 If the controller is provided with
a good estimate of the control path, it will act as an adaptive feedforward
predictor.6 However, differences between the estimate of the control path
and the actual control path reduce the stable region of operation of the
adaptive control system and this algorithm may suddenly become unstable.6
Using the leaky FXLMS algorithm (Equation [12.11]) instead of the FXLMS
algorithm (Equation [12.6]) in the IMC controller improves robustness to
differences between the estimate of the control path and the actual control
path.6 This is an important issue, especially when it comes to open-backed
headsets, as the control path may be subject to large variations in this type
of headset, as discussed in “Analog Active Noise Control Headsets.”10

Another adaptive feedback controller that might be suitable for narrow-
band applications is the feedback FXLMS algorithm. A block diagram of
such a controller is shown in Figure 12.6. This algorithm is defined by adding
Equation (12.15)13

(12.15)

to the equations defining the FXLMS algorithm (see Equation [12.6]). Here
the relation between the delayed error signal e(n – 1) and the reference signal
x(n) describes the fact that we are dealing with an adaptive digital filter in
a feedback control system. As in the case of the IMC controller (see Equation
[12.14]), a leakage factor in the weight adjustment equation — the leaky
FXLMS algorithm (Equation [12.11]) is used instead of the FXLMS algorithm
(Equation [12.6]) in the feedback FXLMS algorithm — improves the robust-
ness of the algorithm to differences between the estimate of the control path
and the actual control path.13 In contrast to the IMC controller (Equation
[12.14]), this algorithm does not rely on cancellation of the feedback path.

FIGURE 12.6
Block diagram of the feedback FXLMS controller.
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Since the feedback FXLMS algorithm does not rely on cancellation of the
feedback path, it might be argued that this algorithm is likely to be favorable
compared with the IMC controller in circumstances where the control path
shows large variability.

As mentioned in “Analog Active Noise Control Headsets,” analog active
noise control headsets typically produce an attenuation of about 20 dB at
100 to 200 Hz that falls to zero below approximately 30 Hz and above
approximately 1 kHz. Combining such analog feedback control with the
digital feedback controllers described above will result in broadband atten-
uation of the noise due to the former and further reduction of nonstationary
narrowband noise components due to the latter. Thus, using digital feedback
control in combination with analog feedback control is likely to result in the
best overall performance active noise headsets.6

In such a combined system, the digital adaptive feedback controller is
implemented as an outer control loop of the analog feedback control system.6
When such a digital feedback loop is used as part of a headset communica-
tion system, degradation of the communication signal may occur since the
digital feedback controller is likely to affect the communication signal. Select-
ing the adaptation step size m sufficiently small, and thereby prohibiting the
adaptive filter from tracking the nonstationary speech signal, might allow a
communication signal of sufficient quality to be achieved while simulta-
neously maintaining the attenuation of the narrowband noise.

Hybrid Active Noise Control Headsets

An active control system that combines feedforward and feedback tech-
niques is usually called a hybrid active control system.11 Such a system can
provide narrowband as well as broadband noise attenuation and can be
combined with open- or closed-back headsets. The principle of a hybrid
active noise control headset is illustrated in Figure 12.7. Hybrid active noise
control can be used to improve the noise attenuation achievable within an
environment which has dominant low-frequency tonal noise embedded in
broadband noise. Such environmental noise dominates that found in the
interior cabins of propeller aircraft and helicopters. Compared with an ana-
log feedback controller giving broadband noise attenuation, an adaptive
digital feedforward controller is likely to produce greater attenuation of the
nonstationary tonal noise components.

A hybrid system can be based on either digital technology or a combination
of analog and digital technologies. The performance of a closed-back hybrid
headset based on a nonadaptive analog feedback controller combined with
a digital adaptive feedforward controller is shown in Figure 12.8(a).14 In this
figure the dominant low-frequency tones correspond to the fundamental
blade passage frequency, i.e., rotational speed of the propeller axis multiplied
with the number of the propeller blades, and the harmonics of the main rotor
blade passage frequency of the helicopter. If only a passive commercial
headset is used, limited low-frequency noise attenuation can be obtained, as
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illustrated in Figure 12.8(b). By combining the passive headset with analog
feedback active noise control, an improved overall low-frequency perfor-
mance can be obtained, as shown in Figure 12.8(c). A combination of feed-
forward and feedback control results in significant attenuation of both the
tonal components and low-frequency broadband noise, as illustrated in Fig-
ure 12.8(a).

Speech Enhancement for Headset Applications

Thus far, this chapter has focused on passive and active control of the noise
inside the ear cups of headsets. Although these techniques reduce the envi-
ronmental noise for the headset wearer, in the case of a communications
headset, the noise picked up by the intercom microphone remains and
reduces communication quality. This section focuses on two techniques for
reducing the amount of background noise picked up by the intercom micro-
phone and transmitted with the speech: spectral subtraction and a new in-
ear technique.

Spectral Subtraction

Spectral subtraction is a broadband noise reduction method well suited for
use in speech communication systems in severe noise situations such as
intercom systems in boats, motorcycles, helicopters, and aircraft.15 It is an
efficient and robust background noise reduction technique that can be used
in combination with the conventional active noise control techniques

FIGURE 12.7
The principle of a closed-back hybrid headset based on digital feedforward and analog feedback
active noise control techniques with communication signal injection.
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FIGURE 12.8
In (a–c), the sound pressure level of the interior helicopter cabin noise — AS332 ‘‘Super Puma’’
MKII helicopter — outside the ear cups is shown with a dashed line. (a) Solid line; reduced
sound pressure level inside the ear cups after the hybrid headset has been switched on; (b) solid
line; reduced sound pressure level inside the ear cups when only passive damping is applied.
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discussed earlier in this chapter. Spectral subtraction is based on a fast
Fourier transform subtraction technique.15 Two steps are required to remove
noise: Step 1 is a noise level estimation step based on data gathered during
speech inactive periods, i.e., collection of information about the type of noise
to be removed. Step 2 is a spectral subtraction step involving subtraction of
the noise from the speech using the estimated noise level from Step 1. Figure
12.9 illustrates schematically this spectral subtraction technique.

The SNR improvement achievable with spectral subtraction techniques is
normally substantial. From experience, a rule of thumb is that the SNR
improvement in headset applications achievable is of the same order of mag-
nitude as the SNR before reduction. One disadvantage of spectral subtraction
is, however, that sometimes background distortion of the processed signal may
occur in the form of musical tones.15 Such distortion, if heard at all, depends
on the type of spectral subtraction scheme used, the level of noise reduction
achieved, and the degree to which the background noise is nonstationary.16

Spectral subtraction is commonly used on the transmit side of the communi-
cation channel, but the technique can be used on the receive side as well.

In-Ear Microphone

A common approach to achieving good SNR in an ordinary communication
headset is to mount the microphone on a boom close to the mouth. In severe

FIGURE 12.8 Continued.
(c) Solid line; reduced sound pressure level inside the ear cups after the analog feedback controller
has been switched on.
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noise environments, where sound pressure levels are high, alternative micro-
phone techniques can be used to improve performance. One approach is to
replace the ordinary communication microphone with a more sensitive micro-
phone mounted in a foam plug that is placed in the auditory canal (auditory
meatus). The foam plug itself can provide substantial reduction of the noise
picked up by the microphone. Further noise reduction can be achieved by
using a miniature active noise control system or by using an additional
passive or active headset together with the in-ear microphone. Figure 12.10
shows an active noise control headset that uses such an in-ear microphone.

Many of the techniques for improving noise cancellation with ordinary
headsets, passive and active or a combination thereof, which were covered
earlier in this chapter, can also be applied to a headset incorporating an in-
ear microphone. For example, as in the case of a passive headset, both the
choice of sound-absorbing earplug material, as well as the plug-to-auditory-
canal fit, are important noise-damping factors. Combining an in-ear micro-
phone with an active noise control headset can be useful in various situa-
tions, civil as well as military, in order to enhance the speech intelligibility
of the intercom system.17

FIGURE 12.9
The spectral subtraction principle. The white parts of the arrows indicate the noise content and
the black parts of the arrows indicate the desired speech. The upper waveform shows the
original noise sequence and the lower waveform shows the spectral subtraction cleaned se-
quence. The left branch shows the noise estimation process, and the right branch the spectral
subtraction stage.
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Conclusions

Headsets for speech communication are used in a wide range of applications.
A communication headset usually consists of a pair of headphones and a
microphone attached to the headset with an adjustable boom. In its simplest
form, the headset has an open construction with little or no attenuation of
the environmental noise. In headsets designed for noisy environments, the
headphones are mounted in ear cups with cushions that provide some atten-
uation. The microphone is primarily designed to pick up the speech signal,
but if the headset is used in a noisy environment, the background noise will
also be picked up and transmitted together with the speech.

Passive headsets produce good attenuation of noise above their eigenfre-
quency, typically in the order of 40 dB above 500 Hz. Analog feedback active
noise control techniques for use in headset applications have received con-
siderable attention. These techniques have proved to be very successful at
improving attenuation at frequencies below 1000 Hz by up to 20 dB and at
the same time enabling comfortable noise canceling headsets to be designed.
For the control of narrowband noise both digital feedback and digital feed-
forward controllers enable further attenuation to be achieved compared
with analog feedback controllers. Digital feedback and feedforward con-
trollers may be used in combination with analog feedback controllers or on
their own.

In headset applications such as intercom systems, the background noise
picked up by the boom microphone will be transmitted together with the
speech. In order to enhance the speech transmitted by such systems, spectral
subtraction is typically used. It is an efficient and robust broadband back-
ground noise reduction technique, which will not interfere with conventional
active noise control systems used to improve the low-frequency attenuation

FIGURE 12.10
The ear microphone (1) is mounted in a plug (2). In this case, the ear microphone is combined
with an analog active noise control (ANC) feedback headset (4) using a separate error micro-
phone (3).
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of the headphone. Alternatively, the use of a headset microphone boom with
spectral subtraction may be replaced by in-ear microphone techniques.
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Introduction

 

In everyday life, a person with normal hearing makes use of his or her
directional hearing ability to help process information. For example, at a large
social gathering where many people may be speaking simultaneously, a
listener can focus on a single conversation without too much difficulty. This
so-called “cocktail party phenomenon” is mainly due to the fact that we have
two ears and are able to process information based on its origin in space.

The aim of virtual, or three-dimensional (3D), audio systems is to give a
listener the impression of being immersed in a virtual acoustic environment.
Such a system could provide the audio component of a virtual reality system.
Besides its obvious use in entertainment, virtual audio has been found to
greatly increase recognition in situations where personnel must monitor
several voice communications channels simultaneously.

 

1

 

 This is achieved by

 

0949_frame_C13  Page 329  Tuesday, March 5, 2002  2:26 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



   

placing different voice channels at different locations in virtual space around
the user.

In teleconferencing applications with multiple participants, 3D audio sys-
tems can be used to place the voice channels of different participants at
different points in space around the listener, in particular, to match the
position of the participant’s video image on the screen. For example, the
voice of the participant whose image appears at the top left of the listener’s
screen would come from above and to the left of the listener, and so on.

There are two basic approaches to virtual audio: binaural and soundfield.
The aim of binaural systems is to reproduce only at the listener’s ears the
acoustic pressures that would result if the listener were physically present
in the environment being virtualized. Binaural implicitly assumes that the
listener is at a specific position in the virtual environment. The aim of sound-
field systems is to reproduce within a large region of space the complete
acoustic soundfield that would exist in the environment being virtualized.
Any listener whose head is within this controlled region would therefore be
physically located within a local acoustic environment that is identical to the
virtual acoustic environment. One can think of the distinction between the
two approaches as follows: soundfield attempts to recreate an acoustic event
itself, whereas binaural merely attempts to reproduce the impression of the
acoustic event. By its nature, binaural is generally suitable only for a single
listener, whereas several listeners may use soundfield simultaneously (pro-
viding the reproduction region is large enough). Binaural can be produced
using headphones or a small number of loudspeakers, whereas soundfield
typically requires a large number of loudspeakers. In this chapter, we will
focus on single-user binaural systems.

 

Binaural Processing

 

Consider a sound source at a point in space to a listener’s left. When the
sound arrives at the listener’s ears there are three general effects. First, the
sound arrives at the left ear before the right ear; this is called the interaural
time difference. The sound will also be louder at the left ear compared to
the right because of the shadowing effect of the listener’s head; this is called
the interaural intensity difference. Finally, the listener’s external ear, head,
and torso modify the sound before it arrives at the eardrums; this results in
acoustic filtering of the sound.

For a sound source at a given point in space, there is a pair of acoustic
transfer functions (TFs) from the source to the listener’s ears. These are
referred to as head-related transfer functions (HRTF). Each person has an
individual set of HRTFs, determined by the size and shape of his or her
head, torso, etc. These can be measured by placing microphones in the
listener’s ears and generating a known test signal from a point in space.
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Repeating this for all points in space around a listener gives the complete
set of HRTFs, parameterized by the source position. A set of HRTFs measured
using a mannequin at the Massachusetts Institute of Technology (MIT) is
available in the public domain,

 

2

 

 and it can be used to design and implement
3D audio systems. A mono-audio channel can be positioned at a particular
point in space by filtering it with the appropriate HRTFs (a process known
as binaural spatialization) and then delivering these binaural signals to the
listener’s ears. For a review of binaural spatializers, refer to Reference 3. The
remainder of this chapter will consider issues that arise when one attempts
to deliver binaural signals to a listener using loudspeakers.

 

Crosstalk Cancellation Systems

 

In delivering binaural audio to a single listener, the aim is to control the
acoustic pressure at each of the listener’s ears as accurately as possible. This
is trivial using headphones. If, however, loudspeakers are used to deliver
the binaural signals, then additional signal processing is required. If the
binaural signals are simply played through their respective loudspeakers,
then the “crosstalk” signal that arrives at each ear from the opposite loud-
speaker must be removed. Adaptive filter techniques could be used to min-
imize the binaural signal arriving at the opposite-side ear,

 

4

 

 but this would
require a microphone located close to the ear to provide a feedback path. If
no feedback of the acoustic signal at the listener’s ear is available (as will be
the case most often in practice), one must assume a model for the transmis-
sion and use a prefiltering structure. This structure is called a crosstalk
cancellation system (CCS) and was first introduced in the 1960s by research-
ers at Bell Laboratories.

 

5

 

 With recent developments in digital signal process-
ing hardware making its implementation more practical, there has been
renewed interest in CCS over the past few years.

The general 

 

N

 

-loudspeaker CCS is shown in Figure 13.1, and is described
by the following linear system:

(13.1)
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and  is the actual signal received at the ear. The aim is to design the
CCS filters 

 

H

 

n

 

(

 

f

 

), 

 

n

 

 = 1,…,2

 

N

 

, to equalize the response from the binaural
inputs to the ears. The solution that minimizes the least squares error is 
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) where 
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f

 

) denotes the pseudo-inverse of 

 

A

 

(

 

f

 

). If the TF matrix

 

A

 

(

 

f

 

) was known, then designing the CCS filters is a trivial problem. How-
ever, the TF matrix will never be known in practice for a variety of reasons.

One of the main reasons for uncertainty in the acoustic TF matrix is that a
3D audio system will typically be used in a real room in which reverberation
is present. Reverberation causes filtering of the sound source, and this filtering
varies significantly from room to room, from point to point within the same
room, and even with temperature. Although the reverberant TF from loud-
speaker to ear could theoretically be measured and included in the design
process, this is impractical for any CCS that is to be generically applicable. It
has also been shown that attempting to equalize a reverberant acoustic chan-
nel results in an extremely nonrobust system.

 

6

 

 Hence, in practice, a CCS is
typically designed by considering direct-path acoustic TFs only (the effect of
reverberation on such a design has been considered in Reference 7).

Minor variations in the acoustic TF matrix will also occur due to individ-
ualized HRTF and unknown loudspeaker TFs (although theoretically these
could also be measured and included in the design process).

A more fundamental problem with designing the CCS filters is that, even
if the TF matrix were known exactly, as soon as the listener moves slightly
the equalizer ceases to be effective. Consider the following example. Assume
that a CCS is designed with two loudspeakers placed at angles of 

 

±

 

30°
relative to the center of the listener’s head at a distance of 1 m, and the CCS
filters are designed to equalize the acoustic TFs with the head in a specific
position. Using this CCS, the resulting ear responses for the left binaural
signal are shown in Figure 13.2 when the head moves laterally by 2 cm
(dashed) and 4 cm (dotted). These simulations were performed using a

 

FIGURE 13.1

 

Block diagram of a general crosstalk cancellation system.
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spherical head model

 

8

 

 both for design of the CCS filters and for the resulting
simulated ear responses; reverberation was not included in the simulation.
Ideally, the left ear response should be unity and the right ear response
should be zero, and indeed this is the case when the head is in the design
position (denoted by the solid line). However, as the head moves away from
the design position, the ear responses differ dramatically from their ideal
values. The design position is often referred to as the “sweet spot.”

In designing a CCS, one is therefore faced with the fact that the acoustic
TFs between loudspeakers and ears can never be known exactly. The typical
approach to deal with this is to assume a model for the acoustic TFs, and
then design the CCS filters to equalize the corresponding modeled TF matrix.
We will refer to this modeled matrix as the design TF matrix 

 

A

 

0

 

(

 

f

 

). The aim
is to design the CCS filters so that they give good performance, not only for
the design TF matrix 

 

A

 

0

 

(

 

f

 

), but also for slight unknown variations. Moreover,
when the listener moves the filters must be updated to reflect a new design
TF matrix for the new position of the listener’s head.

In order to deal with the robustness problem, one would like to know how
robust the equalizer is to unknown perturbation of the design TF matrix.
One measure for this robustness is the condition number of 

 

A

 

0

 

(

 

f

 

), defined
as the ratio of its largest and smallest eigenvalues. For a robust system the
condition number will be small (ideally unity), and for a nonrobust system
the condition number will be large. Hence, one should attempt to choose a
design TF matrix with small condition number, since this will ensure that
an equalizer will provide reasonable performance even if the actual TF
matrix differs from the design matrix. As an example, the condition number

 

FIGURE 13.2

 

Effect of head movement on the performance of a CCS using loudspeaker angles of 

 

±

 

30°. Ear
responses for the left binaural input are shown for the design position (solid), and when the
head moves sideways by 2 cm (dashed) and 4 cm (dotted).
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for the design matrix used in Figure 13.2 is shown in Figure 13.3. Notice that
at the frequencies at which the responses in Figure 13.2 differ most from
their ideal (e.g., around 1900 Hz, 3800 Hz), the condition number in Figure
13.3 has a peak.

A small amount of head movement can be tolerated by a robust system.
However, if the head moves more than a few centimeters from its design
position, then it is necessary to use external means to track the head position
and update the CCS filters accordingly. The design TF matrix should there-
fore be explicitly parameterized by the head position, so that as the head
moves, the design matrix and the corresponding equalization filters can be
similarly updated.

 

Techniques to Improve Robustness

 

It was shown in the previous section that the major problem with loud-
speaker-based 3D audio systems is that they lack robustness. In this section,
we will consider several techniques that have been proposed to make the
CCS perform better in practical situations.

 

Loudspeaker Geometry

 

The robustness of the linear system in Equation (13.1) to perturbation is
dependent on the conditioning of the design TF matrix 

 

A

 

0

 

(

 

f

 

). This in turn

 

FIGURE 13.3

 

Condition number of the acoustic TF matrix used to design the CCS filters in Figure 13.2.
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is determined (among other things) by the position of the loudspeakers.
Hence, one of the simplest and most effective ways to increase the robustness
of 3D audio systems is through judicious positioning of the loudspeakers.
For a CCS using two loudspeakers, it has been shown

 

9

 

 that robustness can
be parameterized by the interaural path difference 

 

D

 

, defined as the added
distance from each loudspeaker to the opposite-side ear compared with the
distance to the same-side ear. At each frequency there is a certain value of

 

D

 

 at which the condition number of the design TF matrix is a minimum. The
optimum solution for the interaural path difference (optimum in the sense
of minimizing the condition number) is for the loudspeaker spacing to vary
inversely with frequency. For a wideband audio system, this is impractical.
An effective approach, however, has been to use closely spaced loud-
speakers

 

10

 

 or to have different pairs of loudspeakers that are used at different
frequencies. Figure 13.4 shows the resulting ear responses for the left binau-
ral signal using two loudspeakers located 1 m from the head center at angles
of 

 

±

 

5°. Comparing these results with those of Figure 13.2, notice that even
if the head moves 4 cm from its design position, the crosstalk signal (i.e., the
right ear signal) is attenuated by at least 10 dB for all frequencies up to
around 5 kHz. It has recently been shown that asymmetric loudspeaker
positions can also improve the robustness to head movement.

 

11

 

Additional Equalizer Constraints

 

Rather than choosing loudspeaker positions to give a well-conditioned
design TF matrix and then designing the filters to exactly equalize this

 

FIGURE 13.4

 

Effect of head movement on the performance of a CCS using loudspeaker angles of 

 

±

 

5°. Ear
responses for the left binaural input are shown for the design position (solid) and when the
head moves sideways by 2 cm (dashed) and 4 cm (dotted).
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response, one can also design the CCS filters to attempt to provide reasonable
equalization for a family of design TF matrices. In other words, the aim is
to design the CCS filters to explicitly increase the size of the sweet spot. One
approach is to use a multiple-point control technique.

 

12

 

 The idea is to create
a larger sweet spot by equalizing the response at multiple points in the
vicinity of the modeled ear positions. An alternative is to impose derivative
constraints on the response at the ears, by constraining the partial derivatives
of the TF to be zero at the modeled ear positions.

 

13

 

Reducing the Effect of Reverberation

 

The effect of reverberation on a CCS that is designed only to equalize the
direct-path TFs has recently been investigated.

 

7

 

 As one would intuitively
expect, if the ratio of direct to reverberant energy were quite low, the per-
formance of the CCS degrades. One possible way to improve the direct to
reverberant energy ratio is to use multiple loudspeakers in an attempt to
make the sound radiated by the loudspeakers more directional. Consider
the following example. The expected ear responses for the left binaural signal
were calculated using the results in Reference 7 in a room with dimensions
of 6.4 

 

¥

 

 5 

 

¥

 

 4 m and a reverberation time of 0.2 s. The loudspeakers were
placed symmetrically about the line bisecting the listener’s head at a distance
of 1 m. No HRTF effects were included. Results are shown in Figure 13.5
using different numbers of loudspeakers; in each case the distance between
adjacent loudspeakers was 0.175 m. As the number of loudspeakers
increases, one observes two effects from these plots: (1) the response at the
left ear (which should ideally be unity) becomes flatter over the entire fre-
quency band and (2) the response at the right ear (which should ideally be
zero) is reduced, most noticeably at low frequencies.

 

Visual Information

 

There is one situation in which no CCS can be effective. This corresponds
to the case where the listener has moved far enough away from the design
position that the left ear is now where the right ear should be, or vice versa.
In this case, additional information must be used to provide a good model
for the acoustic TF matrix. One promising approach has been to use a video
camera to track the position of the listener’s head and then adaptively
update the CCS filters as the listener moves.

 

14

 

 This requires that the acoustic
TF matrix is parameterized by the head position so that an appropriate
design matrix can be used to design new equalization filters whenever the
head moves. It has also been suggested that visual processing systems could
help obtain user-specific HRTFs (for example, through matching pinna
shapes from a library),

 

14

 

 although the practicality of such a system has yet
to be proven.
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FIGURE 13.5

 

Effect of reverberation on the performance of a CCS using (a) two loudspeakers and (b) three
loudspeakers.
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FIGURE 13.5 

 

Continued.

 

Effect of reverberation on the performance of a CCS using (c) four loudspeakers and (d) eight
loudspeakers.
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Discussion and Conclusions

 

Acoustic crosstalk cancellation is a signal processing technique that is used
to deliver binaural signals to a single listener using loudspeakers. It is well
known that the main problem with a CCS is that its performance is critically
dependent on how much the actual acoustic transfer functions between
loudspeakers and ears differ from the modeled transfer functions used to
design the CCS. In this chapter, we have presented an overview of this
problem, along with techniques that have been proposed to create a CCS
that is more robust to modeling errors. It was shown that loudspeaker
geometry plays a critical role in determining the system performance. Spe-
cifically, using two closely spaced loudspeakers results in a system that
performs reasonably well even if the listener moves by a few centimeters
from the design position (see Figure 13.4). However, such a system has poor
low-frequency performance in a reverberant environment (see Figure
13.5[a]). If one has more than two loudspeakers available, then performance
can be significantly improved. Based on these observations, a CCS that is
both robust to head movement and provides reasonable performance in a
reverberant environment is shown in Figure 13.6. The center two loudspeak-
ers (

 

l

 

2

 

 and 

 

l

 

3

 

) are used over all frequencies, whereas the outside two loud-
speakers (

 

l

 

1

 

 and 

 

l

 

4

 

) are used only at frequencies below 3 kHz. Thus, at low
frequencies, the system uses an unequally spaced array of four loudspeakers,
and at high frequencies, two closely spaced loudspeakers are used. The
performance of this system is shown in Figure 13.7, and demonstrates that

 

FIGURE 13.6

 

Geometry for robust CCS. Below 3 kHz all four loudspeakers are used, whereas above 3 kHz
only the center two loudspeakers are used.
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FIGURE 13.7

 

Performance of robust CCS: (a) effect of head movement and (b) effect of reverberation.
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it achieves reasonable performance when (a) the head moves, or (b) rever-
beration is present.

Regardless of how robust it is, if the listener moves more than a few
centimeters from the design position, then any CCS is doomed to fail. In this
case, the 3D virtual acoustic environment will collapse and sounds will
appear to come from one of the loudspeakers. In future virtual audio sys-
tems, it is inevitable that tracking of the listener’s head will be required,
most likely through visual tracking. One can envisage future systems that
will also update the virtual acoustic field as the listener’s head turns. This
will require very efficient algorithms for both head tracking and CCS filter
implementation if latency is not to cause serious difficulties for the listener.
Incorporating visual tracking with robust design techniques should result
in loudspeaker-based virtual audio systems that provide very good perfor-
mance in most environments.
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Introduction

 

The local or access part of the telecommunications network is defined as
the part of the network that connects customers to the local exchange (or
central office). Despite the significant modernization of the trunk and junc-
tion parts of the network with the introduction of optical fiber systems, the
local network is still based on copper. This can be attributed to the significant
amount of capital investment required to replace millions of installed
twisted pair lines.
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Since twisted pair lines cannot be easily replaced, an important task for
the network operator is the maintenance of the network and the preservation
of the quality of the electrical signal as it propagates over the copper lines.
One of the measures of the quality of a twisted pair line is its ability to
prevent electromagnetic interference from corrupting the information signal.
However, due to cable degradation over the years, this ability is reduced,
making the twisted pair line susceptible to external sources of interference.

A common source of interference induced on local telephone loops is
interference resulting in cases where the twisted pairs are routed in parallel
and in proximity to active electrical conductors. When an alternating field
is associated with the electrical conductor (as shown in Figure 14.1), electro-
magnetic coupling occurs and voltages are induced into each wire of the
cable. The two wires in the pair shown in Figure 14.1 are not twisted to
simplify the illustration.

Let V

 

1

 

 and V

 

2

 

 be the voltages induced into each wire of the pair with
respect to earth. These voltages will not in general be the same because their
values depend partly on the spacing between the wires and the interfering
electrical conductor. The average value of these voltages at a time instant is
known as common mode (CM), or longitudinal, interference and their dif-
ference is known as differential mode (DM), or transverse, interference. The
DM level is generally very small compared to the CM level.

On a twisted pair, the information signal (speech or data) is represented
by the difference between the wire voltages, and hence it is the DM inter-
ference that corrupts the information signal. Ideally, due to the twisting, very
little interference should appear as a DM voltage. The interference rejection
properties of a twisted pair are described by its balance, which is defined as:

Balance (dB) = 20 (14.1)

 

FIGURE 14.1
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The smaller the balance, the greater the conversion of the CM interference
to DM interference and hence the greater the degradation of the information
signal. Some typical balance values are given in Table 14.1.

In practice, some lines are not well balanced due to a number of factors
like manufacturing impairments, cable deterioration, insulation imperfec-
tion, and poor joints. In such cases, significant DM interference is added to
the information signal. Typically, a DM noise voltage would be a few milli-
volts but it can also be a few hundreds of millivolts, depending on the
severity of the interference and the balance of the circuit.

 

1

 

In general, the balance of the cable reduces as the frequency of the inter-
fering signal increases, and therefore higher frequency interference can be
more easily converted to a differential signal and thus affect the telecommu-
nication signals. An example of such interference is the radio frequency
interference (RFI) due to commercial AM or amateur radio signals which
affect mostly overhead (aerial) service cables. Generally, the radio signal is
picked up by the wire, which acts as an antenna, and may affect the voice
band services if it is demodulated by nonlinear components, such as varis-
tors, transistors, and diodes in the telephone set and from corroded connec-
tions and terminations. RFI is one of the limiting factors for other services
that operate at higher frequencies, such as those based on the digital sub-
scriber line (DSL) technology.

 

2

 

Examples of Interference

 

One of the most common types of low-frequency interference encountered
on telephone circuits is periodic interference, which originates from either a
three-phase or single-phase power line (also known as power line interfer-
ence). A three-phase power line has the same current in each phase conductor
and as these are placed at a phase angle of 120° relative to each other, the
sum of the currents at any instant is zero and their inductive effects on a
parallel telephone line cancel out. However, in practice, this precise balance

 

TABLE 14.1

 

Network Cable Balance Figures

 

Balance (dB) Category

 

> 70 Good
65–70 Reasonable
60–65 Poor
< 60 Bad

 

Source:

 

 Ruddock, B.,

 

 N&S

 

 

 

Field En-
gineering Unit,

 

 Issue 4, British Tele-
communications, 1999.
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of the phase conductors is seldom met and a small out-of-balance earth-
return current circulates in the system, causing an external magnetic field
and interference on nearby cables.

A typical example of a single-phase system is the one used in AC electrified
railways. These systems generate a lot of harmonics due to the power con-
version/motor drive controls. The current is supplied to the trains through
an overhead contact wire and it returns to the feeding station partly through
the traction rails, the return conductors (if fitted), and through the earth
(Figure 14.2). Since this is an inherently unbalanced system compared to
three-phase power distribution, voltages may be induced on nearby com-
munication lines by magnetic induction from the contact wire current.

A second type of low-frequency interference arises from agricultural elec-
trified fences (Figure 14.3). This type of fencing has seen rapid growth
recently, mostly due to economic reasons. The fence is energized by means
of very short, high-voltage (up to 8 kV; see Reference 3) pulses, which are
injected onto the wires by an electronic fence energizer unit. This energizer
feeds a pulse which has duration of a few milliseconds with a repetition rate
of approximately 1 s.

 

3

 

The interference occurs when leakage currents flow from the energized
fence wire to earth. Vegetation growing adjacent to the fence makes contact
with the energized wire and provides a path to earth. This path is also
provided by poor insulation at the points where the wires attach to the
fence posts.

The voltage pulse, the associated current pulse, and any pulsed earth
potential all contribute to interference in telephone circuits. As the induced
voltage from such a system depends on the amount of leakage, the measured
CM voltage varies greatly from a few tens of volts up to 300 volts. These
high-voltage pulses cause very loud “clicks” on a telephone handset, distort
transmitted data/fax messages, and in some cases cut off the line.

 

1

 

The rest of the chapter further investigates the problem of power line
interference, the most frequent type of interference. Additional information
on low-frequency interference can also be found in the International Tele-
communication Union (ITU) recommendation ITU-T K.10. More detailed
information and methods of suppressing electric fence interference can be
found in References 4 and 5.

 

FIGURE 14.2

 

AC electrified railway.

Power Feeder Section

Current returns to
power feed point

Contact Wire
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Psophometric Weighting Characteristic

 

A method for rating the subjective effects of the interference on voice band
telephony is to use the so-called psophometric weighting characteristic
shown in Figure 14.4. This is an ITU-T directive (ITU-T O.41) and its atten-
uation vs. frequency curve conforms closely to the response of the human
ear to sounds emitted from a typical telephone handset.

As can be seen from Figure 14.4, if the power line interference were a
pure 50 Hz (UK frequency) sinusoid, its subjective effect would be minimal,
since the telephone set attenuates this tone by more than 60 dB. However,
in practice, the periodic interference is rich in harmonics due to the opera-

 

FIGURE 14.3

 

Electric fence interference.

 

FIGURE 14.4

 

Telephone circuit psophometric weighting characteristic.
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tion of nonlinear apparatus, such as transformers, DC motors, rectifying
equipment, and pumps. When these harmonics extend inside the voice-
frequency bandwidth (300 to 3400 Hz) of the telecommunication lines, they
cause significant degradation of the information signal and give rise to
signaling problems.

 

A Typical Example of Power Line Interference

 

Figures 14.5(a) and (b) show two cycles of a typical CM–DM pair of power
line interference signals as measured on a telephone line in Newcastle, U.K.
The DM signal has been filtered with a low-pass filter (LPF) to remove the
frequencies outside the voice band. The source of the interference was a
nearby electrified railroad line. The shape of the signals reveals the existence
of higher-order harmonics.

 

FIGURE 14.5

 

(a) CM and (b) DM interference (sampled at 44.1 kHz) as captured on a telephone line.

(a)

(b)
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In this type of interference, most of the signal’s energy is distributed in
the odd harmonics of 50 Hz. Figures 14.6(a) and (b) show the spectrum of
the CM and DM waveforms. As can be seen, the DM interference signal has
significant energy inside the voice-frequency bandwidth (300 to 3400 Hz) of
the telecommunication lines and causes degradation in telephony and fax
operation and signaling problems as well.

 

6

 

 Similar measurements have been
reported by Hierman.

 

7

 

Traditional Noise Reduction Techniques

 

There are a number of techniques available to a telecommunications com-
pany for the suppression of such types of low-frequency DM interference.
Ideally, the CM noise component also should be attenuated, since it might
be converted to DM (thus audible interference) beyond the remote unit (point
of demarcation between the telephone company network and the customer
premises) due to the poor balance of the cable and/or customer equipment.

 

FIGURE 14.6

 

Spectrum of the CM interference (a) and the DM interference (b).

(a)

(b)
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These techniques can be summarized as follows:

1.

 

Magnetic Screening:

 

8

 

 The magnetic screening is achieved by period-
ically connecting points of the cable screen or a spare pair to earth.
By doing so, a counter electromagnetic field (emf) is induced that
reduces the longitudinal flow of current in the signal pairs. The
effectiveness of the technique is variable and its deployment is
economic only in cases where the number of affected customers is
large. Only the CM noise component is affected with this method.

2.

 

Induction Neutralizing Transformers (INT):

 

8

 

 The principle of opera-
tion is the same as for magnetic screening. The counter emf is
induced by routing the longitudinal current flow through a trans-
former formed by using a spare pair in the cable, which is earthed
at both ends of the network. The INT introduces some inductance
on the pair, which is not a problem for speech band frequencies
but may be prohibitive for DSL-type services. Only the CM noise
component is affected with this method.

3.

 

Line Filters:

 

8

 

 These operate like the INT but are specially designed
for operation at the customer end of the line. They provide very
good CM attenuation but no DM attenuation at all. Also, the filter
has a low-pass type of characteristic for the differential signals, an
undesirable effect for services that make use of higher frequencies.

4.

 

Digital Access Carrier Systems (DACS) and Pair-Gain Systems:

 

9

 

 This
system provides noise immunity by using digital transmission. The
method has two major disadvantages: (a) there is a maximum reach
limit and (b) there is no attenuation of the CM interference.

The disadvantage of the first three methods is that they cannot provide
any DM interference suppression so noise would still be audible on a tele-
phone handset that is using the affected line. On the other hand, the employ-
ment of DACS is not cost effective, since a CM suppression method has to
be used as well.

 

Problem Modeling

 

The basic difficulty in the power-line interference problem is the co-existence
of speech and noise in the same frequency band. A direct solution would be
the insertion of a fixed comb filter for the attenuation of all the odd harmonics
of 50-Hz noise. The distortion introduced on the speech signal could be
minimized by reducing the bandwidth of the notches. However, actual noise
recordings have revealed that there is a frequency drift present on the
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harmonics, which is time varying and depends on a number of factors such
as site location and train movement. In such a case, the effectiveness of a
fixed filtering approach is significantly reduced.

A better approach is to use the well-known adaptive noise cancellation
set-up, which was originally proposed by Widrow et al.

 

10

 

 As shown in Figure
14.7, the information signal S is transmitted over the line with the interfer-
ence signal DM superimposed on it. The idea behind the noise suppression
method is to create an artificial replica of the DM noise signal and then
subtract it from the incoming S + DM signal. To account for the time-varying
nature of the interference, an adaptive system has to be employed. Let the
differential voltage after the subtraction be called the differential error (DE)
signal. Ideally, this should be equal to the information signal S. Since the
CM signal is highly correlated with the DM noise component, it can be used
by an adaptive noise cancellation unit (ANCU) to create an output that is as
close as possible to the DM noise signal. This output is subtracted from the
input S + DM to suppress the interference signal DM. The residual signal
DE is used by the ANCU in order to increase the efficiency of the suppression.
The adaptation should take place only in the absence of the information
signal, so that the true error between the incoming interference signal and
its replica is used to improve the suppression procedure.

In the majority of applications, a finite impulse response (FIR) filter is
assumed to model the transfer function between the two noise components.
This is because of the simple implementation of the FIR filter and the well-
understood properties of the associated adaptive algorithms. The CM noise
suppression can be achieved in a similar manner as shown in Figure 14.8.
This is the typical linear-prediction mode of operation, where an adaptive
FIR filter is used to replicate the incoming CM noise component using the
common mode error (CE) samples.

Various adaptive algorithms, such as the ones discussed in Chapter 1, can
be used for the CM and DM noise suppression. The particular characteristics
of the case under consideration impose tight constraints on the possible
adaptive algorithms that might be used, since there is a need for a cost-
efficient and robust approach. The least mean square (LMS) adaptive algo-

 

FIGURE 14.7

 

The adaptive noise cancellation concept.

Σ
DES + DM +
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rithm (Chapter 1) and its variants comply with the above requirements and
have been traditionally employed in similar cases.

 

11

 

Algorithm Considerations

 

As mentioned in Chapter 1, the implementation complexity of LMS is on
the order of 2

 

N

 

 multiplications and additions, where 

 

N

 

 is the number of
taps used in the FIR filter. If the same number of taps is used for both the
CM and DM noise suppression, then this complexity rises to 4

 

N

 

, which is
high enough to set a maximum limit on the number of taps that can be used
(due to the DSP operation). It also should be mentioned that this complexity
does not take into account the processing required for the overall control
of the system, such as power normalization, voice/data activity detection,
and monitoring.

A significant simplification of the replication procedure can be achieved
if the periodicity of the involved signals is taken into account. This is the
basic idea behind the recently introduced adaptive phase-locked buffer
(APLB) algorithm, which is described in full detail in Reference 12. A brief
description of the APLB algorithm is given next.

 

APLB Algorithm

 

Consider the noise cancellation configuration shown in Figure 14.7. Assum-
ing that the DM samples do not change significantly from period to period,
one cycle of the incoming DM waveform can be reconstructed by the ANCU
using previous DM cycles. In this case, the ANCU is simply a buffer (as
shown in Figure 14.9) that contains samples of one cycle of the predicted
DM noise waveform. These samples are subtracted from the incoming noise
waveform to provide interference suppression.

 

FIGURE 14.8

 

CM noise suppression.

Σ
CECM +

– CM replica

ANCU
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To account for amplitude variations of the DM signal, the buffer values are
continuously updated using the DE samples. Assume that the incoming DM
noise and the APLB are phase locked and in phase. Let the APLB have 

 

N

 

taps (buffer locations), which span one cycle of the DM noise. Also, let 

 

y

 

m

 

(

 

n

 

)
be the APLB sample stored in tap 

 

m

 

 during the period 

 

n

 

 of the DM noise.
After each tap is sequentially injected onto the line, its effect on the residual

DE signal is stored and used to update the relative tap value for the next
period. During one noise period, all the taps in the buffer are updated once
according to the equation:

 

y

 

m

 

(

 

n 

 

+ 1) = 

 

y

 

m

 

(

 

n

 

) + 

 

g

 

DE

 

m

 

(

 

n

 

) 

 

m

 

 = 1 to 

 

N

 

(14.2)

where DE

 

m

 

(

 

n

 

) is the value of the residual DE signal, which corresponds, to
the tap 

 

m

 

 during period 

 

n

 

. The parameter 

 

g

 

 is a weighting factor (0 

 

£

 

 

 

g

 

 

 

£

 

 1),
used to smooth the DE fluctuations.

The operation of the APLB technique depends heavily on the in-phase lock-
ing mentioned above. This can be achieved by processing the strong CM signal,
with a specially designed digital phase-locked loop (DPLL).

 

12

 

 Once the DPLL
is phase locked with the CM signal, the APLB waveform can easily be brought
to an in-phase lock with the incoming DM component of the interference.

The CM noise suppression can be achieved in a similar manner. A second
APLB is used to store the antiphase CM samples. The APLB values are
updated with the CE values in a similar manner to Equation (14.2), and
locking is achieved using the same DPLL.

As can be seen from Equation (14.2), the updating part of the APLB method
requires one multiplication and one addition per tap and the DPLL operation
requires only a few multiplications, additions, and logical operations. This is
a very small amount of processing compared with the 2

 

N

 

 + 1 multiplications
and 2

 

N

 

 additions that are required to implement an LMS filter with 

 

N

 

 taps.
The computational savings in the APLB approach stem from the fact that the
DM noise replica is directly estimated and updated, eliminating the need to
estimate/update an underlying model, as in the case of the LMS algorithm.

 

FIGURE 14.9

 

The APLB Method.

y0(n) y1(n) y2(n) yN–1(n)···
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Discussion

 

The APLB method described above is similar to the waveform synthesis
(WS) method derived by Chaplin et al. in 1979 (see Reference 11, pp. 103–110).
In the WS method, a reference input derived from the noise source is phase
locked with the generated waveform. By doing so, only the harmonics of
the fundamental frequency are canceled, leaving unaffected the frequency
bands between the harmonics. Assuming a perfect lock between the reference
input and the synthesized waveform, the APLB and WS methods can be
analyzed as if an FIR filter with 

 

N

 

 taps were excited by an impulse train of
period 

 

N

 

 samples:

 

13

 

(14.3)

where 

 

d

 

( · ) is the Kronecker delta function. In this case (the order of the
adaptive filter is equal to the period of the impulse train), the LMS weight
updating reduces to the simplified APLB update given by Equation (14.2).

The analysis shows that the transfer function between the input DM(

 

n

 

)
and the error DE(

 

n

 

) can be represented by a linear time-invariant comb filter
with notches at each harmonic of the interference.

 

13

 

 The DPLL tracks the
variations of the fundamental frequency of the interference and the notches
are accordingly adjusted. The overall scheme acts like an adaptive comb
filter, implemented in a parallel configuration, and has none of the disad-
vantages of the fixed comb filtering mentioned in “Problem Modeling.”

 

Practical Noise Canceller

 

A prototype system was designed by British Telecommunications (BT) for
the implementation of various noise cancellation algorithms. This is shown
in Figure 14.10.

The analog stages 1 and 2 detect the single-ended voltages on each wire
of the input and output pairs and form the CM, CE, and DE signals. These
signals are then digitized and sent to a DSP chip. The DSP implements the
noise cancellation algorithms and creates the antiphase waveforms. These
are then converted to analog signals, which are injected on the line through
the use of transformers.

Overall the device can be seen to be highly transparent to telephony
signals, offering only a small series impedance and high parallel impedance.

x n n kN
k

k

( ) = -
=-•

=•

Â d( )
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To reduce the cost and power consumption, a fixed-point DSP was chosen
for the algorithm implementation.

 

Experimental Set-Up

 

In order to test the effectiveness of the designed noise canceller, the config-
uration shown in Figure 14.11 was used. A telephone exchange emulator
was used to set up a call between two handsets to emulate a normal tele-
phone connection between two subscribers. An artificial transmission line
with length set to 6 km was used to represent a typical twisted pair connect-
ing the two subscribers. The interference coupling mechanism was modeled
as an additive process, and two transformers were used for the CM and DM
noise injection.

Real CM and DM noise recordings were converted in formats suitable for
CD reproduction. A stereo track was used with the CM recording on the left
channel and the DM recording on the right channel. The volume of the CD
player was adjusted so that the peak-to-peak level of the DM signal was
approximately 300 mV, a value similar to the one found in practical situa-
tions. Since the practical CM peak-to-peak values are on the order of 50 V,
an audio amplifier was used to amplify the CM output from the CD player.

The ANCU was connected in series with the pair and its output was then
connected to the customer’s handset. The effectiveness of the noise cancel-
lation was assessed using an oscilloscope, a spectrum analyzer, and a typical
telephone handset.

 

FIGURE 14.10

 

The adaptive noise cancellation unit (ANCU). LPF, low-pass filter; A/D, analog-to-digital
converter; D/A, digital-to-analog converter; DSP, digital signal processor; 
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FIGURE 14.11

 

The experimental set up used to test the noise cancellation unit.
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Results

 

Figures 14.12 and 14.13 are photographs of a digital oscilloscope showing
the CM and DM noise signals appearing at the input of the ANCU. The
peak-to-peak levels of the CM and DM signals were 32 V and 234 mV,
respectively. The APLB algorithm implemented on the DSP chip used 160
taps, and the rest of the parameters were adjusted so that convergence was
achieved within approximately 1 s. Figures 14.14 and 14.15 are photographs
that were taken after a few seconds of operation.

 

FIGURES 14.12

 

CM signal before suppression.

 

FIGURES 14.13

 

DM signal before suppression.
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As can be seen, the CM amplitude is reduced significantly, and only the
“ringing” parts of the waveform appear on the residual signal.

On the other hand, the residual DM signal consists mainly of high-fre-
quency components, as can be seen in Figure 14.15. The periodic pattern has
been completely suppressed, an indication of very good attenuation of low-
frequency harmonics. The cancellation bandwidth extends up to 2 kHz, and
the attenuation is better for lower frequency harmonics. The first five har-
monics are suppressed by approximately 20 dB, whereas the suppression of
higher order harmonics is ~ 10 dB on average. As mentioned in “APLB
Algorithm,” the performance of the APLB method depends on the

 

FIGURE 14.14

 

CM signal after suppression.

 

FIGURE 14.15

 

DM signal after suppression.
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periodicity of the waveforms and the synchronization between the incoming
signals and the antiphase (synthesized) ones. The DM signal can be decom-
posed into two parts. The first one corresponds to the lower-order harmonics
and is the one that gives to the DM signal the periodic pattern, which is
obvious in Figure 14.5(b). This part of the DM signal is the one that is easily
replicated by the APLB. The second part of the DM signal constitutes higher
frequency components, which exhibit random fluctuations and cannot be
easily replicated by the proposed method. However, taking into account the
psophometric weighting characteristic shown in Figure 14.4, the achieved
suppression in the region of approximately 1 kHz is adequate to reduce
significantly the subjective effect of the interference.

By increasing the number of taps in the APLB, the resolution of the repli-
cation procedure can be improved at the expense of extra computations. If
the number of taps is doubled, the cancellation bandwidth increases from
4 to 8 kHz, assuming a perfect DPLL operation. However, in the fixed-point
implementation of the approach, a trade-off exists between the number of
taps and the performance of the DPLL. As the number of taps is increased,
the performance of the DPLL is reduced in terms of stability and jitter. This
can be attributed to the simplified building blocks used for the DPLL.

 

Conclusions

 

This chapter provided an introduction to the problem of interference in
telephone circuits. The coupling mechanisms for two basic types of low-
frequency interference were described and emphasis was given to the power-
line interference problem, which is one of the most common types of noise
appearing on a telephone network. The existing mitigating methods were
described, revealing the need for a stand-alone, cost-effective solution.

It was shown that the problem can be modeled by an adaptive noise
cancellation configuration. Assuming that the CM and DM components of
the interference are correlated, the strong CM signal can be used as a refer-
ence by an adaptive filter, which models the CM-to-DM transfer function.
The output of the adaptive filter, which is a replica of the DM signal, is then
inverted and injected on the line and the residual noise is used to improve
the suppression. The overall configuration can be regarded as an adaptive
comb filter, with notches at each harmonic of the interference.

A novel algorithm was described that was specifically designed to exploit
the periodicity of the power line interference. The basic advantage of the APLB
method is the small computational complexity required for its implementa-
tion, allowing more processing power to be used for other functions, such as
voice activity detection, power normalization, and stability monitoring. These
secondary operations can have a significant impact on the efficiency of the
system and careful implementation is required for a robust performance.
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To demonstrate the feasibility of the proposed solution, a prototype noise
cancellation unit was built that can be used for the implementation of various
adaptive algorithms. The unit was part of an experimental configuration that
was replicating a typical interference scenario. The results obtained indicate
that the proposed solution can achieve significant noise suppression, and is
a clear demonstration of how advanced signal processing techniques can
provide solutions to a real-world noise problem.

References

1. Ruddock, B., Low frequency interference to the network: mechanisms, meas-
urements and mitigation, N&S Field Engineering Unit, Issue 4, British Telecom-
munications, 1999.

2. Foster, K.T. et al., Realising the potential of access networks using DSL, Br.
Telecom. Tech. J., 16, 34, 1998.

3. Galagher Power Fence Systems, 8th International Power Fence Manual, Gallagher
RSM Pty Ltd., Sydney, Australia, 1989.

4. Keratiotis, G., Adaptive Algorithms for Real-Time Noise Cancellation, Ph.D.
thesis, University of Essex, Essex, U.K., 2001.

5. Telecom Australia, Electric Fence Interference on Telephone Lines: A Guide to Mit-
igation of Induced Noise, Issue 1, 1984.

6. Cook, J.W., Proposal for project to develop prototype balance-about-earth im-
provement system for local access copper pairs, British Telecommunications
Laboratories, Copper, Radio and Satellite Systems, 1991.

7. Hierman, D.N., Time variations and harmonic content of inductive interference
in urban/suburban and residential/rural telephone plants, IEEE Trans. Com-
mun., Vol. COM-23, 1975, 1484.

8. Gundrum, R., Power Line Interference; Problems and Solutions, 14, ABC of the
Telephone, abc TeleTraining, Geneva, IL, 1988.

9. Adams, F. et al., Today’s access technologies, Br. Telecom. Tech. J., 16, 21, 1998.
10. Widrow, B. et al., Adaptive noise cancelling: principles and applications, IEEE

Proc., 63, 1692, 1975.
11. Kuo, S. and Morgan, D.R., Active Noise Control Systems: Algorithms and DSP

Implementations, John Wiley & Sons, New York, 1996.
12. Keratiotis, G. et al., A novel method for periodic interference suppression on

local telephone loops, IEEE Trans. Circuits and Syst., 47, 1096, 2000.
13. Elliott, S.J. and Darlington, P., Adaptive cancellation of periodic, synchronously

sampled interference, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-33,
1985, 715.

0949_frame_C14  Page 360  Tuesday, March 5, 2002  2:32 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



   

15

 

An Adaptive Beamforming Perspective on 

 

Convolutive Blind Source Separation

 

Lucas Parra and Craig Fancourt

CONTENTS

 

Introduction
Convolutive Blind Source Separation

Higher-Order Methods vs. Second-Order Nonstationarity
Separation Based on Second-Order Nonstationarity
Online Decorrelation

Combining Source Separation with Beamforming
Ambiguities of Independence Criteria
Linear Constraints in Geometric Beamforming
Power vs. Cross-Power Criteria

Geometric Source Separation
Geometric Constraints for Source Separation
Constraints as Penalty Terms
Performance Evaluation and Discussion

Generalized Sidelobe Decorrelator
Results in Real Rooms

Conclusions
References

 

Introduction

 

Microphones in an acoustic environment typically capture a mixture of sev-
eral sources. The goal of convolutive blind source separation (BSS) is to filter
the signals from a microphone array to extract the original sources while
reducing interfering signals. Due to the spatial variability of a room response,
different microphones receive different convolved versions of each source.
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Separation, therefore, also requires a convolutive filtering of the sensor sig-
nals, effectively resulting, for each source, in a spatially selective filter or
“beam.” As opposed to conventional geometric or adaptive beamforming,
in BSS no assumptions on array geometry or source location are made.
Instead, it is only assumed that the desired sources are statistically indepen-
dent. Convolutive blind source separation can therefore be understood as
multiple adaptive beamformers that generate statistically independent out-
puts, or more simply, outputs with minimal crosstalk.

Considerable progress has been made in formulating sufficient conditions
on the source signals and deriving corresponding optimization criteria. Strict
independence criteria involve higher-order statistics (HOS) of the signals.
Unfortunately, HOS are difficult to estimate and lead to complex and com-
putationally demanding algorithms. An alternative to HOS is to constrain
the crosstalk minimization to a second-order criteria and instead exploit the
nonstationarity of the signals.

 

1,2

 

 Estimating second-order statistics is numer-
ically more robust and the criteria lead to simpler algorithms. Most results
reported in the literature on real-room recordings are based on second-order
methods, whereas higher-order separation algorithms are often only dem-
onstrated on simulated data.

Aside from this, the independence criteria exhibit a number of ambiguities:
(1) the recovered sources are only determined up to an arbitrary convolution,
(2) more microphones than sources results in underconstrained filter coeffi-
cients, and (3) frequency bins may not be assigned consistently to the correct
channels. We propose to reduce the inherent ambiguities of convolutive BSS
by introducing geometric constraints similar to those used in the linearly
constraint minimum variance (LCMV) algorithm and generalized sidelobe
canceler (GSC).

 

3

 

 We have termed the resulting algorithms geometric source
separation (GSS)

 

4

 

 and the generalized sidelobe decorrelator (GSD),

 

5

 

 respec-
tively. Efficient frequency domain on-line and off-line implementations will
be outlined. Results on noise reduction for speech recognition in different
real-room environments and applications will be given.

 

Convolutive Blind Source Separation

 

Consider 

 

M

 

 uncorrelated sources, 

 

s

 

(

 

t

 

) 

 

Œ

 

 R

 

M

 

, originating from different spatial
locations and 

 

N

 

 > 

 

M

 

 sensors detecting signals 

 

x

 

(

 

t

 

) 

 

Œ

 

 R

 

N

 

. 

 

In a multipath
environment, each source 

 

j

 

 couples with sensor 

 

i

 

 through a linear transfer
function 

 

A

 

ij

 

(

 

t

 

), such that  Using matrix notation
and denoting the convolutions by 

 

*

 

, we can write this briefly as 

 

x

 

(

 

t

 

) = 

 

A

 

(

 

t

 

)

 

*

 

 

 

s

 

(

 

t

 

), or after applying the discrete-time Fourier transform (DTFT),

(15.1)

x t A s ti j
M P

ij j( ) ( ) ( ).= -= =
-S S1 0

1
t t t

x A s( ) ( ) ( )w w w=
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The task of convolutive source separation is to find filters 

 

W

 

ij

 

(

 

t

 

) that invert
the effect of the convolutive mixing 

 

A

 

(

 

t

 

). One generates model sources 

 

y

 

(

 

w

 

)

(15.2)

that correspond to the original sources 

 

s

 

(

 

t

 

). Although any linear system is
compatible with Equation (15.2), we restrict ourselves to finite impulse
response (FIR) filters since this allows the algorithms to be efficiently imple-
mented in the frequency domain.

 

Higher-Order Methods vs. Second-Order Nonstationarity

 

Different criteria for convolutive separation have been proposed.

 

1,2,6-10

 

 All
criteria can be derived from the assumption of statistical independence of
the unknown signals. However, typically only pairwise independence of the
model sources is used. Pairwise independence implies that all cross moments
factor, yielding a set of necessary conditions for the model sources

(15.3)

E[ · ] represents the ensemble average and will in practice be replaced with a
sample average over a given time window surrounding time 

 

t

 

. Convolutive
separation requires these conditions to be satisfied for multiple delays 

 

t

 

,
corresponding to the delays of the filter taps of 

 

W

 

(

 

t

 

). For stationary signals,
multiple 

 

n

 

, 

 

m

 

, i.e., higher-order criteria, are required. For nonstationary sig-
nals, multiple 

 

t

 

 with 

 

n

 

 = 

 

m

 

 = 1 are sufficient.

 

1,2,11

 

 In this case, conditions
(Equation [15.3]) state that cross-correlation matrices 

 

R

 

yy

 

(

 

t

 

, 

 

t

 

) = 

 

E

 

[

 

y

 

(

 

t

 

)

 

y

 

T

 

(

 

t

 

 + 

 

t

 

)]
have to be diagonal at all times.

 

Separation Based on Second-Order Nonstationarity

 

Joint diagonalization of 

 

R

 

yy

 

(

 

t

 

, 

 

t

 

) has to find filters 

 

W

 

(

 

t

 

) that decorrelate model
sources 

 

y

 

(

 

t

 

) at multiple 

 

t

 

. This can be implemented efficiently in the fre-
quency domain

 

2

 

 using the Fourier transform of the cross correlations — the
cross-power spectra. Currently, we obtain the best results with a diagonal-
ization criteria based on the coherence function,

 

12

 

 defined as

(15.4)

where  is the cross-power spectra between outputs 

 

y

 

i

 

 and 

 

y

 

j

 

 at
frequency 

 

w

 

 and time 

 

t

 

. In matrix notation this can be written as

y W x( ) ( ) ( )w w w=

" π + = +t n m i j E y t y t E y t E y ti
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(15.5)

with 

 

L

 

yy

 

(

 

w

 

, 

 

t

 

) = diag 

 

R

 

yy

 

(

 

w

 

, 

 

t

 

). The squared coherence function is real and
constrained to lie between 0 and 1 for all frequencies. The coherence function
matrix 

 

C

 

yy

 

(

 

w

 

, 

 

t

 

) is identically equal to one on the diagonal. Its off-diagonal
elements vanish only if 

 

R

 

yy

 

(

 

w

 

, 

 

t

 

) is diagonal, and so we can use the following
diagonalization criteria

(15.6)

with the Frobenius norm,  representing the square sum of all
the elements in the matrix 

 

C

 

. The minimization of Equation (15.6) can be
solved using gradient descent methods. The advantage of the coherence
function criteria is that the normalization guarantees uniform convergence
speed irrespective of the power present in any given frequency bin. The
optimization of Equation (15.6) requires multiple estimates of the cross-
power spectra estimated at different times, 

 

t

 

. Parra and Spence

 

2

 

 did this using
an off-line algorithm that first estimates the cross-power spectra of the micro-
phones over different time windows, 

 

R

 

xx

 

(

 

w

 

, 

 

t

 

), and in a second step computes
the simultaneously diagonalizing filters 

 

W

 

(

 

w

 

). The approximation of linear
and circular convolution is used there, 

 

R

 

yy

 

(

 

w

 

, 

 

t

 

) 

 

ª

 

 

 

W

 

(

 

w

 

)

 

R

 

xx

 

(

 

w

 

, 

 

t

 

)

 

W

 

(

 

w

 

)

 

H

 

, which
is valid if the filters are short in comparison to the length of the discrete
Fourier transform (DFT).

Online Decorrelation

In attempting to convert the offline algorithm into an online algorithm, we
are faced with the problem of designing an algorithm that requires nonsta-
tionary signals for convergence. The reason for this is that what we do with
each new measurement depends on whether it is part of the previous
stationary regime, or represents a transition to a new stationary regime. In
the first case, the new data should be used to improve the estimate of the
current covariance, implying the use of a long effective memory. In the
second case, the data represent the beginning of new covariance matrix for
simultaneous diagonalization with previous covariance matrices, implying
a short memory is appropriate. Therefore, in addition to the conventional
trade-off between convergence speed and misadjustment, we now have a
trade-off between estimation accuracy and novel information when meas-
uring correlation.

Note that there are actually two sums over time in Equation (15.6). First,
there is the explicit summation over multiple coherence matrices estimated
at different times. There is also an implicit summation over the block of
time necessary to estimate each coherence matrix. The key insight is that

C Ryy yy yy yy( , ) ( , ) ( , ) ( , )/ /w w w wt t t t= - -L L1 2 1 2

J t
t

( ) ( , )W Cyy= ÂÂ w
w

2

C C C2 = Tr H[ ],
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these two sums are not interchangable because the criteria are nonlinear in
the power estimates. Often online second-order decorrelation has proposed
a stochastic optimization method whereby the sums over time are entirely
removed. In doing so, however, nonstationarity is not properly captured
and the algorithms reduce to simple decorrelation, which is not sufficient
for separation. Therefore, we propose to preserve the time-averaging pro-
cess by recursively estimating the cross-power spectra to capture short-term
nonstationarity12

(15.7)

where g is a forgetting factor, constrained to 0 < g < 1 for stability, and T is
a block processing time (frame rate) that represents the time it takes to
estimate y(w, t). The forgetting factor and block processing time combine to
make the effective memory of the estimator to be T/(1 – g).

We consider the sum in Equation (15.6) as an estimator of the instantaneous
cost,  Stochastic gradient descent uses the instantaneous cost
for the weight updates. We take the derivative with respect to the complex
weights in the frequency domain and update the weights at the end of each
time block

(15.8)

where m is the learning rate and Ryx is a matrix of cross-power spectra
between the outputs and the inputs:

(15.9)

The online blind source separation algorithm consists of Equation (15.2)
and Equations (15.7) through (15.9) and is entirely compatible with the
overlap-save method of frequency domain adaptive filtering.13 The overlap-
save method implements linear convolution in the frequency domain with
the DFT, or its efficient counterpart, the fast Fourier transform (FFT). How-
ever, since the DFT corresponds to circular convolution in the time domain,
the filters must be padded with zeros, in turn requiring the use of a larger
input buffer. As a result, only the latter part of the output in the time domain
is valid. In the context of the present algorithm, it is thus incorrect to directly
use the complex output (Equation [15.2]) in updating the cross-power spec-
tral densities in Equations (15.7) and (15.9). Rather, they must first be trans-
formed into the time domain (also required to obtain the system output),
and the invalid parts zeroed prior to transforming back into the frequency
domain for use in Equations (15.7) and (15.9). Note that this is not required
for x, since the input buffer is always filled with valid input samples prior
to transforming into the frequency domain.

R R y yyy yy( , ) ( , ) ( ) ( , ) ( , )w g w g w wt t T t tH= - + -1

Sw wCyyyy( , ) .t 2

∆ Λ Λ Λ ΛW R R R Ry yy yy yy yy yy yy yx= − −− − − −µ ( [ ])y
1 1 2 1diag

R R y xyx yx( , ) ( , ) ( ) ( , ) ( , )w g w g w wt t T t tH= - + -1
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The computational complexity of the algorithm scales linearly in the num-
ber of inputs and quadratically in the number of outputs. Although other
frame rates relative to the filter size can be used, a 50% overlap is the most
computationally efficient. For a two input–two output problem at a sampling
rate of 8 kHz with 512 taps, the algorithm runs in approximately one tenth
real-time on a 866-MHz Pentium III. It is thus entirely suitable for real-time
operation in many-input–many-output problems.

Combining Source Separation with Beamforming

This section discusses the ambiguities of convolutive blind source separation.
We will review how geometric information is utilized in conventional adap-
tive beamforming and suggest that second-order BSS can readily be com-
bined with adaptive beamforming methods, because they both operate on
the power spectra of the signals.

Ambiguities of Independence Criteria

Regardless of the independence criteria, there remains an ambiguity of per-
mutation and scaling in the separating filters. In the convolutive case the
scaling ambiguity applies to each frequency bin, resulting in a convolutive
ambiguity for each source signal. This expresses the fact that filtered versions
of independent signals remain independent. Furthermore, when defining a
frequency domain independence criteria such as

(15.10)

there is a permutation ambiguity for each frequency. The criteria (Equation
[15.10]) are equally well satisfied with arbitrary scaling and assignment of
indices i, j to the model sources, i.e.,

(15.11)

where P(w) represents an arbitrary permutation matrix and S(w) an arbitrary
diagonal scaling matrix per frequency. The most immediate problem with
this is that contributions of a given source may not be consistently assigned
to a single model source across different frequency bins.2,8,14,15 Parra and
Alvino4 argue that the permutation problem (Equation [15.10]) also exists in
the time domain criteria (Equation [15.3]).

In practice, one may want to use a larger number of microphones to
improve spatial resolution or reduce aliasing. Aside from the permutation

" π =n m i j E y y E y E yi
n

j
m

i
n

j
m, , , : [ ( ) ( )] [ ( )] [ ( )]w w w w w

W A P S( ) ( ) ( ) ( )w w w w=

0949_frame_C15  Page 366  Tuesday, March 5, 2002  2:40 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



and scaling ambiguity, Equation (15.11) suggests that for a given A(w) there
is an N – M dimensional linear space of solutions W(w). In effect, this
indicates that there are additional degrees of freedom in terms of shaping a
beam pattern represented by the separating filters W(w).

Linear Constraints in Geometric Beamforming

To disambiguate the permutation, convolution, and underdetermined filter
coefficients, one can use geometric information. In conventional geometric
and adaptive beamforming, information such as microphone position and
source location are often utilized. A good review of these methods is given
in Reference 3. We want to emphasize that geometric assumptions can be
incorporated and implemented as linear constraints to the filter coefficients.

If the source location, array geometry, and microphone response charac-
teristics are known, then we can specify an array response vector, d(w, q) Œ CN,
which represents the complex response from the source at location q to the
outputs of the N sensors. Then, for a given beamforming filter, w(w), the
total system response is given by

(15.12)

For a linear array with omnidirectional microphones and a far-field source,
the microphone response depends in good approximation only on the angle
q = q (q) between the source and the linear array

(15.13)

where pi is the position of the ith microphone on the linear array and c is
speed of sound.

Constraining the response to a particular orientation is simply expressed
by the linear constraint, r(w, q) = w(w) d(w, q) = const. This concept is used
in the linearly constrained minimum variance (LCMV) algorithm.16

Power vs. Cross-Power Criteria

Most adaptive beamforming algorithms rely on a power criteria of a single
output. Sometimes power is minimized such as in noise or sidelobe canceling.
There the aim is to minimize adaptively the response at the orientation of
interfering signals.3 Sometimes power is maximized such as in matched-filter
approaches that seek to maximize the response of interest.17 As outlined in
“Separation Based on Second-Order Nonstationarity,” blind source separa-
tion of nonstationary signals minimizes the off-diagonal elements of Ryy(t, w)
rather than the diagonal terms as in conventional adaptive beamforming. It
can thus identify proper beams for each source despite the fact that multiple

r( , ) ( ) ( , )w w wq w d q=

d q d( , ) ( , ) sin( )w w q w q= = -e j
pi
c
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sources are simultaneously active. Strict one-channel power criteria have a
serious crosstalk or leakage problem, especially in reverberant environments.

Geometric Source Separation

We propose to combine blind source separation and geometric beamforming
by minimizing cross-power spectra for multiple times while enforcing con-
straints used in conventional adaptive beamforming. This can be done
explicitly by adding a geometric constraint to the optimization criteria,
resulting in an algorithm we call geometric source separation,4 or implicitly
by embedding the constraint in the system architecture, resulting in the
generalized sidelobe decorrelator.5 The former approach will be discussed
in this section and the latter in the next section.

Geometric Constraints for Source Separation

To include geometric information, we will assume that the sources we are
trying to recover are localized at angles q = [q1, …, qM] and at sufficient
distance for a far-field approximation to apply. Following “Linear Con-
straints in Geometric Beamforming,” the response of the M filters in W for
the M directions in q is given by W(w) D(w, q), where D(w, q) = [d(w, q1), º
d(w, qM)]. In this section, we consider linear constraints such as

(15.14)

(15.15)

Constraint (Equation [15.14]) restricts each filter wi(w) — the ith row vector
in W(w) — to have unit response in direction qi. Constraint (Equation [15.15])
enforces in addition that they have zero response in the direction of inter-
fering signals qj, i π j.

Note that condition (Equation [15.15]) requires that D(w, q) is invertible
for the given set of angles. This is, however, not always possible. At the
frequencies where the grating lobes* of a beam pattern cross the interfering
angles, D(w, q) is not invertible. It is, therefore, not reasonable to try to enforce
Equation (15.15) as a hard constraint. Rather, as we confirmed in our exper-
iments, it is beneficial to enforce Equation (15.15) as a soft constraint by

adding a penalty term of the form  to the optimi-
zation criteria (Equation [15.6]). Note also that power or cross-power mini-

*  Periodic replica of the main lobe due to limited spatial sampling.

C diag1 1: ( ( ) ( , ))W Dw w q =

or C2: ( ) ( , )W D Iw w q =

JC2
2( ) ( ) ( , )w w w q= -W D I
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mization will try to minimize the response at the interference angles. This
will lead to an equivalent singularity at those frequencies. It is, therefore,
beneficial to enforce condition (Equation [15.14]) also only as a soft constraint

by using a penalty term of the form 

Constraints as Penalty Terms

We implemented the linear constraints (Equations [15.14] and [15.15]) each
as a soft constraint with a penalty term. We have further addressed the
problem of noninvertibility discussed in “Geometric Constraints for Source
Separation,” by introducing a frequency dependent weighting of the penalty
term. The idea is to eliminate the constraints from the optimization for those
frequency bands for which D(w, q) is not invertible. A rather straightforward
metric for invertibility is the condition number. We, therefore, weight the
penalty term with the inverse of the condition number of l( w) =
cond–1(D(w, q)), which converges to zero when D(w, q) is not invertible and
remains bounded otherwise, i.e., 0 £ l(w) £ 1. The total cost function includ-
ing frequency dependent weighting of the geometric penalty term is given by

(15.16)

In algorithm GSS-C1 the penalty term JC1 will maximize the response of filters
i in orientation qi. Note that the delay-sum beamformer (w(w) = d(w, q)H)
satisfies conditions C1 strictly. In algorithm GSS-C2 the penalty term JC2, in
addition, will minimize the response for the orientations of the interfering
sources. The filter structure that guarantees constraints C2 strictly can be
computed with a least squares approach as the pseudo-inverse of DH(w, q),
or including a regularization term bI for the noninvertibility problem the
solution is given by W(w) = DH(w, q) (D(w, q) DH(w, q) + bI)–1. We denote this
solution by LS-C2. All GSS algorithms reported here minimize cross power
using a straightforward gradient descent algorithm.2

Performance Evaluation and Discussion

Examples of typical response patterns for the GSS algorithms are shown in
Figure 15.1, which shows the beam patterns of the filter weights for a linear
array of four microphones with an aperture of 70 cm. There were two sources
located at 0 and – 40° broadside to the array.

Algorithms GSS-C1 and GSS-C2 place a zero at the angles of interfering
sources while maintaining a main lobe in the directions of the corresponding
source. For conflicting frequency bands, where a grating lobe coincides with
the location of an interfering source, multiple cross-power minimization
reduces the main lobe. Qualitatively, the results for the data-independent

JC1
21( ) ( ( ) ( , )) .w w w q= -diag W D

J JC( ) ( ) ( ( ))/W W+ Âl l w w
w

1 2
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FIGURE 15.1
Response for geometrically constrained source separation. Algorithms GSS-C1 and GSS-C2
minimize (Equation [15.16]) with constraints C1 and C2, respectively. del-sum and LS-C2 satisfy
the respective constraints explicitly and are shown for comparison.
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LS-C2 algorithm capture both main lobe and zeros at the correct angles. Its
performance, however, is inferior to the data-adaptive algorithms.

A systematic performance evaluation of the algorithms for the case of two
sources in a moderately reverberant room (T30 = 50 ms) is presented in Figure
15.2. We varied the locations of two speakers who were always at least 2 m
from the array. The number of microphones was varied (two to eight), but
the array aperture was kept at 70 cm. The top row shows the results for
some known beamforming algorithms (del-sum, LS-C2, LCMV).

The criteria (Equation [15.6]) represent a nonconvex optimization problem.
The results for the optimization procedure, therefore, strongly depend on
the initial conditions. For comparison, the center row in Figure 15.2 presents
the results for unconstrained multiple cross-power minimization with dif-
ferent initializations of the filter structure. Initializations that have been
considered are unit filters (W(w) = I), delay-sum beamformer (del-sum), and
least squares (LS-C2). The results for unconstrained optimization with the
different initializations are labeled BSS, GSS-I2, and GSS-I1, respectively.

The last row shows the results for the geometrically constrained separation
algorithms (GSS-C1¢, GSS-C1, GSS-C2). Algorithm GSS-C1¢ is the same as
GSS-C1 only with constant penalty term l. Within each row the algorithms
are sorted by average performance. Comparison of the results for GSS-C1¢
and GSS-C1 show the advantage of the frequency-dependent weighting of
the penalty term. Due to the limited angular resolution all algorithms per-
form poorly when the sources are too close.

We now present results obtained for the separation of three sources. Note
that the permutation problem discussed in “Ambiguities of Independence
Criteria” becomes worse as the number of sources increases. We show in
Figure 15.3 the performance of separating two speakers and babble noise
using a linear array of eight microphones. The performance mirrors mostly
the results obtained for the separation for two sources.

FIGURE 15.1
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In these experiments the cross-power spectra were estimated at five time
instances with a time window of about 3 s each, such that a total of about
15 s of data is analyzed. In all experiments we used a linear array of cardioid
condenser microphones. The user locations were identified acoustically.4

Generalized Sidelobe Decorrelator

As we mentioned previously, one possibility for enhancing a point source
while suppressing noise is the linearly constrained minimum variance
(LCMV) algorithm, which adaptively filters the sensor signals so as to min-
imize power, subject to a constraint that a delay-sum beam points in the
direction of the source of interest. An alternative but equivalent approach is
the generalized sidelobe canceller (GSC),18 shown in Figure 15.4(a). It also
implements power minimization criteria on the filtered sensor signals. How-
ever, unlike the LCMV, the requirement that a beam points in the direction
of interest is enforced in the architecture rather than the criteria. Specifically,
the GSC utilizes a delay-sum beam through the use of steering delays

FIGURE 15.2
Performance comparison of the proposed algorithms and geometric beamforming for two sourc-
es. SIR performance in decibels is encoded in gray scale as a function of number of microphones
(horizontal axis) and angular separation (vertical axis: 12°, 18°, 19°, 25°, 33°, 37°, 38°, 41°, 50°).
SIR performance averaged over all positions and number of microphones is also given. (Signal-
to-interference ratio (SIR) is used as a separation metric, which measures the ratio of power (dB)
in the enhanced channel to the rejection channel during periods when only one speaker is active.)

delsum  3 dB

2 4 6 8
10

20

30

40

50

LSC2  5.16 dB

2 4 6 8
10

20

30

40

50

LCMV  5.23 dB

2 4 6 8
10

20

30

40

50

BSS  5.34 dB

2 4 6 8
10

20

30

40

50

GSSI2  7.83 dB

2 4 6 8
10

20

30

40

50

GSSI1  9.83 dB

2 4 6 8
10

20

30

40

50

GSSC1’  7.8 dB

2 4 6 8
10

20

30

40

50

GSSC1  8.41 dB

2 4 6 8
10

20

30

40

50

GSSC2  9.31 dB

2 4 6 8
10

20

30

40

50

S
IR

 in
 d

B

2

4

6

8

10

12

14

16

0949_frame_C15  Page 372  Tuesday, March 5, 2002  2:40 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



FIGURE 15.3
Performance for the separation of three sources using eight microphones. SIR improvement
averaged over three configurations with angles –78, –41, 0°; –60, 0, 60°; and –43, 0, 36°. The
initial average SIR is about –3 dB.

FIGURE 15.4
(a) Generalized sidelobe canceller; (b) generalized sidelobe decorrelator.
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followed by a linear combiner. The linear combiner is a window that can be
designed to vary the trade-off between main lobe width and sidelobe energy.
After the steering delays but prior to the linear combiner, the signals are all
in phase. This is exploited to form beams orthogonal to the primary beam
through the use of a “blocking matrix.”3 Each row of the blocking matrix is
constrained to sum to zero to ensure that the resulting secondary beams will
all have a null in the direction of the primary beam. During adaptive power
minimization, the secondary beams are adapted out of the primary beam
but are prevented by the blocking matrix from canceling any signal that
exclusively resides in the primary beam. The GSC approach has the advan-
tage that the resulting optimization can be carried out using unconstrained
power minimization, such as the least mean squares (LMS) algorithm. Unlike
the LCMV, the constraint is always enforced and no extra steps have to be
taken to ensure that the filter weights do not stray from the constraint over
time due to finite precision effects.

However, although the GSC exploits the available prior geometric infor-
mation, it does not exploit the independence prior, and is thus subject to
the leakage problem associated with power minimization. That is, any leak-
age of the primary source into the secondary beams will result in cancellation
of the primary source and a degradation of the signal-to-noise ratio (SNR)
improvement. This leakage can be due to any of several factors, including
(1) array calibration errors; (2) primary source location error; (3) a main
beam that is narrower than the primary source, caused by a large array
aperture; (4) spatial aliasing lobes, caused by an insufficiently spaced sensor
array; (5) reverberation, caused by reflections of the primary source coming
from directions outside the primary beam.

To overcome these deficiencies, we combine aspects of the generalized
sidelobe canceller and blind source separation to create an algorithm we call
the generalized sidelobe decorrelator (GSD),5 shown in Figure 15.4(b). Like
the GSC, it consists of steering delays that place all the sensor signals in-
phase, a linear combiner that forms the primary beam, and a blocking matrix
that forms secondary orthogonal beams. However, unlike the GSC, instead
of adopting power minimization criteria that adapt the secondary beams out
of the primary beam, we adopt cross-power minimization criteria, as
described in “Online Decorrelation,” that decorrelates the secondary beams
from the primary beam. This allows for removing leakage of the primary
source into the secondary beams, while the blocking matrix guarantees the
integrity of the primary beam independent of whether the sources are con-
tinually active.

Results in Real Rooms

We conducted an acoustic experiment designed to demonstrate the superior
performance of the algorithm for noise reduction. A two-dimensional rect-
angular sensor array of dimension 10 ¥ 7 cm was formed, corresponding to

0949_frame_C15  Page 374  Tuesday, March 5, 2002  2:40 PM

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:37 AM

© 2002 by CRC Press LLC

E:\Java for Engineers\VP Publication\Java for Engineers.vp
Thursday, April 25, 2002 9:27:36 AM

Color profile: Disabled
Composite  Default screen



the dimensions of a personal digital assistant (PDA), using inexpensive
omnidirectional lapel microphones (Audio-Technica ATR35S).

The array was located in a room of dimension 3.0 ¥ 3.6 ¥ 2.3 m. A loud-
speaker was placed 0.5 m directly in front of the array, which was used to
replay a quiet recording of a male speaking 300 short commands over a period
of 20 min, with a pause of 2 to 3 s between commands. The recording was
automatically segmented into speech/nonspeech for the purpose of measur-
ing SNR, and the speaker had previously trained an automatic speech recog-
nition system for the purpose of measuring speaker-dependent command
error rate (CER). The recognizer and all algorithms operated at 11.025 kHz.

Also in the room but in the corner and facing the wall 2.5 m from the array,
a loudspeaker played babble (the sounds of many voices). Outside the room,
another loudspeaker played a recording of street noises. The nominal SNR
at the microphones was 1.2 dB, which corresponded to a CER of 77.6%. We
then applied four online adaptive algorithms to the array signals, each of
which used FIR filter sizes of 512 taps. The results are shown in Table 15.1.

Because the source was directly in front of the array, the fixed delay-sum
beam could be obtained by a simple averaging of the four sensors. Although
the fixed beam does not provide much SNR improvement, it does provide
significant CER improvement, primarily because it does not distort the speech.

Next, we implemented the GSC using a “Walsh” blocking matrix (see
Reference 18) to form three secondary beams orthogonal to the primary
delay-sum beam. The secondary beams were adapted out of the primary
beam using the frequency domain LMS algorithm. Although there is
improvement in the SNR, there is degradation in the CER relative to the
delay-sum beam, most likely due to spectral distortion of the speech.

Next, we applied BSS on the four raw input signals using the algorithm
of “Online Decorrelation” with two outputs. Although BSS provides a small
SNR improvement over GSC, the algorithm completely destroys the recog-
nition performance. Part of the problem is that BSS requires that the sources
be simultaneously active, and thus the filters start to degrade during the
silent periods between commands. In addition, the frequency-domain per-
mutation problem (see “Ambiguities of Independence Criteria”) can distort
the speech spectrum.

Finally, we applied our new hybrid GSD by performing BSS on the fixed
delay-sum beam and blocking matrix outputs taps, and obtained very

TABLE 15.1

Real-Room Experiment

Algorithm SNR (dB) CER (%)

None
Fixed delay-sum beam
Generalized sidelobe canceller
Blind source separation
Generalized sidelobe decorrelator

1.2
1.3
3.0
3.6
4.6

77.6
19.4
73.9

100.0
5.4
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encouraging results. In addition to obtaining the largest SNR improvement
of any of the algorithms, the CER was a very respectable 5.4%, approaching
the single microphone CER of 2.0% in a quiet environment.

Conclusions

This chapter emphasizes the importance of second-order criteria and the use
of prior geometric information to solve the problem of separating multiple
sources in an acoustic environment. It combines notions from adaptive beam-
forming and blind source separation resulting in semiblind algorithms where
at least microphone locations are known. The assumption is made that
sources are reasonably well localized and that user location can be deter-
mined acoustically. The algorithms overcome the crosstalk problems of con-
ventional adaptive beamforming and the ambiguity problems of convolutive
blind source separation.
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Introduction

 

The major complaint of individuals with hearing impairment, regardless of
whether they wear hearing aids, is the reduced ability to understand speech
in a noisy environment. Hearing in the presence of noise is a complex
problem that will be discussed for several classes of interference. The
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engineering challenge is to provide audibility of speech in order to overcome
the hearing loss and simultaneously reduce background noise, thereby
enhancing the signal-to-noise ratio (SNR) for the hearing-impaired person.

Digital signal processing (DSP) holds significant promise of precise and
accurate compensation for hearing loss. Hearing aid signal processing pur-
posefully distorts the speech signal in the frequency domain through fre-
quency shaping and distorts the signal in the amplitude domain through
compression. Although these signal alterations are desirable, it is also impor-
tant to minimize distortion that occurs in hearing aids at high amplification
levels. Digital systems can also reduce or eliminate feedback (acoustic
squeal), which is a normal consequence of an open-loop amplification sys-
tem. In addition, SNR enhancement algorithms are possible and may be
categorized in several classes that include binaural processing, microphone
technologies, and noise reduction algorithms.

 

Hearing Loss

 

The degree of hearing loss often varies with frequency. A typical pattern is
increased hearing loss for high-frequency signals rather than for low-frequency
signals. With speech, this results in a loss of sensitivity for consonants but not
vowels. The result is the hearing-impaired person is aware of the talker’s voice
but has difficulty understanding the exact words that are being spoken.

Hearing aids compensate for this frequency-domain problem using fre-
quency-shaping amplification, whereby more electronic gain is applied in
the regions of greater hearing loss. For sensorineural hearing impairments,
the gain correction applied is typically up to one half the loss for moderate
impairments, and up to two thirds the amount of loss for severe impair-
ments.

 

1,2

 

 Emphasis in frequency shaping is in the region of 750 to 4000 Hz,
which provides approximately 75% of the cues for speech understanding.

 

3

 

Sensorineural hearing loss results from damage to the cochlea, or inner
ear. When due to cochlear pathology, The loss is characterized by recruit-
ment, which is a reduction in sensitivity to low- and moderate-intensity
auditory signals but near-normal sensitivity for high-intensity signals. Mod-
ern hearing aids compensate for this with wide dynamic range compression
(WDRC) amplification, whereby more gain is applied to low-intensity signals
than to high-intensity signals. For moderate-to-severe hearing loss, the dif-
ferential gain correction for low-intensity signals can be twice that for high-
intensity signals.

 

4

 

SNR Loss

 

Not only does sensorineural hearing loss produce a loss of sensitivity for
auditory signals, as measured in quiet, but also a further impairment in
processing ability, as measured in noise. Some of the impairment occurs in
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the frequency domain, where a sound at one frequency masks the audibility
of the target sound at an adjacent frequency. Additional impairment occurs
in the temporal domain, where a sound immediately preceding or following
the target sound can also produce a masking effect.

The hearing loss for speech intelligibility in noise is measured as the SNR
required for the listener to maintain understanding of conversational
speech in the presence of noise. As hearing loss in quiet increases, there is
a general trend for the SNR impairment to increase.

 

5

 

 The degradation in
SNR occurs at a rate of about 1.0 to 1.5 dB SNR for each 10 dB of hearing
loss in quiet.

 

6

 

 The implication of the SNR loss is that persons wearing
hearing aids must be provided with a more positive SNR than normal-
hearing people in order to understand speech in the presence of noise in
the same listening environment.

 

The DSP Hearing Aid

 

In this chapter, DSP will be presented in the context of a digital hearing aid,
which comprises a microphone, an analog-to-digital converter, a digital sig-
nal processor, a digital-to-analog converter, and a receiver, as shown in
Figure 16.1.

Many hearing aids exist that provide digital control of analog circuitry.
The true DSP hearing aid should not be confused with digitally controlled
analog aids. To date, these digitally controlled analog devices have not been
effective in noise suppression and have occasionally suffered from problems
associated with distortion and inadequate filtering ability. This discussion
will focus on the DSP techniques that are now emerging and hold promise
of increasing the SNR in a variety of noisy environments.

The most recent all-digital hearing aids contain between 400,000 and
1,300,000 transistors on a silicon chip small enough to fit inside the ear canal.
These digital hearing aids operate nominally at 1 V with a battery drain of
about 1 mA, using approximately 40% of the power budget for digital signal
processing and 60% for analog-to-digital and digital-to-analog conversion
tasks. Battery life for the DSP hearing aid is 1 to 2 weeks for a small 1.3 V battery.

Modern digital circuitry allows such algorithms as feedback suppression,
digital fine-tuning of directional microphones, and spectral subtraction to
be implemented in current DSP hearing aids. As integrated circuit densities
increase, it is reasonable to expect that algorithmic complexities can be added

 

FIGURE 16.1

 

Basic configuration of a DSP hearing aid receiving a signal as a function of time [
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processing it as a signal as a function of the number of samples [
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as the normal advances in integrated circuit capabilities progress on a time-
table consistent with Moore’s Law.*

An approach which offers promise when applied to hearing aids is based
on multichannel/multiband signal processing. A technique shown in Figure
16.2 operates on the output of the microphone and an internal noise generator
(NG) and divides the acoustic spectrum into multiple bands.

 

7-9

 

 The bands
are preferably chosen to mimic the bandwidth of the critical bands of hearing,
although in practice the bands may cover a broader region to simplify the
processing. Each band is then processed through an automatic gain control
(AGC) that adjusts the applied gain such that signal levels between threshold
and the desired maximum intensity are mapped to evoke the corresponding
desired perceptions of loudness for the hearing-impaired individual.

A simple method of achieving this result is to extract the amplitude enve-
lope of the acoustic signal in each band of the multiband system, measure
the intensity, and map the signal to the desired output level. One method of
envelope extraction and loudness mapping is shown in Figure 16.3. In this
figure, the value of the constant e

 

max

 

 is chosen to be the maximum envelope
amplitude for which gain is desired, hence for all envelope amplitudes larger
than e

 

max

 

, attenuation rather than gain is the result. The parameter K is chosen
to provide the appropriate sensation for acoustic intensities near the hearing

 

FIGURE 16.2

 

A multichannel DSP hearing aid with a separate automatic gain control (AGC) for each com-
pression channel.

 

* In the April 19, 1965, 

 

Electronics

 

 magazine 35th anniversary issue was an obscure article enti-
tled, “Cramming more components onto integrated circuits,” by Gordon E. Moore, Director,
Research and Development Laboratories, Fairchild Semiconductor. In this article, the following
quote, observed to be accurate now over 36 years, has become referred to as Moore’s Law: “The
complexity for minimum component costs has increased at a rate of roughly a factor of two per
year. Certainly over the short term this rate can be expected to continue, if not to increase. Over
the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe
it will remain nearly constant for at least 10 years.”
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threshold. It is important that the low-pass filter used to smooth the envelope
be selected accordingly to vary with the critical bandwidth associated with
the band being processed.

 

Feedback Reduction

 

A frequent complaint about hearing aids is the annoying acoustic feedback
that occurs at higher amplification levels. Often the squeal is not audible to
the hearing aid user, but becomes an annoyance to those nearby. In addition
to being annoying, the feedback can drive the system to its maximum oper-
ating limits introducing distortion and quickly draining battery energy. Dig-
ital feedback compensation has been proposed by Best,

 

10

 

 applying a least
mean square error (LMS) adaptive filter to provide feedback suppression.
Best reported gains of approximately 10 dB for his implementation.

Adaptive feedback cancellation that varies with the dynamics of the envi-
ronment is very attractive because it reflects typical user environments.
Recently developed implementations of adaptive feedback cancellation have
been proposed with an eye toward implementation in digital hearing aids.

 

11,12

 

Joson et al.

 

13

 

 have proposed an adaptive canceller that uses frequency
compression as a preprocessor to the hearing aid signal. The frequency
compression is provided to decorrelate the output signal from the input
signal as sound from the hearing aid receiver leaks back into the hearing
aid microphone. The use of this frequency compression for feedback can-
cellation indicates a significant improvement and additional gain is achiev-
able. Joson et al. report a feedback margin increase of about 18 dB for one
set of operating conditions.

The frequency compression implementation of feedback suppression
offers the advantage of preserving features of the tonal quality of speech,
thereby suppressing feedback while preserving desired input signals to the
hearing aid. Hearing aid users can expect new feedback algorithms to be
implemented shortly because digital techniques to achieve feedback reduc-
tion can now be implemented within current hearing aid power and
computation constraints. As a note, the spectral subtraction noise

 

FIGURE 16.3

 

A multiplicative AGC used in an all-DSP hearing aid.
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suppression techniques also provide, to a limited extent, a reduction in
feedback, thereby allowing for modest additional gain in digital hearing aids.

 

Treatment for SNR Loss

 

Treatment for SNR loss, or the impairment of processing ability in the pres-
ence of background noise, is an area of great potential for DSP applications
in hearing aids. Techniques to improve speech understanding in noise
include binaurally integrated amplification, directional microphone technol-
ogy, and digital noise reduction algorithms.

 

Binaural Amplification

 

Binaural fitting of hearing aids provides many advantages for complex lis-
tening tasks, including better localization in the horizontal plane and
increased speech understanding in noisy situations through the physical
factor of head shadow effects and the physiological factor of binaural
squelch.

 

14

 

 A binaural fitting approach, for symmetric or asymmetric hearing
losses, is first to adjust the frequency-shaped gain response of the multiband
hearing aid in the patient’s ear with the best hearing. Once the fitting of the
first aid is completed, a narrowband noise confined in bandwidth to one of
the multiple bands of the hearing aid is presented to the patient via head-
phones or in a soundfield. With an aid in each ear — the first aid having
already been fitted — the gain of the second aid is adjusted in the band
corresponding to the narrowband noise to provide the patient with the
sensation that the sound source is directly in front or centered in the head
(i.e., the patient hears the sound equally in both ears). The process is repeated
until all bands of the multiband aid are binaurally balanced. When the sound
source is placed directly in front of the individual and the hearing in both
ears is balanced, the hearing aid wearers will perceive the sound to be equally
loud in both ears. Then as the sound source is moved to other positions,
most hearing aid wearers will be able to localize correctly. This binaural
restoration is generally not possible with analog aids.

 

Microphones

 

Directional Microphones

 

Modern first-order directional microphones, in contrast to more complex
arrays of microphones, are currently available for implementation with
either analog or digital hearing aids. A common implementation in digital
hearing aids is to use two omnidirectional microphones. For the omnidirec-
tional mode, output is only processed from the front microphone. For the
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directional mode, the output from the back microphone is delayed and
subtracted from the output of the front microphone, and the resulting signal
serves as the input to the DSP.

Directionality is optimized when the two microphones are equal in sensi-
tivity, and a digital equalization filter can be used to fine-tune the response
of one microphone to match the other. Directional efficiency, as measured
by polar plot, is controlled by the time delay between the back and front
microphone. Digital circuits are used to alter the time delay so that the
pattern can be changed among cardioid, hypercardioid, or supercardioid
patterns. The changes may either be static, i.e., always set to hypercardioid
pattern, or dynamic, i.e., changing between cardioid and hypercardioid pat-
terns as the location of environmental noises change.

Directional microphones have consistently produced significant gains in
laboratory measures of word recognition tests in noise, provided there is
some spatial separation between the speech signal and the masking noise.
In the idealized situation, where the signal is from the front and the masker
is located from behind and/or near the polar plot null, typically 6 dB of
improvement in SNR can be achieved.

 

15

 

 However, many user environments
include parties, cafeterias, public transportation, and conferences. In these
environments, both the speech from a desired talker and competing signals
bounce off walls, ceilings, floors, and other objects to produce a spatially
diffuse reverberatory environment thereby complicating or reducing the
directional gains. In laboratory simulations of these situations, where the
signal is from the front and the masker is diffuse, either by using multiple
loudspeakers or introducing reverberation, the measured benefit is reduced
to about 3 dB of improvement in SNR.

 

16

 

Array Microphones

 

An assembly of microphones with spatial separation can be used in an array
to provide spatial processing gains. DSP can be used to distinguish a variety
of noise and speech signals based on temporal cues, frequency characteris-
tics, and the spatial character of the noise. Algorithms have been proposed
which adaptively adjust the spatial sensitivity of a hearing system to focus
in a particular direction while minimizing competing sources from other
directions.

 

17-20

 

The advantages of these adaptive array systems do not come without cost.
These complex systems produce second-order and higher polar responses
and require the use of several microphone inputs and some kind of external
mounting system such as the top rim of eyeglasses for a broad-fire approach
or the temple of the eyeglasses for an end-fire approach. Further, there are
dynamic trade-offs between the rate of spatial adaptation and the effective-
ness of the array beam former. Although these systems can optimize spatial
discrimination, they present cosmetic challenges and processing complexity
that likely will restrict their use to specialized applications.
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Digital Noise Reduction

 

Noise suppression is a topic that has occupied the attention of many research-
ers during the past two decades. In the hearing aid literature, noise suppres-
sion refers to reducing the noise level to provide an improvement in the
intelligibility of speech in the presence of noise. To address this complaint
several noise suppression algorithms have been proposed, but these have
generally failed to provide an increase in intelligibility as measured in stan-
dardized behavioral tests.

The ability to remove noise from speech is reliant upon differences between
the characteristics of the speech and unwanted noise. Many of the noise
suppression techniques have focused on differentiating a speech signal from
a noise background, which is characterized as either white or pink noise. A
hearing-impaired individual more typically finds that the noisy environ-
ments they encounter are of competing conversations or speech babble. The
frequency-amplitude characteristics of the speech babble closely resemble
those of the desired speech spectrum, thereby complicating the task of noise
suppression. Further, there is a tendency in the application of the DSP algo-
rithm to remove the noise as completely as possible in order to maximize
the SNR.

There are situations, however, when background noise can be most helpful
or even critical and, therefore, must be preserved. For example, a hearing-
impaired person who begins to step off a curb would like to hear the approach
of a bus to warn that it is not safe to enter into the roadway. Or, in a public
environment, such as a theater, it is critical to preserve a distant warning of
“fire.” To this end, several different DSP techniques have been proposed,
each of which addresses the improvement in SNR to differing degrees.

The single-channel methods of speech enhancement generally attempt to
minimize measures of mean square error to improve the ratio of speech
signal power to noise power. If the speech and noise can be precisely char-
acterized, then such an approach offers some promise. However, in most
situations, the precise character of the speech and noise vary from moment
to moment as encountered by a hearing-impaired listener. Further, when the
characteristics of the noise and speech become sufficiently similar, then
speech enhancement techniques become ineffective.

 

Adaptive Predictive Filtering

 

One of the early techniques using only the input from a single microphone
for removing noise was proposed by Sambur.

 

21

 

 In this application, an adap-
tive filter was used as a linear predictor to estimate the current speech plus
signal characteristics based upon previous samples of the same input. The
microphone input was fed into an adaptive filter delayed by an amount of
time equivalent to the pitch of the desired speech signal that was embedded
in the noise. An LMS adaptive algorithm, proposed earlier by Widrow,

 

22

 

 was
employed to estimate the correlated portions of the signal that corresponded
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to speech and to deemphasize the noise signals. Gains in SNR of approxi-
mately 7 dB were reported; however, no measures showing gains in intelli-
gibility for this algorithm have been reported.

Near the same time period, Graupe and Causey introduced an adaptive
filtering technique based on a different approach.

 

23

 

 Their approach used
signal analysis to distinguish between speech and nonspeech signals and
attempted to filter out the near-stationary noise. Listeners generally did not
report a significant benefit, and the technique is no longer used.

 

Spectral Subtraction

 

A more commonly used technique known as spectral subtraction has been
proposed.

 

24-27

 

 Spectral subtraction (SS) uses a discrete Fourier transform
(DFT) to obtain estimates of the noise spectrum, which are then subtracted
from the spectral magnitude in those areas where noise is present. The use
of this algorithm results in a background artifact, which sounds much like
a babbling brook and has been reported as a warbling or residual noise. The
elimination of this residual noise has been the object of significant research
over the past decade.

Because problems occur when SS errors are made near the noise floor,
researchers have suggested the use of a noise floor to limit the amount of
suppression.

 

28

 

 The imposition of a noise floor provides a lower limit on the
gain and is typically imposed when the SNR ratio becomes 0 dB or less. In
effect, this maintains the gain at or above a specified threshold for low-level
signals and for noise inputs. Other techniques of SS have capitalized on the
nature of the residual noise peaks.

 

29

 

 These techniques have enjoyed some
considerable success. Although the initial approaches to spectral subtraction
utilize a DFT, others have proposed using the Karhunen–Loeve transform
(KLT)

 

30,31

 

 or wavelets to achieve a similar noise suppression effect, while
simultaneously minimizing the residual noise energy.

Many of these subtraction techniques have been evaluated in a variety of
environments. Several tests have indicated improved listener comfort for the
processed signal using spectral subtraction. However, to date, intelligibility
tests have failed to verify an increase in speech intelligibility.

In contrast to the foregoing methods, a simple, but effective approach to
noise reduction has been employed in a commercially available DSP hearing
aid, the Sonic Innovations (Salt Lake City, Utah) NATURA 2 SE. The tech-
nique uses an estimate of the output signal level from the logarithmic oper-
ation of Figure 16.3 when the signal is deemed to be void of a desired signal
(normally, one looks for a long-term background level for this estimate). A
separate estimate is made in each band of the multiband system. When the
time-varying amplitude envelope of each of the multiband signals is near
the level of the respective background noise estimate, a constant is subtracted
from the output signal of the logarithmic operation.

The algorithm uses SS with a noise floor, but it operates not on the input
signal as described previously but rather operates on the logarithm of the
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signal envelope magnitude in each of the nine parallel channels. The effect
of subtraction in this logarithmic domain is quite different from the appli-
cation of subtraction to an estimate of the signal power. Subtraction in the
logarithmic domain is equivalent to division. Hence, the final signal obtained
at the output of the multiplier in Figure 16.2 is scaled in amplitude, thereby
reducing its level. The scaling in the log domain can be chosen to reduce
background signals by 6, 12, or 18 dB. When amplitude envelope levels
exceed the estimate, the envelope levels in each band are expanded so that
the loudest signals are restored to their original levels. This approach to noise
reduction does not increase the instantaneous SNR in any single band; how-
ever, the constantly adjusting gain levels in the multiple bands of the aid
can selectively attenuate and enhance information across frequencies and
over time.

The effect on SNR is complex, including rapid gain adjustments that are
dependent upon the short-term SNR, but clinical results show an increase
in speech intelligibility in noise using behavioral tests.

 

32

 

 To the listener,
background noises are attenuated but not eliminated. For complex noise
backgrounds, such as speech babble that present a somewhat constant ampli-
tude envelope, the babble is attenuated and foreground speech with more
energy is expanded. A secondary benefit of this approach is that feedback
is modestly ameliorated, since a constant feedback level is interpreted as
background and the gain is therefore reduced.

The foregoing noise suppression signal processing algorithms have been
developed to provide noise suppression with the use of a single microphone.
These methods, however, are generally ineffective when the noise power in
the background is at a level equal to or greater than the speech. For such
cases, it is necessary to provide to the digital signal processing system an
independent measure of the interfering signal, which can be used to remove
the noise from the speech plus interference.

 

Noise Cancellation

 

Two other techniques are available to eliminate interference in special situ-
ations. The adaptive filter, as originally proposed by Widrow,

 

22

 

 has been used
effectively to reduce interference in the case where a secondary noise refer-
ence is available. SNR improvements of greater than 15 dB have been
obtained from this technique with attendant gains in intelligibility of approx-
imately 38% on some word lists.

 

33

 

 Although the use of such a two-channel
system provides very promising results, its application to a hearing aid is
problematic and is perhaps limited to the use of an auditory trainer. In such
applications a signal from a central point can be relayed to the hearing aid
user for processing. To date, no such systems have been implemented or
employed. Further, the number of filter taps used in these adaptive filters is
typically very large, thereby making their application prohibitive in hearing
aids. These filters do have the advantage, however, that they are effective
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against all classes of noise, ranging from speech babble to white noise, and
work well in a number of dynamic noise environments.

 

Reverberation Cancellation

 

Reverberation refers to the presence of replicas of the original speech signal,
slightly altered in amplitude and timbre, and arriving at the listener at
different times corresponding to reflections from floors, ceilings, walls, and
adjacent objects. The reverberation or echo properties tend to have a signif-
icant negative effect on the speech intelligibility. DSP algorithms have been
investigated for reverberant environments.

 

34-37

 

 However, these algorithms
require that the signal be collected and processed over a duration of time
roughly equivalent to the reverberation time constant. Since these time con-
stants can be large, the digital storage and processing requirement would
indicate that dereverberation is not to be envisioned in the near future as a
candidate for application to digital hearing aids.

 

Combined Treatment Effects

 

The complex nature of these signal manipulation interactions is accentuated
in the application of directional microphones to binaural hearing. By cor-
rectly using directional microphones, providing 3 to 4 dB of SNR benefit,
and then balancing the binaural response, providing 2 to 3 dB of SNR benefit,
the combination of binaural hearing and directional microphones have an
additive effect.

 

38

 

 Further effects of combining strategies can be seen in Figure
16.4, measuring the increase in speech intelligibility in the presence of noise
with the digital hearing aid described previously in this chapter.

In Figure 16.4, five listening situations are plotted with respect to the SNR
for understanding speech in noise using a modified version of the Hearing
in Noise Test (HINT).

 

39

 

 The HINT is a standardized test to measure speech
intelligibility in noise, where the speech is sentences spoken by a male talker
and the noise is steady state, filtered to match the long-term average spec-
trum of the speech. The noise level is fixed at 65 dBA and the level of the
sentences is adjusted to find the 50% intelligibility point. Results are reported
in SNR, with lower scores indicating better performance.

Subjects were 14 adults with bilateral, moderate to severe sensorineural
hearing loss. In the unaided condition, they required a +3 dB SNR to maintain
speech intelligibility in steady-state noise that is spectrally matched to the
long-term average spectrum of the male talker. Using omnidirectional, bin-
aural DSP aids employing multichannel compression, the improvement was
about 2.4 dB SNR without noise reduction and 3.3 dB SNR with noise
reduction. In the directional mode, the improvement was about 4.7 dB SNR
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without noise reduction and 6.2 dB SNR with noise reduction. An improve-
ment of 1 dB SNR on the HINT corresponded to an approximately 8.5%
improvement in speech intelligibility.

 

40

 

Conclusions

 

About 10% of the U.S. population is reported to have a hearing loss, and the
major complaint of hearing-impaired persons is difficulty understanding
speech, especially in the presence of background noise. The DSP hearing
aids of today offer many technical features to improve speech understanding
that are not, and will not be, available in analog hearing aids. These features
include compression circuits with as many as 20 or more bands/channels,
allowing complex shaping of amplified sound in the frequency and ampli-
tude domains; feedback reduction circuits, allowing increased amplification
to be delivered to the ear without acoustic squeal; binaural integration algo-
rithms to improve hearing and localization in complex listening environ-
ments; adaptive directional microphone systems that improve the SNR by
exploiting spatial separations between speech and noise; and adaptive noise
reduction algorithms that can improve the SNR in the presence of steady-
state noises.

Performance measures show that many of these features have additive ben-
efits, allowing hearing-impaired individuals to more than double their speech
understanding in noise, thereby cutting their SNR deficit by more than half.
The digital techniques available in hearing aids today, coupled with projected
near-term advances, lead to the hope that hearing aid users will soon be able
to understand speech in noise almost as well as normal-hearing individuals.

 

FIGURE 16.4

 

Speech intelligibility in noise measurements for 14 hearing-impaired listeners across five lis-
tening conditions.
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