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Preface

In the past few years we have written and edited several books in the area of
acoustic and speech signal processing. The reason behind this endeavor is that
there were almost no books available in the literature when we first started
while there was (and still is) a real need to publish manuscripts summarizing
the most useful ideas, concepts, results, and state-of-the-art algorithms in this
important area of research. According to all the feedback we have received
so far, we can say that we were right in doing this. Recently, several other
researchers have followed us in this journey and have published interesting
books with their own visions and perspectives.

The idea of writing a book on Microphone Array Signal Processing comes
from discussions we have had with many colleagues and friends. As a con-
sequence of these discussions, we came up with the conclusion that, again,
there is an urgent need for a monograph that carefully explains the theory
and implementation of microphone arrays. While there are many manuscripts
on antenna arrays from a narrowband perspective (narrowband signals and
narrowband processing), the literature is quite scarce when it comes to sen-
sor arrays explained from a truly broadband perspective. Many algorithms
for speech applications were simply borrowed from narrowband antenna ar-
rays. However, a direct application of narrowband ideas to broadband speech
processing may not be necessarily appropriate and can lead to many mis-
understandings. Therefore, the main objective of this book is to derive and
explain the most fundamental algorithms from a strict broadband (signals
and/or processing) viewpoint. Thanks to the approach taken here, new con-
cepts come in light that have the great potential of solving several and very
difficult problems encountered in acoustic and speech applications.

This book is especially written for graduate students and research en-
gineers who work on microphone arrays. Our goal is to make the area of
microphone array signal processing theory and application available in a com-
plete and self-contained text. We attempt to explain the main ideas in a clear
and rigorous way so that the reader can have a pretty good idea of the po-
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tentials, opportunities, challenges, and limitations of microphone array signal
processing. We hope that the reader will find it useful and inspiring.

Finally, we would like to thank Christoph Baumann, Petra Jantzen, and
Carmen Wolf from Springer (Germany) for their wonderful help in the prepa-
ration and publication of this manuscript. Working with them is always a
pleasure and a wonderful experience.

Montréal, QC/ Murray Hill, NJ/ Bridgewater, NJ Jacob Benesty
Jingdong Chen
Yiteng Huang
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1

Introduction

1.1 Microphone Array Signal Processing

A microphone array consists of a set of microphones positioned in a way that
the spatial information is well captured. To make an analogy with wireless
communications, we can talk about spatial diversity. This diversity, repre-
sented by the acoustic impulse responses from a radiating source to the sen-
sors, can be understood and exploited in different ways as will be explained
throughout this book. These acoustic channels, modeled as finite impulse re-
sponse (FIR) filters, are usually not identical; the most problematic situation
is when the FIR filters share common zeroes.

The rich information available thanks to the diversity needs to be pro-
cessed. Then, the main objective of microphone array signal processing is
the estimation of some parameters or the extraction of some signals of inter-
est, depending on the application, by using the spatio-temporal (and possibly
frequency) information available at the output of the microphone array. Al-
though the particular case of a single-microphone system is also covered (in
Chapter 2 in the context of optimal filtering and in Chapter 6 in the context
of noise reduction in the frequency domain), the major focus of this book is
on the use of a multiple-sensor system since it allows more flexibility to solve
many important practical problems.

Depending on the nature of the applications, the geometry of the micro-
phone array may play an important role in the formulation of the processing
algorithms. For example, in source localization the array geometry must be
known in order to be able to localize a source properly; moreover, some-
times a regular geometry will even simplify the problem of estimation, that
is why uniform linear and circular arrays are often used [148]. Today, these
two geometries dominate the market but we see more and more sophisticated
three-dimensional spherical arrays as they can better capture the sound field
[163], [164]. However, in some other crucial problems such as noise reduction
or source separation, the geometry of the array may have little (or no) im-
portance depending on the algorithm. In this case, we may say that we have
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a multiple microphone system instead of a microphone array. It is not neces-
sary to distinguish the two situations since it will become quite obvious in the
context.

The problems encountered in microphone arrays may look easy to tackle
because similar problems have been tackled for a long period of time in nar-
rowband antenna arrays. But this is quite deceiving. Actually, microphone
arrays work differently than antenna arrays for applications such as radar
and sonar for the following reasons [105], [215]:

• speech is a wideband signal,
• reverberation of the room (or multipath) is high,
• environments and signals are highly non-stationary,
• noise can have the same spectral characteristics as the desired speech sig-

nal,
• the number of sensors is usually restricted, and
• the human ear has an extremely wide dynamic range (as much as 120 dB

for normal hearing) and is very sensitive to weak tails of the channel im-
pulse responses. As a result, the length of the modeling filters is very long
(thousands of samples are not uncommon).

For these main reasons, we should not be surprised that for some problems,
many existing algorithms do not perform well.

A large number of algorithms for microphone array processing were bor-
rowed or generalized (in a very simple manner) from narrowband array pro-
cessing [51]. The advantage of this demarche is that most algorithms con-
ceived for decades in antenna arrays can be extended without much efforts.
The drawback, though, is that none of these algorithms are tailored to work
in real acoustic environments. As a result, performances are often very lim-
ited. Simply put, microphone arrays require broadband processing. This is the
approach taken, in general, in this book.

The main problems that have the potential to be solved with microphone
arrays are

• noise reduction,
• echo reduction,
• dereverberation,
• localization of a single source,
• estimation of the number of sources,
• localization of multiple sources,
• source separation, and
• cocktail party.

Most of these problems are depicted in Fig. 1.1 where all the signals picked
up by the microphones pass through some filters that need to be optimized
according to one of the above-mentioned problems we want to solve [20].
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Fig. 1.1. Microphone array signal processing.

The aim of a noise reduction algorithm is to estimate a desired speech
signal from its corrupted observations that are due to the effects of an un-
wanted additive noise. Many techniques based on a single microphone already
exist [16], [154], [156]. The main problem, tough, with all these single-channel
algorithms is that they distort the speech signal [41], [42]. While the speech
quality may be improved, the speech intelligibility is degraded. However, with
a microphone array, we should be able to reduce (at least in theory) the noise
without affecting much the speech signal.

In hands-free communications the acoustic coupling between loudspeakers
and microphones, associated with the overall delay, would produce echoes
that would make real-time conversations very difficult [10], [29], [84], [98],
[99], [121]. Furthermore, the acoustic system could become very instable. It
was believed that a microphone array would be able to significantly reduce
the level of echoes by directing the array towards the source of interest and
putting nulls towards the loudspeakers. Unfortunately, this idea even though
very attractive and elegant, does not work in practice and the acoustic echo
cancellation approach [10] to this problem is still the best, and by far, solution
today.

In a room and in a hands-free context, the signals that are picked by
microphones from a talker contain not only the direct-path signals, but also
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attenuated and delayed replicas of the source signal due to reflections from
boundaries and objects in this room. This multipath propagation effect intro-
duces echoes and spectral distortions into the observation signals, termed as
reverberation, which may severely deteriorate the source signal causing qual-
ity and intelligibility degradation. Therefore, dereverberation is required to
improve the intelligibility of the speech signal [125]. Great efforts have been
going on for the last four decades to find practical solutions with a microphone
array.

In acoustic environments, the source location information plays an im-
portant role for applications such as automatic camera tracking for video-
conferencing and beamformer steering for suppressing noise and reverberation.
Estimation of the source location, which is often called source-localization
problem, has been of considerable interest for decades [26], [117], [175], [222].
Two or three dimensional microphone arrays are required to estimate the an-
gle of arrival or the position in Cartesian coordinates of a source. For the two
related problems of estimating the number of sources and localizing multi-
ple sources, several interesting algorithms exist for narrowband signals; how-
ever, researchers have just started to investigate these problems for broadband
sources.

In source separation with multiple microphones, we try to separate dif-
ferent signals coming, at the same time, from different directions. All the
approaches are blind in nature since we have no access to neither the acoustic
channels nor the source signals. Independent component analysis (ICA) [127]
is the most widely used tool for the blind source separation (BSS) problem,
since it takes fully advantage of the independence of the source signals. While
most of the algorithms based on ICA work very well when the signals are
mixed instantaneously, they do not perform that well in a reverberant (con-
volutive) environment. Although much progress has been made recently, it is
still not clear how and to what degree this can be useful in speech and acoustic
applications. Since the literature is already very rich in ICA [159] (see also
references in [182]), we will not discuss BSS in this book from this perspective.

It has been known for some time that humans have the ability of focusing
on one particular voice or sound amid a cacophony of distracting conversations
or background noise. This interesting psychoacoustic phenomenon is referred
to as the cocktail party effect [45], [46]. One of the important observations from
the psychoacoustic experiments of [45] and [46] is that spatial hearing plays
a very important role. Our perception of speech remarkably benefits from
spatial hearing. This ability is mainly attributed to the fact that we have two
ears. This is intuitively justified by our daily experience and can be further
demonstrated simply by observing the difference in understanding between
using both ears and with either ear covered when listening in an enclosed space
where there are multiple speakers at the same time [125]. While humans with a
normal hearing and some brain processing can effectively handle this cocktail
party problem with not much effort, it is still very tricky with microphone
array signal processing. This is the mother of all challenges in this area of
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research and until today we still do not have a clear idea how to solve this
problem.

All the aforementioned problems are very difficult to solve no matter the
size, the geometry, or the number of elements of the array. Sometimes, a
specific geometry of the array or an increase in the number of microphones
can give a more accurate solution to an estimation problem. However, the gain
may be limited or even negligible. Then, some fundamental questions arise:
how do we exploit the spatial information? How far can we go to solving a
specific problem? What are the appropriate models? Where are the limits and
why? Can we go beyond the spatial information and if so how?

Our objective in this book is not to expose different and state-of-the-art
solutions to all the problems explained previously but rather to give a general
framework, important tools, and signal models that will help readers under-
stand how to process multiple microphone signals intuitively yet rigorously.

To conclude this section, let us briefly mention the typical applications of
microphone arrays:

• teleconferencing,
• multi-party telecommunications,
• hands-free acoustic human-machine interfaces,
• dialogue systems,
• computer games,
• command-and-control interfaces,
• dictation systems,
• high-quality audio recordings,
• acoustic surveillance (security and monitoring),
• acoustic scene analysis,
• sensor network technology.

We see that the number of applications is enormous and growing every
day. Clearly, the market is still waiting for good microphone array solutions
before that such systems can be widely deployed.

1.2 Organization of the Book

This book contains ten chapters (including this one). We tried to cover the
most important topics of microphone array signal processing, from a fresh per-
spective, in the next nine chapters. Each chapter builds up important concepts
so the reader can follow the ideas from the basic theory to practical applica-
tions. Although the chapters are coherently tied to each other, the material
was written so that each chapter can be studied almost independently.

Linear optimal filters play a fundamental role in many applications of
signal processing including microphone arrays. The concepts behind optimal
filtering are easy to understand and are important for the rest of this book.
Chapter 2 studies the Wiener, Frost, and Kalman filters. It also develops the
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concept of the Pearson correlation coefficient as an alternative to the mean-
square error (MSE). This development leads to many interesting results.

Conventional beamforming methods for spatial filtering in narrowband an-
tenna arrays are very well established. In Chapter 3, we discuss the most well-
known techniques using a simple propagation signal model and in the context
of signal enhancement. The philosophy behind the broadband beamforming,
which is of more interest with speech signals, is also introduced.

The linearly constrained minimum variance (LCMV) filter is extremely
popular in antenna arrays. This optimal filter is quite powerful thanks to all
the constraints that can be adjoined to the cost function from which it is
derived. Chapter 4 shows how the LCMV filter can be used in room acoustic
environments, for noise reduction and dereverberation, by using three different
signal models.

Chapter 5 is dedicated to the problem of noise reduction with multiple
microphones. Several classical methods are derived in the multichannel case
within a unique framework. All important aspects of speech enhancement such
as the levels of noise reduction and speech distortion are discussed.

Chapter 6 is concerned with the noncausal (frequency-domain) Wiener fil-
ter and its application to noise reduction. Both the single- and multi-channel
cases are developed. Many fundamental aspects in the context of speech en-
hancement are derived to help the reader better understand how frequency-
domain algorithms work, especially with multiple microphones.

In Chapter 7, the desired and interference sources on the one hand and the
microphone signals on the other hand are treated as a multiple-input multiple-
output (MIMO) system. A general framework based on the MIMO channel
impulse responses is then developed for analyzing beamforming performance
for source extraction, dereverberation, and interference suppression.

Chapter 8 is a continuation of Chapter 7. It is shown how the two problems
of interference sources and reverberation can be separated in a distinguish-
able manner in a two-step approach. The conditions for that are also clearly
demonstrated. Thanks to this separation we better understand the interac-
tions between source separation and dereverberation.

Chapter 9 concerns the important problem of direction-of-arrival (DOA)
and time-difference-of-arrival (TDOA) estimation. The focus is more on the
TDOA estimation algorithms since the problem of the DOA estimation is
essentially the same as the TDOA estimation. Many algorithms are developed:
from the classical ones such as the cross-correlation method to more modern
and new methods such as the minimum entropy technique. The principles for
TDOA estimation of multiple sources are also discussed.

Chapter 10 concludes this book with a discussion on some unaddressed
problems.
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Classical Optimal Filtering

2.1 Introduction

In his landmark manuscript on extrapolation, interpolation and smoothing of
stationary time series [234], Norbert Wiener was one of the first researchers
to treat the filtering problem of estimating a process corrupted by additive
noise. The optimum estimate that he derived, required the solution of an
integral equation known as the Wiener-Hopf equation [233]. Soon after Wiener
published his work, Levinson formulated the same problem in discrete time
[152]. Levinson’s contribution has had a great impact on the field. Indeed,
thanks to him, Wiener’s ideas have become more accessible to many engineers
and, as a result, more practical. A very nice overview of linear filtering theory
and the history of the different discoveries in this area can be found in [136].

The Wiener filter has been used in a very large number of applications
thanks to its simple formulation and its effectiveness. However, this optimal
filter is not adequate for nonstationary signals. Moreover, in many situations
it distorts the signal of interest as explained later in this chapter.

In 1960, R. E. Kalman published his famous paper describing a recur-
sive solution to the discrete-data linear filtering problem [137]. This so-called
Kalman filter is based on the fact that the desired signal follows a state model
and, in contrast to the Wiener filter, it is tailored to work well in nonstationary
environments. Another merit of this sequential filter is that, if the modeling
is correct, the desired signal will not be distorted.

This chapter is dedicated to the study of three important filters often en-
countered in microphone arrays: Wiener, linearly constrained minimum vari-
ance, and Kalman filters. We also propose a new alternative to the mean-
square error (MSE) criterion (used to derive the Wiener filter) based on the
Pearson correlation coefficient and show why it may be more convenient to
use in general.
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2.2 Wiener Filter

Consider a zero-mean clean speech signal x(k) contaminated by a zero-mean
noise process v(k) [white or colored but uncorrelated with x(k)], so that the
noisy speech signal, at the discrete time sample k is

y(k) = x(k) + v(k). (2.1)

Assuming that all signals are stationary, our objective in this section is to find
an optimal estimate of x(k) in the Wiener sense [234].

Define the error signal between the clean speech sample at time k and its
estimate

e(k) = x(k) − z(k)
= x(k) − hT y(k), (2.2)

where

h =
[
h0 h1 · · · hL−1

]T
is a finite impulse response (FIR) filter of length L, superscript T denotes
transpose of a vector or a matrix,

y(k) =
[
y(k) y(k − 1) · · · y(k − L + 1)

]T
is a vector containing the L most recent samples of the observation signal
y(k), and

z(k) = hT y(k) (2.3)

is the output of the filter h.
We now can write the MSE criterion [103]:

J(h) = E
[
e2(k)

]
= hT Ryyh − 2rT

yxh + σ2
x, (2.4)

where E[·] denotes mathematical expectation,

Ryy = E
[
y(k)yT (k)

]
(2.5)

is the correlation matrix, assumed to be full rank, of the observation signal
y(k),

ryx = E [y(k)x(k)] (2.6)

is the cross-correlation vector between the noisy and clean speech signals, and
σ2

x = E
[
x2(k)

]
is the variance of the signal x(k). Then the optimal Wiener

filter is obtained as follows
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hW = arg min
h

J(h)

= R−1
yy ryx. (2.7)

However, x(k) is unobservable; as a result, an estimation of ryx may seem
difficult to obtain. But

ryx = E [y(k)x(k)]
= E {y(k) [y(k) − v(k)]}
= E [y(k)y(k)] − E {[x(k) + v(k)] v(k)}
= E [y(k)y(k)] − E[v(k)v(k)]
= ryy − rvv. (2.8)

Now ryx depends on the correlation vectors ryy and rvv. The vector ryy (which
is also the first column of Ryy) can be easily estimated during speech and noise
periods while rvv can be estimated during noise-only intervals.

Consider the particular filter

h1 =
[
1 0 · · · 0

]T (2.9)

of length L. The corresponding MSE is

J(h1) = E

{[
x(k) − hT

1 y(k)
]2}

= E
{

[x(k) − y(k)]2
}

= E
{
v2(k)

}
= σ2

v . (2.10)

This means that the observed signal y(k) will pass the filter h1 unaltered (no
noise reduction).

Using (2.8) and the fact that h1 = R−1
yy ryy, we obtain another form of the

Wiener filter [15]:

hW = h1 − R−1
yy rvv

=
[
I − R−1

yy Rvv

]
h1

=
[

I
SNR

+ R̃−1
vv R̃xx

]−1

R̃−1
vv R̃xxh1, (2.11)

where

SNR =
σ2

x

σ2
v

(2.12)

is the input signal-to-noise ratio (SNR), I is the identity matrix, and

R̃xx =
Rxx

σ2
x

=
E
[
x(k)xT (k)

]
σ2

x

,

R̃vv =
Rvv

σ2
v

=
E
[
v(k)vT (k)

]
σ2

v

.
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We have

lim
SNR→∞

hW = h1, (2.13)

lim
SNR→0

hW = 0L×1, (2.14)

where 0L×1 has the same length as hW and consists of all zeros. The minimum
MSE (MMSE) is

J(hW) = σ2
x − rT

yxhW

= σ2
v − rT

vvR
−1
yy rvv

= rT
vvhW

= hT
1

(
Rvv − RvvR−1

yy Rvv

)
h1. (2.15)

We see clearly from (2.15) that J(hW) < J(h1); therefore, noise reduction is
possible.

The normalized MMSE is

J̃(hW) =
J(hW)
J(h1)

=
J(hW)

σ2
v

, (2.16)

and 0 < J̃(hW) < 1.
The optimal estimation of the clean speech, x(k), in the Wiener sense, is

then

zW(k) = hT
Wy(k)

= y(k) − rT
vvR

−1
yy y(k). (2.17)

Therefore, the variance of this estimated signal is

E
[
z2
W(k)

]
= hT

WRyyhW

= hT
WRxxhW + hT

WRvvhW, (2.18)

which is the sum of two terms. The first one is the power of the attenuated
clean speech and the second one is the power of the residual noise (always
greater than zero). While noise reduction is feasible with the Wiener filter,
expression (2.18) shows that the price to pay for this is also a reduction of the
clean speech; this contributes to speech distortion.

We define the noise-reduction factor (with the Wiener filter) as [15]

ξnr (hW) =
hT

1 Rvvh1

hT
WRvvhW

=
hT

1 Rvvh1

hT
1 RxxR−1

yy RvvR−1
yy Rxxh1

(2.19)
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and the speech-distortion index as [15]

υsd (hW) =
E

{[
x(k) − hT

Wx(k)
]2}

σ2
x

=
(h1 − hW)T Rxx (h1 − hW)

hT
1 Rxxh1

. (2.20)

The noise-reduction factor is always greater than 1; the higher the value of
ξnr (hW), the more the noise is reduced. Also

lim
SNR→0

ξnr (hW) = ∞, (2.21)

lim
SNR→∞

ξnr (hW) = 1. (2.22)

The speech-distortion index is always between 0 and 1 for the Wiener filter.
Also

lim
SNR→0

υsd (hW) = 1, (2.23)

lim
SNR→∞

υsd (hW) = 0. (2.24)

So when υsd (hW) is close to 1, the speech signal is highly distorted and when
υsd (hW) is near 0, the speech signal is lowly distorted. Therefore, we see that
for low SNRs the Wiener filter can have a disastrous effect on the speech
signal.

As shown in [77], the two symmetric matrices Rxx and Rvv can be jointly
diagonalized if Rvv is positive definite. So we have

Rxx = BT ΛB, (2.25)
Rvv = BT B, (2.26)
Ryy = BT [I + Λ]B, (2.27)

where B is a full rank square matrix but not necessarily orthogonal, and the
diagonal matrix

Λ = diag
[
λ1 λ2 · · · λL

]
(2.28)

are the eigenvalues of the matrix R−1
vv Rxx with λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0.

Substituting (2.25)–(2.27) into (2.19), we obtain

ξnr (hW) =
∑L

l=1 b2
l1∑L

l=1

λ2
l

(1+λl)2
b2
l1

, (2.29)

where the elements bl1, l = 1, 2, . . . , L, form the first column of B and satisfy∑L
l=1 b2

l1 = σ2
v .
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Also with the matrix decomposition in (2.25)–(2.27), the input SNR can
be expressed as

SNR =
hT

1 Rxxh1

hT
1 Rvvh1

=
∑L

l=1 λlb
2
l1∑L

l=1 b2
l1

. (2.30)

Using (2.30), we can rewrite (2.29) as

ξnr (hW) =
1

SNR
·

∑L
l=1 λlb

2
l1∑L

l=1

λ2
l

(1+λl)2
b2
l1

=
1

SNR
·
∑L

l=1
(1+λl)

2

(1+λl)2
λlb

2
l1∑L

l=1

λ2
l

(1+λl)2
b2
l1

=
1

SNR
·
⎡
⎣∑L

l=1
λl+λ3

l

(1+λl)2
b2
l1∑L

l=1

λ2
l

(1+λl)2
b2
l1

+ 2

⎤
⎦ . (2.31)

Using the fact that λl + λ3
l ≥ λ3

l , we easily deduce from (2.31) that

ξnr (hW) ≥ 1
SNR

·
⎡
⎣∑L

l=1
λ3

l

(1+λl)2
b2
l1∑L

l=1

λ2
l

(1+λl)2
b2
l1

+ 2

⎤
⎦ . (2.32)

We can prove the following inequality (see the proof after the proposition in
the next page): ∑L

l=1
λ3

l

(1+λl)2
b2
l1∑L

l=1

λ2
l

(1+λl)2
b2
l1

≥
∑L

l=1 λlb
2
l1∑L

l=1 b2
l1

= SNR, (2.33)

where equality holds if and only if all the λl’s corresponding to the nonzero
bl1 are equal, with l = 1, 2, . . . , L. It follows immediately that [41], [42]

ξnr (hW) ≥ SNR + 2
SNR

≥ 1. (2.34)

It can be checked from (2.34) that the lower bound of the noise-reduction
factor is a monotonically decreasing function of the SNR. It approaches infinity
when SNR comes close to 0 and tends to 1 as SNR approaches infinity. This
indicates that more noise reduction can be achieved with the Wiener filter as
the SNR decreases, which is, of course, desirable since as SNR drops, there
will be more noise to be eliminated.

The upper bound of the speech-distortion index can be derived using the
eigenvalue decomposition given in (2.25)–(2.27). Indeed, substituting (2.25)–
(2.27) into (2.20), we get [41], [42]
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Fig. 2.1. Illustration of the areas where ξnr (hW) and υsd (hW) take their values as
a function of the input SNR. ξnr (hW) can take any value above the solid line while
υsd (hW) can take any value under the dotted line.

υsd (hW) =

∑L
l=1

λl

(1+λl)2
b2
l1∑L

l=1 λib2
l1

≤
∑L

l=1
λl

1+2λl
b2
l1∑L

l=1

λl+2λ2
l

1+2λl
b2
l1

≤ 1
2 · SNR + 1

, (2.35)

where we have used the following inequality:∑L
l=1

λ2
l

1+2λl
b2
l1∑L

l=1
λl

1+2λl
b2
l1

≥
∑L

l=1 λlb
2
l1∑L

l=1 b2
l1

= SNR. (2.36)

This inequality can be proved by induction.
Figure 2.1 illustrates the lower bound of the noise-reduction factor [eq.

(2.34)] and the upper bound of the speech-distortion index [eq. (2.35)], both
as a function of the input SNR.

From the previous analysis, we see that the Wiener filter achieves noise
reduction at the price of speech attenuation. Therefore, the noise-reduction
factor on its own may not be a satisfactory measure. In fact, the most relevant
measure is the output SNR defined as
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SNR (hW) =
hT

WRxxhW

hT
WRvvhW

, (2.37)

and if, indeed, SNR (hW) > SNR then this will indicate that the Wiener filter
has a real impact in reducing the noise comparatively to the speech. A key
question is then whether the Wiener filter can improve the SNR. To answer
this question, we give the following proposition [15], [41], [42].

Proposition. With the optimal Wiener filter given in (2.7), the output SNR
[eq. (2.37)] is always greater than or at least equal to the input SNR [eq.
(2.12)].

Proof. If the noise v(k) is zero, the Wiener filter is equal to h1 and has no
effect on the speech signal. Applying the matrix decomposition [eqs. (2.25)–
(2.27)] in (2.37), the output SNR can be rewritten as

SNR (hW) =

∑L
l=1

λ3
l

(λl+1)2 b2
l1∑L

l=1

λ2
l

(λl+1)2 b2
l1

. (2.38)

Then it follows that

SNR (hW)
SNR

=

∑L
l=1 b2

l1 ·
∑L

l=1
λ3

l

(λl+1)2 b2
l1∑L

l=1 λlb2
l1 ·
∑L

l=1

λ2
l

(λl+1)2 b2
l1

. (2.39)

Since all the sums
∑L

l=1
λ3

l

(1+λl)2
b2
l1,
∑L

l=1
λ2

l

(1+λl)2
b2
l1,
∑L

l=1 λlb
2
l1, and

∑L
l=1 b2

l1

are non-negative numbers, as long as we can show that the inequality

L∑
l=1

λ3
l

(1 + λl)2
b2
l1

L∑
l=1

b2
l1 ≥

L∑
l=1

λ2
l

(1 + λl)2
b2
l1

L∑
l=1

λlb
2
l1 (2.40)

holds, then SNR (hW) ≥ SNR. Now we prove this inequality by way of induc-
tion.

• Basic step: if L = 2,

2∑
l=1

λ3
l

(1 + λl)2
b2
l1

2∑
l=1

b2
l1 =

λ3
1

(1 + λ1)2
b4
11 +

λ3
2

(1 + λ2)2
b4
21 +

[
λ3

1

(1 + λ1)2
+

λ3
2

(1 + λ2)2

]
b2
11b

2
21.

Since λl ≥ 0, it is trivial to show that

λ3
1

(1 + λ1)2
+

λ3
2

(1 + λ2)2
≥ λ2

1λ2

(1 + λ1)2
+

λ1λ
2
2

(1 + λ2)2
,

where “=” holds when λ1 = λ2. Therefore
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2∑
l=1

λ3
l

(1 + λl)2
b2
l1

2∑
l=1

b2
l1 ≥ λ3

1

(1 + λ1)2
b4
11 +

λ3
2

(1 + λ2)2
b4
21 +

[
λ2

1λ2

(1 + λ1)2
+

λ1λ
2
2

(1 + λ2)2

]
b2
11b

2
21

=
2∑

l=1

λ2
l

(1 + λl)2
b2
l1

2∑
l=1

λlb
2
l1,

so the property is true for L = 2, where “=” holds when any one of b11

and b21 is equal to 0 (note that b11 and b21 cannot be zero at the same
time since B is invertible) or when λ1 = λ2.

• Inductive step: assume that the property is true for L = P , i.e.,
P∑

l=1

λ3
l

(1 + λl)2
b2
l1

P∑
l=1

b2
l1 ≥

P∑
l=1

λ2
l

(1 + λl)2
b2
l1

P∑
l=1

λlb
2
l1.

We must prove that it is also true for L = P + 1. As a matter of fact,
P+1∑
l=1

λ3
l

(1 + λl)2
b2
l1

P+1∑
l=1

b2
l1 =

[
P∑

l=1

λ3
l

(1 + λl)2
b2
l1 +

λ3
P+1

(1 + λP+1)2
b2
P+11

]
×

[
P∑

l=1

b2
l1 + b2

P+11

]

=

[
P∑

l=1

λ3
l

(1 + λl)2
b2
l1

][
P∑

l=1

b2
l1

]
+

λ3
P+1

(1 + λP+1)2
b4
P+11 +

P∑
l=1

[
λ3

l

(1 + λl)2
+

λ3
P+1

(1 + λP+1)2

]
b2
l1b

2
P+11.

Using the induction hypothesis, and also the fact that

λ3
l

(1 + λl)2
+

λ3
P+1

(1 + λP+1)2
≥ λ2

l λP+1

(1 + λl)2
+

λlλ
2
P+1

(1 + λP+1)2
,

we get
P+1∑
l=1

λ3
l

(1 + λl)2
b2
l1

P+1∑
l=1

b2
l1 ≥

P∑
l=1

λ2
l

(1 + λl)2
b2
l1

P∑
l=1

λlb
2
l1 +

λ3
P+1

(1 + λP+1)2
b4
P+11 +

P∑
l=1

[
λ2

l λP+1

(1 + λl)2
+

λlλ
2
P+1

(1 + λP+1)2

]
b2
l1b

2
P+11

=
P+1∑
l=1

λ2
l

(1 + λl)2
b2
l1

P+1∑
l=1

λlb
2
l1,
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where “=” holds when all the λl’s corresponding to the nonzeroes bl1 are
equal, with l = 1, 2, . . . , P + 1. That completes the proof.

Even though it can improve the SNR, the Wiener filter does not maximize
the output SNR. As a matter of fact, (2.37) is the well-known generalized
Rayleigh quotient. So the filter that maximizes the output SNR is the eigen-
vector corresponding to the maximum eigenvalue of the matrix R−1

vv Rxx (see
Section 2.5). However, this filter typically gives rise to large speech distortion.

The more general multichannel Wiener filter for noise reduction is studied
in Chapter 5.

2.3 Frost Filter

The linearly constrained minimum variance (LCMV) filter [76], that we will
also call the Frost filter, can be seen as a particular form of the Wiener filter.

2.3.1 Algorithm

In many practical situations, we do not have access to the reference signal
and sometimes this reference does not even exist. As a result, the error signal
as defined in (2.2) is meaningless.

If we consider the reference signal x(k) to be zero, the MSE criterion [eq.
(2.4)] becomes

J(h) = hT Ryyh, (2.41)

and the minimization of J(h) with respect to h leads to the obvious solution
h = 0L×1. Fortunately in many applications, constraints on the filter h that
have the following form

CT h = u (2.42)

are available, where C is the constraint matrix of size L × Lc and

u =
[
u0 u1 · · · uLc−1

]T
is a vector of length Lc containing some chosen numbers.

This time to find the optimal filter, we need to solve the optimization
problem

min
h

J(h) subject to CT h = u. (2.43)

Using Lagrange multipliers to adjoin the constraints to the cost function, we
easily find the Frost filter [76]

hF = R−1
yy C

(
CT R−1

yy C
)−1

u. (2.44)
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It is important to observe that, in order for this filter to exist, the correlation
matrix Ryy must be invertible and C must have full column rank, which
implies that Lc ≤ L. In the rest, we assume that the rank of C is equal to Lc.
The solution for the particular case of Lc = L is directly obtained from (2.42):

hF =
(
CT
)−1

u, which does not depend on the observation signal anymore.
For the case Lc = 1, the constraint matrix C becomes a constraint vector c
and the solution has a similar form to the minimum variance distortionless
response (MVDR) filter [35], [149]:

hF = u0

R−1
yy c

cT R−1
yy c

. (2.45)

2.3.2 Generalized Sidelobe Canceller Structure

The generalized sidelobe canceller (GSC) structure solves exactly the same
problem as the LCMV approach by dividing the filter vector hF into two
components operating on orthogonal subspaces [31], [54], [94], [230]:

hF = f − BcwGSC, (2.46)

where

f = C
(
CT C

)−1

u (2.47)

is the minimum-norm solution of CT f = u, Bc is the so-called blocking matrix
that spans the nullspace of CT , i.e.,

CT Bc = 0Lc×(L−Lc), (2.48)

and wGSC is a weighting vector derived as explained below. The size of Bc is
L×(L−Lc), where L−Lc is the dimension of the nullspace of CT . Therefore,
the length of the vector wGSC is L − Lc. The blocking matrix is not unique
and the most obvious choice is the following:

Bc =
[
I(L−Lc)×(L−Lc)

0Lc×(L−Lc)

]
− C

(
CT C

)−1

CT

[
I(L−Lc)×(L−Lc)

0Lc×(L−Lc)

]
. (2.49)

To obtain the filter wGSC, the GSC approach is used, which is formulated
as the following unconstrained optimization problem

min
w

(f − Bcw)T Ryy (f − Bcw) , (2.50)

and the solution is

wGSC =
(
BT

c RyyBc

)−1

BT
c Ryyf. (2.51)
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Define the error signal between the outputs of the two filters f and Bcw:

e(k) = yT (k)f − yT (k)Bcw, (2.52)

it is easy to see that the minimization of E
[
e2(k)

]
with respect to w is

equivalent to (2.50).
Now we need to check if indeed the two filters LCMV and GSC are equiv-

alent, i.e.

uT
(
CT R−1

yy C
)−1

CT R−1
yy = fT

[
I − RyyBc

(
BT

c RyyBc

)−1

BT
c

]
. (2.53)

For that, we are going to follow the elegant proof given in [28].
The matrix in brackets on the right-hand side of (2.53) can be rewritten

as [
I − RyyBc

(
BT

c RyyBc

)−1

BT
c

]
= R1/2

yy (I − P1)R−1/2
yy , (2.54)

where

P1 = R1/2
yy Bc

(
BT

c RyyBc

)−1

BT
c R1/2

yy (2.55)

is a projection operator onto the subspace spanned by the columns of R1/2
yy Bc.

We have BT
c C = BT

c R1/2
yy R−1/2

yy C = 0(L−Lc)×Lc . This implies that the rows
of BT

c are orthogonal to the columns of C and the subspace spanned by the
columns of R1/2

yy Bc is orthogonal to the subspace spanned by the columns of
R−1/2

yy C. Since Bc has a rank equal to L−Lc where Lc is the rank of C, then
the sum of the dimensions of the two subspaces is L and the subspaces are
complementary. This means

P1 + P2 = I, (2.56)

where

P2 = R−1/2
yy C

(
CT R−1

yy C
)−1

CT R−1/2
yy . (2.57)

When this is substituted and the constraint uT = fT C is applied, (2.53)
becomes

uT
(
CT R−1

yy C
)−1

CT R−1
yy = fT R1/2

yy P2R−1/2
yy

= fT R1/2
yy (I − P1)R−1/2

yy

= fT
[
I − RyyBc

(
BT

c RyyBc

)−1

BT
c

]
.(2.58)

Hence, the LCMV and GSC filters are strictly equivalent.
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2.3.3 Application to Linear Interpolation

In this subsection, the link between linear interpolation and the Frost filter is
explained.

Linear interpolation is a straightforward generalization of forward and
backward linear predictions. Indeed, in linear interpolation, we try to predict
the value of the sample y(k − i) from its past and future values [140], [183].
We define the interpolation error as

ei(k) = y(k − i) − ŷ(k − i)

= y(k − i) −
L−1∑

l=0,l �=i

hi,ly(k − l)

= hT
i y(k), i = 0, 1, . . . , L − 1, (2.59)

where ŷ(k − i) is the interpolated sample, and

hi =
[−hi,0 −hi,1 · · · hi,i · · · −hi,L−1

]T
is a vector of length L containing the interpolation coefficients, with hi,i = 1.
The special cases i = 0 and i = L−1 correspond to the forward and backward
prediction errors, respectively.

To find the optimal interpolator, we need to minimize the cost function

Ji (hi) = E
[
e2
i (k)

]
= hT

i Ryyhi, (2.60)

subject to the constraint

cT
i hi = hi,i = 1, (2.61)

where

ci =
[
0 0 · · · 0 1 0 · · · 0

]T
is the constraint vector of length L with its (i + 1)th component equal to one
and all others are equal to zero. By using a Lagrange multiplier, it is easy to
see that the solution to this optimization problem is

Ryyho,i = Eici, (2.62)

where

Ei = hT
o,iRyyho,i

=
1

cT
i R−1

yy ci

(2.63)
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is the interpolation error power. Hence

ho,i =
R−1

yy ci

cT
i R−1

yy ci

. (2.64)

Comparing (2.64) with (2.44), it is clear that the optimal interpolator is a
particular case of the Frost filter.

From (2.62) we find

ho,i

Ei
= R−1

yy ci, (2.65)

hence the (i + 1)th column of R−1
yy is ho,i/Ei. We can now see that R−1

yy can
be factorized as follows [12]:

R−1
yy =

⎡
⎢⎢⎢⎣

1 −ho,1,0 · · · −ho,L−1,0

−ho,0,1 1 · · · −ho,L−1,1

...
...

. . .
...

−ho,0,L−1 −ho,1,L−1 · · · 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1/E0 0 · · · 0
0 1/E1 · · · 0
...

...
. . .

...
0 0 · · · 1/EL−1

⎤
⎥⎥⎥⎦

= HT
o D−1

e . (2.66)

Furthermore, since R−1
yy is a symmetric matrix, (2.66) can be written as

R−1
yy =

⎡
⎢⎢⎢⎣

1/E0 0 · · · 0
0 1/E1 · · · 0
...

...
. . .

...
0 0 · · · 1/EL−1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1 −ho,0,1 · · · −ho,0,L−1

−ho,1,0 1 · · · −ho,1,L−1

...
...

. . .
...

−ho,L−1,0 −ho,L−1,1 · · · 1

⎤
⎥⎥⎥⎦

= D−1
e Ho. (2.67)

Therefore, we deduce that

ho,i,l

Ei
=

ho,l,i

El
, i, l = 0, 1, . . . , L. (2.68)

The first and last columns of R−1
yy contain respectively the normalized forward

and backward predictors and all the columns between contain the normalized
interpolators.

We are now going to show how the condition number of the correlation
matrix depends on the interpolators. The condition number of the matrix Ryy

is defined as [89]

χ [Ryy] = ‖Ryy‖
∥∥R−1

yy

∥∥ , (2.69)

where ‖·‖ can be any matrix norm. Note that χ [Ryy] depends on the under-
lying norm. Let us compute χ [Ryy] using the Frobenius norm
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‖Ryy‖F =
{

tr
[
RT

yyRyy

]}1/2

=
{
tr
[
R2

yy

]}1/2
, (2.70)

and ∥∥R−1
yy

∥∥
F

=
{
tr
[
R−2

yy

]}1/2
. (2.71)

From (2.65), we have

hT
o,iho,i

E2
i

= cT
i R−2

yy ci, (2.72)

which implies that

L−1∑
i=0

hT
o,iho,i

E2
i

=
L−1∑
i=0

cT
i R−2

yy ci

= tr
[
R−2

yy

]
. (2.73)

Also, we can easily check that

tr
[
R2

yy

]
= Lr2

yy(0) + 2
L−1∑
l=1

(L − l)r2
yy(l), (2.74)

where ryy(l), l = 0, 1, . . . , L − 1, are the elements of the Toeplitz matrix
Ryy. Therefore, the square of the condition number of the correlation matrix
associated with the Frobenius norm is

χ2
F [Ryy] =

[
Lr2

yy(0) + 2
L−1∑
l=1

(L − l)r2
yy(l)

]
L−1∑
i=0

hT
o,iho,i

E2
i

. (2.75)

Some other interesting relations between the forward predictors and the con-
dition number can be found in [17].

The LCMV filter for noise reduction and speech dereverberation is studied
in Chapters 4, 5, and 7.

2.4 Kalman Filter

The Kalman filter [137], [138], [139] is a natural generalization of the Wiener
filter [234] for nonstationary signals. The Kalman filter is also a sequential
(recursive) MMSE estimator of a signal embedded in noise, where the signal
is characterized by a state model.

We consider the observation signal
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y(k) = x(k) + v(k)
= hT

1 x(k) + v(k), (2.76)

where h1 is defined in (2.9), x(k) is the state vector of length L, v(k) is a
zero-mean white Gaussian noise, and σ2

v(k) = E
[
v2(k)

]
. Note that now, the

variance of the noise is allowed to vary with time.
We assume that the speech signal can be expressed as

x(k) =
L∑

l=1

alx(k − l) + vx(k), (2.77)

where al, l = 1, 2, . . . , L, can be seen as the prediction coefficients of the signal
x(k), vx(k) is a zero-mean white Gaussian noise uncorrelated with v(k), and
σ2

vx
(k) = E

[
v2

x(k)
]
. Equation (2.77) is called the state model.

Using the state vector, we can rewrite (2.77) as

x(k) = Ax(k − 1) + vx(k)h1, (2.78)

where

A =

⎡
⎢⎢⎢⎢⎢⎣

a1 a2 · · · aL−1 aL

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦ (2.79)

is the L × L (nonsingular) state transition matrix.
Given the equations

x(k) = Ax(k − 1) + vx(k)h1, (2.80)
y(k) = hT

1 x(k) + v(k), (2.81)

and assuming that A, σ2
v(k), and σ2

vx
(k) are known, the objective of the

Kalman filter is to find the optimal linear MMSE of x(k). This can be done
in two steps. In the following, we will borrow the nice and intuitive approach
given in [102] to derive the Kalman filter.

Let x̂(k|k − 1) denote the linear MMSE estimator of x(k) at time k given
the observations y(1), y(2), . . . , y(k − 1). The corresponding state estimation
error is

e(k|k − 1) = x(k) − x̂(k|k − 1), (2.82)

and the error covariance matrix is

Ree(k|k − 1) = E
[
e(k|k − 1)eT (k|k − 1)

]
. (2.83)
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In the first step, no new observation is used. We would like to predict x(k)
using the state equation (2.80). Since no new information is available, the best
possible predictor is

x̂(k|k − 1) = Ax̂(k − 1|k − 1). (2.84)

The estimation error is

e(k|k − 1) = x(k) − x̂(k|k − 1)
= Ax(k − 1) + vx(k)h1 − Ax̂(k − 1|k − 1)
= Ae(k − 1|k − 1) + vx(k)h1. (2.85)

If we require that E [e(k − 1|k − 1)] = 0L×1 (this zero-mean condition states
that there is no constant bias in the optimal linear estimation [82]), then
E [e(k|k − 1)] = 0L×1. Since e(k − 1|k − 1) is uncorrelated with vx(k), then

Ree(k|k − 1) = ARee(k − 1|k − 1)AT + σ2
vx

(k)h1hT
1 . (2.86)

This is the Riccati equation.
In the second step, the new observation, y(k), is incorporated to estimate

x(k). A linear estimate that is based on x̂(k|k − 1) and y(k) has the form

x̂(k|k) = K′(k)x̂(k|k − 1) + k(k)y(k), (2.87)

where K′(k) and k(k) are some matrix and vector to be determined. The
vector k(k) is called the Kalman gain. Now, the estimation error is

e(k|k) = x(k) − x̂(k|k)
= x(k) − K′(k)x̂(k|k − 1) − k(k)y(k)
= x(k) − K′(k) [x(k) − e(k|k − 1)] −

k(k)
[
hT

1 x(k) + v(k)
]

=
[
I − K′(k) − k(k)hT

1

]
x(k) +

K′(k)e(k|k − 1) − k(k)v(k). (2.88)

Since E [e(k|k − 1)] = 0L×1, then E [e(k|k)] = 0L×1 only if

K′(k) = I − k(k)hT
1 . (2.89)

With this constraint, it follows that

x̂(k|k) =
[
I − k(k)hT

1

]
x̂(k|k − 1) + k(k)y(k)

= x̂(k|k − 1) + k(k)
[
y(k) − hT

1 x̂(k|k − 1)
]
, (2.90)

and
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e(k|k) = K′(k)e(k|k − 1) − k(k)v(k)

=
[
I − k(k)hT

1

]
e(k|k − 1) − k(k)v(k). (2.91)

Since v(k) is uncorrelated with vx(k) and with y(k − 1), then v(k) will be
uncorrelated with x(k) and with x̂(k|k − 1); as a result E [e(k|k − 1)v(k)] =
0L×1. Therefore, the error covariance matrix for e(k|k) is

Ree(k|k) = E
[
e(k|k)eT (k|k)

]
=
[
I − k(k)hT

1

]
Ree(k|k − 1)

[
I − k(k)hT

1

]T
+

σ2
v(k)k(k)kT (k). (2.92)

The final task is to find the Kalman gain vector, k(k), that minimizes the
MSE

J(k) = tr [Ree(k|k)] . (2.93)

Differentiating J(k) with respect to k(k), we get

∂J(k)
∂k(k)

= −2
[
I − k(k)hT

1

]
Ree(k|k − 1)h1 + 2σ2

v(k)k(k), (2.94)

and equating it to zero, we deduce the Kalman gain

k(k) =
Ree(k|k − 1)h1

hT
1 Ree(k|k − 1)h1 + σ2

v(k)
. (2.95)

We may simplify the expression for the error covariance matrix as follows

Ree(k|k) =
[
I − k(k)hT

1

]
Ree(k|k − 1) − (2.96){[

I − k(k)hT
1

]
Ree(k|k − 1)h1 + σ2

v(k)k(k)
}

kT (k),

where, thanks to (2.94), the second term in (2.96) is equal to zero. Hence

Ree(k|k) =
[
I − k(k)hT

1

]
Ree(k|k − 1). (2.97)

The following steps summarize the Kalman filter [102]:

• State Equation:

x(k) = Ax(k − 1) + vx(k)h1

• Observation Equation:

y(k) = hT
1 x(k) + v(k)
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• Initialization:

x̂(0|0) = E [x(0)]
Ree(0|0) = E

[
x(0)xT (0)

]
• Computation: For k = 1, 2, . . .

x̂(k|k − 1) = Ax̂(k − 1|k − 1)
Ree(k|k − 1) = ARee(k − 1|k − 1)AT + σ2

vx
(k)h1hT

1

k(k) =
Ree(k|k − 1)h1

hT
1 Ree(k|k − 1)h1 + σ2

v(k)

x̂(k|k) = x̂(k|k − 1) + k(k)
[
y(k) − hT

1 x̂(k|k − 1)
]

Ree(k|k) =
[
I − k(k)hT

1

]
Ree(k|k − 1)

Finally, the estimate of the speech sample, x(k), at time k with the Kalman
filter would be

zK(k) = hT
1 x̂(k|k). (2.98)

By analogy with the Wiener filter, we define the speech-distortion index
for the Kalman filter as

υsd(k) =
E

{[
x(k) − hT

1 x̂(k|k)
]2}

σ2
x(k)

=
hT

1 Ree(k|k)h1

σ2
x(k)

. (2.99)

When the Kalman filter converges, Ree(k|k) will become smaller and smaller
and so will be υsd(k). Clearly, the Kalman filter has the potential to cause
much less distortion than the Wiener filter.

2.5 A Viable Alternative to the MSE

With the MSE formulation, many desired properties of the optimal filters such
as the SNR behavior cannot be seen. In this section, we present a new criterion
based on the Pearson correlation coefficient (PCC). We show that the squared
PCC has many appealing properties and can be used as an optimization cost
function. Similar to the MSE, we can derive the Wiener filter and many other
optimal or suboptimal filters with this new cost function. The clear advantage
of using the squared PCC over the MSE is that the performance (particularly
for the output SNR) of the resulting optimal filters can be easily analyzed.
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2.5.1 Pearson Correlation Coefficient

Let x and y be two zero-mean real-valued random variables. The Pearson
correlation coefficient (PCC) is defined as1 [64], [181], [191]

ρ (x, y) =
E [xy]
σxσy

, (2.100)

where E [xy] is the cross-correlation between x and y, and σ2
x = E

[
x2
]

and
σ2

y = E
[
y2
]

are the variances of the signals x and y, respectively. In the
rest, it will be more convenient to work with the squared Pearson correlation
coefficient (SPCC):

ρ2 (x, y) =
E2 [xy]
σ2

xσ2
y

. (2.101)

One of the most important properties of the SPCC is that

0 ≤ ρ2 (x, y) ≤ 1. (2.102)

The SPCC gives an indication on the strength of the linear relationship be-
tween the two random variables x and y. If ρ2 (x, y) = 0, then x and y are said
to be uncorrelated. The closer the value of ρ2 (x, y) is to 1, the stronger the
correlation between the two variables. If the two variables are independent,
then ρ2 (x, y) = 0. But the converse is not true because the SPCC detects only
linear dependencies between the two variables x and y. For a non-linear de-
pendency, the SPCC may be equal to zero. However, in the special case when
x and y are jointly normal, “independent” is equivalent to “uncorrelated.”

2.5.2 Important Relations with the SPCC

In this subsection, we discuss many interesting properties regarding SPCCs
among the four signals x, v, y, and z.

The SPCC between x(k) and y(k) [as defined in (2.1)] is

ρ2 (x, y) =
σ2

x

σ2
y

=
SNR

1 + SNR
, (2.103)

where σ2
y = E

[
y2(k)

]
= σ2

x + σ2
v is the variance of the signal y(k).

The SPCC between x(k) and z(k) [as defined in (2.3)] is

1 This correlation coefficient is named after Karl Pearson who described many of
its properties.
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ρ2 (x, z) =

(
hT

1 Rxxh
)2

σ2
x

(
hT Ryyh

)

=

(
hT

1 Rxxh
)2

σ2
x

(
hT Rxxh

) · SNR(h)
1 + SNR(h)

, (2.104)

where

SNR (h) =
hT Rxxh
hT Rvvh

(2.105)

is the output SNR for the filter h.

Property 1. We have

ρ2 (x, z) = ρ2
(
x,hT y

)
= ρ2

(
x,hT x

)
ρ2
(
hT x,hT y

)
, (2.106)

where

ρ2
(
x,hT x

)
=

(
hT

1 Rxxh
)2

σ2
x

(
hT Rxxh

) , (2.107)

and

ρ2
(
hT x,hT y

)
=

SNR(h)
1 + SNR(h)

. (2.108)

The SPCC ρ2
(
x,hT x

)
can be viewed as a speech-distortion index. If h =

h1 (no speech distortion) then ρ2
(
x,hT x

)
= 1. The closer the value of

ρ2
(
x,hT x

)
is to 0, the more distorted the speech signal (except for a sim-

ple delay filter). The SPCC ρ2
(
hT x,hT y

)
shows the SNR improvement, so

it can be viewed as a noise-reduction index that reaches its maximum when
SNR(h) is maximized.

Property 1 is fundamental in the noise-reduction problem. It shows that
the SPCC ρ2

(
x,hT y

)
, which is a cost function as explained later, is simply

the product of two important indices reflecting noise reduction and speech
distortion. In contrast, the MSE has a much more complex form with no real
physical meaning in the speech enhancement context.

Property 2. We have

ρ2
(
x,hT y

)
≤ SNR(h)

1 + SNR(h)
, (2.109)
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with equality when h = h1.

Property 3. We have

ρ2
(
hT x, y

)
= ρ2

(
x,hT x

)
ρ2 (x, y) . (2.110)

Property 4. We have

ρ2
(
hT x, y

)
≤ SNR

1 + SNR
, (2.111)

with equality when h = h1.
The SPCC between v(k) and y(k) [as defined in (2.1)] is

ρ2 (v, y) =
σ2

v

σ2
y

=
1

1 + SNR
. (2.112)

The SPCC between v(k) and z(k) [as defined in (2.3)] is

ρ2 (v, z) =

(
hT

1 Rvvh
)2

σ2
v

(
hT Ryyh

)

=

(
hT

1 Rvvh
)2

σ2
v

(
hT Rvvh

) · 1
1 + SNR(h)

. (2.113)

Property 5. We have

ρ2 (v, z) = ρ2
(
v,hT y

)
= ρ2

(
v,hT v

)
· ρ2

(
hT v,hT y

)
, (2.114)

where

ρ2
(
v,hT v

)
=

(
hT

1 Rvvh
)2

σ2
v

(
hT Rvvh

) , (2.115)

and

ρ2
(
hT v,hT y

)
=

1
1 + SNR(h)

. (2.116)

Property 6. We have
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ρ2
(
v,hT y

)
≤ 1

1 + SNR(h)
, (2.117)

with equality when h = h1.

Property 7. We have

ρ2
(
hT v, y

)
= ρ2

(
v,hT v

)
· ρ2 (v, y) . (2.118)

Property 8. We have

ρ2
(
hT v, y

)
≤ 1

1 + SNR
, (2.119)

with equality when h = h1.

Property 9. We have

SNR(h) =
ρ2
(
hT x,hT y

)
ρ2
(
hT v,hT y

) . (2.120)

In the next subsection, we will see that the positive quantity ρ2
(
x,hT y

)
can serve as a criterion to derive different optimal filters. Many of the prop-
erties shown here are relevant and will better help us understand the funda-
mental role of the SPCC in the application of speech enhancement.

2.5.3 Examples of Optimal Filters Derived from the SPCC

Intuitively, the problem of estimating the signal x(k) from the observation
signal y(k) can be formulated as one of finding the filter that maximizes the
SPCC ρ2

(
x,hT y

)
in order to make the clean speech signal, x(k), and the

filter output signal, z(k), correlated as much as possible. Furthermore, since
the SPCC ρ2

(
x,hT y

)
is the product of two other SPCCs ρ2

(
x,hT x

)
and

ρ2
(
hT x,hT y

)
(see Property 1), we can find other forms of optimal filters

that maximize either one of these two SPCCs with or without constraints.

Speech Distortionless Filter.

As explained in the previous subsection, the SPCC ρ2
(
x,hT x

)
is a speech-

distortion index. This term is maximum (and equal to one) if h = h1. There-
fore, maximizing ρ2

(
x,hT x

)
will lead to the filter h1. In this case, we have
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SNR(h1) = SNR, (2.121)

ρ2
(
x,hT

1 x
)

= 1, (2.122)

z1(k) = y(k). (2.123)

The filter h1 has no impact neither on the clean signal nor on the noise. In
other words, h = h1 will not distort the clean signal but will not improve the
output SNR either.

Maximum SNR Filter.

It is easy to see that maximizing ρ2
(
hT x,hT y

)
is equivalent to maximizing

the output SNR, SNR(h), which is also equivalent to solving the generalized
eigenvalue problem:

Rxxh = λRvvh. (2.124)

Assuming that R−1
vv exists, the optimal solution to our problem is the eigen-

vector, hmax, corresponding to the maximum eigenvalue, λmax, of R−1
vv Rxx.

Hence

SNR(hmax) = λmax, (2.125)

ρ2
(
hT

maxx,hT
maxy

)
=

λmax

1 + λmax
, (2.126)

zmax(k) = hT
maxy(k). (2.127)

From this filter, we can deduce another interesting property of the SPCC.

Property 10. We have

ρ2
(
x,hT

maxx
)

=
SNR(hmax)

SNR
· ρ2

(
v,hT

maxv
)

. (2.128)

Since SNR(hmax) ≥ SNR(h1) = SNR, this implies that

ρ2
(
x,hT

maxx
)
≥ ρ2

(
v,hT

maxv
)

, (2.129)

which means that the filter hmax yields less distortion to the clean speech
signal, x(k), than to the noise signal, v(k).

Wiener Filter.

We are going to maximize the SPCC ρ2
(
x,hT y

)
. Indeed, if we differentiate

this term with respect to h, equate the result to zero, and assume that the
matrices Rxx and Ryy are full rank, we easily obtain
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Rxxh1

(
hT Ryyh

)
=
(
hT

1 Rxxh
)
Ryyh. (2.130)

If we look for the optimal filter, hW, that satisfies the relation

hT
WRyyhW = hT

1 RxxhW, (2.131)

we find that

hW = R−1
yy Rxxh1, (2.132)

which is the classical Wiener filter [125] also given in (2.7). We can check that,
indeed, hW as given in (2.132) satisfies the relation (2.131) as well as (2.130).
For the Wiener filter, we have the following properties.

Property 11. Maximizing the SPCC ρ2
(
x,hT y

)
is equivalent to maximiz-

ing the variance, E
[
z2(k)

]
, of the filter output signal, z(k), subject to the

constraint hT Ryyh = hT
1 Rxxh.

Property 12. We have

ρ2
(
x,hT

Wy
)

=
1

ξnr (hW)
· 1 + SNR(hW)

SNR
. (2.133)

This implies that

ξnr (hW) ≥ 1 + SNR(hW)
SNR

. (2.134)

But using Properties 2 and 12, we deduce a better lower bound:

ξnr (hW) ≥ [1 + SNR(hW)]2

SNR · SNR(hW)
≥ 1 + SNR(hW)

SNR
. (2.135)

Property 13. (Identical to the Proposition given in Section 2.2.) With the
optimal Wiener filter given in (2.132), the output SNR is always greater than
or at least equal to the input SNR.
Proof. Let us evaluate the SPCC between y(k) and hT

Wy(k):

ρ2
(
y,hT

Wy
)

=

(
hT

1 RyyhW

)2

σ2
y

(
hT

WRyyhW

)
=

σ2
x

σ2
y

· σ2
x

hT
WRxxh1

=
ρ2 (x, y)

ρ2
(
x,hT

Wy
) . (2.136)



32 2 Classical Optimal Filtering

Therefore

ρ2 (x, y) = ρ2
(
y,hT

Wy
)
· ρ2

(
x,hT

Wy
)
≤ ρ2

(
x,hT

Wy
)

. (2.137)

Using (2.103) and Property 2 in the previous expression, we get

SNR
1 + SNR

≤ SNR(hW)
1 + SNR(hW)

. (2.138)

Slightly reorganizing (2.138) gives

1

1 +
1

SNR

≤ 1

1 +
1

SNR(hW)

, (2.139)

which implies that

1
SNR

≥ 1
SNR(hW)

. (2.140)

As a result

SNR(hW) ≥ SNR. (2.141)

That completes the proof.
This proof is amazingly simple and much easier to follow than the proof

given in Section 2.2.

Property 14. We have

[1 + SNR(hW)]2

SNR · SNR(hW)
≤ ξnr (hW) ≤ (1 + SNR) [1 + SNR(hW)]

SNR2 , (2.142)

or

1

ρ2
(
hT

Wv,hT
Wy

)
· ρ2

(
hT

Wx,hT
Wy

) ≤ SNR · ξnr (hW) ≤

1

ρ2 (x, y) · ρ2
(
hT

Wv,hT
Wy

) . (2.143)

Proof. For the lower bound, see (2.135). The upper bound is easy to show by
using Property 12 and (2.137).

Property 15. We have

υsd (hW) = 1 − ρ2
(
x,hT

Wx
)
·
{

1 − 1
[1 + SNR(hW)]2

}
. (2.144)
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This expression shows the link between the speech-distortion index, υsd (hW),
and the SPCC ρ2

(
x,hT

Wx
)
. When ρ2

(
x,hT

Wx
)

is high (resp. low), υsd (hW)
is small (resp. large) and, as a result, the clean speech signal is lowly (resp.
highly) distorted. We also have

ρ2
(
x,hT

Wx
)
≥ SNR

1 + SNR
· 1 + SNR(hW)

SNR(hW)
, (2.145)

so when the output SNR increases, the lower bound of the SPCC ρ2
(
x,hT

Wx
)

decreases; as a consequence, the distortion of the clean speech likely increases.
Now we discuss the connection between maximizing the SPCC and mini-

mizing the MSE. The MSE is

J(h) = E
[
e2(k)

]
(2.146)

= σ2
x + hT Ryyh − 2hT

1 Rxxh

= σ2
x

[
1 +

1
ξnr (h)

· 1 + SNR(h)
SNR

− 2
hT Rxxh
hT

1 Rxxh
· ρ2

(
x,hT x

)]
.

Property 16. We have

J̃(hW) = SNR
[
1 − ρ2

(
x,hT

Wy
)]

, (2.147)

where J̃(hW) is the normalized MMSE defined in (2.16). Therefore, as ex-
pected, the MSE is minimized when the SPCC is maximized.
Proof. Equation (2.147) can be easily verified by using Property 12, relation
(2.131), and Property 1 in (2.146).

Property 17. We have

SNR
1 + SNR(hW)

≤ J̃(hW) ≤ SNR
1 + SNR

, (2.148)

or

ρ2
(
hT

Wv,hT
Wy

)
≤ J̃(hW)

SNR
≤ ρ2 (v, y) . (2.149)

Proof. These bounds can be proven by using the bounds of ρ2
(
x,hT

Wy
)

and
(2.147).

Property 18. We have

υsd (hW) =
1

SNR

[
J̃(hW) − 1

ξnr (hW)

]
. (2.150)
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Proof. See [41].

Property 19. We have

1
[1 + SNR(hW)]2

≤ υsd (hW) ≤ 1 + SNR(hW) − SNR
(1 + SNR) [1 + SNR(hW)]

, (2.151)

or

ρ4
(
hT

Wv,hT
Wy

)
≤ υsd (hW) ≤ ρ2 (v, y) · ρ2

(
hT

Wv,hT
Wy

)
+

ρ2 (v, y) − ρ2
(
hT

Wv,hT
Wy

)
. (2.152)

Proof. These bounds can be proven by using Properties 14, 17, and 18.

Property 20. From the MSE perspective, with the Wiener filter

SNR(hW) ≥ SNR ⇐⇒ ξnr (hW) > 1, υsd (hW) < 1. (2.153)

Therefore, the measures ξnr (hW) and υsd (hW) may be good indicators of the
behavior of the Wiener filter except for at least the case when SNR(hW) =
SNR. In this scenario

ξnr (hW) =
(1 + SNR)2

SNR2 > 1, (2.154)

υsd (hW) =
1

(1 + SNR)2
> 0, (2.155)

hW =
SNR

1 + SNR
h1. (2.156)

This situation occurs when the signal x(k) is not predictable (white random
signal). This particular case shows a slight anomaly in the definitions (2.19)
and (2.20) since noise reduction and speech distortion are possible while the
output SNR is not improved at all. This is due to the fact that

ξnr (c · hW) �= ξnr (hW) , (2.157)
υsd (c · hW) �= υsd (hW) , (2.158)

for a constant c �= 0 and c �= 1.

Property 21. From the SPCC perspective, with the Wiener filter

SNR(hW) ≥ SNR ⇐⇒ ρ2
(
hT

Wx,hT
Wy

)
≥ ρ2 (x, y) , ρ2

(
x,hT

Wx
)
≤ 1.

(2.159)

When SNR(hW) = SNR, then
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ρ2
(
hT

Wx,hT
Wy

)
= ρ2 (x, y) , (2.160)

ρ2
(
x,hT

Wx
)

= 1. (2.161)

This time, the measures based on the SPCCs ρ2
(
hT

Wx,hT
Wy

)
and

ρ2
(
x,hT

Wx
)

reflect accurately the output SNR, since when this latter is not

improved the speech-distortion index ρ2
(
x,hT

Wx
)

says that there is no speech

distortion and the noise-reduction index ρ2
(
hT

Wx,hT
Wy

)
says that there is no

noise reduction indeed. The anomaly discussed above no longer exists in the
context of the SPCC thanks to the properties:

ρ2
(
c · hT

Wx, c · hT
Wy

)
= ρ2

(
hT

Wx,hT
Wy

)
, (2.162)

ρ2
(
x, c · hT

Wx
)

= ρ2
(
x,hT

Wx
)

, (2.163)

for a constant c �= 0.
Properties 20 and 21 show basically that the noise-reduction factor,

ξnr (hW), and the speech-distortion index, υsd (hW), derived from the MSE
formulation present a slight anomaly compared to the equivalent measures
based on the SPCCs and derived from an SPCC criterion.

Trade-Off Filters.

It is also possible to derive other optimal filters that can control the trade-off
between speech distortion and SNR improvement. For example, it can be more
attractive to find a filter that minimizes the speech distortion while it guar-
anties a certain level of SNR improvement. Mathematically, this optimization
problem can be written as follows:

max
h

ρ2
(
x,hT x

)
subject to SNR(h) = β1 · SNR, (2.164)

where β1 > 1. If we use a Lagrange multiplier, µ, to adjoin the constraint to
the cost function, (2.164) can be rewritten as

max
h

L(h, µ), (2.165)

with

L(h, µ) =

(
hT

1 Rxxh
)2

σ2
x

(
hT Rxxh

) + µ

(
hT Rxxh
hT Rvvh

− β1 · SNR

)
. (2.166)

Taking the gradient of L(h, µ) with respect to h and equating the result to
zero, we get
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2σ2
x

(
hT

1 Rxxh
)(

hT Rxxh
)
Rxxh1 − 2σ2

x

(
hT

1 Rxxh
)2

Rxxh(
σ2

x · hT Rxxh
)2 +

µ
2
(
hT Rvvh

)
Rxxh − 2

(
hT Rxxh

)
Rvvh(

hT Rvvh
)2 = 0L×1. (2.167)

Now let’s look for the optimal filter, hT, that satisfies the relation

hT
1 RxxhT = hT

TRxxhT. (2.168)

In this case, (2.167) becomes

Rxxh1

σ2
x

− RxxhT

σ2
x

+ µ

(
hT

TRvvhT

)
RxxhT −

(
hT

TRxxhT

)
RvvhT(

hT
TRvvhT

)2 = 0L×1.

(2.169)

Left-multiplying both sides of (2.169) by hT
T, we can check that, indeed, the

filter hT satisfies the relation (2.168). After some simple manipulations on
(2.169), we find that

Rxxh1 − RxxhT + µSNRξnr (hT)RxxhT − µβ1SNR2ξnr (hT)RvvhT = 0L×1.
(2.170)

Define the quantities:

R̃xx =
Rxx

σ2
x

, (2.171)

R̃vv =
Rvv

σ2
v

, (2.172)

µ′ = µβ1SNR2ξnr (hT) . (2.173)

We find the optimal trade-off filter

hT =
[

µ′

SNR
IL×L +

(
IL×L − µ′

β1SNR

)
R̃−1

vv R̃xx

]−1

R̃−1
vv R̃xxh1, (2.174)

which can be compared to the Wiener filter form shown in (2.11).
The purpose of the filter hT is the same as the filters derived in [59],

[69]. We can play with the parameters µ′ and β1 to get different forms of the
trade-off filter. For examples, for µ′ = 0 we have the speech distortionless filter,
hT = h1, and for µ′ = 1 and β1 → ∞, we get the Wiener filter, hT = hW.

Another example of a trade-off filter can be derived by maximizing the
output SNR while setting the speech distortion to a certain level. Mathemat-
ically, this optimization problem can be formulated as follows:
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max
h

SNR(h) subject to ρ2
(
x,hT x

)
= β2, (2.175)

where β2 < 1. Following the same steps developed for the optimization prob-
lem of (2.164), it can be shown that the optimal trade-off filter derived from
(2.175) is

hT,2 =
[

µ′′

SNR
IL×L +

(
IL×L − µ′′

β′
2SNR

)
R̃−1

vv R̃xx

]−1

R̃−1
vv R̃xxh1,

(2.176)

where

β′
2 = β2ξnr (hT,2) , (2.177)

µ′′ = β2
[SNRξnr (hT,2)]

2

µ
. (2.178)

The two optimal trade-off filters hT and hT,2 are in the same form even though
the latter is rarely used in practice because the level of speech distortion is
very difficult to control.

2.6 Conclusions

Optimal filters play a key role in noise reduction with a single microphone
or with a microphone array. Depending on the context, it is often possible to
derive an optimal filter that can lead to an acceptable performance for a given
problem.

In this chapter, we have studied three important filters: Wiener, Frost, and
Kalman. The Wiener filter is simple and quite useful but has its limitations.
We have seen, in detail, how this optimal filter distorts the desired signal. The
Frost filter is a form of the Wiener filter in which we attached some constraints.
We will see later in this book that the Frost algorithm, when the signal model
is well exploited, can give remarkable performances. The Kalman filter which
can be seen as a generalization of the Wiener filter for nonstationary signals
is powerful but requires the knowledge of some a priori information that is
not often available in real-time applications. We have also introduced a viable
alternative to the MSE. We have shown how the SPCC can be exploited as
a criterion instead of the classical MSE and why it is natural to use in the
derivation of different types of optimal filters.
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Conventional Beamforming Techniques

3.1 Introduction

Beamforming has a long history; it has been studied in many areas such as
radar, sonar, seismology, communications, to name a few. It can be used for
plenty of different purposes, such as detecting the presence of a signal, esti-
mating the direction of arrival (DOA), and enhancing a desired signal from
its measurements corrupted by noise, competing sources, and reverberation.
Traditionally, a beamformer is formulated as a spatial filter that operates on
the outputs of a sensor array in order to form a desired beam (directivity)
pattern. Such a spatial filtering operation can be further decoupled into two
sub-processes: synchronization and weight-and-sum. The synchronization pro-
cess is to delay (or advance) each sensor output by a proper amount of time
so that the signal components coming from a desired direction are synchro-
nized. The information required in this step is the time difference of arrival
(TDOA), which, if not known a priori, can be estimated from the array mea-
surements using time-delay estimation techniques. The weight-and-sum step,
as its name indicates, is to weight the aligned signals and then add the results
together to form one output. Although both processes play an important role
in controlling the array beam pattern (the synchronization part controls the
steering direction and the weight-and-sum process controls the beamwidth of
the mainlobe and the characteristics of the sidelobes), attention to beamform-
ing is often paid to the second step on determining the weighting coefficients.
In many applications, the weighting coefficients can be determined based on
a pre-specified array beam pattern, but usually it is more advantageous to
estimate the coefficients in an adaptive manner based on the signal and noise
characteristics.

The spatial-filter based beamformers were developed for narrowband sig-
nals that can be sufficiently characterized by a single frequency. For broadband
speech that has rich frequency content, such beamformers would not yield the
same beam pattern for different frequencies and the beamwidth decreases as
the frequency increases. If we use such a beamformer, when the steering di-
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rection is different from the source incident angle, the source signal will be
lowpass filtered. In addition, noise coming from a direction different from the
beamformer’s look direction will not be attenuated uniformly over its entire
spectrum, resulting in some disturbing artifacts in the array output. Therefore,
response-invariant broadband beamforming techniques have to be developed.
A common way to design such a broadband beamformer is to perform a sub-
band decomposition and design narrowband beamformers independently at
each frequency. This is equivalent to applying a spatio-temporal filter to the
array outputs, which is widely known as the filter-and-sum structure. The
core problem of broadband beamforming then becomes one of determining
the coefficients of the spatio-temporal filter.

This chapter discusses the basic ideas underlying conventional beamform-
ing in the context of signal enhancement. (Note that the fundamental prin-
ciples of beamforming vary in functionality. Besides signal enhancement, an-
other major application of beamforming is the measurement of DOA, which
will be covered in Chapter 9.) We will begin with a brief discussion on the
advantages of using an array as compared to the use of a single sensor. We
then explore what approaches can be used for solving the narrowband prob-
lem. Although they were not developed for processing speech, the narrowband
techniques lay basis for more advanced broadband beamforming in acoustic
environments and can be used sometimes with good results with broadband
signals. Many fundamental ideas developed in the narrowband case can be
extended to the broadband situation. To illustrate this, we will address the
philosophy behind the (response-invariant) broadband beamforming, which is
of more interest in the context of microphone arrays.

3.2 Problem Description

In sensor arrays, a widely used signal model assumes that each propagation
channel introduces some delay and attenuation only. With this assumption
and in the scenario where we have an array consisting of N sensors, the array
outputs, at time k, are expressed as

yn(k) = αns [k − t −Fn(τ)] + vn(k) (3.1)
= xn(k) + vn(k), n = 1, 2, . . . , N,

where αn (n = 1, 2, . . . , N), which range between 0 and 1, are the attenuation
factors due to propagation effects, s(k) is the unknown source signal (which
can be narrowband or broadband), t is the propagation time from the unknown
source to sensor 1, vn(k) is an additive noise signal at the nth sensor, τ is the
relative delay [or more often it is called the time difference of arrival (TDOA)]
between sensors 1 and 2, and Fn(τ) is the relative delay between sensors 1 and
n with F1(τ) = 0 and F2(τ) = τ . In this chapter, we make a key assumption
that τ and Fn(τ) are known or can be estimated and the source and noise
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signals are uncorrelated. We also assume that all the signals in (3.1) are zero-
mean and stationary.

By processing the array observations yn(k), we can acquire much useful
information about the source, such as its position, frequency, etc. The problem
considered in this chapter is, however, focused on reducing the effect that the
additive noise terms, vn(k), may have on the desired signal, thereby improving
the signal-to-noise ratio (SNR). Without loss of generality, we consider the first
sensor as the reference signal. The goal of this chapter can, then, be described
as to recover x1(k) = α1s(k − t) up to an eventual delay.

3.3 Delay-and-Sum Technique

The advantages of using an array to enhance the desired signal reception
while simultaneously suppressing the undesired noise can be illustrated by a
delay-and-sum (DS) beamformer. Such a beamformer consists of two basic
processing steps [27], [63], [72], [73], [135], [197], [243]. The first step is to
time-shift each sensor signal by a value corresponding to the TDOA between
that sensor and the reference one. With the signal model given in (3.1) and
after time shifting, we obtain

ya,n(k) = yn [k + Fn(τ)]
= αns(k − t) + va,n(k)
= xa,n(k) + va,n(k), n = 1, 2, . . . , N, (3.2)

where

va,n(k) = vn [k + Fn(τ)] ,

and the subscript ‘a’ implies an aligned copy of the sensor signal. The second
step consists of adding up the time-shifted signals, giving the output of a DS
beamformer:

zDS(k) =
1
N

N∑
n=1

ya,n(k)

= αss(k − t) +
1
N

vs(k), (3.3)

where

αs =
1
N

N∑
n=1

αn,

vs(k) =
N∑

n=1

va,n(k)

=
N∑

n=1

vn [k + Fn(τ)] .
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Now we can examine the input and output SNRs of the DS beamformer.
For the signal model given in (3.1), the input SNR relatively to the reference
signal is

SNR =
σ2

x1

σ2
v1

= α2
1

σ2
s

σ2
v1

, (3.4)

where σ2
x1

= E
[
x2

1(k)
]
, σ2

v1
= E

[
v2
1(k)

]
, and σ2

s = E
[
s2(k)

]
are the variances

of the signals x1(k), v1(k), and s(k), respectively. After DS processing, the
output SNR can be expressed as the ratio of the variances of the first and
second terms in the right-hand side of (3.3):

oSNR = N2α2
s

E
[
s2(k − t)

]
E [v2

s (k)]

= N2α2
s

σ2
s

σ2
vs

=

(
N∑

n=1

αn

)2

σ2
s

σ2
vs

, (3.5)

where

σ2
vs

= E

⎧⎨
⎩
[

N∑
n=1

vn [k + Fn(τ)]

]2
⎫⎬
⎭

=
N∑

n=1

σ2
vn

+ 2
N−1∑
i=1

N∑
j=i+1

�vivj
, (3.6)

with σ2
vn

= E
[
v2

n(k)
]

being the variance of the noise signal, vn(k), and �vivj
=

E {vi [k + Fi(τ)] vj [k + Fj(τ)]} being the cross-correlation function between
vi(k) and vj(k).

The DS beamformer is of interest only if

oSNR > SNR. (3.7)

This will mean that the signal zDS(k) will be less noisy than any microphone
output signal, yn(k), and will possibly be a good approximation of x1(k).

Particular Case 1:

In this particular case, we assume that the noise signals at the microphones
are uncorrelated , i.e., �vivj

= 0, ∀i, j = 1, 2, . . . , N, i �= j, and they all have
the same variance, i.e., σ2

v1
= σ2

v2
= · · · = σ2

vN
. We also suppose that all the

attenuation factors are equal to 1 (i.e., αn = 1, ∀n). Then it can be easily
checked that



3.3 Delay-and-Sum Technique 43

oSNR = N · SNR. (3.8)

It is interesting to see that under the previous conditions, a simple time-
shifting and adding operation among the sensor outputs results in an im-
provement in the SNR by a factor equal to the number of sensors.

Particular Case 2:

Here, we only assume that the noise signals have the same energy and that
all the attenuation factors are equal to 1. In this case we have

oSNR =
N

1 + ρs
· SNR, (3.9)

where

ρs =
2
N

N−1∑
i=1

N∑
j=i+1

ρvivj
,

ρvivj
=

�vivj

σvi
σvj

.

ρvivj
is the correlation coefficient with |ρvivj

| ≤ 1. Normally, this coefficient
ranges between −1 and 1. If the noise signals at the microphones are com-
pletely correlated, i.e., ρvivj

= 1, we have
∑N−1

i=1

∑N
j=i+1 ρvivj

= N(N − 1)/2.
In this case, oSNR = SNR. So, no gain is possible with the DS technique. As
the value of the correlation coefficient ρvivj

decreases from 1 to 0, the gain
in SNR increases. In some situations, the correlation coefficient ρvivj

can be
negative. This can happen when the noise signals are from a common point
source. In this case, we may get an SNR higher than N or even infinite.

Another way of illustrating the performance of a DS beamformer is through
examining the corresponding beam pattern (beam pattern is sometimes writ-
ten in a compound form as beampattern; it is also called directivity pattern
or spatial pattern) [217], which provides a complete characterization of the
array system’s input-output behavior. From the previous analysis, we easily
see that a DS beamformer is indeed an N -point spatial filter and its beam
pattern is defined as the magnitude of the spatial filter’s directional response.
From (3.2) and (3.3), we can check that the nth coefficient of the spatial filter
is 1

N ej2πfFn(τ), where f denotes frequency. The directional response of this
filter can be found by performing the Fourier transform. Since Fn(τ) depends
on both the array geometry and the source position, so the beam pattern of a
DS beamformer should be a function of the array geometry and source posi-
tion. In addition, the beam pattern is also a function of the number of sensors
and the signal frequency. Now suppose that we have an equispaced linear ar-
ray, which consists of N omnidirectional sensors, as illustrated in Fig. 3.1.
If we denote the spacing between two neighboring sensors as d, and assume
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Fig. 3.1. Illustration of an equispaced linear array, where the source s(k) is located
in the far field, the incident angle is θ, and the spacing between two neighboring
sensors is d.

that the source is in the far field and the wave rays reach the array with an
incident angle of θ, the TDOA between the nth and the reference sensors can
be written as

Fn(τ) = (n − 1)τ = (n − 1)d cos(θ)/c, (3.10)

where c denotes the sound velocity in air. In this case, the directional response
of the DS filter, which is the spatial Fourier transform of the filter [8], [90],
can be expressed as

SDS(ψ, θ) =
1
N

N∑
n=1

[
ej2π(n−1)fd cos(θ)/c

]
e−j2π(n−1)fd cos(ψ)/c

=
1
N

N∑
n=1

e−j2π(n−1)fd[cos(ψ)−cos(θ)]/c, (3.11)

where ψ (0 ≤ ψ ≤ π) is a directional angle. The beam pattern is then written
as

ADS(ψ, θ) = |SDS(ψ, θ)|
=
∣∣∣∣ sin [Nπfd(cos ψ − cos θ)/c]
N sin [πfd(cos ψ − cos θ)/c]

∣∣∣∣ . (3.12)
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Fig. 3.2. Beam pattern of a ten-sensor array when θ = 90◦, d = 8 cm, and f =
2 kHz: (a) in Cartesian coordinates and (b) in polar coordinates.

Figure 3.2 plots the beam pattern for an equispaced linear array with ten
sensors, d = 8 cm, θ = 90◦, and f = 2 kHz. It consists of a total of 9 beams
(in general, the number of beams in the range between 0◦ and 180◦ is equal
to N − 1). The one with the highest amplitude is called mainlobe and all the
others are called sidelobes. One important parameter regarding the mainlobe
is the beamwidth (mainlobe width), which is defined as the region between the
first zero-crosses on either side of the mainlobe. With the above linear array,
the beamwidth can be easily calculated as 2 cos−1 [c/(Ndf)]. This number
decreases with the increase of the number of sensors, the spacing between
neighboring sensors, and the signal frequency. The height of the sidelobes
represents the gain pattern for noise and competing sources present along the
directions other than the desired look direction. In array and beamforming
design, we hope to make the sidelobes as low as possible so that signals coming
from directions other than the look direction would be attenuated as much
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Fig. 3.3. Beam pattern (in polar coordinates) of a ten-sensor array when θ = 90◦,
d = 24 cm, and f = 2 kHz.

as possible. In addition, with a spatial filter of length N , there always exists
N −1 nulls. We can design the weighting coefficients so that these nulls would
be placed along the directions of competing sources. This is related to the
adaptive beamforming technique and will be covered in greater detail in the
next sections.

Before we finish this section, we would like to point out one potential
problem with the sensor spacing. From the previous analysis, we see that
the array beamwidth decreases as the spacing d increases. So, if we want a
sharper beam, we can simply increase the spacing d, which leads to a larger
array aperture. This would, in general, lead to more noise reduction. There-
fore, in array design, we would expect to set the spacing as large as possible.
However, when d is larger than λ/2 = c/(2f), where λ is the wavelength of
the signal, spatial aliasing would arise. To visualize this problem, we plot the
beam pattern for an equispaced linear array same as used in Fig. 3.2(b). The
signal frequency f is still 2 kHz. But this time, the array spacing is 24 cm.
The corresponding beam pattern is shown in Fig. 3.3. This time, we see three
large beams that have a maximum amplitude of 1. The other two are called
grating lobes. Signals propagating from directions at which grating lobes oc-
cur would be indistinguishable from signals propagating from the mainlobe
direction. This ambiguity is often referred to as spatial aliasing. In order to
avoid spatial aliasing, the array spacing has to satisfy d ≤ λ

2 = c
2f . By analogy

to the Nyquist sampling theorem, this result may be interpreted as a spatial
sampling theorem.

3.4 Design of a Fixed Beamformer

As seen from the previous discussion, once the array geometry is fixed and
the desired steering direction is determined, the characteristics of the beam
pattern of a DS beamformer, including the beamwidth, the amplitude of the
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sidelobes, and the positions of the nulls, would be fixed. This means that if
we want to adjust the beam pattern, we have to make physical changes to the
array geometry, which is virtually impossible once an array system is delivered.
A legitimate question then arises: can we improve the array performance with
some signal processing techniques to adjust its beam pattern without changing
its geometry? We attempt to answer this question in this section and discuss
a class of techniques called fixed beamforming, which takes into account the
array geometry but assumes no information from neither the source nor the
noise signals.

Reexamining the DS beamformer, we easily see that the underlying idea is
to apply a spatial filter of length N to the sensor outputs. This is similar to the
idea of temporal filtering using a finite-duration impulse response (FIR) filter.
Therefore, all the techniques developed for designing FIR filters, including
both the windowing and optimum-approximation approaches [177], can be
applied here. To illustrate how to design a beamformer to achieve a desired
beam pattern, we consider here the widely used least-squares (LS) technique,
which is an optimum-approximation approach.

Suppose that h =
[
h1 h2 · · · hN

]T is a beamforming filter of length N ,
the corresponding directional response is

S(ψ) =
N∑

n=1

hne−j2πfFn[τ(ψ)] = hT ς(ψ), (3.13)

where

ς(ψ) =
[
e−j2πfF1[τ(ψ)] e−j2πfF2[τ(ψ)] · · · e−j2πfFN [τ(ψ)]

]T
.

In the LS method, the objective is to optimize the filter coefficients hn (n =
1, 2, . . . , N) such that the resulting directional response can best approximate
a given directional response. To achieve this goal, let us first define the LS
approximation criterion:

ε2 =
∫ π

0

ϑ(ψ) |S(ψ) − Sd(ψ)|2 dψ, (3.14)

where Sd(ψ) denotes the desired directional response, and ϑ(ψ) is a positive
real weighting function to either emphasize or deemphasize the importance of
certain angles.

Substituting (3.13) into (3.14), we can rewrite the LS approximation cri-
terion as

ε2 = hT Qh − 2hT p +
∫ π

0

ϑ(ψ)|Sd(ψ)|2dψ, (3.15)

where
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Q =
∫ π

0

ϑ(ψ)ς(ψ)ςH(ψ)dψ,

p =
∫ π

0

ϑ(ψ)Re[ς(ψ)Sd(ψ)]dψ, (3.16)

Re(·) denotes real part, and superscript H denotes transpose conjugate of a
vector or a matrix.

Differentiating ε2 with respect to h and equating the result to zero gives

hLS = Q−1p. (3.17)

One can notice that the matrix Q is a function of FN [τ(ψ)] and vector p is
a function of both FN [τ(ψ)] and Sd(ψ). Therefore, the LS beamforming filter
depends on both the array geometry and the desired directional response.

Now let us consider the case where we have an equispaced linear array,
same as used in the previous section. Suppose that we know the source is
located in a certain region (between angles ψ1 and ψ2), but we do not have the
accurate information regarding the source incident direction. So, we want to
design a beamformer that can pass the signal incident from the range between
ψ1 and ψ2, but attenuate signals from all other directions. Mathematically, in
this case, we want to obtain a desired directional response

Sd(ψ) =
{

1 if ψ1 ≤ ψ ≤ ψ2

0 otherwise . (3.18)

If we assume that all the angles are equally important, i.e. ϑ(ψ) = 1, then

Q =
∫ π

0

ς(ψ)ςH(ψ)dψ

=

⎡
⎢⎢⎢⎢⎣

∫ π

0
1dψ

∫ π

0
ejd̃1 cos ψdψ · · · ∫ π

0
ejd̃N−1 cos ψdψ∫ π

0
e−jd̃1 cos ψdψ

∫ π

0
1dψ · · · ∫ π

0
ejd̃N−2 cos ψdψ

...
...

. . .
...∫ π

0
e−jd̃N−1 cos ψdψ · · · · · · ∫ π

0
1dψ

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

π
∫ π

0
cos(d̃1 cos ψ)dψ · · · ∫ π

0
cos(d̃N−1 cos ψ)dψ∫ π

0
cos(d̃1 cos ψ)dψ π · · · ∫ π

0
cos(d̃N−2 cos ψ)dψ

...
...

. . .
...∫ π

0
cos(d̃N−1 cos ψ)dψ · · · · · · π

⎤
⎥⎥⎥⎦ , (3.19)

p =

⎡
⎢⎢⎢⎢⎣

∫ ψ2

ψ1
1dψ∫ ψ2

ψ1
cos(d̃1 cos ψ)dψ

...∫ ψ1

ψ1
cos(d̃N−1 cos ψ)dψ

⎤
⎥⎥⎥⎥⎦ , (3.20)

where d̃n = 2πnfd/c, n = 1, 2, . . . , N − 1.
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Fig. 3.4. Beam pattern designed using the LS technique (solid line): the array is an
equispaced linear one with 10 sensors, d = 4 cm, f = 1.5 kHz, ψ1 = 60◦, ψ2 = 120◦.
For comparison, the DS (dashed line) and desired beam pattern (dash-dot line) are
also shown.

The integrals in (3.19) and (3.20) may seem difficult to evaluate, but they
can be computed using numerical methods without any problems. Now let us
consider two design examples. In the first one, we consider a scenario where the
source may be moving from time to time in the range between 60◦ and 120◦.
In order not to distort the source signal, we want a beamfomer with a large
beamwidth, covering from 60◦ to 120◦. Figure 3.4 plots such a beamformer
design using the LS technique. As seen, its mainlobe is much broader than
that of a DS beamformer.

In the second example, we assume that we know the source is located in
the broadside direction (90◦), with an error less than ±5◦. This time, we want
to have a narrower beam for more interference reduction. The corresponding
beam pattern using the LS method is plotted in Fig 3.5. It is seen that this
time the beamwidth is much smaller than that of a DS beamformer.

Note that the LS beamforming filter can be formulated using different LS
criteria [4], [61], [173]. The one in (3.17) is achieved by approximating the
desired directional response, which takes into account both the magnitude
and phase. We can also formulate the LS filter by approximating the desired
beam pattern, in which case the phase response will be neglected.

3.5 Maximum Signal-to-Noise Ratio Filter

The fixed beamforming techniques can fully take advantage of the array geom-
etry and source location information to optimize their beam pattern. However,
the ability of a fixed-beamforming array system in suppressing noise and com-
peting sources is limited by many factors, e.g., the array aperture. One way
to achieve a higher SNR gain when the array geometry is fixed is through
using the characteristics of both the source and noise signals, resulting in a
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Fig. 3.5. Beam pattern designed using the LS technique (solid line): the array is an
equispaced linear one with 10 sensors, d = 4 cm, f = 1.5 kHz, ψ1 = 85◦, ψ2 = 95◦.
For comparison, the DS (dashed line) and desired beam pattern (dash-dot line) are
also shown.

wide variety of array processing algorithms called adaptive beamforming tech-
niques. In this section, we illustrate the idea underlying adaptive beamforming
by deriving the optimal filter that maximizes the SNR at the output of the
beamformer [5].

In order to show the principle underlying the maximum-SNR technique,
let us rewrite (3.2) in a vector/matrix form:

ya(k) = s(k − t)α + va(k), (3.21)

where

ya(k) =
[
ya,1(k) ya,2(k) · · · ya,N (k)

]T
,

va(k) =
[
va,1(k) va,2(k) · · · va,N (k)

]T
,

α =
[
α1 α2 · · · αN

]T
.

Since the signal and noise are assumed to be uncorrelated, the correlation
matrix of the vector signal ya(k) can be expressed as

Ryaya = σ2
sααT + Rvava , (3.22)

where Rvava = E
[
va(k)vT

a (k)
]

is the noise correlation matrix.
A more general form of a beamformer output is written as

z(k) = hT ya(k) (3.23)

=
N∑

n=1

hnya,n(k)

= s(k − t)hT α + hT va(k),
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where

h =
[
h1 h2 · · · hN

]T
is some filter of length N . In particular, taking hn = 1/N, ∀n, we get the DS
beamformer. With this general filter, the output SNR is written as

SNR(h) =
σ2

s

(
hT α

)2

hT Rvavah
. (3.24)

In array processing, we hope to suppress the noise as much as we can. One
straightforward way of doing this is to find a filter h that would maximize
the positive quantity SNR(h). This is equivalent to solving the generalized
eigenvalue problem:

σ2
sααT h = λRvavah. (3.25)

Assuming that R−1
vava

exists, the optimal solution to our problem is the
eigenvector, hmax, corresponding to the maximum eigenvalue, λmax, of
σ2

sR
−1
vava

ααT . Hence

zmax(k) = hT
maxya(k), (3.26)

SNR(hmax) = λmax. (3.27)

Using the same conditions as in the Particular Case 1 of Section 3.3, (3.25)
becomes

SNR · ααT hmax = λmaxhmax. (3.28)

Left multiplying (3.28) by αT , we get

λmax = N · SNR, (3.29)

so that

SNR(hmax) = N · SNR
= oSNR. (3.30)

This implies that

hmax =
1
N

[
1 1 · · · 1

]T
. (3.31)

Therefore, in this particular case, the maximum SNR filter is identical to the
DS beamformer. This observation is indeed very interesting because it shows
that even though the DS filter was derived with no optimality properties
associated with it, it can be optimal under certain conditions.
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Fig. 3.6. Beam pattern for the maximum SNR filter (solid line): the array is an
equispaced linear one with ten sensors; d = 8 cm; the noise signals are from a point
narrowband source with unit amplitude and a frequency of 2 kHz; the noise source
is located in the far field and propagates to the array with an incident angle of 60◦.
For comparison, the beam pattern for the DS algorithm is also shown (dashed line).

More insights into the maximum SNR filter can be obtained by considering
scenarios where the noise signals are from a common point source. Let us
consider an example where the noise source is a narrowband signal with unit
amplitude and propagates to the array with an incident angle of 60◦. Figure 3.6
plots the corresponding array beam pattern when the mainlobe is steered to
θ = 90◦. Although the mainlobe is similar to that of a DS beamformer, the
sidelobe structure is significantly different. Particularly, the maximum SNR
filter produces a beam pattern having a null in the direction along which
the noise source propagates to the array. In comparison, the nulls of a DS
beamformer are located in fixed directions and are independent of the noise
source. So, the maximum SNR filter indeed adapts its filter coefficients to the
noise environment for maximum noise reduction.

From an SNR perspective, the maximum SNR technique is obviously the
best we can do. However, in real acoustic environments this approach also has
the possibility to maximize the speech distortion.

3.6 Minimum Variance Distortionless Response Filter

The minimum variance distortionless response (MVDR) technique, which is
due to Capon [35], [134], [178], is perhaps the most widely used adaptive
beamformer. The basic underlying idea is to choose the coefficients of the
filter, h, that minimize the output power, E

[
z2(k)

]
= hT Ryayah, with the

constraint that the desired signal [i.e., x1(k)] is not affected. The MVDR
problem for choosing the weights is thus written as [148], [216]

min
h

hT Ryayah subject to hT α = α1. (3.32)
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The method of Lagrange multipliers can be used to solve (3.32), resulting in

hC = α1

R−1
yaya

α

αT R−1
yaya

α
, (3.33)

where the subscript ‘C’ denotes Capon. Therefore the beamformer output
with the MVDR filter is

zC(k) = hT
Cya(k) (3.34)

= α1

αT R−1
yaya

ya(k)

αT R−1
yaya

α

= x1(k) + rn(k),

where

rn(k) = α1

αT R−1
yaya

va(k)

αT R−1
yaya

α

is the residual noise.
The output SNR with the Capon filter can be evaluated as follows:

SNR(hC) = α2
1

σ2
s

σ2
rn

=
σ2

v1

σ2
rn

· SNR, (3.35)

where σ2
rn

= E
[
r2
n(k)

]
.

Determining the inverse of Ryaya from (3.22) with the Woodbury’s identity

[
Rvava + σ2

sααT
]−1

= R−1
vava

− R−1
vava

ααT R−1
vava

σ−2
s + αT R−1

vava
αT

(3.36)

and substituting the result into (3.33), we obtain:

hC = α1

R−1
vava

α

αT R−1
vava

α
. (3.37)

Using this form of the Capon filter, it is easy to check that hC is an eigenvector
of (3.25) and

hC = hmax. (3.38)

Therefore, for the particular problem considered in this chapter, minimizing
the total output power while keeping the signal from a specified direction
constant is the same as maximizing the output SNR [88].

From (3.35), we can find that the residual noise power is
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σ2
rn

=
(
αT R−1

vava
α
)−1

. (3.39)

Identical to the maximum SNR filter, the output SNR with the Capon filter
can also be written as

SNR(hC) = λmax (3.40)
= σ2

s

(
αT R−1

vava
α
)
.

Applying the same conditions as in the Particular Case 1 of Section 3.3, we
obtain:

SNR(hC) = N · SNR, (3.41)

implying that the Capon filter degenerates to a DS beamformer when noise
signals observed at the array are mutually uncorrelated and have the same
power. But same as what we analyzed in section 3.6, the advantage of the
Capon filter over a DS beamformer is that this adaptive beamformer can
adapt itself to the noise environment for maximum noise reduction.

In more complicated propagation environments where reverberation is
present, the Capon filter can be extended to a more general algorithm called
the linearly constrained minimum variance filter. This will be studied in great
details in Chapter 4.

3.7 Approach with a Reference Signal

Assume now that the reference or desired signal, x1(k), is available. We define
the error signal as

e(k) = x1(k) − z(k)
= α1s(k − t) − hT ya(k), (3.42)

which is the difference between the reference signal and its estimate. This
error is then used in the MSE criterion

J(h) = E
[
e2(k)

]
(3.43)

to find the optimal coefficients. The minimization of J(h) with respect to the
vector h yields to the well-known Wiener filter:

hW = R−1
yaya

ryax1 , (3.44)

where

ryax1 = E [ya(k)x1(k)] (3.45)

is the cross-correlation vector between ya(k) and x1(k). Obviously, the desired
signal, x1(k), is not available in most applications. As a result, ryax1 can not
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be estimated as given in (3.45) and the optimal filter, hW, can not be found.
However, in many noise reduction applications there are interesting ways to
estimate ryax1 [16], [218].

We are now ready to show how the Wiener filter is related to the other
classical filters. Replacing (3.21) and x1(k) = α1s(k− t) in (3.45) it is easy to
see that this cross-correlation vector is

ryax1 = σ2
sα1α. (3.46)

Using the decomposition of R−1
yaya

given by (3.36), the Wiener filter can be
rewritten as [66]

hW =
α1σ

2
s

1 + σ2
sαT R−1

vava
α

· R−1
vava

α

= βshC, (3.47)

where

βs =
σ2

sαT R−1
vava

α

1 + σ2
sαT R−1

vava
α

. (3.48)

The first point we can observe is that the Wiener filter is proportional to the
Capon filter. The second point is that since the Capon filter is equal to the
maximum SNR filter and this latter is specified up to a constant, the Wiener
filter also maximizes the output SNR. In other words, with the model given
in (3.21) the maximum SNR, MVDR, and Wiener filters are equivalent as far
as the output SNR is concerned.

It is very important to understand that, contrary to the MVDR filter for
example, the Wiener filter will distort the desired signal with a more general
model (real room acoustic environment). It seems that it is the price to pay
for noise reduction. Different aspects and properties of the Wiener filter were
discussed in Chapter 2 for the single-channel case and the multichannel version
will be studied in Chapter 5.

3.8 Response-Invariant Broadband Beamformers

In the previous sections, we have introduced many basic terminologies and
widely-used concepts in beamforming. A number of techniques, including non-
adaptive and adaptive ones, were discussed to form a desired beam pattern so
as to recover a desired source signal from its observations corrupted by noise
and competing sources. However, the aforementioned techniques are narrow-
band in nature in the sense that the resulting beam characteristics, particu-
larly the beamwidth, are a function of the signal frequency. To visualize the
frequency dependency of these techniques, we plot in Fig. 3.7 a 3-dimensional
beam pattern of a DS beamformer where the signal has a bandwidth of 3.7 kHz
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Fig. 3.7. 3-dimensional view of a DS beamformer: the array is an equispaced linear
one with ten sensors; d = 4 cm; signal frequency is from 300 Hz to 4 kHz.

(from 300 Hz to 4 kHz). It can be clearly seen that the beampattern is not the
same across the whole frequency band. Therefore, if we use such a beamformer
for broadband signals like speech, and if the steering direction is different
from the signal incident angle, the signal will be low-pass filtered. In addition,
noise and interference signals will not be uniformly attenuated over its entire
spectrum. This “spectral tilt” results in a disturbing artifact in the array out-
put [224]. As a result, it is desirable to develop beamformers with constant
beamwidth over frequency in order to deal with broadband information. The
resulting techniques are called (response-invariant) broadband beamforming.

One way to obtain a broadband beamformer is to use harmonically nested
subarrays [72], [73], [142]. Every subarray is linear and equally-spaced, and
is designed for operating at a single frequency. But such a solution requires
a large array with a great number of microphones even though subarrays
may share sensors in the array. Another way to design a broadband beam-
former based on classical narrowband techniques is to perform narrowband
decomposition as illustrated in Fig. 3.8, and design narrowband beamformers
independently at each frequency. The broadband output is synthesized from
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Fig. 3.8. The structure of a frequency-domain broadband beamformer.

the outputs of narrowband beamformers. Figure 3.9 presents an example,
where each subband beamformer is designed using the LS method discussed
in Section 3.4.

The structure of a frequency-domain broadband beamformer as shown in
Fig. 3.8 can be equivalently transformed into its time-domain counterpart
shown in Fig. 3.10, where an FIR filter is applied to each sensor output, and
the filtered sensor signals are summed together to form a single output. This
is widely known as the filter-and-sum beamformer first developed by Frost
in [76] although the original idea was not dealing with the broadband issue.
Mathematically, a filter-and-sum beamformer can be written as

z(k) =
N∑

n=1

hT
nyn(k), (3.49)

where

hn =
[
hn,0 hn,1 · · · hn,Lh−1

]
,

yn(k) =
[
yn(k) yn(k − 1) · · · yn(k − Lh + 1)

]
,

n = 1, 2, . . . , N , and Lh is the length of the beamforming filter. Now the
beamforming problem becomes one of finding the desired filters hn.

The invention of the filter-and-sum beamformer has opened a new page in
array signal processing. Not only that we can use this idea to design broadband
beamformers [211], we also can use it to deal with reverberation, another
distraction that is so difficult to cope with. About how to design the filters
will be discussed in the following chapters. In the next section, we show a
simple broadband design example for null steering.
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Fig. 3.9. 3-dimensional view of a LS broadband beamformer: the array is an eq-
uispaced linear one with ten sensors; d = 4 cm; signal frequency is from 300 Hz to
4 kHz.

3.9 Null-Steering Technique

We have shown that, if the noise signals are from a point source, both the
maximum SNR and Capon filters place a null along the direction correspond-
ing to the noise source. In this section, we discuss a more generic technique
called null-steering, which originates from the ideas of sidelobe cancellers [51],
[110], and generalized sidelobe canceller [31], [32], [94]. The motivation behind
null-steering is to cancel one or multiple competing source (interference) sig-
nals propagating from known directions [47], [75], [87], [88]. As in the previous
techniques, we consider an array system consisting of N elements. Unlike the
signal model given in (3.1), here we assume that there are multiple sources in
the wavefield, and the array outputs are expressed as

yn(k) =
M∑

m=1

αnmsm [k − tm −Fn(τm)] , n = 1, 2, . . . , N, (3.50)

where sm, m = 1, 2, . . . , M (M ≤ N) are the source signals, αnm are the
attenuation factors due to propagation effects, tm is the propagation time from
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Fig. 3.10. The structure of a filter-and-sum beamformer.

the source sm to sensor 1, τm is the relative delay between microphones 1 and
2 for the mth source, and Fn(τm) is the relative delay between microphones
1 and n for the mth source with F1(τm) = 0 and F2(τm) = τm. Again, we
assume that τm and Fn(·) are known. Without loss of generality, we consider
the first source, s1, as the desired signal and the M − 1 remaining sources,
s2, . . . , sM , as the interferers.

Expression (3.50) can be rewritten in a more convenient way:

yn(k) =
M∑

m=1

gT
nmsm(k − tm), n = 1, 2, . . . , N, (3.51)

where

gnm =
[
0 · · · 0 αnm 0 · · · 0

]T
is a filter of length Lg whose [Fn(τm) + 1]th component is equal to αnm, and

sm(k − tm) = [sm(k − tm) sm(k − tm − 1) · · · sm [k − tm −Fn(τm)]

· · · sm(k − tm − Lg + 1)]T .

The objective of a null-steering algorithm is to find N filters

hn =
[
hn,0 hn,1 · · · hn,Lh−1

]T
, n = 1, 2, . . . , N,

of length Lh such that the output of the beamformer
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z(k) =
N∑

n=1

hT
nyn(k), (3.52)

with

yn(k) =
[
yn(k) yn(k − 1) · · · yn(k − Lh + 1)

]T
, n = 1, 2, . . . , N,

is a good approximation of the desired source, s1, and such that the M − 1
interferers, s2, . . . , sM , are attenuated as much as possible. This is a broadband
processing approach.

Let us rewrite the microphone signals of (3.51) in a vector/matrix form:

yn(k) =
M∑

m=1

GnmsL,m(k − tm), n = 1, 2, . . . , N, (3.53)

where

Gnm =

⎡
⎢⎢⎢⎣

gT
nm 0 0 · · · 0
0 gT

nm 0 · · · 0
...

...
...

...
...

0 0 · · · 0 gT
nm

⎤
⎥⎥⎥⎦ ,

n = 1, 2, . . . , N, m = 1, 2, . . . ,M,

is a Sylvester matrix of size Lh × L, with L = Lg + Lh − 1, and

sL,m(k − tm) =
[
sm(k − tm) sm(k − tm − 1) · · · sm(k − tm − L + 1)

]T
,

m = 1, 2, . . . ,M.

Substituting (3.53) into (3.52), we find that

z(k) =
M∑

m=1

[
N∑

n=1

hT
nGnm

]
sL,m(k − tm). (3.54)

From the above expression, we see that in order to perfectly recover s1(k) the
following M conditions have to be satisfied:

N∑
n=1

GT
n1hn = u, (3.55)

N∑
n=1

GT
nmhn = 0L×1, m = 2, . . . , M, (3.56)

where

u =
[
1 0 · · · 0 0

]T (3.57)
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is a vector of length L. In matrix/vector form, the M previous conditions are

GT h = u′, (3.58)

where

G =

⎡
⎢⎢⎢⎣

G11 G12 · · · G1M

G21 G22 · · · G2M

...
...

. . .
...

GN1 GN2 · · · GNM

⎤
⎥⎥⎥⎦

NLh×ML

,

h =
[
hT

1 hT
2 · · · hT

N

]T
,

u′ =
[
uT 0T

L×1 · · · 0T
L×1

]T
.

Depending on the values of N and M , we have two cases, i.e., N = M and
N > M .
Case 1: N = M .

In this case, ML = NL = NLh + NLg − N . Since Lg > 1, we have
ML > NLh. This means that the number of rows of GT is always larger than
its number of columns. Assuming that the matrix GT has full column rank,
we can take the least-squares (LS) solution for the linear system (3.58), which
is

hLS =
[
GGT

]−1

Gu′. (3.59)

Case 2: N > M .
When we have more microphones than sources, all 3 cases ML > NLh,

ML = NLh, and ML < NLh can occur depending on the values of Lg and
Lh. If ML > NLh, then we can still take the LS solution as given in (3.59).
If ML = NLh, we have an exact solution:

hE =
[
GT

]−1

u′. (3.60)

Finally, for the last case ML < NLh, we can take the minimum-norm solution:

hMN = G
[
GT G

]−1

u′. (3.61)

More sophisticated solutions for interference suppression are described in
Chapter 7 in the general multiple-input/multiple-output framework. But be-
fore leaving this chapter, we will discuss in the next section the conditions
that are required to recover the desired signal.

3.10 Microphone Array Pattern Function

Having presented the basic techniques for narrowband and broadband beam-
forming, we are now in a position to discuss the array pattern, which can be
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used to examine the beamformer’s response to an arbitrary propagation field
just as the frequency response of a temporal filter can be used to analyze its
response to an arbitrary signal [34]. In the narrowband situation, two forms
of array pattern have been studied: beam pattern and steered response. The
term beam pattern, as has been used throughout the text, characterizes the
array’s input-output behavior when the beamformer is steered to a specific
direction. It can be used to analyze how the array output is affected by signals
different from the focused one. In comparison, the steered response measures
the beamformer’s output when it is scanned by systematically varying the
steering angle from 0◦ to 180◦. (It is also of interest, occasionally, to measure
the steered response from 0◦ to 360◦.)

Both beam pattern and steered response are very useful in analyzing nar-
rowband beamformers. However, they tend to be inadequate to characterize
the performance of broadband beamformers in reverberant environments. In
this situation things are less obvious to understand than the narrowband case
where only a monochromatic plane wave is considered. In this section, we try
to derive another form of array pattern for two different signal models with a
broadband source, which is useful in analyzing microphone arrays.

3.10.1 First Signal Model

Consider a white noise source (since it covers the whole spectrum), s, with
variance σ2

s = 1. In this first signal model, we consider that the nth sensor
signal can be written as

yn(k) = s [k − t −Fn(τs)] , n = 1, 2, . . . , N, (3.62)

where τs is the relative delay between microphones 1 and 2 for the source
signal s. (For convenience, we slightly changed the notation for the relative
delay by adding a subscript s to it.) We assume that the signal arrives first
at microphone 1. We examine the far-field case and a linear equispaced array
where Fn(τs) = (n− 1)τs. As explained in the previous section, (3.62) can be
rewritten as

yn(k) = gT [Fn(τs)] s(k − t), n = 1, 2, . . . , N, (3.63)

where

g [Fn(τs)] =
[
0 · · · 0 1 0 · · · 0

]T
is a filter of length Lg ≥ FN (τs) + 1 whose [Fn(τs) + 1]th component is equal
to 1, and

s(k − t) = [s(k − t) s(k − t − 1) · · · s [k − t −Fn(τs)]

· · · s(k − t − Lg + 1)]T .

Consider the N filters
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h [Fn(τ)] =
1
N

[
0 · · · 0 1 0 · · · 0

]T
, n = 1, 2, . . . , N,

of length Lh whose [Fn(τ) + 1]th component is equal to 1/N . The output of
the beamformer is

z(k) =
N∑

n=1

hT [FN+1−n(τ)]yn(k)

=
1
N

N∑
n=1

yn [k −FN+1−n(τ)]

=
1
N

N∑
n=1

s [k − t −FN+1−n(τ) −Fn(τs)] . (3.64)

We see that for τ = τs, z(k) = s [k − t −FN (τs)].
Expression (3.64) can also be put in the following form:

z(k) = hT (τ)y(k), (3.65)

where

h(τ) =
[
hT [FN (τ)] hT [FN−1(τ)] · · · hT [F1(τ)]

]T
,

y(k) =
[
yT

1 (k) yT
2 (k) · · · yT

N (k)
]T

.

Also
yn(k) = G [Fn(τs)] sL(k − t), n = 1, 2, . . . , N, (3.66)

where

G [Fn(τs)] =

⎡
⎢⎢⎢⎣

gT [Fn(τs)] 0 0 · · · 0
0 gT [Fn(τs)] 0 · · · 0
...

...
...

...
...

0 0 · · · 0 gT [Fn(τs)]

⎤
⎥⎥⎥⎦ ,

n = 1, 2, . . . , N,

is a Sylvester matrix of size Lh × L, with L = Lg + Lh − 1, and

sL(k − t) =
[
s(k − t) s(k − t − 1) · · · s(k − t − L + 1)

]T
.

We deduce from the previous expressions that

z(k) = hT (τ)G(τs)sL(k − t), (3.67)

where

G(τs) =

⎡
⎢⎢⎢⎣

G [F1(τs)]
G [F2(τs)]

...
G [FN (τs)]

⎤
⎥⎥⎥⎦

NLh×L

.
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The matrix G(τs) can be seen as the steering matrix, which incorporates all
the information of the desired signal position. Therefore, the variance of the
output beamformer is

E
[
z2(k)

]
=
∥∥∥GT (τs)h(τ)

∥∥∥2

2
. (3.68)

We define the microphone array pattern function as

A(τ) = 1 −
∥∥∥GT (τs)h(τ) − u [FN (τ)]

∥∥∥
2
, (3.69)

with A(τs) = 1, and

u [FN (τ)] =
[
0 · · · 0 1 0 · · · 0

]T
is a vector of length L whose [FN (τ) + 1]th component is equal to 1. In the
search of the beamforming filter, we expect that there is one unique filter
h(τ) such that A(τ) = 1. If there are several such filters, that would indicate
spatial aliasing problems.

3.10.2 Second Signal Model

Again consider a white noise source, s, with variance σ2
s = 1. In this subsec-

tion, we choose the signal model:

yn(k) = gn ∗ s(k)
= gT

ns(k), (3.70)

where ∗ stands for convolution and gn is the acoustic impulse response of
length Lg from the source s(k) to the nth microphone. Using the previous
notation, it is easy to see that

z(k) = hT GsL(k), (3.71)

so that

E
[
z2(k)

]
=
∥∥∥GT h

∥∥∥2

2
(3.72)

and the microphone array pattern function is

A(h) = 1 −
∥∥∥GT h − u

∥∥∥
2

(3.73)

where G is the steering matrix (containing all the impulse responses from the
desired source to the N microphones) and u is defined in (3.57).

Now let’s take Lh = (Lg − 1)/(N − 1) and assume that Lh is an integer,
then the matrix GT becomes a square one. To find a vector h such that
z(k) = s(k), we need to solve the linear system GT h = u. This solution is
unique if GT is full rank. In this case, there exists only one vector h such
that A(h) = 1. If GT is not full rank, which is equivalent to saying that the
N polynomials formed from g1, g2, . . . , gN share common zeroes, there will be
two cases:
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Case 1:

if GT and the augmented matrix [GT |u] have the same rank, there will be
more than one vector h such that A(h) = 1. As a result, we should expect
spatial aliasing as what we can experience in narrowband situations.

Case 2:

if the rank of GT is less than that of the augmented matrix [GT |u], the linear
system GT h = u has no solution. As a result, we are not able to recover
the source signal. This situation may happen when the array does not have
enough aperture and there is not adequate diversity among the microphone
channels. An extreme example is when all the sensors are co-positioned. Then
the array system degenerates to the single-channel one and apparently, it is
impossible to recover the source signal with beamforming.

The above two cases suggest two requirements in array design: the spacing
among sensors cannot be too large (as compared to the wavelength). Otherwise
we will experience the spatial aliasing problem, which causes ambiguity in
recovering the desired signal. On the other hand, the sensors cannot be too
close. If they are too close, the array does not provide enough aperture for
recovering the source signal.

3.11 Conclusions

This chapter reviewed the fundamental principles underlying conventional
narrowband beamforming techniques, most of which were originally devel-
oped in the fields of radar and sonar. While the basic ideas in narrowband
beamforming can be generalized to the design of broadband beamformers,
directly applying a narrowband beamformer to broadband signals can create
many issues such as colorizing the desired signal and spectrally tilting the
ambient noise. In order to avoid signal distortion, it is indispensable to de-
velop broadband beamformers that have constant beam characteristics over
frequency. To this end, we discussed two approaches: subband decomposition
and filter-and-sum. Theoretically, these two approaches are equivalent (one
can be treated as the counterpart of the other in a different domain), though
they may have different design and implementation advantages. Also discussed
in this chapter is the array pattern, which is useful in examining the perfor-
mance of beamforming and studying the conditions under which the desired
signal can be recovered.
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On the Use of the LCMV Filter in Room
Acoustic Environments

4.1 Introduction

The linearly constrained minimum variance (LCMV) filter [76], also known as
the Frost algorithm (named after O. L. Frost, even though he might not be
the inventor), has been extremely popular in antenna arrays. It can be useful
not only in microphone arrays for speech enhancement but also in communi-
cations, radar, and sonar. There are different ways to define the constraints
that are inherently built in the structure of this algorithm. However, the basic
idea behind this filter is to try to extract the desired signal coming from a
specific direction while minimizing contributions to the output due to inter-
fering signals and noise arriving from directions other than the direction of
interest [216].

This chapter attempts to show in which conditions the LCMV filter can
be used in room acoustic environments. In order to help the reader better
understand how the LCMV filter works, we will present in Section 4.2 three
mathematical models for which the LCMV filter is derived. Section 4.3 ex-
plains the LCMV filter with the simple anechoic model. Section 4.4 presents
the Frost algorithm in the context of the more sophisticated (and also more
realistic) reverberant model. Section 4.5 derives the LCMV filter for the more
practical spatio-temporal model. Very often, an algorithm in the frequency
domain gives better insights than its time-domain version. For this reason, we
derive the Frost algorithm in the frequency domain in Section 4.6. Finally, we
draw our conclusions in Section 4.7.

4.2 Signal Models

Before discussing how to use the LCMV filter, we need first to explain the
mathematical models that can be employed to describe a room acoustic envi-
ronment. These models will help us better understand how the LCMV filter
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works, what are its potentials, and where are its limits. In the following, we
will describe the anechoic, reverberant, and spatio-temporal models.

4.2.1 Anechoic Model

Suppose that we have an array consisting of N sensors, the anechoic model
assumes that the signal picked up by each microphone is a delayed and at-
tenuated version of the original source signal plus some additive noise. Math-
ematically, the received signals, at time k, are expressed as

yn(k) = αns [k − t −Fn(τ)] + vn(k) (4.1)
= xn(k) + vn(k),

where αn, n = 1, 2, . . . , N , are the attenuation factors due to propagation
effects, s(k) is the unknown source signal, t is the propagation time from
the unknown source to sensor 1, vn(k) is an additive noise signal at the nth
microphone, τ is the relative delay between microphones 1 and 2, and Fn(τ) is
the relative delay between microphones 1 and n with F1(τ) = 0 and F2(τ) = τ .
For example, in the far-field case (plane wave propagation) and for a linear
equispaced array, we have

Fn(τ) = (n − 1)τ. (4.2)

It is further assumed that vn(k) is a zero-mean Gaussian random process
that is uncorrelated with s(k).1 It is also assumed that s(k) is zero-mean and
reasonably broadband.

4.2.2 Reverberant Model

Most of the rooms are reverberant which means that each sensor often receives
a large number of echoes due to reflections of the wavefront from objects and
room boundaries such as walls, ceiling, and floor [125]. In this model, the
received signals are expressed as

yn(k) = gn ∗ s(k) + vn(k) (4.3)
= xn(k) + vn(k),

where gn is the impulse response from the unknown source s(k) to the nth
microphone. Again, we assume that s(k) is zero-mean, reasonably broadband,
and uncorrelated with the additive noise vn(k). In a vector/matrix form, the
signal model (4.3) can be rewritten as

yn(k) = gT
ns(k) + vn(k), n = 1, 2, . . . , N, (4.4)

1 The case where vn(k) is correlated with s(k) is equivalent to the reverberant
model.
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where

gn =
[
gn,0 gn,1 · · · gn,Lg−1

]T
,

s(k) =
[
s(k) s(k − 1) · · · s(k − Lg + 1)

]T
,

and Lg is the length of the longest acoustic impulse responses among the N
channels gn, n = 1, 2, . . . , N .

4.2.3 Spatio-Temporal Model

In this model, we exploit the spatial information of the unknown source as
well as its temporal signature. Indeed, using the z-transform, the signal xn(k)
in (4.3) can be rewritten as

Xn(z) = S(z)Gn(z), n = 1, 2, . . . , N, (4.5)

where Xn(z), S(z), and Gn(z) are the z-transforms of xn(k), s(k), and gn,
respectively, with Gn(z) =

∑Lg−1
l=0 gn,lz

−l. From (4.5) it is easy to verify that
the signals xn(k), n = 2, 3, . . . , N , are related to x1(k) as follows:

Xn(z) =
Gn(z)
G1(z)

X1(z)

= Wn(z)X1(z), n = 2, 3, . . . , N, (4.6)

where Wn(z) is an infinite impulse response (IIR) filter. We will assume that
this IIR filter can be well approximated by a large FIR filter. With this as-
sumption, we can rewrite (4.6) in the time domain:

xn(k) = Wnx1(k), n = 2, 3, . . . , N, (4.7)

where

xn(k) =
[
xn(k) xn(k − 1) · · · xn(k − Lh + 1)

]T
, n = 1, 2, . . . , N,

and Wn is an Lh × Lh matrix.
With these three models in mind, we will derive and study the LCMV

filter for dereverberation and noise reduction for each one of them.

4.3 The LCMV Filter with the Anechoic Model

In the anechoic model, the relative delay [Fn(τ) or τ)] needs to be known or
accurately estimated. Fortunately, many robust methods exist to estimate τ
from a set of microphones; see for examples [40], [57] and references therein.
The knowledge of this relative delay allows us to time-align the received signals
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in the array aperture, such that the desired signal becomes coherent after this
processing

ya,n(k) = yn [k + Fn(τ)]
= αns(k − t) + va,n(k), n = 1, 2, . . . , N, (4.8)

where

va,n(k) = vn [k + Fn(τ)] .

This alignment has also the potential to somewhat misalign the noise at the
sensors thereby reducing its spatial coherence. So even in the presence of a
unique point-noise source, this may not appear that way anymore at the sen-
sors as long as the source and the noise signals come from different positions.

It is now more convenient to work with the samples ya,n(k) or the N × 1
vector

ya(k) = s(k − t)α + va(k), (4.9)

where

ya(k) =
[
ya,1(k) ya,2(k) · · · ya,N (k)

]T
,

va(k) =
[
va,1(k) va,2(k) · · · va,N (k)

]T
,

α =
[
α1 α2 · · · αN

]T
.

If we consider the most recent Lh samples of each microphone, we can form
the NLh × 1 vector:

ya,NLh
(k) = xa,NLh

(k) + va,NLh
(k), (4.10)

where

ya,NLh
(k) =

[
yT

a (k) yT
a (k − 1) · · · yT

a (k − Lh + 1)
]T

,

xa,NLh
(k) =

[
s(k − t)αT s(k − t − 1)αT · · · s(k − t − Lh + 1)αT

]T
,

va,NLh
(k) =

[
vT

a (k) vT
a (k − 1) · · · vT

a (k − Lh + 1)
]T

.

The aim here is to find an array filter, h, of length NLh in such a way that
the signal at its output is equal (or close) to

∑Lh−1
l=0 uls(k − t − l), where the

ul are some chosen numbers. These coefficients help shaping the spectrum of
s(k).

First, Lh constraints need to be found in order to have

hT xa,NLh
(k) =

Lh−1∑
l=0

uls(k − t − l). (4.11)
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It is clear from (4.11) that the Lh constraints should be

cT
α,lh = ul, l = 0, 1, . . . , Lh − 1, (4.12)

where

cα,l =

[
0T

N×1 · · · 0T
N×1 αT︸︷︷︸

lth group

0T
N×1 · · · 0T

N×1

]T

is the lth constraint vector of length NLh. The constraints in (4.12) can be
put in a matrix form:

CT
αh = u, (4.13)

with

Cα =
[
cα,0 cα,1 · · · cα,Lh−1

]
,

u =
[
u0 u1 · · · uLh−1

]T
.

The vector u contains the coefficients of an FIR filter that maintains a chosen
frequency response of the desired signal s(k) and the constraint matrix, Cα,
is of size NLh × Lh.

Then the second step consists of minimizing the total array output power

hT Ryaya,NLh
h,

where

Ryaya,NLh
= E

[
ya,NLh

(k)yT
a,NLh

(k)
]

is the NLh × NLh correlation matrix of the microphone signals. Therefore,
to find the optimal filter we need to solve the optimization problem [76]:

min
h

hT Ryaya,NLh
h subject to CT

αh = u. (4.14)

Expression (4.14) is, indeed, easy to solve and its optimal solution is

hA = R−1
yaya,NLh

Cα

(
CT

αR−1
yaya,NLh

Cα

)−1

u, (4.15)

where the subscript “A” indicates an anechoic signal model. In (4.15), we
assume that Ryaya,NLh

has full rank and a necessary condition for that to be
true is that the correlation matrix of the noise

Rvava,NLh
= E

[
va,NLh

(k)vT
a,NLh

(k)
]

is positive definite. Let us show that. We can write the correlation matrix of
the microphone signals as
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Ryaya,NLh
= Rxaxa,NLh

+ Rvava,NLh

= E
{

[s(k − t) ⊗ α] [s(k − t) ⊗ α]T
}

+ Rvava,NLh

= Rss,Lh
⊗ (ααT

)
+ Rvava,NLh

, (4.16)

where Rss,Lh
= E

[
s(k − t)sT (k − t)

]
is the Lh × Lh correlation matrix, as-

sumed to have full rank, of the signal

s(k − t) =
[
s(k − t) s(k − t − 1) · · · s(k − t − Lh + 1)

]T
,

and ⊗ is the Kronecker product [91]. From this well-known property

rank
[
Rss,Lh

⊗ (ααT
)]

= [rank (Rss,Lh
)]
[
rank

(
ααT

)]
= Lh, (4.17)

it is clear that the NLh ×NLh correlation matrix Ryaya,NLh
can be full rank

only if Rvava,NLh
is also full rank since the rank of Rxaxa,NLh

is equal to Lh.
If the noise is correlated with the source signal,2 we can see from (4.14)

that risks are very high to cancel portions of s(k) and there is no easy fix for
this crucial problem [108].

Two particular interesting cases can be deduced from the LCMV filter:

• If we take Lh = 1 and hA = 1/N , where 1 is a vector of N ones, we get
the classical delay-and-sum beamformer [216].

• If we take Lh = 1 and u0 = 1, we obtain the minimum variance distor-
tionless response (MVDR) filter due to Capon [35]:

hA =
R−1

yaya
α

αT R−1
yaya

α
, (4.18)

where hA is a filter of length N and Ryaya = E
[
ya(k)yT

a (k)
]
. Therefore,

hT
Aya(k) will be a good estimate of the sample s(k − t).

For both the LCMV and MVDR filters a good estimator of the vector
α is required. Although several techniques exist like the one based on blind
identification, the accuracy may not be enough in practice, so this problem
is still a very open one. Another possible simple estimator is based on the
maximum eigenvector of the matrix Ryaya as explained in [57]. Moreover, to
make the anechoic model more realistic, we need to assume that the desired
source and the noise are correlated in (4.8). As a result, cancellation of the
desired signal is unavoidable with this model.

2 This scenario models the reverberation.
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4.4 The LCMV Filter with the Reverberant Model

In this section we suppose that the N impulse responses from the desired
source to the microphones are known (or can be estimated) and are stationary.

We consider N array filters hn, n = 1, 2, . . . , N , of length Lh. The micro-
phone signals [eq. (4.4)] can be rewritten in the following form:

yn(k) = GnsL(k) + vn(k), n = 1, 2, . . . , N, (4.19)

where

yn(k) =
[
yn(k) yn(k − 1) · · · yn(k − Lh + 1)

]T
,

vn(k) =
[
vn(k) vn(k − 1) · · · vn(k − Lh + 1)

]T
,

sL(k) =
[
s(k) s(k − 1) · · · s(k − L + 1)

]T
,

and

Gn =

⎡
⎢⎢⎢⎣

gn,0 · · · gn,Lg−1 0 0 · · · 0
0 gn,0 · · · gn,Lg−1 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 gn,0 · · · gn,Lg−1

⎤
⎥⎥⎥⎦

is a Sylvester matrix of size Lh × L, with L = Lh + Lg − 1.
If we concatenate the N observation vectors together, we get:

y(k) =
[
yT

1 (k) yT
2 (k) · · · yT

N (k)
]T

= GsL(k) + v(k), (4.20)

where

G =

⎡
⎢⎢⎢⎣

G1

G2

...
GN

⎤
⎥⎥⎥⎦

NLh×L

,

v(k) =
[
vT

1 (k) vT
2 (k) · · · vT

N (k)
]T

.

The NLh × NLh covariance matrix corresponding to y(k) is

Ryy = E
[
y(k)yT (k)

]
= GRssGT + Rvv, (4.21)

with Rss = E
[
sL(k)sT

L(k)
]

and Rvv = E
[
v(k)vT (k)

]
. We assume that Ryy is

invertible, which implies that Rvv is positive definite or the matrix GRssGT

is full rank.
With all this information, the LCMV filter is obtained by solving the

following optimization problem [18]:
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min
h

hT Ryyh subject to GT h = u (4.22)

where

h =
[
hT

1 hT
2 · · · hT

N

]T
and

u =
[
1 0 · · · 0

]T
is a vector of length L whose first component is equal to 1 while all others are
zeroes. In (4.22), the L constraints are necessary for the dereverberation of
the signal of interest while the minimization is required to reduce the noise.

The optimal solution to (4.22) is

hR = R−1
yy G

(
GT R−1

yy G
)−1

u, (4.23)

where the subscript “R” indicates a reverberant signal model. Assume that
Rvv and Ryy are positive definite, a necessary condition for

(
GT R−1

yy G
)

to
be nonsingular (in order that hR exists) is to have NLh ≥ L, which implies
that

Lh ≥ Lg − 1
N − 1

. (4.24)

The other condition for the matrix
(
GT R−1

yy G
)

to be nonsingular is that
G has full column rank, which is equivalent to saying that the N polynomials
formed from g1, g2, . . . , gN share no common zeroes. If indeed they have com-
mon zeroes, the constraints in (4.22) should be changed such that the vector
u will contain the coefficients of the polynomial of the greatest common divi-
sor of g1, g2, . . . , gN . As a result, dereverberation is possible up to a filtering
operation.

An important thing to observe from (4.24) is that the minimum value
required for the length of the filters hR,n, n = 1, 2, . . . , N , decreases as the
number of microphones increases. As a consequence, the LCMV filter has the
potential to significantly reduce the effect of the background noise with a large
number of microphones.

If we take the minimum value for Lh, i.e., Lh = (Lg − 1)/(N − 1) and
assume that Lh is an integer, G turns to a square matrix and (4.23) becomes:

hR =
[
GT

]−1

u, (4.25)

which is the MINT method [166]. Taking the minimum length will only dere-
verberate the signal of interest without any noise reduction. As we increase
Lh from its minimum value, the degrees of freedom increase as well for better
noise reduction.
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Let us show now that minimizing the background noise without distorting
the desired signal is equivalent to minimizing the total array output power
with the same constraint. Indeed, using the constraint and (4.21), we see that
hT Ryyh = σ2

s +hT Rvvh, where σ2
s is the variance of s(k), which is equivalent

to minimizing the background noise without distorting the desired signal. A
more rigorous way of showing this is by applying the matrix inversion lemma
to (4.21),(

GRssGT + Rvv

)−1

= R−1
vv − R−1

vv G
(
GT R−1

vv G + R−1
ss

)−1

GT R−1
vv

(4.26)

and the identity(
GT R−1

vv G
)−1

−
(
GT R−1

vv G + R−1
ss

)−1

=(
GT R−1

vv G
)−1

[
Rss +

(
GT R−1

vv G
)−1

]−1 (
GT R−1

vv G
)−1

, (4.27)

it is easy to see that(
GT R−1

yy G
)−1

= Rss +
(
GT R−1

vv G
)−1

. (4.28)

As a result, we can check that

R−1
yy G

(
GT R−1

yy G
)−1

= R−1
vv G

(
GT R−1

vv G
)−1

. (4.29)

Therefore, the LCMV filter can be also put in this form

hR = R−1
vv G

(
GT R−1

vv G
)−1

u. (4.30)

The LCMV filter with the reverberant model is very attractive from a
theoretical point of view since it allows, in general, perfect dereverberation
(desired signal stays intact) with a great amount of noise reduction as the value
of Lh of the model filters is increased from its required minimum. However,
in this context the LCMV filter may not be very practical since the acoustic
impulse responses from the unknown source to the N microphones are difficult
to estimate in real-world applications.

4.5 The LCMV Filter with the Spatio-Temporal Model

It seems that in order to avoid signal cancellation, we need to make sure that
we dereverberate the signal of interest perfectly or up to a known filter. This
requires the knowledge of a huge amount of information, i.e. the N acoustic
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impulse responses from the signal of interest to the microphones, which is
not very practical to acquire in most applications. It is then fair to ask if
it’s possible to perform noise reduction at one of the microphone signals,
xn(k), without trying to recover the desired source s(k) but with no further
distortion on xn(k)? The LCMV filter developed with the spatio-temporal
model attempts to do that. In the rest, we will see how to recover the signal
x1(k) the best possible way.

Now consider the array filter h of length NLh and the total array output
power hT Ryyh. We have:

hT Ryyh = hT Rxxh + hT Rvvh, (4.31)

where Rxx = E
[
x(k)xT (k)

]
is the correlation matrix of the signal

x(k) =
[
xT

1 (k) xT
2 (k) · · · xT

N (k)
]T

. (4.32)

Using (4.7) in (4.31), we find that

hT Ryyh = hT WRx1x1W
T h + hT Rvvh, (4.33)

where Rx1x1 = E
[
x1(k)xT

1 (k)
]

and

W =

⎡
⎢⎢⎢⎣

ILh×Lh

W2

...
WN

⎤
⎥⎥⎥⎦

is a matrix of size NLh × Lh. Taking WT h = u′, (4.33) becomes

hT Ryyh = σ2
x1

+ hT Rvvh, (4.34)

where

u′ =
[
1 0 · · · 0

]T
is a vector of length Lh whose first component is equal to 1 while all others
are zeroes and σ2

x1
is the variance of x1(k). Expression (4.34) shows clearly

that it is possible to recover x1(k) undistorted while reducing the noise.
Therefore, from (4.34) we deduce the two optimization problems:

min
h

hT Ryyh subject to WT h = u′, (4.35)

min
h

hT Rvvh subject to WT h = u′, (4.36)

for which the optimal solutions are
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hST,y = R−1
yy W

(
WT R−1

yy W
)−1

u′, (4.37)

hST,v = R−1
vv W

(
WT R−1

vv W
)−1

u′, (4.38)

where the subscript “ST” indicates a spatio-temporal signal model. These
solutions are not only more realistic than the one given in Section 4.4 but
they also require much less constraints, in principle, since Lh  L.

Now, we need to determine the filter matrix W. An optimal estimator, in
the Wiener sense, can be obtained by minimizing the following cost function:

J (Wn) = E
{

[xn(k) − Wnx1(k)]T [xn(k) − Wnx1(k)]
}

. (4.39)

We easily find the optimal filter:

Wn,o = Rxnx1R
−1
x1x1

, (4.40)

where Rxnx1 = E
[
xn(k)xT

1 (k)
]

is the cross-correlation matrix of the speech
signals. However, the signals xn(k), n = 1, 2, . . . , N , are not observable so the
Wiener filter matrix, as given in (4.40), can not be estimated in practice. But
using xn(k) = yn(k) − vn(k), we can verify that

Rxnx1 = Ryny1 − Rvnv1 , n = 1, 2, . . . , N, (4.41)

where Ryny1 = E
[
yn(k)yT

1 (k)
]

and Rvnv1 = E
[
vn(k)vT

1 (k)
]
. As a result

Wn,o = (Ryny1 − Rvnv1) (Ry1y1 − Rv1v1)
−1

. (4.42)

The optimal filter matrix depends now only on the second-order statistics
of the observation and noise signals. The statistics of the noise signals can
be estimated during silences [when s(k) = 0] if we assume that the noise is
stationary so that its statistics can be used for a next period when the speech
is active. Note that if the source does not move, the optimal matrix needs
to be estimated only once. Finally, the optimal LCMV filters based on the
spatio-temporal model are given by

hST,y = R−1
yy Wo

(
WT

o R−1
yy Wo

)−1

u′, (4.43)

hST,v = R−1
vv Wo

(
WT

o R−1
vv Wo

)−1

u′, (4.44)

where

Wo =

⎡
⎢⎢⎢⎣

ILh×Lh

W2,o

...
WN,o

⎤
⎥⎥⎥⎦ .
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In general, hST,y �= hST,v because (4.7) does not hold exactly and can
only be approximated. It is reasonable to believe that these LCMV filters are
the most useful ones in practice since they do not require that much a priori
information to make them work in real-world applications. Moreover, even
the geometry of the antenna does not need to be known and the calibration
is not necessary. This is due to the fact that all this information is implicitly
estimated in the matrix Wo.

Before finishing this part, let us show the link between the concept derived
in this section and the so-called transfer function generalized sidelobe canceller
(TF-GSC) [79], [80]. Using the signal model given in Section 4.4, we can easily
see that

Rxnx1 = GnRssGT
1 , (4.45)

Rx1x1 = G1RssGT
1 . (4.46)

Substituting (4.45) and (4.46) into (4.40), we obtain

Wn,o = GnRssGT
1

[
G1RssGT

1

]−1

. (4.47)

If the source signal s(k) is white, then

Rss = σ2
s · I, (4.48)

where σ2
s is the variance of the source signal. The optimal prediction matrix

becomes

Wn,o = GnGT
1

[
G1GT

1

]−1

, (4.49)

which depends solely on the channel information. In this particular case, the
Wn,o matrix can be viewed as the time-domain counterpart of the relative
transfer function of the TF-GSC, so the LCMV filters given in (4.43)–(4.44)
are equivalent to the TF-GSC approach [79]. However, in practical applica-
tions, speech signal is not white. Then, Wn,o depends not only on the channel
impulse responses, but also on the source correlation matrix. This indicates
that the developed LCMV estimators exploit both the spatial and tempo-
ral prediction information for noise reduction. For more details on one of the
LCMV filters (hST,v) developed in this section, we invite the readers to consult
[21], [44].

4.5.1 Experimental Results

In this subsection we evaluate the performance of the LCMV filter hST,v

in real acoustic environments. We set up a multiple-microphone system in
the varechoic chamber at Bell Labs [which is a room that measures 6.7 m
long by 6.1 m wide by 2.9 m high (x × y × z)]. A total of ten microphones
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are used and their locations are, respectively, at (2.437, 5.600, 1.400), (2.537,
5.600, 1.400), (2.637, 5.600, 1.400), (2.737, 5.600, 1.400), (2.837, 5.600, 1.400),
(2.937, 5.600, 1.400), (3.037, 5.600, 1.400), (3.137, 5.600, 1.400), (3.237, 5.600,
1.400), and (3.337, 5.600, 1.400). To simulate a sound source, we place a
loudspeaker at (1.337, 3.162, 1.600), playing back a speech signal prerecorded
from a female speaker. To make the experiments repeatable, we first measured
the acoustic channel impulse responses from the source to the ten microphones
(each impulse response is first measured at 48 kHz and then downsampled to
8 kHz). These measured impulse responses are then treated as the true ones.
During the experiments, the microphone outputs are generated by convolving
the source signal with the corresponding measured impulse responses. Noise
is then added to the convolved results to control the (input) SNR level.

The optimal speech estimate is

x̂1(k) =
N∑

n=1

hT
n,ST,vyn(k) = x1,nr(k) + v1,nr(k),

where x1,nr(k) =
∑N

n=1 hT
n,ST,vxn(k) and v1,nr(k) =

∑N
n=1 hT

n,ST,vvn(k) are,
respectively, the speech filtered by the optimal filter and the residual noise. To
assess the performance, we evaluate two measures, namely the output SNR
and the Itakura-Saito (IS) distance [131]. The output SNR is defined as

SNRo =
E
[
x2

1,nr(k)
]

E
[
v2
1,nr(k)

] .
This measurement, when compared with the input SNR, tells us how much
noise is reduced. The IS distance is a speech-distortion measure. For a detailed
description of the IS distance, we refer to [131]. Many studies have shown that
the IS measure is highly correlated with subjective quality judgements and
two speech signals would be perceptually nearly identical if the IS distance
between them is less than 0.1. In this experiment, we compute the IS distance
between x1(k) and x1,nr(k), which measures the degree of speech distortion
due to the optimal filter.

In order to estimate and use the optimal filter given in (4.44), we need to
specify the filter length Lh. If there is no reverberation, it is relatively easy
to determine Lh, i.e., it needs only to be long enough to cover the maximal
TDOA between the reference and the other microphones. In presence of rever-
beration, however, the determination of Lh would become more difficult and
its value should, in theory, depend on the reverberation condition. Generally
speaking, a longer filter has to be used if the environment is more reverberant.
This experiment investigates the impact of the filter length on the algorithm
performance. To eliminate the effect due to noise estimation, here we assume
that the statistics of the noise signals are known a priori. The input SNR is
10 dB and the reverberation condition is controlled such that the reverber-
ation time T60 is approximately 240 ms. The results are plotted in Fig. 4.1.
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Fig. 4.1. The output SNR and the IS distance, both as a function of the filter
length Lh: (a) SNRo and (b) IS distance. The source is a speech signal from a
female speaker; the background noise at each microphone is a computer-generated
white Gaussian process; input SNR = 10 dB; and T60 = 240 ms. The fitting curve
is a second-order polynomial.

One can see from Fig. 4.1(a) that the output SNR increases with L. So the
longer is the filter, the more the noise is reduced. Compared with SNRo, the
IS distance decreases with Lh. This is understandable. As Lh increases, we
will get a better prediction of xn(k) from x1(k). Consequently, the algorithm
achieves more noise reduction and meanwhile causes less speech distortion.
We also see from Fig. 4.1 that the output SNR increases almost linearly with
Lh. Unlike the SNR curve, the relationship between the IS distance and the
filter length Lh is not linear. Instead, the curve first decreases quickly as the
filter length increases, and then continues to decrease but with a slower rate.
After Lh = 250, continuing to increase Lh does not seem to further decrease
the IS distance. So, from a speech-distortion point of view, Lh = 250 is long
enough for a reasonable good performance.

The second experiment is to test the robustness of the multichannel al-
gorithm to reverberation. The parameters used are: Lh = 250, N = 10, and
input SNR = 10 dB. Compared with the previous experiments, this one does
not assume to know the noise statistics. Instead, we developed a short-term
energy based VAD (voice activity detector) to distinguish speech-plus-noise
from noise-only segments. The noise covariance matrix is then computed
from the noise-only segments using a batch method and the optimal filter
is subsequently estimated according to (4.44). We tested the algorithm in two
noise conditions: computer generated white Gaussian noise and a noise signal
recorded in a New York Stock Exchange (NYSE) room. The results are de-
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Fig. 4.2. Noise-reduction performance versus T60. ∗: in white Gaussian noise; ◦:
in NYSE noise; L = 250; input SNR = 10 dB. The fitting curve is a second-order
polynomial.

picted in Fig. 4.2. We see that the output SNR in both situations does not
vary much when the reverberation time changes. This indeed demonstrates
that the developed LCMV filter is very immune to reverberation. In com-
parison with the output SNR, we see that the IS distance grows with the
reverberation time. This result should not come as a surprise. As the rever-
beration time T60 increases, it becomes more difficult to predict the speech
observed at one microphone from that received at another microphone. As a
result, more speech distortion is unavoidable but it is still perceptually almost
negligible.

4.6 The LCMV Filter in the Frequency Domain

For completeness, we derive in this section the LCMV filter in the frequency
domain with the reverberant model.

Using the z-transform with z = ejω, (4.3) can be rewritten as

Yn(z) = S(z)Gn(z) + Vn(z), n = 1, 2, . . . , N. (4.50)

Consider the N × 1 vector:

y(z) =
[
Y1(z) Y2(z) · · · YN (z)

]T
= S(z)g(z) + v(z), (4.51)

where
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g(z) =
[
G1(z) G2(z) · · · GN (z)

]T
,

v(z) =
[
V1(z) V2(z) · · · VN (z)

]T
.

The power spectral density (PSD) matrix of the microphone signals is

Φyy(z) = E
[
y(z)yH(z)

]
= φss(z)g(z)gH(z) + Φvv(z), (4.52)

where φss(z) = E
[|S(z)|2] is the PSD of the source signal s(k) and Φvv(z) =

E
[
v(z)vH(z)

]
is the PSD matrix of the noise.

The constraint of the frequency-domain LCMV filter is based on the ex-
tended Euclid’s algorithm: given the polynomials G1(z), G2(z), . . . , GN (z), we
can always find N other polynomials H1(z),H2(z), . . . , HN (z) such that

hH(z)g(z) = P (z), (4.53)

where

h(z) =
[
H1(z) H2(z) · · · HN (z)

]T
,

P (z) = gcd [G1(z), G2(z), . . . , GN (z)] = gcd [g(z)] , (4.54)

gcd[·] denotes the greatest common divisor of the polynomials involved, and
deg [Hn(z)] = Lh − 1 < Lg − Lp, with deg [Gn(z)] = Lg − 1 and deg [P (z)] =
Lp − 1.

Now that we have the constraint, we can formulate our optimization prob-
lem:

min
h(z)

hH(z)Φyy(z)h(z) subject to hH(z)g(z) = P (z), (4.55)

and the optimal solution is

hF(z) =
Φ−1

yy (z)g(z)P ∗(z)

gH(z)Φ−1
yy (z)g(z)

, (4.56)

where the subscript “F” indicates that it’s a frequency-domain filter and su-
perscript ∗ denotes complex conjugation. In the frequency domain, the LCMV
filter simplifies to an MVDR filter [1], [2], [79].

Determining the inverse of Φyy(z) from (4.52) with the Woodbury’s iden-
tity [

Φvv(z) + φss(z)g(z)gH(z)
]−1

=

Φ−1
vv (z) − Φ−1

vv (z)g(z)gH(z)Φ−1
vv (z)

φ−1
ss (z) + gH(z)Φ−1

vv (z)g(z)
(4.57)
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and substituting the result into (4.56), we obtain:

hF(z) =
Φ−1

vv (z)g(z)P ∗(z)
gH(z)Φ−1

vv (z)g(z)
. (4.58)

With this form, we can deduce the residual noise:

|R(z)|2 = hH
F (z)Φ−1

vv (z)hF(z)

=
|P (z)|2

gH(z)Φ−1
vv (z)g(z)

. (4.59)

We can observe that the residual noise depends on two elements: the mag-
nitude square of the polynomial P (z) and the coherence of the noise. The
larger the number of common zeroes among the acoustic impulse responses,
the higher the residual noise. Also, the higher the coherence of the noise at
the microphones, the higher the residual error.

This simple analysis, in the frequency domain, shows the limits of the
LCMV filter with the reverberant model on dereverberation and noise re-
duction. The performance of this optimal filter depends quite a lot on the
reverberation of the room (i.e., the acoustic impulse responses) and the char-
acteristics of the noise. Because of this high dependency, it is reasonable to
assert that this filter may not be that reliable in practice.

4.7 Conclusions

In this chapter, the classical LCMV filter was studied in room acoustic en-
vironments. For a deep insight into this filter, we have proposed three math-
ematical models: anechoic, reverberant, and spatio-temporal. The anechoic
model is not very realistic so the LCMV filter derived in this context may
not perform very well if used in a real room. The more realistic reverberant
model requires an unrealistic huge amount of information (i.e., acoustic im-
pulse responses). For this reason, the LCMV filter with this model is not really
implementable even in subbands. Finally, the two LCMV filters derived with
the spatio-temporal model seem promising since they allow reduction of the
background noise with little distortion of the reference signal but dereverber-
ation is not possible.

Contrary to what it’s claimed here and there, dereverberation does not
seem feasible with the LCMV filter in general. As for noise reduction, the
LCMV filter is of interest only if it does not distort the reference speech sig-
nal. If we do not want to distort the source signal, we need to dereverberate
it exactly otherwise some signal cancellation will happen. However, we can
do some noise reduction at anyone of the microphone signals without dis-
torting the speech component at that microphone (in this case, there is no
dereverberation), which will be studied more thoroughly in the next chapter.



5

Noise Reduction with Multiple Microphones: a
Unified Treatment

5.1 Introduction

Wherever we are, noise (originating from various ambient sound sources) is
permanently present. As a result, speech signals can not be acquired and
processed, in general, in pure form. It is known for a long time that noise can
profoundly affect human-to-human and human-to-machine communications,
including changing a talker’s speaking pattern, modifying the characteristics
of the speech signal, degrading speech quality and intelligibility, and affecting
the listener’s perception and machine’s processing of the recorded speech.
In order to make voice communication feasible, natural, and comfortable in
the presence of noise regardless of the noise level, it is desirable to develop
digital signal processing techniques to “clean” the microphone signal before it
is stored, transmitted, or played out. This problem has been a major challenge
for many researchers and engineers for more than four decades [16].

In the single-channel scenario, the signal picked up by the microphone can
be modeled as a superposition of the clean speech and noise. The objective of
noise reduction, then, becomes to restore the original clean speech from the
mixed signal. The first single-channel noise reduction algorithm was developed
more than 40 years ago by Schroeder [199], [200]. He proposed an analog im-
plementation of the spectral magnitude subtraction. This work, however, has
not received much public attention, probably because it was never published
in journals or conferences. About 15 years later, Boll, in his informative paper
[24], reinvented the spectral subtraction method but in the digital domain.
Almost at the same time, Lim and Oppenheim, in their landmark work [153],
systematically formulated the noise-reduction problem and studied and com-
pared the different algorithms known at that time. Since then many algorithms
have been derived in the time and frequency domains [16], [43], [156], [218].
The main drawback of single-channel speech enhancement algorithms is that
they distort the desired speech signal. So researchers have proposed to use
multiple microphones or microphone arrays in order to better deal with this
fundamental problem.
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The objective of this chapter is to study the most important noise reduc-
tion algorithms in the multichannel case. The main desire is to see if, indeed,
the use of multiple microphones can help in minimizing speech distortion
while having a good amount of noise reduction at the same time. This chap-
ter is organized as follows. Section 5.2 describes the problem and the signal
model while Section 5.3 gives some very useful definitions that will help the
reader understand how noise reduction algorithms work. Section 5.4 explains
the multichannel Wiener filter. Section 5.5 develops the subspace method with
multiple microphones. In Section 5.6, the spatio-temporal prediction approach
is derived. Section 5.7 deals with the difficult problem of coherent noise. In
Section 5.8, it is shown how the adaptive noise cancellation idea can be used
in this context. Section 5.9 generalizes the Kalman filter to the multichan-
nel case. In Section 5.10, we present some simulations. Finally, we give our
conclusions in Section 5.11.

5.2 Signal Model and Problem Description

In this section, we explain the problem that we wish to tackle. We consider
the general situation where we have N microphone signals whose outputs, at
the discrete time k, are

yn(k) = gn ∗ s(k) + vn(k)
= xn(k) + vn(k), n = 1, 2, . . . , N, (5.1)

where gn is the impulse response from the unknown source to the nth micro-
phone and vn(k) is the noise at microphone n. We assume that the signals
vn(k) and xn(k) are uncorrelated and zero-mean. Without loss of general-
ity, we consider the first microphone signal y1(k) as the reference. Our main
objective in this chapter is noise reduction [16], [218]; hence we will try to
recover x1(k) the best way we can in some sense by observing not only one
microphone signal but N of them. We do not attempt here to recover s(k)
(i.e., speech dereverberation) except in Section 5.9 with the Kalman filter.
This problem, although very important, is difficult and requires other tech-
niques to solve it [18], [123], [125]. (See also Chapters 4, 7, and 8.) Contrary
to most beamforming techniques, the geometry of the microphone array has
little or no impact on the algorithms presented here, so the calibration step
is not necessary.

The signal model given in (5.1) can be written in a vector/matrix form if
we process the data by blocks of L samples:

yn(k) = xn(k) + vn(k), n = 1, 2, . . . , N, (5.2)

where

yn(k) =
[
yn(k) yn(k − 1) · · · yn(k − L + 1)

]T
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is a vector containing the L most recent samples of the noisy speech signal
yn(k), and xn(k) and vn(k) are defined in a similar way to yn(k). Again, our
objective is to estimate x1(k) from the observations yn(k), n = 1, 2, . . . , N .

Usually, we estimate the noise-free speech, x1(k), by applying a linear
transformation to the microphone signals, i.e.,

z(k) =
N∑

n=1

Hnyn(k)

= Hy(k)
= H [x(k) + v(k)] , (5.3)

where

y(k) =
[
yT

1 (k) yT
2 (k) · · · yT

N (k)
]T

,

x(k) =
[
xT

1 (k) xT
2 (k) · · · xT

N (k)
]T

,

v(k) =
[
vT

1 (k) vT
2 (k) · · · vT

N (k)
]T

,

H =
[
H1 H2 · · · HN

]
,

and Hn, n = 1, 2, . . . , N , are the filtering matrices of size L × L, so H is the
global filtering matrix of size L×NL. From this estimate, we define the error
signal vector as

e(k) = z(k) − x1(k)
= (H − U)x(k) + Hv(k)
= ex(k) + ev(k), (5.4)

where

U =
[
IL×L 0L×L · · · 0L×L

]
is an L × NL matrix with IL×L being the identity matrix of size L × L,

ex(k) = (H − U)x(k) (5.5)

is the speech distortion due to the linear transformation, and

ev(k) = Hv(k) (5.6)

represents the residual noise.

5.3 Some Useful Definitions

In Chapter 2 we have defined many objective measures for evaluating the
performance of single-channel noise-reduction algorithms. In this section, we
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extend those measures to the multichannel situation, which will be useful in
the rest of this chapter.

The best way to quantify the amount of noise from an observed signal is
the SNR. Since our reference microphone is the first one, we define the input
SNR as

SNR =
σ2

x1

σ2
v1

=
E
[
xT

1 (k)x1(k)
]

E
[
vT

1 (k)v1(k)
]

=
tr
{

E
[
Ux(k)xT (k)UT

]}
tr
{

E
[
Uv(k)vT (k)UT

]} , (5.7)

where tr[·] denotes the trace of a matrix.
The primary issue that we must determine with noise reduction is how

much noise is actually attenuated. The noise-reduction factor is a measure of
this and its mathematical definition, in the multichannel case, is

ξnr(H) =
E
[
vT

1 (k)v1(k)
]

E [eT
v (k)ev(k)]

=
tr
{

E
[
Uv(k)vT (k)UT

]}
tr
{

E
[
Hv(k)vT (k)HT

]} . (5.8)

This factor should be lower bounded by 1. The larger the value of ξnr(H), the
more the noise is reduced.

Most, if not all, of the known methods achieve noise reduction at the price
of distorting the speech signal. Therefore, it is extremely useful to quantify
this distortion. The multichannel speech-distortion index is defined as follows:

υsd(H) =
E
[
eT

x (k)ex(k)
]

E
[
xT

1 (k)x1(k)
] . (5.9)

This parameter is lower bounded by 0 and expected to be upper bounded
by 1. The higher the value of υsd(H), the more the speech signal x1(k) is
distorted.

Noise reduction is done at the expense of speech reduction. Similar to the
noise-reduction factor, we give the definition of the speech-reduction factor:

ξsr(H) =
tr
{

E
[
Ux(k)xT (k)UT

]}
tr
{

E
[
Hx(k)xT (k)HT

]} . (5.10)

This factor is also lower bounded by 1.
In order to know if the filtering matrix (H) improves the SNR, we evaluate

the output SNR after noise reduction as
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SNR(H) =
tr
{

E
[
Hx(k)xT (k)HT

]}
tr
{

E
[
Hv(k)vT (k)HT

]} . (5.11)

It is nice to find a filter H in such a way that SNR(H) > SNR since the SNR
is the most reliable objective measure we have in our hands for the evalua-
tion of speech enhancement algorithms and it’s also reasonable to assume, to
some extent, some correlation between SNR and subjective listening. However,
maximizing SNR(H) is certainly not the best thing to do since the distortion
of the speech signal will likely be maximized as well.

Using expressions (5.7), (5.8), (5.10), and (5.11), it is easy to see that we
always have:

SNR(H)
SNR

=
ξnr(H)
ξsr(H)

. (5.12)

Hence, SNR(H) > SNR if and only if ξnr(H) > ξsr(H). So is it possible that
with a judicious choice of the filtering matrix H we can have ξnr(H) > ξsr(H)?
The answer is yes. A generally rough and intuitive justification to this answer
is quite simple: improvement of the output SNR is due to the fact that speech
signals are partly predictable. In this situation, H is a kind of a complex
predictor or interpolator matrix and as a result, ξsr(H) can be close to 1
while ξnr(H) can be much larger than 1. This fact is very important for the
single-microphone case and has the potential to be also important in the
multichannel case where we can exploit not only the temporal prediction of
the speech signal but also the spatial prediction of the observed signals from
different microphones in order to improve the output SNR and minimize the
speech distortion.

5.4 Wiener Filter

In this section, we derive the classical optimal Wiener filter for noise reduction.
Let us first write the mean-square error (MSE) criterion

J(H) = tr
{
E
[
e(k)eT (k)

]}
(5.13)

= E
[
xT

1 (k)x1(k)
]
+ tr

[
HRyyHT

]
− 2tr [HRyx1 ] ,

where Ryy = E
[
y(k)yT (k)

]
is the NL × NL correlation matrix of the ob-

servation signals and Ryx1 = E
[
y(k)xT

1 (k)
]

is the NL × L cross-correlation
matrix between the observation and speech signals. Differentiating the MSE
criterion with respect to H and setting the result to zero, we find the Wiener
filter matrix [59], [60]

HT
W = R−1

yy Ryx1 . (5.14)
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The previous equation is of little help in practice since the vector x1(k) is
unobservable. However, it is easy to check that

Ryx1 = (Ryy − Rvv)UT , (5.15)

with Rvv = E
[
v(k)vT (k)

]
being the NL×NL correlation matrix of the noise

signals. Now Ryx1 depends on the correlation matrices Ryy and Rvv: the first
one can be easily estimated during speech-and-noise periods while the second
one can be estimated during noise-only intervals assuming that the statistics
of the noise do not change much with time. Substituting (5.15) into (5.14),
we get

HT
W =

(
INL×NL − R−1

yy Rvv

)
UT . (5.16)

The minimum MSE (MMSE) is obtained by replacing HW in (5.13), i.e.
J(HW). There are different ways to express this MMSE. One useful expression
is

J(HW) = tr
(
URvvUT

)
− tr

(
URvvR−1

yy RvvUT
)

. (5.17)

Now we can define the normalized MMSE (NMMSE)

J̃(HW) =
J(HW)
J(U)

=
J(HW)

E
[
vT

1 (k)v1(k)
] , (5.18)

where 0 ≤ J̃(HW) ≤ 1. This definition is related to the speech-distortion
index and the noise-reduction factor by the formula

J̃(HW) = SNR · υsd(HW) +
1

ξnr(HW)
. (5.19)

As a matter of fact, (5.19) is valid for any filter H, i.e.,

J̃(H) = SNR · υsd(H) +
1

ξnr(H)
. (5.20)

We deduce the two inequalities

υsd(H) ≤ 1
SNR

[
1 − 1

ξnr(H)

]
, (5.21)

ξnr(H) ≥ 1
1 − SNR · υsd(H)

. (5.22)

It can be shown that SNR(HW) ≥ SNR for any filter matrix dimension
and for all possible speech and noise correlation matrices [16], [41], [62]. This
may come at a heavy price: large speech distortion. Using this property and
expression (5.12), we deduce that
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SNR ≤ SNR(HW) ≤ SNR · ξnr(HW). (5.23)

From (5.19) and (5.23) we can get this upper bound for SNR(HW):

SNR(HW) ≤ 1
J̃(HW)

SNR − υsd(HW)
, (5.24)

which shows that the output SNR is improved at the expense of speech dis-
tortion. It is seen that the Wiener formulation does not explicitly exploit the
spatial information.

Particular case: single microphone and white noise.

We assume here that only one microphone signal is available (i.e., N = 1) and
the noise picked up by this microphone is white (i.e., Rv1v1 = σ2

v1
IL×L). In

this situation, the Wiener filter matrix becomes

HW = IL×L − σ2
v1

R−1
y1y1

, (5.25)

where

Ry1y1 = Rx1x1 + σ2
v1

IL×L.

It is well known that the inverse of the Toeplitz matrix Ry1y1 can be
factorized as follows [12], [140] (see also Chapter 2):

R−1
y1y1

=

⎡
⎢⎢⎢⎣

1 −c1,0 · · · −cL−1,0

−c0,1 1 · · · −cL−1,1

...
...

. . .
...

−c0,L−1 −c1,L−1 · · · 1

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣

1/E0 0 · · · 0
0 1/E1 · · · 0
...

...
. . .

...
0 0 · · · 1/EL−1

⎤
⎥⎥⎥⎦ , (5.26)

where the columns of the first matrix in the right-hand side of (5.26) are the
linear interpolators of the signal y1(k) and the elements El in the diagonal
matrix are the respective interpolation-error powers.

Using the factorization of R−1
y1y1

in (5.17), the MMSE and NMMSE can
be rewritten, respectively, as

J(HW) = Lσ2
v1

− (σ2
v1

)2 L−1∑
l=0

1
El

, (5.27)

J̃(HW) = 1 − σ2
v1

L

L−1∑
l=0

1
El

. (5.28)
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Assume that the noise-free speech signal, x1(k), is very well predictable.
In this scenario, El ≈ σ2

v1
, ∀ l, and replacing this value in (5.28) we find

that J̃(HW) ≈ 0. From (5.19), we then deduce that υsd(HW) ≈ 0 (almost no
speech distortion) and ξnr(HW) ≈ ∞ (almost infinite noise reduction). Notice
that this result seems independent of the SNR. Also, since HWx(k) ≈ x1(k),
this means that ξsr(HW) ≈ 1; as a result SNR(HW) ≈ ∞ and we can almost
perfectly recover the signal x1(k).

At the other extreme case, let us see now what happens when the source
signal x1(k) is not predictable at all. In this situation, El ≈ σ2

y1
, ∀ l and

cij ≈ 0, ∀ i, j. Using these values, we get

HW ≈ SNR
1 + SNR

IL×L, (5.29)

J̃(HW) ≈ SNR
1 + SNR

. (5.30)

With the help of the two previous equations, it’s straightforward to obtain

ξnr(HW) ≈
(

1 +
1

SNR

)2

, (5.31)

υsd(HW) ≈ 1
(1 + SNR)2

, (5.32)

SNR(HW) ≈ SNR. (5.33)

While some noise reduction is achieved (at the price of speech distortion),
there is no improvement in the output SNR, meaning that the Wiener filter
has no positive effect on the microphone signal y1(k).

This analysis, even though simple, is quite insightful. It shows that the
Wiener filter may not be that bad after all, as long as the source signal
is somewhat predictable. However, in practice some discontinuities could be
heard from a voiced signal to an unvoiced one, since for the former the noise
will be mostly removed while it will not for the latter.

A possible consequence of this analysis is the effect of reverberation. In-
deed, even if the source signal s(k) is white, thanks to the effect of the impulse
response g1, the signal x1(k) is not white and may become more “predictable.”
Hence, by making the source signal, s(k), more predictable, reverberation may
help the Wiener filter for better noise reduction. We can draw the same kind
of conclusion for any number of microphones.

5.5 Subspace Method

In the Wiener filter, we can not control the compromise between noise re-
duction and speech distortion. So this filter derived from the classical MSE
criterion may be limited in practice because of its lack of flexibility. Ephraim
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and Van Trees proposed, in the single-channel case, a more meaningful cri-
terion which consists of minimizing the speech distortion while keeping the
residual noise power below some given threshold [69]. The deduced optimal
estimator is shown to be a Wiener filter with adjustable input noise level. This
filter was developed in the white noise case. Since then, many algorithms have
been proposed to deal with the general colored noise [107], [111], [151], [165],
[189]. However, the most elegant algorithm is the one using the generalized
eigenvalue decomposition [111], [112], [132].

Using the same signal model described in Section 5.2, the optimal filter
with the subspace technique can be mathematically derived from the opti-
mization problem

HS = arg min
H

Jx (H) subject to Jv (H) ≤ Lσ2, (5.34)

where

Jx (H) = tr
{
E
[
ex(k)eT

x (k)
]}

, (5.35)

Jv (H) = tr
{
E
[
ev(k)eT

v (k)
]}

, (5.36)

and σ2 < σ2
v1

in order to have some noise reduction. If we use a Lagrange
multiplier, µ, to adjoin the constraint to the cost function, (5.34) can be
rewritten as

HS = arg min
H

L(H, µ), (5.37)

with

L(H, µ) = Jx (H) + µ
[
Jv (H) − Lσ2

]
(5.38)

and µ ≥ 0. We can easily prove from (5.37) that the optimal filter is

HT
S = (Rxx + µRvv)−1 RxxUT

= [Ryy + (µ − 1)Rvv]−1 [Ryy − Rvv]UT

=
[
INL×NL + (µ − 1)R−1

yy Rvv

]−1
HT

W, (5.39)

where Rxx = E
[
x(k)xT (k)

]
is the NL × NL correlation matrix of the

speech signal at the different microphones and the Lagrange multiplier satis-
fies Jv (HS) = Lσ2, which implies that

ξnr(HS) =
σ2

v1

σ2
> 1. (5.40)

From (5.21), we get

υsd(HS) ≤ σ2
v1

− σ2

σ2
x1

. (5.41)
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Since J̃(HW) ≤ J̃(HS), ∀µ, we also have

υsd(HS) ≥ υsd(HW) +
1

SNR

[
1

ξnr(HW)
− 1

ξnr(HS)

]
. (5.42)

Therefore, ξnr(HS) ≥ ξnr(HW) implies that υsd(HS) ≥ υsd(HW). However,
ξnr(HS) ≤ ξnr(HW) does not imply that υsd(HS) ≤ υsd(HW).

In practice it’s not easy to determine an optimal value of µ. Therefore,
when this parameter is chosen in an ad-hoc way, we can see that for

• µ = 1, HS = HW;
• µ = 0, HS = U;
• µ > 1, results in low residual noise at the expense of high speech distortion;
• µ < 1, we get little speech distortion but not so much noise reduction.

In the single-channel case, it can be shown that SNR(HS) ≥ SNR [42].
The same kind of proof holds for any number of microphones.

As shown in [77], the two symmetric matrices Rxx and Rvv can be jointly
diagonalized if Rvv is positive definite. This joint diagonalization was first
used by Jensen et al. [132] and then by Hu and Loizou [111], [112], [113] in
the single-channel case. In our multichannel context we have

Rxx = BT ΛB, (5.43)
Rvv = BT B, (5.44)
Ryy = BT [INL×NL + Λ]B, (5.45)

where B is a full rank square matrix but not necessarily orthogonal, and the
diagonal matrix

Λ = diag
[
λ1 λ2 · · · λNL

]
(5.46)

are the eigenvalues of the matrix R−1
vv Rxx with λ1 ≥ λ2 ≥ · · · ≥ λNL ≥ 0.

Applying the decompositions (5.43)–(5.45) in (5.39), the optimal estimator
becomes

HS = UBT Λ (Λ + µINL×NL)−1 B−T . (5.47)

Therefore, the estimation of the speech signal, x1(k), is done in three steps:
first we apply the transform B−T to the noisy signal; second the transformed
signal is modified by the gain function Λ (Λ + µINL×NL)−1; and finally we
transform back the signal to its original domain by applying the transform
UBT .

Usually, a speech signal can be modelled as a linear combination of a num-
ber of some (linearly independent) basis vectors smaller than the dimension
of these vectors. As a result, the vector space of the noisy signal can be de-
composed in two subspaces: the signal-plus-noise subspace of length Ls and
the noise subspace of length Ln, with NL = Ls + Ln. This implies that the
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last Ln eigenvalues of the matrix R−1
vv Rxx are equal to zero. Therefore, we

can rewrite (5.47) as

HS = UBT

[
Σ 0Ls×Ln

0Ln×Ls 0Ln×Ln

]
B−T , (5.48)

where

Σ = diag
[

λ1

λ1 + µ
,

λ2

λ2 + µ
, · · · , λLs

λLs + µ

]
(5.49)

is an Ls × Ls diagonal matrix. We now clearly see that noise reduction with
the subspace method is achieved by nulling the noise subspace and cleaning
the speech-plus-noise subspace via a reweighted reconstruction.

Like the Wiener filter, the optimal filter based on the subspace approach
does not take explicitly and fully advantage of the spatial information in order
to minimize the distortion of the speech signal.

5.6 Spatio-Temporal Prediction Approach

As explained in the previous sections, the fact that speech is partially pre-
dictable helps all algorithms in reducing the level of noise in the microphone
signal y1(k). Implicitly, temporal prediction of the signal of interest plays a
fundamental role in speech enhancement. What about spatial prediction? Is
its role as important as temporal prediction? Since the speech signals picked
up by the microphones come from a unique source, the same signals at micro-
phones 2, . . . , N can be predicted from the first microphone signal. Can this
help?

Now assume that we can find an L × L filter matrix, Wn, such that

xn(k) = WT
nx1(k), n = 2, . . . , N. (5.50)

We will see later how to determine the optimal matrix, Wn,o. Expression
(5.50) can be seen as a spatio-temporal prediction where we try to predict the
microphone signal samples xn(k) from x1(k).

Substituting (5.50) into (5.5), we find that

ex(k) =
(
HWT − IL×L

)
x1(k), (5.51)

where

W =
[
IL×L W2 · · · WN

]
is a matrix of size L × NL.

In the single-channel case, there is no way we can reduce the level of the
background noise without distorting the speech signal. In the Wiener filter



96 5 Noise Reduction with Multiple Microphones

(with one or more microphones), we minimize the classical MSE without much
concern on the residual noise and speech distortion. In the subspace approach,
we minimize the speech distortion while keeping the residual noise power below
a threshold. However, from the spatio-temporal prediction approach, we see
clearly that by using at least two microphones it is possible to have noise
reduction with no speech distortion [if (5.50) is met] by simply minimizing
Jv (H) with the constraint that HWT = IL×L. Therefore, our optimization
problem is

min
H

Jv (H) subject to IL×L = HWT . (5.52)

By using Lagrange multipliers, we easily find the optimal solution

HST =
(
WR−1

vv WT
)−1

WR−1
vv , (5.53)

where we assumed that the noise signals vn(k), n = 1, 2, . . . , N , are not com-
pletely coherent so that Rvv is not singular. Expression (5.53) has the same
form as the linearly constrained minimum variance (LCMV) beamformer (see
Chapter 4) [54], [76]; however the spatio-temporal prediction based-approach
is more general and certainly deals better, from a practical point of view,
with the real acoustic environment where the spatial property is taken into
account.

The second step is to determine the filter matrix W for spatio-temporal
prediction. An optimal estimator, in the Wiener sense, can be obtained by
minimizing the following cost function

Jf (Wn) = E

{[
xn(k) − WT

nx1(k)
]T [

xn(k) − WT
nx1(k)

]}
. (5.54)

We easily find the optimal spatio-temporal prediction filter

WT
n,o = Rxnx1R

−1
x1x1

, (5.55)

where Rxnx1 = E
[
xn(k)xT

1 (k)
]

and Rx1x1 = E
[
x1(k)xT

1 (k)
]

are the cross-
correlation and correlation matrices of the speech signals, respectively. How-
ever, the signals xn(k), n = 1, 2, . . . , N , are not observable so the Wiener
filter matrix, as given in (5.55), can not be estimated in practice. But using
xn(k) = yn(k) − vn(k), we can verify that

Rxnx1 = Ryny1 − Rvnv1 , n = 1, 2, . . . , N, (5.56)

where Ryny1 = E
[
yn(k)yT

1 (k)
]

and Rvnv1 = E
[
vn(k)vT

1 (k)
]
. As a result,

WT
n,o = (Ryny1 − Rvnv1) (Ry1y1 − Rv1v1)

−1
. (5.57)

The optimal filter matrix depends now only on the second order statistics
of the observation and noise signals. The statistics of the noise signals can



5.7 Case of Perfectly Coherent Noise 97

be estimated during silences [when s(k) = 0] if we assume that the noise is
stationary so that its statistics can be used for a next frame when the speech
is active. We also assume that a voice activity detector (VAD) is available
so that the Wiener filter matrix is estimated only when the speech source is
active. Note that if the source does not move, the optimal matrix needs to
be estimated only once. Finally, the optimal filter matrix based on spatio-
temporal prediction is given by

HST =
(
WoR−1

vv WT
o

)−1

WoR−1
vv , (5.58)

where

Wo =
[
IL×L W2,o · · · WN,o

]
.

In general, we do not have exactly xn(k) = WT
n,ox1(k) so that some speech

distortion is expected. But for large filter matrices, we can approach this
equality so that this distortion can be kept low. In this case, it can be verified
that

υsd(HST) ≈ 0, (5.59)
ξsr(HST) ≈ 1, (5.60)

ξnr(HST) ≈ Lσ2
v1

tr
[(

WoR−1
vv WT

o

)−1
] ≈ 1

J̃(HST)
≥ 1, (5.61)

which implies that

SNR(HST) ≈ SNR · ξnr(HST) ≥ SNR. (5.62)

Also, since J̃(HW) ≤ J̃(HST), we have ξnr(HST) ≤ ξnr(HW).
Clearly, we see that this approach has the potential to introduce mini-

mum distortion to the speech signal thanks to the fact that the microphone
observations of the source signal are spatially and temporally predictable.

5.7 Case of Perfectly Coherent Noise

In this section, we study the particular case where the noise signals at the mi-
crophones are perfectly coherent. This means that these signals are generated
from a unique source as follows:

vn(k) = gb,n ∗ b(k)
= gT

b,nb(k), n = 1, 2, . . . , N, (5.63)

where
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gb,n =
[
gb,n,0 gb,n,1 . . . gb,n,L−1

]T
is the impulse response of length L from the noise source, b(k), to the nth
microphone, and b(k) is a vector containing the L most recent samples of the
signal b(k).

It can easily be checked that we have the following relations at time k [96],
[125], [155]

vT
i (k)gb,j = vT

j (k)gb,i, i, j = 1, 2, . . . , N. (5.64)

Multiplying (5.64) by vi(k) and taking expectation yields

Rvivi
gb,j = Rvivj

gb,i, i, j = 1, 2, . . . , N. (5.65)

This implies that the noise covariance matrix Rvv is not full rank and some of
the methods presented in this chapter for noise reduction may not work well
since it is required that the inverse of this matrix exists. In fact, we can show
that if the impulse responses gb,n, n = 1, 2, . . . , N , do not share any common

zeroes and the autocorrelation matrix Rbb = E
[
b(k)bT (k)

]
has full rank, the

dimension of the null space of Rvv is equal to (N − 2)L + 1 for N ≥ 2.
In this particular context, we propose to use an NL × L filter matrix HT

E

(where the subscript ‘E’ stands for eigenvector) for noise reduction such that
for:

• N = 2, the first column of HT
E is the (unique) eigenvector of Rvv corre-

sponding to the eigenvalue 0 and the L− 1 remaining columns are zeroes;
• N > 2, the L columns of HT

E are the L eigenvectors of Rvv corresponding to
the eigenvalue 0 that can minimize speech distortion. (Since the dimension
of the null space of Rvv can be much larger than L for N > 2, it is
preferable to choose from this null space the eigenvectors that minimize
speech distortion.)

With the choice of this filter matrix, we always have:

RvvHT
E = 0NL×L. (5.66)

As a result, we also deduce that

ξnr(HE) = ∞, (5.67)

υsd(HE) =
J̃(HE)
SNR

≥ υsd(HW), (5.68)

SNR(HE) = ∞. (5.69)

We see that even in this context, we can do a pretty good job at noise
reduction. On one hand, the fact that the noise signal at one microphone can
be (spatially) predicted from any other microphone1 can terribly affect the
performance of some methods, on the other hand this fact can be exploited
differently to perform noise reduction efficiently.
1 This implies that the noise signals are perfectly coherent.
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5.8 Adaptive Noise Cancellation

The objective of adaptive noise cancellation (ANC) is to eliminate the back-
ground noise by adaptively recreating the noise replica using a reference signal
(of the noise field) [11], [231], [232]. In our context, it’s difficult to have a true
noise reference free of the speech signal. The best way to tackle this problem is
to estimate the noise replica during silences. Therefore, we will try to find an
estimator of the first microphone noise samples from the N − 1 other micro-
phone signals (which are considered as the noise reference) during noise only
periods and use this estimate to attenuate the noise at microphone 1 during
speech activity. However, contrary to the classical ANC method, speech dis-
tortion may be unavoidable here since speech may also be present at the noise
reference (in other words, no clean noise reference is available).

With this in mind, the residual noise is now

ev(k) = v1(k) +
N∑

n=2

Hnvn(k) (5.70)

= Hv(k)

with H1 = IL×L. To find the optimal estimator, we only need to solve the
following optimization problem:

min
H

Jv (H) subject to IL×L = HUT , (5.71)

for which the solution is

HA =
(
UR−1

vv UT
)−1

UR−1
vv , (5.72)

where we assumed that the noise signals vn(k), n = 1, 2, . . . , N , are not per-
fectly coherent so that Rvv is a full rank matrix. The optimal filter matrix
HA can be seen as a spatio-temporal linear predictor for the noise. Now sup-
pose that this noise is spatially uncorrelated; in this case it’s easy to see that
Rvv is a block diagonal matrix. As a result, HA = U and noise reduction
is not possible. This is analogous to the classical ANC approach where the
noise at the primary and auxiliary inputs should be at least partially coherent.
Therefore, the noise must be somewhat spatially correlated in order for HA to
have some effect on the microphone signals. The more coherent the noise is at
the microphones, the more noise reduction is expected (and as a consequence
more speech distortion).

We always have

ξnr(HA) =
Lσ2

v1

tr
[(

UR−1
vv UT

)−1
] ≥ 1. (5.73)

If the multichannel coherence of the noise is close to 0 then ξnr(HA) is close
to 1. On the other hand, if the multichannel coherence of the noise tends to
1 then ξnr(HA) tends to ∞.
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5.9 Kalman Filter

The use of the Kalman filter for speech enhancement in the single-channel case,
under the assumption that the noise is white, was first proposed by Paliwal and
Basu [179]. A couple of years later, this technique was extended to the colored
noise situation by Gibson et al. [86]. Until today we can still argue whether
or not the Kalman filter is practical since some of the assumptions to make it
work in speech applications may not be so realistic. For example, it is always
assumed that the linear prediction (LP) model parameters of the clean speech
are known, which is, of course, not true. However, some reasonable estimators
can now be found in the literature [78], [150].

In this section, we attempt to generalize this concept to the multichannel
case. Contrary to the methods presented in the previous sections, we will
try to recover the speech source, s(k), directly. So we perform both speech
dereverberation and noise reduction.

We can rewrite the signal model given in (5.1) as

s(k) = Ass(k − 1) + uvs(k), (5.74)
ya(k) = Gs(k) + va(k), (5.75)

where

As =

⎡
⎢⎢⎢⎢⎢⎣

as,1 as,2 · · · as,L−1 as,L

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

L×L

(5.76)

with as,l (l = 1, 2, . . . , L) being the LP coefficients of the signal s(k),

s(k) =
[
s(k) s(k − 1) · · · s(k − L + 1)

]T
,

u =
[
1 0 · · · 0

]T
,

ya(k) =
[
y1(k) y2(k) · · · yN (k)

]T
,

va(k) =
[
v1(k) v2(k) · · · vN (k)

]T
,

G =

⎡
⎢⎢⎢⎣

gT
1

gT
2
...

gT
N

⎤
⎥⎥⎥⎦

N×L

,

and vs(k) is a white signal with variance σ2
vs

. (Note that the notation for
ya(k) and va(k) is slightly different than the one given in Chapter 3.) To
simplify the derivation of the algorithm, we suppose that the noise is spatially-
temporally white and has the same variance, σ2

v , at all microphones so that
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E
[
va(k)vT

a (k)
]

= σ2
vIN×N . Now assume that all the parameters as,l (l =

1, 2, . . . , L), G, σ2
vs

, and σ2
v are known or can be estimated, an optimal estimate

of s(k) can be obtained with the Kalman filter [141] (see also Chapter 2):

Ree(k|k − 1) = AsRee(k − 1|k − 1)AT
s + σ2

vs
uuT , (5.77)

K(k) = Ree(k|k − 1)GT ×[
GRee(k|k − 1)GT + σ2

vIN×N

]−1

, (5.78)

ŝ(k) = Asŝ(k − 1) + K(k) [ya(k) − GAsŝ(k − 1)] , (5.79)
Ree(k|k) = [IL×L − K(k)G]Ree(k|k − 1), (5.80)

where ŝ(k) is the estimate of s(k), K(k) is the Kalman gain matrix,

Ree(k|k − 1) = E
{

[s(k) − Asŝ(k − 1)] [s(k) − Asŝ(k − 1)]T
}

is the predicted state-error covariance matrix, and

Ree(k|k) = E
{

[s(k) − ŝ(k)] [s(k) − ŝ(k)]T
}

is the filtered state-error covariance matrix. The algorithm is initialized as
follows: ŝ(0) = E [s(0)] and Ree(0|0) = E

[
s(0)sT (0)

]
.

It is interesting to see that the generalization to the multiple microphone
case is not only feasible but could also be more interesting than with one
microphone only, since dereverberation is possible. This comes at a heavy
price, though, since more parameters have to be known or estimated; especially
the impulse responses from the source to the microphones. Blind estimation
of these impulses is a possibility but needless to say that this multichannel
Kalman filter may be even less practical than its single-channel counterpart.
Many aspects of this approach still need to be investigated.

5.10 Simulations

We have carried out a number of simulations to experimentally study the
three main algorithms (Wiener filter, subspace, and spatio-temporal predic-
tion) in real acoustic environments under different operation conditions. In
this section, we will present the results, which highlight the merits and limita-
tions inherent in these noise-reduction techniques, and justify what we learned
through theoretical analysis in the previous sections. In these experiments, we
use the output SNR and speech-distortion index defined in Sect. 5.3 as the
performance measures.

5.10.1 Acoustic Environments and Experimental Setup

The simulations were conducted with the impulse responses measured in the
varechoic chamber at Bell Labs [101]. A diagram of the floor plan layout is
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Fig. 5.1. Floor plan of the varechoic chamber at Bell Labs (coordinate values mea-
sured in meters).

shown in Fig. 5.1. For convenience, positions in the floor plan are designated
by (x, y) coordinates with reference to the southwest corner and correspond-
ing to meters along the (South, West) walls. The chamber measures x = 6.7 m
wide by y = 6.1 m deep by z = 2.9 m high. It is a rectangular room with
368 electronically controlled panels that vary the acoustic absorption of the
walls, floor, and ceiling [225]. Each panel consists of two perforated sheets
whose holes, if aligned, expose sound absorbing material (fiberglass) behind,
but if shifted to misalign, form a highly reflective surface. The panels are
individually controlled so that the holes on one particular panel are either
fully open (absorbing state) or fully closed (reflective state). Therefore, by
varying the binary state of each panel in any combination, 2238 different room
characteristics can be simulated. In the database of channel impulse responses
from [101], there are four panel configurations with 89%, 75%, 30%, and 0%
of panels open, respectively corresponding to approximately 240, 310, 380,
and 580 ms 60-dB reverberation time T60 in the 20–4000 Hz band. In our
study, all four configurations were used to evaluate the performance of the
noise-reduction algorithms. But for conciseness and also due to space limita-
tions, we present here only the results for the least and the most reverberant
environments, i.e., T60 = 240 ms and 580 ms, respectively.
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A linear microphone array which consists of 22 omni-directional micro-
phones was employed in the measurement and the spacing between adjacent
microphones is about 10 cm. The array was mounted 1.4 m above the floor
and parallel to the North wall at a distance of 50 cm. A loudspeaker was
placed at 31 different pre-specified positions to measure the impulse response
to each microphone. In the simulations, no more than eight microphones will
be chosen and the sound source is fixed at one loudspeaker position. The
positions of the microphones and the sound source are shown in Fig. 5.1.

Signals were sampled at 8 kHz and the length of the measured impulse
responses is of 4096 samples. Depending on the simulation specification, the
sound source is either a female speech signal or a white Gaussian random
signal. Then we compute the microphone outputs by convolving the source
signal and the corresponding channel impulse responses. The additive noise is
Gaussian and is white in both time and space. The SNR at the microphones
is fixed at 10 dB. The source signal is 12 seconds long. The first 5 seconds of
the microphone outputs are used to compute the initial estimates of Ryy and
Rvv. The last first 5 seconds are then used for performance evaluation of the
noise-reduction algorithms. In this procedure, the estimates of Ryy and Rvv

are recursively updated according to

Ryy(k) = λRyy(k − 1) + (1 − λ)y(k)yT (k), (5.81)
Rvv(k) = λRvv(k − 1) + (1 − λ)v(k)vT (k), (5.82)

where 0 < λ < 1 is the forgetting factor. Intuitively, it can be of some benefits
to choose different values of λ for Ryy(k) and Rvv(k), since the statistics of
speech and noise generally vary in different rates in practice. But for simplicity,
we always specify the same forgetting factor for Ryy(k) and Rvv(k) in one
experiment. Therefore, we do not differentiate the forgetting factors in (5.81)
and (5.82).

5.10.2 Experimental Results

Experiment 1: Wiener Filter with Various Numbers of
Microphones and Filter Lengths.

Let us first investigate the Wiener filter algorithm for noise reduction using
various numbers of microphones and filter lengths. The performance of the op-
timal Wiener filter obtained here will be used as a benchmark for comparison
with other noise-reduction algorithms in the following experiments.

The experiment was conducted with the acoustic impulse responses being
measured for 89% open panels, i.e., T60 = 240 ms. The source is a female
speech signal and we take λ = 0.9975. The output SNR and speech-distortion
index are plotted in Fig. 5.2.

We see from Fig. 5.2 that the output SNR of the Wiener filter is signifi-
cantly improved by using more microphones and longer filters, which at the
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Fig. 5.2. Performance of the Wiener filter for noise reduction using various numbers
of microphones N = 1, 2, 4, 6, and 8, respectively. (a) Output SNR, and (b) speech-
distortion index. Input SNR = 10 dB, room reverberation time T60 = 240 ms, and
the forgetting factor λ = 0.9975.
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same time introduces more speech distortion. This trade-off is more prominent
when N is relatively large. By increasing N from 1 to 2, we observe that the
change in speech-distortion index is hardly noticeable while the output SNR
is boosted by more or less 1 dB. But increasing N from 6 to 8 leads to less
than 0.5 dB gain in the SNR as well as approximately 0.5 dB loss in speech
distortion. It is implied by this set of results that the Wiener filter is in favor
of using multiple, while a small number of, microphones, and a moderate filter
length. In particular for an application in which speech distortion is highly
concerned, we should avoid to deploy a large array with long Wiener filters.

Experiment 2: Effect of the Forgetting Factor on the Performance
of the Wiener Filter.

In the development of the Wiener filter as well as other algorithms for noise
reduction, we assume the knowledge of Ryy and Rvv. As a result, one may
unfortunately overlook the importance and underevaluate the difficulty of
accurately estimating these statistics (though they are only second order)
in practice. Actually the forgetting factor plays a critical role in tuning a
noise-reduction algorithm. On one hand, if the forgetting factor is too large
(close to 1), the recursive estimate of Ryy(k) according to (5.81) is essentially
a long-term average and cannot follow the short-term variation of speech
signals. Consequently the potential for greater noise reduction is not fully
taken advantage of. On the other hand, if the forgetting factor is too small
(much less than 1), then the recursive estimate of Ryy(k) is more likely rank
deficient. This leads to the numerical stability problem when computing the
inverse of Ryy(k), and hence causes performance degradation. Therefore, a
proper forgetting factor is the one that helps achieve the balance between
tracking capability and numerical stability. In this experiment, we would like
to study this effect of the forgetting factor. We consider the Wiener filter again
in the environment of T60 = 240 ms.

Figure 5.3 depicts the results of six systems under investigation. These
curves visibly justify the trade-off effect mentioned above. Note that the size
of Ryy(k) is NL × NL. It is clear from Fig. 5.3 that the greater NL and
the larger the size of Ryy(k), the greater is the optimal forgetting factor. The
Wiener filters with the same value of NL perform almost identically against
the forgetting factor regardless of the combination of N and L.

Experiment 3: Effect of Room Reverberation on the Performance
of the Wiener Filter.

This experiment was designed to test the Wiener filter in different acoustic
environments. We consider a system with N = 4 and λ = 0.9975. Both female
speech and white Gaussian noise source signals were evaluated. The room
reverberation time T60 = 240 ms and 580 ms. The experimental results are
visualized in Fig. 5.4. We see that the performance of the Wiener filter with
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Fig. 5.3. Effect of the forgetting factor on the performance of the Wiener filter for
noise reduction. (a) Output SNR, and (b) speech-distortion index. Input SNR =
10 dB and room reverberation time T60 = 240 ms.
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Fig. 5.4. Effect of room reverberation on the performance of the Wiener filter for
noise reduction using both speech and white Gaussian noise as the source signal. (a)
Output SNR, and (b) speech-distortion index. Input SNR = 10 dB, the number of
microphones N = 4, and the forgetting factor λ = 0.9975.
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respect to the speech source is much better than that with respect to the white
noise source. This is simply because noise is white while speech is predictable
in time. A more reverberant channel does not make a speech signal more
predictable. Therefore, the Wiener filter performs apparently better in a less
reverberant environment (T60 = 240 ms) than in a more reverberant environ-
ment (T60 = 580 ms). But room reverberation colorizes the white noise source
signal, making it somehow predictable in time. Consequently, we see while the
output SNR for T60 = 240 ms is still better than that for T60 = 580 ms, the
distortion is less for T60 = 580 ms.

Experiment 4: Performance Comparison Between the Sample- and
Frame-Based Implementations of the Wiener Filter.

The Wiener filter algorithm developed in Sect. 5.4 is a frame-based imple-
mentation to better fit into the unified framework for noise reduction that is
explored in this chapter. However, the traditional sample-based implementa-
tion of the Wiener filter can be easily derived following the same principle
and procedure. It is given without proof (left to the readers) that the noise-
reduction output z(k) from the sample-based implementation is exactly the
same as that from the frame-based implementation when k is multiple times
of L (the first sample in a frame). But this is not true for the rest of samples
in the frame for L > 1. In the sample-based implementation the speech signal
at one point is always predicted by using the past samples (i.e., via forward
prediction), while in the frame-based implementation forward and backward
prediction as well as interpolation are all possibly utilized. Since speech is
highly correlated with its neighboring (either previous or prospective) sam-
ples, it would be difficult to tell, using only intuition, which implementation
could yield a better performance. So we intend to quantitatively study it in
this experiment.

We consider the Wiener filter with T60 = 240 ms and λ = 0.9975. The
source is the female speech signal. Figure 5.5 shows the results. We observe
that for N = 1 the frame-based implementation is apparently better than the
sample-based in terms of both output SNR and speech distortion. For N = 2
and 8, while the output SNR’s for the two implementations are comparable,
the frame-based produces less speech distortion (approximately 0.5 dB) than
the sample-based. Therefore our preference leans to the frame-based imple-
mentation. As a matter of fact, the Wiener filters used in the three experiments
above are all frame based.

Experiment 5: Performance Evaluation of the Subspace Method.

In the first four experiments, we studied the Wiener filter for noise reduction
under various operation conditions. Now we turn to the subspace method.
Again, we take T60 = 240 ms and λ = 0.9975. The number of microphones
is either 2 or 6, and µ varies from 0.5, 1.0, to 2.0. Note that when µ = 1,
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Fig. 5.5. Performance comparison between the sample- and frame-based implemen-
tations of the Wiener filter algorithm for noise reduction. (a) Output SNR, and (b)
speech-distortion index. Input SNR = 10 dB, room reverberation time T60 = 240 ms,
and the forgetting factor λ = 0.9975.
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the subspace method is essentially equivalent to the Wiener filter. The results
are plotted in Fig. 5.6. It is evident that by decreasing µ, speech distortion is
reduced but we gain little noise reduction. In the opposite direction, increasing
µ results in low residual noise at the expense of high speech distortion.

Experiment 6: Performance Evaluation of the Spatio-Temporal
Prediction Approach.

In the last but probably the most interesting experiment, we tested the novel
spatio-temporal prediction approach to noise reduction in comparison with
the Wiener filter.

In our study, we learned that the performance of the Wiener filter and
the subspace method is limited by the aforementioned numerical stability
problem. By inspecting (5.16) and (5.39), we know that in the Wiener filter
and subspace algorithms, we need to compute the inverse of Ryy, which is of
dimension NL × NL. When we intend to use more microphones and longer
filters (i.e., larger N and L) for a greater output SNR as well as less speech
distortion, the covariance matrix Ryy becomes larger in size, which leads to
the following two drawbacks:

• using a short-term average, a larger error can be expected in the estimate
Ryy(k). But with a long-term average, the variation of speech statistics
cannot be well followed. Both cause performance degradation. The larger
Ryy, the more prominent is the dilemma;

• the estimate of the covariance matrix Ryy(k) becomes more ill-conditioned
(with a larger condition number) when NL gets larger. As a result, it is
more problematic to find its inverse.

Therefore, as revealed by the results in the previous experiments, we do not
gain what we expect from the Wiener filter and subspace algorithms by in-
creasing N and L.

Alternatively, the spatio-temporal prediction approach utilizes the spatial
and temporal correlation among the outputs of a microphone array with re-
spect to a speech source separately in two steps. If we look closer at (5.57),
we can recognize that the spatio-temporal prediction is proceeded on a pair-
by-pair basis. In this procedure, only Rx1x1 or equivalently (Ry1y1 − Rv1v1)
needs to be inverted. This matrix is L × L and does not grow in size with
the number of microphones that we use. In addition, from (5.53), we know
that Rvv rather than Ryy needs to be inverted in computing HST. In most
applications, the noise signals are white and relatively more stationary. Con-
sequently, Rvv has a low condition number and can be accurately estimated
with a long-term average. Therefore, with the spatio-temporal prediction al-
gorithm, we can use a larger system with more microphones and longer filters
for better performance.

Figure 5.7 shows the results of the performance comparison between the
spatio-temporal prediction and Wiener filter algorithms, and in Fig. 5.8 we
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Fig. 5.6. Performance of the subspace algorithm for noise reduction using different
values for µ and various numbers of microphones. (a) Output SNR, and (b) speech-
distortion index. Input SNR = 10 dB, room reverberation time T60 = 240 ms, and
the forgetting factor λ = 0.9975.
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Fig. 5.7. Performance comparison between the spatio-temporal prediction and the
Wiener filter algorithms for noise reduction using four and eight microphones. (a)
Output SNR, and (b) speech-distortion index. Input SNR = 10 dB and room re-
verberation time T60 = 240 ms. The forgetting factor λ = 0.9975 and 0.98 for the
Wiener filter and the spatio-temporal prediction algorithms, respectively.



5.10 Simulations 113

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
10

15

20

25

30

35

�
�
�
�H

�
�
�

(d
B

)

Forgetting Factor �

�
��

� � �� � � ���
��

� � �� � � ��

�
���

� � �� � � ��

�
��

� � �� � � ��

�
��

� � �� � � ��

�
���

� � �� � � ��

��� � �� ��

��

(a)

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
24

22

20

18

16

14

12

10

8

6

4

Sp
ee

ch
-D

is
to

rt
io

n
In

de
x

�
�
�
�H

�
�
�

(d
B

)

Forgetting Factor �

���

� � �� � � ��

�
���

� � �� � � ��

���
� � �� � � ��

���
� � �� � � ��

��
� � �� � � ��

���

� � �� � � ��

(b)

Fig. 5.8. Effect of the forgetting factor on the performance of the spatio-temporal
prediction algorithm for noise reduction. (a) Output SNR, and (b) speech-distortion
index. Input SNR = 10 dB and room reverberation time T60 = 240 ms.
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visualize the performance sensitivity of the spatio-temporal prediction algo-
rithm to the change of the forgetting factor. Note that we use here different
scales in both x- and y-axes from those that we have been using in the previous
experiments, because we want to explore the use of larger N and L with the
spatio-temporal prediction algorithm. We see that the spatio-temporal predic-
tion algorithm yields much higher output SNR’s. While its speech distortion
is large at small L’s, it greatly improves when L increases. Let us compare the
best cases for the Wiener filter and spatio-temporal prediction. For N = 4,
the highest output SNR that the Wiener filter delivers is about 18 dB when
L ≈ 56. In this case, the speech distortion of the Wiener filter is compara-
ble to that of the spatio-temporal prediction algorithm. But the latter can
produce approximately 21 dB output SNR, which is 3 dB higher than that
with the Wiener filter. In addition, with the spatio-temporal prediction, we
can easily meet the requirements imposed by an application. If a very high
output SNR is desired with moderate speech distortion, we can take more mi-
crophones and relatively small L. On the contrary, if speech distortion is very
much concerned with and only some SNR improvement is expected, we can
use less microphones and long filters. Finally, comparing Fig. 5.8 to Fig. 5.3,
we see that the performance of the spatio-temporal prediction algorithm is
not sensitive to λ and is almost a function of L instead of NL. These features
make the spatio-temporal prediction algorithm very appealing in practice.

5.11 Conclusions

Noise reduction is a very difficult problem and still remains a challenge today
even after forty years of tremendous progress. While some useful and inter-
esting solutions exist in the single-microphone case at the price of distorting
the desired speech signal, we will not draw the same conclusion with multiple
microphones. From a theoretical point of view, though, it is possible to re-
duce noise with no speech distortion with a microphone array. However, the
derivation of a practical solution is still an open area of research. This chapter
has shown the potentials and limitations of various methods. It is clear that
the spatio-temporal prediction approach is the most promising one. In the
next chapter we will continue our discussion on noise reduction but in the
frequency domain.



6

Noncausal (Frequency-Domain) Optimal
Filters

6.1 Introduction

The causal and noncausal Wiener filters have played and continue to play a
fundamental role in many aspects of signal processing since their invention by
Norbert Wiener in the 1940s [234]. If the signal of interest is corrupted by an
additive noise, the output of the Wiener filter whose input is the noisy signal
(observation) is an optimal estimate, in the mean-square error sense, of the
signal of interest. However, this optimal filter is far to be perfect since, as we
all know, it distorts the desired signal [15], [40]. Despite this inconvenience, the
Wiener filter is popular and widely used in many applications. One of these
applications that has adopted this optimal filter for a long time is speech
enhancement whose formulation is identical to the formulation of the general
problem from which the Wiener filter is derived. As a result, the Wiener filter
and many of its variants have significantly contributed for the progress towards
a viable solution to the noise-reduction problem [16], [154], [156], [218].

The literature is extremely rich in algorithms for noise reduction in the
time and frequency domains (see the introduction of the previous chapter).
The focus of this chapter is on the noncausal Wiener filter only (and some
versions of it), which is a frequency-domain approach that is always better to
use in practice (with some approximations) than a time-domain causal Wiener
filter, since it allows an individual control, at each frequency, between noise
reduction and speech distortion.

This chapter is organized as follows. In Section 6.2 we define the signal
model and clearly formulate the problem. Section 6.3 gives some very impor-
tant definitions that will help the reader better understand the noise-reduction
problem. Section 6.4 develops and studies the classical noncausal Wiener filter.
In Section 6.5, the parametric Wiener filtering is explained. Section 6.6 gener-
alizes all the single-channel methods to the multichannel case and shows the
fundamental role of the spatial diversity in the derivation of algorithms that
do not distort the desired signal, which is extremely important in practice.
Finally, we conclude in Section 6.7.
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6.2 Signal Model and Problem Formulation

The noise-reduction problem considered in this chapter is to recover the sig-
nal of interest (clean speech) x(k) of zero-mean from the noisy observation
(microphone signal)

y(k) = x(k) + v(k), (6.1)

where v(k) is the unwanted additive noise, which is assumed to be a zero-
mean random process (white or colored) and uncorrelated with x(k). In the
frequency domain, (6.1) can be rewritten as

Y (jω) = X(jω) + V (jω), (6.2)

where j is the imaginary unit (j2 = −1), and Y (jω), X(jω), and V (jω) are
respectively the discrete-time Fourier transforms (DTFTs) of y(k), x(k), and
v(k), at angular frequency ω (−π < ω ≤ π). Another possible form for (6.2)
is

Y (ω)ejϕy(ω) = X(ω)ejϕx(ω) + V (ω)ejϕv(ω), (6.3)

where for any random signal A(jω) = A(ω)ejϕa(ω), A(ω) and ϕa(ω) are its
amplitude and phase at frequency ω, A ∈ {Y,X, V }, a ∈ {y, x, v}. We recall
that the DTFT and the inverse transform [176] are

A(jω) =
∞∑

k=−∞
a(k)e−jωk, (6.4)

a(k) =
1
2π

∫ π

−π

A(jω)ejωkdω. (6.5)

Using the power spectral density (PSD) and the fact that x(k) and v(k)
are uncorrelated, we get

φyy(ω) = φxx(ω) + φvv(ω), (6.6)

where

φaa(ω) = E
[
|A(jω)|2

]
= E

[
A2(ω)

]
(6.7)

is the PSD of the signal a(k) [for which the DTFT is A(jω)].
An estimate of X(jω) can be obtained by passing Y (jω) through a linear

filter, i.e.,

Z(jω) = H(jω)Y (jω)
= H(jω) [X(jω) + V (jω)] , (6.8)
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where Z(jω) is the frequency representation of the signal z(k). The PSD of
z(k) is then

φzz(ω) = |H(jω)|2 φyy(ω)

= |H(jω)|2 [φxx(ω) + φvv(ω)] . (6.9)

Our main concern in the rest of this chapter is the design of the filter
H(jω) and its study.

6.3 Performance Measures

Like in Chapters 2 and 5, before we discuss the algorithms, we give some very
useful definitions that are important for designing properly the filter H(jω).
These definitions will also help us better understand how noise reduction
works in the frequency domain.

The input SNR at frequency ω, that we will call the input narrowband
SNR [141], is

SNR(ω) =
φxx(ω)
φvv(ω)

. (6.10)

We define the input fullband SNR as

SNR =

∫ π

−π
φxx(ω)dω∫ π

−π
φvv(ω)dω

(6.11)

=
σ2

x

σ2
v

,

where

σ2
x = E

[
x2(k)

]
=

1
2π

∫ π

−π

φxx(ω)dω (6.12)

and

σ2
v = E

[
v2(k)

]
=

1
2π

∫ π

−π

φvv(ω)dω (6.13)

are the variances of the signals x(k) and v(k), respectively.
By analogy to the time-domain definitions [15], [40], [125], we define the

noise-reduction factor at frequency ω as the ratio of the PSD of the noise over
the PSD of the residual noise:

ξnr [H(jω)] =
φvv(ω)

|H(jω)|2 φvv(ω)

=
1

|H(jω)|2 . (6.14)
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The larger the value of ξnr [H(jω)], the more the noise is reduced at frequency
ω. After the filtering operation, the residual noise level at frequency ω is
expected to be lower than that of the original noise level, therefore this factor
should be lower bounded by 1. The fullband noise-reduction factor is

ξnr(H) =

∫ π

−π
φvv(ω)dω∫ π

−π
|H(jω)|2 φvv(ω)dω

=

∫ π

−π
φvv(ω)dω∫ π

−π
ξ−1
nr [H(jω)] φvv(ω)dω

. (6.15)

The previous expression is the ratio of the energy of the noise over the weighted
energy of the noise with the weighting ξ−1

nr [H(jω)]. Same as in (6.14), ξnr(H)
is expected to be lower bounded by 1. Indeed, if ξnr [H(jω)] ≥ 1,∀ω, we deduce
from (6.15) that ξnr(H) ≥ 1.

The filtering operation distorts the speech signal, so we define the narrow-
band speech-distortion index as

υsd [H(jω)] =
E
[
|X(jω) − H(jω)X(jω)|2

]
φxx(ω)

= |1 − H(jω)|2 . (6.16)

This speech-distortion index is lower bounded by 0 and expected to be upper
bounded by 1 for optimal filters. The higher the value of υsd [H(jω)], the more
the speech is distorted at frequency ω. The fullband speech-distortion index
is

υsd(H) =

∫ π

−π
E
[
|X(jω) − H(jω)X(jω)|2

]
dω∫ π

−π
φxx(ω)dω

=

∫ π

−π
φxx(ω) |1 − H(jω)|2 dω∫ π

−π
φxx(ω)dω

=

∫ π

−π
υsd [H(jω)] φxx(ω)dω∫ π

−π
φxx(ω)dω

. (6.17)

Equation (6.17) is the ratio of the weighted energy of the speech with the
weighting υsd [H(jω)] over the energy of the speech. If υsd [H(jω)] ≤ 1, ∀ω,
we see from (6.17) that υsd(H) ≤ 1.

It is interesting to notice that the narrowband noise-reduction factor and
speech-distortion index depend only on the filter H(jω) while the same mea-
sures from a fullband point of view depend also on the PSDs of the noise
and speech. This quite surprising observation shows that these two measures
behave differently locally and globally. The nature of the signals has no effect
locally but it has its importance, obviously, globally.
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After the filtering operation [eq. (6.9)], the output SNR at frequency ω is

oSNR(ω) =
|H(jω)|2 φxx(ω)
|H(jω)|2 φvv(ω)

(6.18)

= SNR(ω).

The previous expression shows that the filtering operation in (6.8) does not
affect the SNR locally. The output fullband SNR is defined as

oSNR(H) =

∫ π

−π
|H(jω)|2 φxx(ω)dω∫ π

−π
|H(jω)|2 φvv(ω)dω

=

∫ π

−π
ξ−1
nr [H(jω)] φxx(ω)dω∫ π

−π
ξ−1
nr [H(jω)] φvv(ω)dω

(6.19)

�= SNR.

The output fullband SNR is the ratio of the weighted energy of the speech
over the weighted energy of the noise with the same weighting ξ−1

nr [H(jω)].
Contrary to the output narrowband SNR, the output fullband SNR is affected
by the filter H(jω), which is obviously a desirable thing to have. Expression
(6.19) shows that the noise-reduction factor at each frequency and the nature
of the signals have an important impact on the output SNR. Also, we can see
from (6.18)–(6.19) that if

• SNR(ω) = 1, ∀ω (the speech and noise are identical), then oSNR(H) = 1
(no improvement),

• SNR(ω) < 1, ∀ω, then oSNR(H) < 1 (if the SNR in every frequency band
is less than 0 dB, then the output fullband SNR can never exceed 0 dB),

• SNR(ω) > 1, ∀ω, then oSNR(H) > 1.

Before finishing this section, we give the definition of a measure that will
be extremely useful in the study of the filter H(jω). Let a(k) and b(k) be
two zero-mean stationary random processes with A(jω) and B(jω) as their
respective DTFTs, we define the complex coherence [210] as

γab(jω) =
φab(jω)√

φaa(ω)φbb(ω)
, (6.20)

where

φab(jω) = E [A(jω)B∗(jω)] (6.21)

is the cross-spectrum between the two signals a(k) and b(k), and φaa(ω) and
φbb(ω) are their respective PSDs. The magnitude squared coherence (MSC)
function, |γab(jω)|2, has this important property:

0 ≤ |γab(jω)|2 ≤ 1. (6.22)
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The MSC function gives an indication on the strength of the linear relation-
ship, as a function of the frequency, between the two random variables a(k)
and b(k).

Another important property is that if b(k) is related to a(k) the following
way

b(k) = a(k) + c(k), (6.23)

where c(k) is a zero-mean stationary random process uncorrelated with a(k),
then the complex coherence

γab(jω) =

√
φaa(ω)
φbb(ω)

(6.24)

= γab(ω)

is always real.

6.4 Noncausal Wiener Filter

In this section we are going to derive and study the frequency-domain (non-
causal) single-channel Wiener filter.

Let us define the frequency-domain error signal between the clean speech
and its estimate:

E(jω) = X(jω) − Z(jω)
= X(jω) − H(jω)Y (jω). (6.25)

The frequency-domain MSE is

J [H(jω)] = E
[
|E(jω)|2

]
. (6.26)

Taking the gradient of J [H(jω)] with respect to H∗(jω) and equating the
result to 0 lead to

−E {Y ∗(jω) [X(jω) − HW(jω)Y (jω)]} = 0. (6.27)

Hence

φyy(ω)HW(jω) = φxy(jω). (6.28)

But

φxy(jω) = E [X(jω)Y ∗(jω)]
= φxx(ω), (6.29)
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therefore the optimal filter can be put into the following forms:

HW(jω) =
φxx(ω)
φyy(ω)

= 1 − φvv(ω)
φyy(ω)

. (6.30)

We see that the optimal Wiener filter is always real and positive. Therefore,
from now on we will drop the imaginary unit from HW(jω), i.e., HW(ω), to
accentuate the fact that the Wiener filter is a real number.

The optimal estimate of the frequency-domain clean speech, in the MSE
sense, is then

ZW(jω) = HW(ω)Y (jω)

= Y (jω) − Y (jω)
φyy(ω)

φvv(ω), (6.31)

and in the time domain:

zW(k) = y(k) − 1
2π

∫ π

−π

φvv(ω)
φyy(ω)

Y (jω)ejωkdω. (6.32)

Property 1. We have

γ2
xy(ω) + γ2

vy(ω) = 1, (6.33)

where γ2
xy(ω) is the MSC function1 between x(k) and y(k), and γ2

vy(ω) is the
MSC function2 between v(k) and y(k).
Proof. Indeed, we can easily check that

γ2
xy(ω) =

φxx(ω)
φyy(ω)

=
SNR(ω)

1 + SNR(ω)
, (6.34)

and

γ2
vy(ω) =

φvv(ω)
φyy(ω)

=
1

1 + SNR(ω)
. (6.35)

Therefore, adding (6.34) and (6.35) we find (6.33).

1 Notice that γxy(ω) is always real.
2 Notice that γvy(ω) is always real.
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Property 1 shows that the sum of the two MSC functions is always constant
and equal to 1. So if one increases the other decreases.

Property 2. We have

HW(ω) = γ2
xy(ω) (6.36)

= 1 − γ2
vy(ω). (6.37)

These fundamental forms of the Wiener filter, although obvious, do not seem
to be known in the literature. They show that they are simply related to two
MSC functions. Since 0 ≤ |γab(jω)|2 ≤ 1, then 0 ≤ HW(ω) ≤ 1. The Wiener
filter acts like a gain function. When the level of noise is high [γ2

vy(ω) ≈ 1],
then HW(ω) is close to 0 since there is a large amount of noise that has to
be removed. When the level of noise is low [γ2

vy(ω) ≈ 0], then HW(ω) is close
to 1 and is not going to affect much the signals since there is little noise that
needs to be removed.

We deduce the narrowband noise-reduction factor and speech-distortion
index

ξnr [HW(ω)] =
1

γ4
xy(ω)

≥ 1, (6.38)

υsd [HW(ω)] = γ4
vy(ω) ≤ 1, (6.39)

and the fullband noise-reduction factor and speech-distortion index

ξnr(HW) =

∫ π

−π
φvv(ω)dω∫ π

−π
γ4

xy(ω)φvv(ω)dω
≥ 1, (6.40)

υsd(HW) =

∫ π

−π
γ4

vy(ω)φxx(ω)dω∫ π

−π
φxx(ω)dω

≤ 1. (6.41)

We see clearly how noise reduction and speech distortion depend on the two
coherence functions γxy(ω) and γvy(ω) in the noncausal Wiener filter. When
γxy(ω) increases, ξnr(HW) decreases; at the same time γvy(ω) decreases and
so does υsd(HW).

For any real filter H(ω), we can verify that the narrowband and fullband
MSEs are

J [H(ω)] = φxx(ω) [1 − H(ω)]2 + φvv(ω)H2(ω) (6.42)

and

J (H) =
1
2π

∫ π

−π

J [H(ω)] dω (6.43)

=
1
2π

∫ π

−π

φxx(ω) [1 − H(ω)]2 dω +
1
2π

∫ π

−π

φvv(ω)H2(ω)dω.
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We define the narrowband and fullband normalized MSEs (NMSEs) as

J̃ [H(ω)] =
J [H(ω)]
φvv(ω)

(6.44)

= SNR(ω) [1 − H(ω)]2 + H2(ω)

= SNR(ω) · υsd [H(ω)] +
1

ξnr [H(ω)]

and

J̃ (H) = 2π
J (H)∫ π

−π
φvv(ω)dω

(6.45)

=

∫ π

−π
φxx(ω) [1 − H(ω)]2 dω∫ π

−π
φvv(ω)dω

+

∫ π

−π
φvv(ω)H2(ω)dω∫ π

−π
φvv(ω)dω

= SNR · υsd(H) +
1

ξnr(H)
.

The two NMSEs have the same form. They both depend on the same variables.
But the narrowband NMSE depends on the narrowband variables while the
fullband NMSE depends on the fullband variables. They also have the same
form as the time-domain NMSE of the causal Wiener filter [40].

The narrowband minimum NMSE is then

J̃ [HW(ω)] = γ2
xy(ω) = 1 − γ2

vy(ω) (6.46)
= HW(ω).

Expression (6.46) has a simple form and depends only on the coherence func-
tion between x(k) and y(k) [or between v(k) and y(k)]. This minimum NMSE
is also a linear function of HW(ω).

Property 3. With the optimal noncausal Wiener filter given in (6.30), the
output fullband SNR [eq. (6.19)] is always greater than or at least equal to
the input fullband SNR [eq. (6.11)], i.e., oSNR(HW) ≥ SNR.
Proof. See [42], [125].

Property 3 is fundamental. It shows that the frequency-domain Wiener
filter is able to improve the output fullband SNR of a noisy observed signal.

Very often in practice, the ensemble averages are unknown, so it is conve-
nient to approximate the PSDs used in the Wiener filter by sample estimates
[56], [218]:

ĤW(ω) = 1 − V 2(ω)
Y 2(ω)

(6.47)

= γ̂2
vy(ω).

This form of the Wiener filter is the starting point of so many spectrum-based
noise reduction techniques [154], [156], [218].
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6.5 Parametric Wiener Filtering

Some applications may need aggressive noise reduction. Other applications
on the contrary may require little speech distortion (so less aggressive noise
reduction). An easy way to control the compromise between noise reduction
and speech distortion is via the parametric Wiener filtering [70], [153]:

HG(ω) =
[
1 − γβ1

vy (ω)
]β2

, (6.48)

where β1 and β2 are two positive parameters that allow the control of this
compromise. For (β1, β2) = (2, 1), we get the noncausal Wiener filter devel-
oped in the previous section. Taking (β1, β2) = (2, 1/2), leads to

HP(ω) =
√

1 − γ2
vy(ω) (6.49)

= γxy(ω),

which is the power subtraction method studied in [68], [70], [153], [161], [208].
The pair (β1, β2) = (1, 1) gives the magnitude subtraction method [22], [24],
[199], [200], [228]:

HM(ω) = 1 − γvy(ω) (6.50)

= 1 −
√

1 − γ2
xy(ω).

We can verify that the narrowband noise-reduction factors for the power
subtraction and magnitude subtraction methods are

ξnr [HP(ω)] =
1

γ2
xy(ω)

, (6.51)

ξnr [HM(ω)] =
1[

1 −
√

1 − γ2
xy(ω)

]2 , (6.52)

and the corresponding narrowband speech-distortion indices are

υsd [HP(ω)] =
[
1 −

√
1 − γ2

vy(ω)
]2

, (6.53)

υsd [HM(ω)] = γ2
vy(ω). (6.54)

We can also easily check that

ξnr [HM(ω)] ≥ ξnr [HW(ω)] ≥ ξnr [HP(ω)] , (6.55)
υsd [HP(ω)] ≤ υsd [HW(ω)] ≤ υsd [HM(ω)] . (6.56)

The two previous inequalities are very important from a practical point of
view. They show that, among the three methods, the magnitude subtraction
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is the most aggressive one as far as noise reduction is concerned, a very well-
known fact in the literature [56], but at the same time it’s the one that will
likely distorts most the speech signal. The smoother approach is the power
subtraction while the Wiener filter is between the two others in terms of speech
distortion and noise reduction. Many other variants of these algorithms can
be found in [100], [205].

Another straightforward way to derive parametric filters is from the nar-
rowband NMSE, i.e. (6.44), which can be rewritten as follows:

[1 + SNR(ω)]H2(ω) − 2 · SNR(ω)H(ω) + SNR(ω) − J̃ [H(ω)] = 0,
(6.57)

which is a quadratic equation with respect to the filter H(ω). The solution is
then

H(ω) =
SNR(ω) ±√∆(ω)

1 + SNR(ω)

= 1 − γ2
vy(ω) ± γ2

vy(ω)
√

∆(ω), (6.58)

where

∆(ω) = J̃ [H(ω)] + SNR(ω)
{

J̃ [H(ω)] − 1
}

=
J̃ [H(ω)] − 1 + γ2

vy(ω)
γ2

vy(ω)
. (6.59)

For the filter H(ω) to be real and H(ω) ≤ 1 (no signal amplification), it
requires that

1 − γ2
vy(ω) ≤ J̃ [H(ω)] ≤ 1. (6.60)

Actually, J̃ [H(ω)] = 1−γ2
vy(ω) corresponds to the Wiener filter, HW(ω), and

J̃ [H(ω)] = 1 to the unit gain filter H(ω) = 1. As a result, ∆(ω) ≤ 1. Now
let’s take

β = ±γ2
vy(ω)

√
∆(ω), (6.61)

the parametric filter is then

H(ω) = 1 − γ2
vy(ω) + β, (6.62)

where β is chosen between −1 and 1 in such a way that 0 ≤ H(ω) ≤ 1. It is
easy to see that if

• β = 0, we get the Wiener filter,
• β > 0, we obtain a filter that reduces less the level of noise than the Wiener

filter (so less speech distortion),
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• β < 0, we have a filter that reduces more the level of noise than the Wiener
filter (so more speech distortion).

We can also check that taking

β =
√

1 − γ2
vy(ω) − 1 + γ2

vy(ω) > 0 (6.63)

leads to the power subtraction method and

β = γvy(ω) [γvy(ω) − 1] < 0 (6.64)

gives the magnitude subtraction approach.
The parametric form given in (6.62) is arguably more interesting and more

intuitive to use than the form shown in (6.48) since it depends on one param-
eter only (instead of two for the latter) and depending on its value whether
it’s positive or negative we know exactly if the corresponding filter will reduce
less or more the level of noise as compared to the Wiener filter.

It is clear from this study that speech distortion is unavoidable in the
single-channel case. Parametric Wiener filtering can help better control the
compromise between noise reduction and speech distortion in many applica-
tions but this approach has obviously its limitations. In the next section we
will study the multichannel case and see if there are other options for a better
compromise.

6.6 Generalization to the Multichannel Case

The multichannel case consists of utilizing multiple microphones instead of
just one. We expect that the spatial diversity will give more degrees of freedom
for possible good solutions to the noise-reduction problem. We start by first
explaining the spatial signal model.

6.6.1 Signal Model

Suppose that we have an array consisting of N sensors and a desired source
signal s(k) in a room. The received signals are expressed as

yn(k) = gn ∗ s(k) + vn(k) (6.65)
= xn(k) + vn(k), n = 1, 2, . . . , N,

where gn is the impulse response from the unknown source s(k) to the nth mi-
crophone and vn(k) is the noise at microphone n. We assume that the signals
xn(k) and vn(k) are uncorrelated and zero-mean. Without loss of generality,
we consider the first microphone as the reference. Our main objective in this
section is, again, noise reduction; hence we will try to recover x1(k) the best
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way we can in some sense by observing not only one microphone signal but N
of them. We do not attempt here to recover s(k) (i.e., speech dereverberation).

In the frequency domain, (6.65) can be rewritten as

Yn(jω) = Gn(jω)S(jω) + Vn(jω) (6.66)
= Xn(jω) + Vn(jω), n = 1, 2, . . . , N,

where Yn(jω), S(jω), Gn(jω), Xn(jω) = Gn(jω)S(jω), and Vn(jω) are the
DTFTs of yn(k), s(k), gn, xn(k), and vn(k), respectively. Therefore, the PSD
of yn(k) is

φynyn
(ω) = φxnxn

(ω) + φvnvn
(ω) (6.67)

= |Gn(jω)|2 φss(ω) + φvnvn
(ω), n = 1, 2, . . . , N.

A linear estimate of X1(jω) with the N observations can be obtained as
follows:

Z(jω) = H∗
1 (jω)Y1(jω) + H∗

2 (jω)Y2(jω) + · · · + H∗
N (jω)YN (jω)

= hH(jω)y(jω)
= hH(jω) [x(jω) + v(jω)] , (6.68)

where

y(jω) =
[
Y1(jω) Y2(jω) · · · YN (jω)

]T
,

x(jω) = S(jω)
[
G1(jω) G2(jω) · · · GN (jω)

]T
= S(jω)g(jω),

v(jω) is defined in a similar way to y(jω), and

h(jω) =
[
H1(jω) H2(jω) · · · HN (jω)

]T
is a vector containing the N noncausal filters to be designed. The PSD of z(k)
is then

φzz(ω) = hH(jω)Φxx(jω)h(jω) + hH(jω)Φvv(jω)h(jω), (6.69)

where

Φxx(jω) = E
[
x(jω)xH(jω)

]
= φss(ω)g(jω)gH(jω), (6.70)

Φvv(jω) = E
[
v(jω)vH(jω)

]
, (6.71)

are the PSD matrices of the signals xn(k) and vn(k), respectively. Notice that
the rank of the matrix Φxx(jω) is always equal to 1.

In the rest of this section, we will study the design of the filter vector
h(jω) but we first give some useful definitions.
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6.6.2 Definitions

In this subsection we briefly generalize some definitions of Section 6.3 to the
multichannel case. Since the first microphone is chosen as the reference, all
definitions will be given with respect to that reference.

The input narrowband and fullband SNRs are

SNR(ω) =
φx1x1(ω)
φv1v1(ω)

, (6.72)

SNR =

∫ π

−π
φx1x1(ω)dω∫ π

−π
φv1v1(ω)dω

. (6.73)

We define the narrowband and fullband multichannel noise-reduction fac-
tors as

ξnr [h(jω)] =
φv1v1(ω)

hH(jω)Φvv(jω)h(jω)
, (6.74)

ξnr(h) =

∫ π

−π
φv1v1(ω)dω∫ π

−π
hH(jω)Φvv(jω)h(jω)dω

=

∫ π

−π
φv1v1(ω)dω∫ π

−π
ξ−1
nr [h(jω)] φv1v1(ω)dω

. (6.75)

Contrary to the narrowband single-channel noise-reduction factor, the multi-
channel version depends on the PSD of the noise.

We define the narrowband and fullband multichannel speech-distortion
indices as

υsd [h(jω)] =
E

[∣∣∣X1(jω) − hH(jω)x(jω)
∣∣∣2]

φx1x1(ω)

=
[u − h(jω)]H Φxx(jω) [u − h(jω)]

φx1x1(ω)
, (6.76)

υsd(h) =

∫ π

−π
E

[∣∣∣X1(jω) − hH(jω)x(jω)
∣∣∣2] dω∫ π

−π
φx1x1(ω)dω

=

∫ π

−π
[u − h(jω)]H Φxx(jω) [u − h(jω)] dω∫ π

−π
φx1x1(ω)dω

=

∫ π

−π
υsd [h(jω)] φx1x1(ω)dω∫ π

−π
φx1x1(ω)dω

. (6.77)

The narrowband multichannel speech-distortion index depends on the PSD of
the speech and on the filter vector contrary to its single-channel counterpart
which depends only on the filter.
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The output narrowband and fullband SNRs are

oSNR [h(jω)] =
hH(jω)Φxx(jω)h(jω)
hH(jω)Φvv(jω)h(jω)

, (6.78)

oSNR(h) =

∫ π

−π
hH(jω)Φxx(jω)h(jω)dω∫ π

−π
hH(jω)Φvv(jω)h(jω)dω

. (6.79)

It is interesting to see that now the output narrowband SNR, which depends
on the filter vector h(jω) and PSDs of the speech and noise, is not equal to
the input narrowband SNR. This is a major difference from the single-channel
case. As a consequence, the spatial diversity can help improve the output SNR.
Also, we can see from (6.78)–(6.79) that if

• oSNR [h(jω)] = 1, ∀ω, then oSNR(h) = 1,
• oSNR [h(jω)] < 1, ∀ω, then oSNR(h) < 1,
• oSNR [h(jω)] > 1, ∀ω, then oSNR(h) > 1.

6.6.3 Multichannel Wiener Filter

To derive the Wiener filter, we first need to write the error signal

E(jω) = X1(jω) − Z(jω)
= X1(jω) − hH(jω)y(jω)

= [u − h(jω)]H x(jω) − hH(jω)v(jω), (6.80)

where

u =
[
1 0 · · · 0 0

]T (6.81)

is a vector of length N . The corresponding MSE is

J [h(jω)] = E
[
|E(jω)|2

]
. (6.82)

The minimization of (6.82) with respect to h(jω) leads to

Φyy(jω)hW(jω) = Φyx(jω)u, (6.83)

where

Φyy(jω) = E
[
y(jω)yH(jω)

]
= φss(ω)g(jω)gH(jω) + Φvv(jω) (6.84)

is the PSD matrix of the signals yn(k) and

Φyx(jω) = E
[
y(jω)xH(jω)

]
= Φxx(jω) (6.85)
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is the cross-spectral matrix between the signals yn(k) and xn(k).
Therefore, the optimal filter can be put into the following forms:

hW(jω) = Φ−1
yy (jω)Φxx(jω)u

=
[
IN×N − Φ−1

yy (jω)Φvv(jω)
]
u. (6.86)

We can make two important observations. The first one is that the multichan-
nel Wiener filter is complex contrary to its single-channel counterpart which
is always real. Obviously, the phase has a role to play in the multichannel
case since the spatial information is involved and the desired signal does not
necessarily arrive with the same phase at the different microphones. The sec-
ond observation is that a necessary condition for the matrix Φyy(jω) to be
full rank is that the matrix Φvv(jω) is also full rank. In other words, for the
multichannel Wiener filter to be unique the noise should not be completely
coherent at the microphones.

Determining the inverse of Φyy(jω) from (6.84) with the Woodbury’s iden-
tity [

Φvv(jω) + φss(ω)g(jω)gH(jω)
]−1

= (6.87)

Φ−1
vv (jω) − Φ−1

vv (jω)g(jω)gH(jω)Φ−1
vv (jω)

φ−1
ss (ω) + gH(jω)Φ−1

vv (jω)g(jω)

= Φ−1
vv (jω) − Φ−1

vv (jω)Φxx(jω)Φ−1
vv (jω)

1 + tr
[
Φ−1

vv (jω)Φxx(jω)
] (6.88)

and substituting the result into (6.86), leads to other interesting formulations
of the Wiener filter:

hW(jω) =
Φ−1

vv (jω)Φxx(jω)
1 + tr

[
Φ−1

vv (jω)Φxx(jω)
]u (6.89)

=
Φ−1

vv (jω)Φyy(jω) − IN×N

1 − N + tr
[
Φ−1

vv (jω)Φyy(jω)
]u (6.90)

=

{
IN×N − Φ−1

vv (jω)Φxx(jω)
1 + tr

[
Φ−1

vv (jω)Φxx(jω)
]
}

×

Φ−1
vv (jω)Φxx(jω)u. (6.91)

We deduce the narrowband noise-reduction factor and speech distortion
index for the multichannel Wiener filter:

ξnr [hW(jω)] =

{
1 + tr

[
Φ−1

vv (jω)Φxx(jω)
]}2

SNR(ω)tr
[
Φ−1

vv (jω)Φxx(jω)
] , (6.92)

υsd [hW(jω)] =
1{

1 + tr
[
Φ−1

vv (jω)Φxx(jω)
]}2 . (6.93)
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For any complex filter vector h(jω), we can verify that the narrowband
and fullband MSEs are

J [h(jω)] = [u − h(jω)]H Φxx(jω) [u − h(jω)] + hH(jω)Φvv(jω)h(jω)
(6.94)

and

J (h) =
1
2π

∫ π

−π

[u − h(jω)]H Φxx(jω) [u − h(jω)] dω +

1
2π

∫ π

−π

hH(jω)Φvv(jω)h(jω)dω. (6.95)

Therefore, the narrowband and fullband NMSEs are

J̃ [h(jω)] = SNR(ω) · υsd [h(jω)] +
1

ξnr [h(jω)]
(6.96)

and

J̃ (h) = SNR · υsd (h) +
1

ξnr (h)
. (6.97)

Using (6.92) and (6.93), we deduce the narrowband NMSE for the Wiener
filter (minimum NMSE):

J̃ [hW(jω)] =
SNR(ω)

1 + tr
[
Φ−1

vv (jω)Φxx(jω)
] . (6.98)

Property 4. With the noncausal multichannel Wiener filter given in (6.86),
the output narrowband SNR [eq. (6.78)] is always greater than or at least equal
to the input narrowband SNR [eq. (6.72)], i.e., oSNR [hW(jω)] ≥ SNR(ω).

This is a fundamental difference from the single-channel case, where the
input narrowband SNR is always identical to the output narrowband SNR.
Proof. We can use the same proofs given in [42], [62], [125] to show this
property.

A more explicit form of the output narrowband SNR with the Wiener filter
is

oSNR [hW(jω)] = tr
[
Φ−1

vv (jω)Φxx(jω)
]
. (6.99)

Using (6.92), (6.93), and (6.99) we can verify the relation

SNR(ω) · oSNR [hW(jω)] · ξnr [hW(jω)] · υsd [hW(jω)] = 1, (6.100)

showing the importance of the four involved measures.
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Property 5. With the noncausal multichannel Wiener filter given in (6.86),
the output fullband SNR [eq. (6.79)] is always greater than or at least equal
to the input fullband SNR [eq. (6.73)], i.e., oSNR (hW) ≥ SNR.
Proof. We can use the same proofs given in [42], [62], [125] to show this
property.

To summarize, the noncausal multichannel Wiener filter has the poten-
tial to improve both the output narrowband and fullband SNRs, while the
noncausal single-channel Wiener filter has the potential to improve only the
output fullband SNR.

The parametric Wiener filtering developed in Section 6.5 can be general-
ized to the multichannel case by using the same ideas proposed in [59], [60].
The derived parametric multichannel Wiener filter is then

hG(jω) = [Φxx(jω) + β0Φvv(jω)]−1 Φxx(jω)u, (6.101)

where the real β0 ≥ 0 is the tradeoff parameter between noise reduction and
speech distortion. If β0 > 1, the residual noise level is reduced at the expense
of increased speech distortion. On the contrary, if β0 < 1, speech distortion is
reduced at the expense of decreased noise reduction [59], [69], [209]. A more
sophisticated approach can be developed by replacing β0 with a perceptual
filter [113].

In the single-channel case (N = 1), (6.101) reduces to

HG(ω) =
1 − γ2

vy(ω)
1 − (1 − β0)γ2

vy(ω)

≈ 1 − γ2
vy(ω) + γ2

vy(ω)(1 − β0)
[
1 − γ2

vy(ω)
]

≈ 1 − γ2
vy(ω) + β, (6.102)

which works in a similar way to (6.62).

6.6.4 Spatial Maximum SNR Filter

The minimization of the MSE criterion [eq. (6.82)] leads to the Wiener filter.
Another criterion, instead, is the output narrowband SNR, oSNR [h(jω)], de-
fined in (6.78) that we can maximize, since this measure is the most relevant
one as far as noise reduction is concerned.

Maximizing oSNR [h(jω)] is equivalent to solving the generalized eigen-
value problem

Φxx(jω)h(jω) = λ(ω)Φvv(jω)h(jω). (6.103)

The optimal solution to this well-known problem is hmax(jω), the eigen-
vector corresponding to the maximum eigenvalue, λmax(ω), of the matrix
Φ−1

vv (jω)Φxx(jω). In this case we have

oSNR [hmax(jω)] = λmax(ω). (6.104)



6.6 Generalization to the Multichannel Case 133

It is clear that chmax(jω), for any scalar c, is also a solution of (6.103). Usually
we choose the eigenvector that has the unit norm, i.e., hH

max(jω)hmax(jω) = 1.
This is the convention we adopt here.

We already know that the rank of the matrix Φxx(jω) is equal to 1. There-
fore, the matrix Φ−1

vv (jω)Φxx(jω) has only one nonzero eigenvalue correspond-
ing to λmax(ω). Furthermore it is easy to verify, using (6.89), that

Φxx(jω)hW(jω) = tr
[
Φ−1

vv (jω)Φxx(jω)
]
Φvv(jω)hW(jω). (6.105)

Therefore, the Wiener filter, hW(jω), is also a solution to our problem. As a
result

hmax(jω) =
hW(jω)√

hH
W(jω)hW(jω)

, (6.106)

λmax(ω) = tr
[
Φ−1

vv (jω)Φxx(jω)
]
. (6.107)

Surprisingly, the maximum SNR filter does not exist in the noncausal single-
channel case but does exist in the time domain and is different, in general,
from the Wiener filter.

We can conclude that minimizing the MSE criterion is equivalent to max-
imizing the output SNR at frequency ω (locally), up to a scaling factor. How-
ever, the two approaches are very different from a fullband point of view or in
practice. Remember, these optimizations (MSE and max SNR) are done for
each frequency independently of the others. As a result, the scaling factors
(norms) of the Wiener vectors at the different frequencies are not constant.
While locally the two filters (Wiener and maximum SNR) give the same out-
put SNR, globally they do not perform the same for noise reduction. Indeed,
it is easy to check that

oSNR [hW(jω)] = oSNR [hmax(jω)] (6.108)

but

oSNR (hW) �= oSNR (hmax) (6.109)

unless, of course, we normalize the vector hW(jω) in such a way that its norm
is 1.

The two filters distort the speech signal since

υsd (hW) �= 0, (6.110)
υsd (hmax) �= 0. (6.111)

Contrary to the time-domain methods, the frequency-domain algorithms
are affected by the scaling factor. This problem is somewhat similar to the
convolutive blind source separation (BSS) in the frequency domain where
separation can be obtained up to a scaling factor at each frequency [159],
[182]. It is then essential to find appropriate solutions to this problem, which
will be discussed in the next two sections.
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6.6.5 Minimum Variance Distortionless Response Filter

The minimum variance distortionless response (MVDR) filter [35], [148], [149],
[216] results from the optimization of a criterion with a constraint which tries
to minimize the level of noise of the noisy signals without distorting the desired
signal. From the error signal given in (6.80), it’s clear that the constraint
should be taken in such a way that

[u − h(jω)]H x(jω) = 0. (6.112)

Replacing x(jω) = S(jω)g(jω) in the previous equation gives

hH(jω)g(jω) = G1(jω). (6.113)

The MVDR problem for choosing the weights is thus written as

min
h(jω)

hH(jω)Φvv(jω)h(jω) subject to hH(jω)g(jω) = G1(jω).

(6.114)

Using Lagrange multipliers, we easily find the MVDR filter:

hMVDR(jω) = G∗
1(jω)

Φ−1
vv (jω)g(jω)

gH(jω)Φ−1
vv (jω)g(jω)

, (6.115)

which can be put in other more interesting forms:

hMVDR(jω) =
Φ−1

vv (jω)Φxx(jω)
tr
[
Φ−1

vv (jω)Φxx(jω)
]u

=
Φ−1

vv (jω)Φyy(jω) − IN×N

tr
[
Φ−1

vv (jω)Φyy(jω)
]− N

u. (6.116)

It can be easily verified that

hW(jω) = c(ω)hMVDR(jω), (6.117)

hmax(jω) =
hMVDR(jω)√

hH
MVDR(jω)hMVDR(jω)

, (6.118)

where

c(ω) =
tr
[
Φ−1

vv (jω)Φxx(jω)
]

1 + tr
[
Φ−1

vv (jω)Φxx(jω)
] . (6.119)

Again, the three fundamental filters hW(jω), hmax(jω), and hMVDR(jω) are
equivalent up to a scaling factor [81]; thus

oSNR [hMVDR(jω)] = oSNR [hW(jω)] = oSNR [hmax(jω)] . (6.120)
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But this time

υsd [hMVDR(jω)] = υsd (hMVDR) = 0. (6.121)

This makes the scaling factor of the MVDR filter optimal in the sense that it
does not distort the speech signal.

We can also check that the narrowband noise-reduction factor is

ξnr [hMVDR(jω)] =
oSNR [hMVDR(jω)]

SNR(ω)
. (6.122)

The form of the MVDR filter given in (6.115) is equivalent to the transfer
function generalized sidelobe canceler (TF-GSC) proposed by Gannot et al.
[79], [80]. The major inconvenience of this algorithm is the blind estimation
of the vector G−1

1 (jω)g(jω) (transfer functions) which is not easy to do in
practice without the insights given in (6.116). The same authors try to take
advantage of the nonstationarity of the speech for its estimation but this
estimator may not be very robust or accurate.

The form of the MVDR filter shown in (6.116) is not exploited in the
literature which is really surprising since it’s, and by far, much more practical
than (6.115) and it does not require the estimation of the channel impulse
response. This is a relief, since as we all know blind estimation is always a
very difficult problem.

To summarize, the MVDR filter as proposed in (6.116) solves the scaling
factor problem encountered in the Wiener and maximum SNR filters and does
not require the knowledge of the acoustic channel like the GSC implementation
does [81].

6.6.6 Distortionless Multichannel Wiener Filter

In this subsection we derive a distortionless multichannel Wiener filter in two
steps: the first step finds the constraint with another noncausal filter while
the second step finds an optimal estimator of this noncausal filter.

Assume that we can find a noncausal filter, Wn(jω), such that

Xn(jω) = Wn(jω)X1(jω), n = 2, . . . , N. (6.123)

We will show later how to find this optimal filter.
Substituting (6.123) into (6.80), we get

E(jω) =
[
1 − hH(jω)w(jω)

]
X1(jω) − hH(jω)v(jω), (6.124)

where

w(jω) =
[
1 W2(jω) · · · WN (jω)

]T
.

In order not to distort the desired signal, we should solve the following opti-
mization problem:



136 6 Noncausal (Frequency-Domain) Optimal Filters

min
h(jω)

hH(jω)Φvv(jω)h(jω) subject to hH(jω)w(jω) = 1, (6.125)

from which we deduce the optimal distortionless Wiener (DW) filter:

hDW(jω) =
Φ−1

vv (jω)w(jω)
wH(jω)Φ−1

vv (jω)w(jω)
. (6.126)

The second step consists of finding the noncausal filter Wn(jω). An optimal
estimator, in the Wiener sense, can be obtained by minimizing the following
cost function

J [Wn(jω)] = E
[
|Xn(jω) − Wn(jω)X1(jω)|2

]
. (6.127)

We easily find the optimal Wiener filter:

Wn,W(jω) =
φx1x1(ω)
φxnx1(jω)

, n = 2, . . . , N, (6.128)

where

φxnx1(jω) = E [Xn(jω)X∗
1 (jω)] (6.129)

is the cross-spectrum between the signals xn(k) and x1(k).
Also, we can write the Wiener filter, Wn,W(jω), in terms of the acoustic

channels:

Wn,W(jω) =
G1(jω)
Gn(jω)

, n = 2, . . . , N. (6.130)

Using this form in (6.126), we obtain

hDW(jω) = hMVDR(jω). (6.131)

Thus, the DW and MVDR filters are identical. Like the MVDR filter, the
DW filter (which is a two step approach) solves the scaling factor problem.
Another advantage of this method compared to the TF-GSC is that it does
not require the knowledge of the transfer functions explicitly. A time-domain
version of this algorithm can be found in [21], [44]. (See also Chapters 4 and
5.)

6.7 Conclusions

This chapter was dedicated to the noncausal (frequency-domain) optimal filter
for both the single- and multi-channel cases. We have given some important
definitions and emphasized the differences between the narrowband and full-
band variables. This distinction gives more insights into the understanding of
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the algorithms in the frequency domain. We have also seen that while in all
the single-channel algorithms there is always a compromise between noise re-
duction and speech distortion, for the multichannel filters when well designed
it’s possible to have a good amount of noise reduction without distorting the
desired signal. For example, an interesting form of the MVDR filter was pre-
sented that can be implemented as easily as the popular magnitude spectral
subtraction method but with no speech distortion.
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Microphone Arrays from a MIMO Perspective

7.1 Introduction

As seen throughout the text, the major functionality of a microphone-array
system is to reduce noise, thereby enhancing a desired information-bearing
speech signal. The term noise, in general, refers to any unwanted signal that
interferes with measurement, processing, and communication of the desired
speech signal. This broad-sense definition of noise, however, is too encom-
passing as it masks many important technical aspects of the real problem.
To enable better modeling and removal of the effects of noise in the context
of microphone array processing, it is advantageous to break the general defi-
nition into the following three subcategories: additive noise originating from
various ambient sound sources, interfering signals from concurrent competing
sources, and reverberation caused by multipath propagation introduced by
an enclosure. We have seen from the previous chapters that the use of a mi-
crophone array together with proper beamforming techniques can reduce the
effect of additive noise. This chapter continues to explore beamforming tech-
niques, with a focus on interference suppression and speech dereverberation.
Different from the traditional way of treating beamforming as purely spatial
filtering, this chapter studies the problem from a more physically meaning-
ful multiple-input multiple-output (MIMO) signal processing perspective. A
general framework based on the MIMO channel impulse responses will be de-
veloped. Under this framework, we study different algorithms including their
underlying principles and intrinsic connections. We also analyze the bounds
for the beamforming filter length, which govern the performance of beam-
forming in terms of speech dereverberation and interference suppression. In
addition, we discuss, from the channel condition point of view, what are the
necessary conditions for different beamforming algorithms to work.

This chapter is organized as follows. Section 7.2 presents the four signal
models (depending on the inputs and outputs) and the problem description. In
Section 7.3, the two-element microphone array is studied. Section 7.4 studies
the general case of a microphone array with any number of elements. Sec-



140 7 Microphone Arrays from a MIMO Perspective

(a)

G(z)
s(k)

v(k)

y(k)Σ

(b)

.

.

..
..

G1(z)

G2(z)

GN (z)

s(k)

v1(k)

v2(k)

vN (k)

y1(k)

y2(k)

yN (k)Σ

Σ

Σ

(c)

. .

.

..
.

G1(z)

G2(z)

GM (z)

s1(k)

s2(k)

sM (k)

v(k)

y(k)Σ

(d)

..

.

...

...

...

...

...

...

...

...

...

...
..
.

G11(z)

G21(z)

G31(z)

GN1(z)

G12(z)

G22(z)

G32(z)

GN2(z)

G1M (z)

G2M (z)

G3M (z)

GNM (z)

s1(k)

s2(k)

sM (k)

v1(k)

v2(k)

v3(k)

vN (k)

y1(k)

y2(k)

y3(k)

yN (k)

Σ

Σ

Σ

Σ

Fig. 7.1. Illustration of four distinct types of systems. (a) A single-input single-
output (SISO) system. (b) A single-input multiple-output (SIMO) system. (c) A
multiple-input single-output (MISO) system. (d) A multiple-input multiple-output
(MIMO) system.

tion 7.5 gives some experimental results. Finally, some conclusions will be
provided in Section 7.6.

7.2 Signal Models and Problem Description

Throughout the text, we have presented several signal models to describe a
microphone-array system in different wave-propagation situations. To enable
a better understanding of how beamforming can be formulated to suppress
interference and dereverberate speech, it is advantageous to divide the signal
models into four basic classes according to the number of inputs and outputs.
Such classification is now well accepted and is the basis of many interesting
studies in different areas of control and signal processing.
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7.2.1 SISO Model

The first class is the single-input single-output (SISO) system, as shown in
Fig. 7.1(a). The output signal is given by

y(k) = g ∗ s(k) + v(k), (7.1)

where g is the channel impulse response, s(k) is the source signal at time k,
and v(k) is the additive noise at the output. Here we assume that the system is
linear and shift-invariant. The channel impulse response is delineated usually
with an FIR filter rather than an IIR filter. In vector/matrix form, the SISO
signal model (7.1) is written as

y(k) = gT s(k) + v(k), (7.2)

where

g =
[
g0 g1 · · · gLg−1

]T
,

s(k) =
[
s(k) s(k − 1) · · · s(k − Lg + 1)

]T
,

and Lg is the channel length.
Using the z-transform, the SISO signal model (7.2) is described as follows

Y (z) = G(z)S(z) + V (z), (7.3)

where Y (z), S(z), and V (z) are the z-transforms of y(k), s(k), and v(k),
respectively, and G(z) =

∑Lg−1
l=0 glz

−l.
The SISO model is simple and is probably the most widely used and stud-

ied model in communications, signal processing, and control.

7.2.2 SIMO Model

The diagram of a single-input multiple-output (SIMO) system is illustrated
by Fig. 7.1(b), in which there are N outputs from the same source as input
and the nth output is expressed as

yn(k) = gT
n s(k) + vn(k), n = 1, 2, . . . , N, (7.4)

where gn and vn(k) are defined in a similar way to those in (7.2), and Lg is
the length of the longest channel impulse response in this SIMO system. A
more comprehensive expression of the SIMO model is given by

ya(k) = Gs(k) + va(k), (7.5)

where
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ya(k) =
[
y1(k) y2(k) · · · yN (k)

]T
,

G =

⎡
⎢⎢⎢⎣

g1,0 g1,1 · · · g1,Lg−1

g2,0 g2,1 · · · g2,Lg−1

...
...

. . .
...

gN,0 gN,1 · · · gN,Lg−1

⎤
⎥⎥⎥⎦

N×Lg

,

va(k) =
[
v1(k) v2(k) · · · vN (k)

]T
.

The SIMO model (7.5) is described in the z-transform domain as

ya(z) = g(z)S(z) + va(z), (7.6)

where

ya(z) =
[
Y1(z) Y2(z) · · · YN (z)

]T
,

g(z) =
[
G1(z) G2(z) · · · GN (z)

]T
,

Gn(z) =
Lg−1∑
l=0

gn,lz
−l, n = 1, 2, . . . , N,

va(z) =
[
V1(z) V2(z) · · · VN (z)

]T
.

7.2.3 MISO Model

In the third type of systems as drawn in Fig. 7.1(c), we suppose that there
are M sources but only one output whose signal is then expressed as

y(k) =
M∑

m=1

gT
msm(k) + v(k),

= gT sMLg
(k) + v(k), (7.7)

where

g =
[
gT

1 gT
2 · · · gT

M

]T
,

gm =
[
gm,0 gm,1 · · · gm,Lg−1

]T
,

sMLg
(k) =

[
sT
1 (k) sT

2 (k) · · · sT
M (k)

]T
,

sm(k) =
[
sm(k) sm(k − 1) · · · sm(k − Lg + 1)

]T
.

In the z-transform domain, the multiple-input single-output (MISO) model is
given by

Y (z) = gT (z)s(z) + V (z), (7.8)

where
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g(z) =
[
G1(z) G2(z) · · · GM (z)

]T
,

Gm(z) =
Lg−1∑
l=0

gm,lz
−l, m = 1, 2, . . . ,M,

s(z) =
[
S1(z) S2(z) · · · SM (z)

]T
.

Note that g(z) defined here is slightly different from that in (7.6). We do not
deliberately distinguish them.

7.2.4 MIMO Model

Figure 7.1(d) depicts a multiple-input multiple-output (MIMO) system. A
MIMO system with M inputs and N outputs is referred to as an M × N
system. At time k, we have

ya(k) = GsMLg
(k) + va(k), (7.9)

where

ya(k) =
[
y1(k) y2(k) · · · yN (k)

]T
,

G =
[
G1 G2 · · · GM

]
,

Gm =

⎡
⎢⎢⎢⎣

g1m,0 g1m,1 · · · g1m,Lg−1

g2m,0 g2m,1 · · · g2m,Lg−1

...
...

. . .
...

gNm,0 gNm,1 · · · gNm,L−1

⎤
⎥⎥⎥⎦

N×Lg

,

m = 1, 2, . . . ,M,

va(k) =
[
v1(k) v2(k) · · · vN (k)

]T
,

gnm (n = 1, 2, . . . , N , m = 1, 2, . . . ,M) is the impulse response of the channel
from input m to output n, and s(k) is defined similarly to that in (7.7). Again,
we have the model presented in the z-transform domain as

ya(z) = G(z)s(z) + va(z), (7.10)

where

G(z) =

⎡
⎢⎢⎢⎣

G11(z) G12(z) · · · G1M (z)
G21(z) G22(z) · · · G2M (z)

...
...

. . .
...

GN1(z) GN2(z) · · · GNM (z)

⎤
⎥⎥⎥⎦ ,

Gnm(z) =
Lg−1∑
l=0

gnm,lz
−l, n = 1, 2, . . . , N, m = 1, 2, . . . ,M.

Clearly the MIMO system is the most general model and all other three
systems can be treated as special examples of a MIMO system.
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Fig. 7.2. Illustration of a microphone array system.

7.2.5 Problem Description

The problem considered in this chapter is illustrated in Fig. 7.2, where we
have M sources in the sound field and we use N microphones to collect signals.
We assume that the number of microphones used is greater than, or at least
equal to the number of sound sources, i.e., N ≥ M . Hence, the appropriate
signal model is the MIMO system explained in Subsection 7.2.4. Some of
the sources can be interferers. Since the additive noise case was studied in
Chapters 4 and 5, we will neglect the background noise in the rest of this
chapter, i.e., considering vn(k) = 0. Our objective is then the extraction,
from the observation signals, of some of the M radiating sources.

7.3 Two-Element Microphone Array

For ease of comprehending the fundamental principles, let us first consider the
simple case where there are only two sources and two microphones. In this
situation, the output signal at the nth microphone and at time k, is written
as

yn(k) = gT
n1s1(k) + gT

n2s2(k), n = 1, 2. (7.11)
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We consider that s1(k) is the signal of interest (speech source, for example)
while s2(k) is the interference (noise source). Given the observations yn(k), the
objective of this two-element microphone array is to recover s1(k). This would
involve two processing operations: dereverberation and interference suppres-
sion. Suppose that we can achieve an estimate of s1(k) by applying two filters
to the two microphone outputs, i.e.,

z(k) = hT
1 y1(k) + hT

2 y2(k), (7.12)

where

hn =
[
hn,0 hn,1 · · · hn,Lh−1

]T
, n = 1, 2,

are two filters of length Lh and

yn(k) =
[
yn(k) yn(k − 1) · · · yn(k − Lh + 1)

]T
, n = 1, 2.

A legitimate question then arises: is it possible to find h1 and h2 in such a
way that z(k) = s1(k − τ) (where τ is a delay constant)? In other words, is it
possible to perfectly recover s1(k) (up to a constant delay)? We will answer
this question in the following subsections.

7.3.1 Least-Squares Approach

First, let us rewrite the microphone signals in the following vector/matrix
form

yn(k) = Gn1sL,1(k) + Gn2sL,2(k), n = 1, 2, (7.13)

where

Gnm =

⎡
⎢⎢⎢⎣

gnm,0 · · · gnm,Lg−1 0 0 · · · 0
0 gnm,0 · · · gnm,Lg−1 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 gnm,0 · · · gnm,Lg−1

⎤
⎥⎥⎥⎦ ,

n,m = 1, 2,

is a Sylvester matrix of size Lh × L, with L = Lg + Lh − 1, and

sL,m(k) =
[
sm(k) sm(k − 1) · · · sm(k − L + 1)

]T
, m = 1, 2.

Substituting (7.13) into (7.12), we find that

z(k) =
[
hT

1 G11 + hT
2 G21

]
sL,1(k) +

[
hT

1 G12 + hT
2 G22

]
sL,2(k). (7.14)

In order to perfectly recover s1(k), the following two conditions have to be
met
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GT
11h1 + GT

21h2 = u, (7.15)
GT

12h1 + GT
22h2 = 0L×1, (7.16)

where

u =
[
0 · · · 0 1 0 · · · 0

]T
is a vector of length L, whose τth component is equal to 1. In matrix/vector
form, the two previous conditions are

GT h = u′, (7.17)

where

G =
[
G11 G12

G21 G22

]
=
[
G:1 G:2

]
,

h =
[
hT

1 hT
2

]T
,

u′ =
[
uT 0T

L×1

]T
.

Let us assume that the matrix GT has full column rank. Since the number of
its rows is always greater than the number of its columns, the best estimator
we can derive from (7.17) is the least-squares (LS) filter

hLS =
[
GGT

]−1

Gu′ (7.18)

=
[
hT

LS,1 hT
LS,2

]T
.

This solution may not be good enough in practice for several reasons. First,
we do not know how to determine Lh, the length of the LS filters hLS,1 and
hLS,2. Second, the whole impulse response matrix G must be known to find
the optimal filter in the LS sense, and thus there is very little flexibility with
this method. In addition, it does not seem easy to quantify the amount of
dereverberation and interference suppression separately.

7.3.2 Frost Algorithm

The Frost algorithm, also known as the linearly constrained minimum-variance
(LCMV) filter (see Chapter 4), is another interesting structure for beamform-
ing [76].

If we concatenate the two observation vectors together, we obtain

y(k) =
[
yT

1 (k) yT
2 (k)

]T
= G

[
sL,1(k)
sL,2(k)

]
= Gs2L(k)
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and the covariance matrix of the observation signals is

Ryy = E
[
y(k)yT (k)

]
= GRssGT , (7.19)

where Rss = E
[
s2L(k)sT

2L(k)
]
. In order for Ryy to be invertible, Rss has to

be invertible and GT must have full column rank. In the rest, we assume that
Ryy is nonsingular.

In the LCMV approach we would like to minimize the energy, E
[
z2(k)

]
=

hT Ryyh, at the outputs of the microphones without distorting the signal
s1(k). This is equivalent to the optimization problem

min
h

hT Ryyh subject to GT
:1h = u. (7.20)

From (7.20), we see that this method will perfectly dereverberate the signal
of interest (assuming that G:1 is known or is accurately estimated), while at
the same time it will minimize the effect of the interference source, s2(k).

The problem in (7.20) can be solved by using a Lagrange multiplier to
adjoin the constraints to the objective function. The solution can be easily
deduced as

hLCMV = R−1
yy G:1

[
GT

:1R
−1
yy G:1

]−1

u (7.21)

=
[
hT

LCMV,1 hT
LCMV,2

]T
.

In the previous expression, we assumed that the matrix
[
GT

:1R
−1
yy G:1

]
is non-

singular. A close inspection shows that two conditions need to be satisfied in
order for this matrix to be invertible. The first one is 2Lh ≥ L, which implies
that Lh ≥ Lg − 1. This is very interesting since it tells us how to choose the
minimum length of the two filters hLCMV,1 and hLCMV,2, which is something
not seen from the LS approach. The second one is that G:1 has to have full
column rank. If these two conditions are met, the LCMV filter exists and is
unique. Note that in this approach, only the impulse responses from the de-
sired source, i.e., s1(k) to the microphones, need to be known. In other words,
only G:1 needs to be known, but not G:2.

We can always take the minimum required length for Lh, i.e. Lh = Lg −1.
In this case, G:1 is a square matrix and (7.21) becomes

hLCMV =
[
GT

:1

]−1

u

=
[
GT

11 GT
21

]−1
u, (7.22)

which does not depend on Ryy. Expression (7.22) is exactly the multiple in-
put/output inverse theorem (MINT) [166]. So for Lh = Lg − 1, we estimate
s1(k) by dereverberating the observation signals yn(k) without much concern
for the noise source s2(k). We assumed in this particular case that the square
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matrix G:1 has full rank, which is equivalent to saying that the two polyno-
mials formed from g11 and g21 share no common zeros. As Lh is increased
compared to Lg, we still perfectly dereverberate the signal s1(k), while at the
same time reduce the effect of the interference signal.

It’s quite remarkable that the MINT method is a particular case of the
Frost algorithm. However, this result should not come as a surprise since the
motivation behind the two approaches is similar.

7.3.3 Generalized Sidelobe Canceller Structure

The generalized sidelobe canceller (GSC) transforms the LCMV algorithm
from a constrained optimization problem into an unconstrained form. There-
fore, the GSC and LCMV beamformers are essentially the same while the
GSC has some implementation advantages [32], [33], [94], [95], [133], [230].
Given the channel impulse responses, the GSC method can be formulated by
dividing the filter vector h into two components operating on orthogonal sub-
spaces, as illustrated in Fig. 7.3. Here we assume that Lh > Lg − 1 so that
the dimension of the nullspace of GT

:1 is not equal to zero. Mathematically, in
the GSC structure, we have

h = f − Bw, (7.23)

where

f = G:1

[
GT

:1G:1

]−1

u (7.24)

is the minimum-norm solution of GT
:1f = u, B is the so-called blocking matrix

that spans the nullspace of GT
:1, i.e. GT

:1B = 0L×(2Lh−L), and w is a weighting
vector. The size of B is 2Lh × (2Lh − L), where 2Lh − L is the dimension of
the nullspace of GT

:1. Therefore, the length of w is 2Lh − L.
The GSC approach is formulated as the following unconstrained optimiza-

tion problem

min
w

(f − Bw)T Ryy (f − Bw) . (7.25)

The solution is

wGSC =
[
BT RyyB

]−1

BT Ryyf. (7.26)

Equation (7.25) is equivalent to the minimization of E
[
e2(k)

]
, where

e(k) = yT (k)f − yT (k)Bw (7.27)

is the error signal between the outputs of the two filters f and Bw.
In [28] (see also Chapter 2), it is shown that
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Fig. 7.3. The structure of a generalized sidelobe canceller.

hLCMV = R−1
yy G:1

[
GT

:1R
−1
yy G:1

]−1

u

=
{
I2Lh×2Lh

− B
[
BT RyyB

]−1

BT Ryy

}
f

= hGSC (7.28)

so the LCMV and GSC algorithms are equivalent.
Expressions (7.23) and (7.28) have a very nice physical interpretation [com-

pared to (7.21)]. The LCMV filter hLCMV is the sum of two orthogonal vectors
f and −BwGSC, which serve for different purposes. The objective of the first
vector, f, is to perform dereverberation on the signals g11∗s1 and g21∗s1, while
the objective of the second vector, −BwGSC, is to reduce the effect of the in-
terference s2(k). Increasing the length Lh of the filters hLCMV,1 and hLCMV,2

from its minimum value Lg−1 will not change anything to the dereverberation
part. However, increasing Lh will augment the dimension of the nullspace of
GT

:1, and hence the length of wGSC. As a result, better interference suppres-
sion is expected. It is obvious, from a theoretical point of view, that perfect
dereverberation is possible (if G:1 is known or can be accurately estimated)
but perfect interference suppression is not. In practice, if the two impulse re-
sponses g11 and g21 can be estimated, we can expect good dereverberation
but interference suppression may be limited for the simple reason that it will
be very hard to make Lh much larger than Lg (the length of the impulse re-
sponses g11 and g21). In other words, as reverberation of the room increases,
interference suppression decreases. This result was shown experimentally in
[23], [92]. One possible way for improvement is to process the observation
signals in two steps: the LCMV filter for dereverberation (first step) followed
by a Wiener filter for noise reduction (second step); see, for examples, the
methods proposed in [48], [160], [162], and [242]. This post-filtering approach
may be effective from a noise reduction point of view but it will distort the
desired signal s1(k).
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7.4 N -Element Microphone Array

We now study the more general case of N microphones and M sources, with
M ≤ N . Without loss of generality, we assume that the first P (P > 0)
signals, i.e., sp(k), p = 1, 2, . . . , P , are the desired sources while the other
Q (Q > 0) source signals sP+q(k), q = 1, 2, . . . , Q, are the interferers, where
P+Q = M . Given the observation signals yn(k), n = 1, 2, . . . , N , the objective
of the array processing is to extract the signals sp(k), p = 1, 2, . . . , P . This
implies dereverberation for the P desired sources and suppression of the Q
interference signals.

Let

zp(k) =
N∑

n=1

hT
pnyn(k), p = 1, 2, . . . , P, (7.29)

where

hpn =
[
hpn,0 hpn,1 · · · hpn,Lh−1

]T
, p = 1, 2, . . . , P, n = 1, 2, . . . , N,

are PN filters of length Lh. We ask again the same question: is it possible
to find hpn in such a way that zp(k) = sp(k − τp) (where τp is some delay
constant)? In other words, is it possible to perfectly recover sp(k) (up to a
constant delay)? We discuss the possible solutions to this question in the
succeeding subsections.

7.4.1 Least-Squares and MINT Approaches

The microphone signals can be rewritten in the following form

yn(k) =
M∑

m=1

GnmsL,m(k), n = 1, 2, . . . , N. (7.30)

Substituting (7.30) into (7.29), we find that

zp(k) =
M∑

m=1

[
N∑

n=1

hT
pnGnm

]
sL,m(k), p = 1, 2, . . . , P. (7.31)

From the above expression, we see that in order to perfectly recover sp(k) the
following M conditions have to be satisfied

N∑
n=1

GT
nphpn = up, (7.32)

N∑
n=1

GT
nmhpn = 0L×1, m = 1, 2, . . . ,M, m �= p, (7.33)

where
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up =
[
0 · · · 0 1 0 · · · 0

]T
is a vector of length L, whose τpth component is equal to 1. In matrix/vector
form, the M previous conditions are

GT hp: = u′
p, (7.34)

where

G =

⎡
⎢⎢⎢⎣

G11 G12 · · · G1M

G21 G22 · · · G2M

...
...

. . .
...

GN1 GN2 · · · GNM

⎤
⎥⎥⎥⎦

=
[
G:1 G:2 · · · G:M

]
,

hp: =
[
hT

p1 hT
p2 · · · hT

pN

]T
,

u′
p =

[
0T

L×1 · · · 0T
L×1︸ ︷︷ ︸

(p−1)L

uT
p 0T

L×1 · · · 0T
L×1︸ ︷︷ ︸

(M−p)L

]T
.

The channel matrix G is of size NLh × ML. Depending on the values of N
and M , we have two cases, i.e., N = M and N > M .
Case 1: N = M .

In this case, ML = NL = NLh + NLg − N . Since Lg > 1, we have
ML > NLh. This means that the number of rows of GT is always larger than
its number of columns. If we assume that the matrix GT has full column rank,
the LS solution for (7.34) is

hLS,p: =
[
GGT

]−1

Gu′
p. (7.35)

Here again, like in Section 7.3.1, we have no idea on how to choose Lh.
Case 2: N > M .

With more microphones than sources, is it possible to find a better solution
than the LS one? Let M = N − K, K > 0. In fact, requiring GT to have a
number of rows that is equal to or larger than its number of columns, we find
this time an upper bound for Lh:

Lh ≤
(

N

K
− 1

)
(Lg − 1) . (7.36)

If we take

Lh =
(

N

K
− 1

)
(Lg − 1) , (7.37)

and if Lh is an integer, GT is now a square matrix. Therefore
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hMINT,p: =
[
GT

]−1

u′
p. (7.38)

This is identical to the MINT method [123], [166], which can perfectly recover
the signal of interest sp(k) if G is known or can be accurately estimated. Of
course, we supposed that GT has full rank, which is equivalent to saying that
the polynomials formed from g1m, g2m, . . . , gNm, m = 1, 2, . . . ,M , share no
common zeroes.

It is very interesting to see that, if we have more microphones than sources,
we have more flexibility in estimation of the signals of interest and have a
better idea for the choice of Lh.

7.4.2 Frost Algorithm

Following (7.30), if we concatenate the N observation vectors together, we get

y(k) =
[
yT

1 (k) yT
2 (k) · · · yT

N (k)
]T

= GsML(k),

where

sML(k) =
[
sT
L,1(k) sT

L,2(k) · · · sT
L,M (k)

]T
.

The covariance matrix corresponding to y(k) is

Ryy = E
[
y(k)yT (k)

]
= GRssGT , (7.39)

with Rss = E
[
sML(k)sT

ML(k)
]
. We suppose that Ryy is invertible, which is

equivalent to stating that the Rss matrix is of full rank and GT matrix has
full column rank. We are now ready to study two interesting cases.
Case 1: Partial Knowledge of the Impulse Response Matrix.

In this case, we wish to extract the source sp(k) with only the knowledge
of G:p, i.e., the impulse responses from that source to the N microphones.
With this information, the LCMV filter is obtained by solving the following
problem

min
hp:

hT
p:Ryyhp: subject to GT

:php: = up. (7.40)

Hence

hLCMV1,p: = R−1
yy G:p

[
GT

:pR
−1
yy G:p

]−1

up. (7.41)

We refer to this approach as the LCMV1, where a necessary condition for[
GT

:pR
−1
yy G:p

]
to be nonsingular is to have NLh ≥ L, which implies that

Lh ≥ Lg − 1
N − 1

. (7.42)
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An important thing to observe is that the minimum length required for the
filters hLCMV1,pn, n = 1, 2, . . . , N , decreases as the number of microphones
increases. As a consequence, the Frost filter has the potential to significantly
reduce the effect of the interferers with a large number of microphones.

If we take the minimum required length for Lh, i.e., Lh = (Lg −1)/(N −1)
and assume that Lh is an integer, G:p turns to be a square matrix and (7.41)
becomes

hLCMV1,p: =
[
GT

:p

]−1

up

=
[
GT

1p GT
2p · · · GT

Np

]−1
up, (7.43)

which is the MINT method [166]. We assumed in (7.43) that G:p has full
rank, which is equivalent to saying that the N polynomials formed from
g1p, g2p, . . . , gNp share no common zeros. Mathematically, this condition is
expressed as follows

gcd [G1p(z), G2p(z), · · · , GNp(z)] = 1

⇔ ∃ Hp1(z),Hp2(z), · · · ,HpN (z) :
N∑

n=1

Gnp(z)Hpn(z) = 1, (7.44)

where gcd[·] denotes the greatest common divisor of the polynomials involved
and, Gnp(z) and Hpn(z) are the z-transforms of gnp and hpn, respectively.
This is known as the Bezout theorem.

From (7.39), we can deduce that a necessary condition for Ryy to be
invertible is to have NLh ≤ ML. When M = N , i.e., the number of sources
is equal to the number of microphones, this condition is always true, which
means that there is no upper bound for Lh. When N > M , assume that
M = N − K, K > 0, this condition becomes

Lh ≤
(

N

K
− 1

)
(Lg − 1) . (7.45)

Combining (7.45) and (7.42), we see how Lh is bounded, i.e.,

Lg − 1
N − 1

≤ Lh ≤
(

N

K
− 1

)
(Lg − 1) . (7.46)

Case 2: Full Knowledge of the Impulse Response Matrix and N > M .
Here, we wish to extract source sp(k) with the full knowledge of the impulse

response matrix G, with M = N −K, K > 0. Taking all this information into
account in our optimization problem

min
hp:

hT
p:Ryyhp: subject to GT hp: = u′

p, (7.47)

we find the solution
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hLCMV2,p: = R−1
yy G

[
GT R−1

yy G
]−1

u′
p. (7.48)

We refer to this approach as the LCMV2, where we assume that both Ryy

and
[
GT R−1

yy G
]

are nonsingular and their inverse matrices exist. From the
previous analysis, we know that in order for Ryy to be invertible the condition

in (7.45) has to be true. Also, a necessary condition for
[
GT R−1

yy G
]

to be
nonsingular is to have NLh ≥ ML, which implies that

Lh ≥
(

N

K
− 1

)
(Lg − 1) . (7.49)

Therefore, the only condition for (7.48) to exist is that

Lh =
(

N

K
− 1

)
(Lg − 1) , (7.50)

and this value needs to be an integer. In this case, G is a square matrix and
(7.48) becomes

hLCMV2,p: =
[
GT

]−1

u′
p, (7.51)

which is also the MINT solution [166]. Also, it is shown in [123] how to convert
an M × N MIMO system (with M < N) into M interference-free SIMO
systems. The MINT method is then applied in each one of these SIMO systems
to remove the channel effect. So this two-step approach (see Chapter 8) is
equivalent to the LCMV2.

7.4.3 Generalized Sidelobe Canceller Structure

The GSC structure [94] makes sense only for the LCMV1 filter. We need to
take Lh > (Lg−1)/(N−1) in order that the dimension of the nullspace of GT

:p

is not equal to zero. We already know that the GSC method solves exactly
the same problem as the Frost algorithm by decomposing the filter hp: into
two orthogonal components [32], [133], [230]:

hp: = fp − Bpwp, (7.52)

where

fp = G:p

[
GT

:pG:p

]−1

up (7.53)

is the minimum-norm solution of GT
:pfp = up and Bp is the blocking matrix

that spans the nullspace of GT
:p, i.e. GT

:pBp = 0L×(NLh−L). The size of Bp is
NLh × (NLh − L), where NLh − L is the dimension of the nullspace of GT

:p.
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Therefore, wp is a vector of length Lw = NLh − L = (N − 1)Lh − Lg + 1,
which is obtained from the following unconstrained optimization problem

min
wp

(fp − Bpwp)
T Ryy (fp − Bpwp) , (7.54)

and the solution is

wGSC,p =
[
BT

p RyyBp

]−1

BT
p Ryyfp. (7.55)

Our discussion is going to focus on two situations. The first one is when
the number of microphones is equal to the number of sources1 (N = M).
In this case, we know from the previous subsection that there is no upper
bound for Lh. This implies that the length of wGSC,p can be taken as large
as we wish. As a result, we can expect better interference suppression as Lh

is increased. By increasing the number of microphones (with N = M), the
minimum length required for Lh will decrease compared to Lg, which is a very
good thing because in practice acoustic impulse responses can be very long.

Our second situation is when we have more microphones than sources.
Assume that M = N − K, K > 0. Using (7.46) and the fact that Lw =
(N −1)Lh−Lg +1, we can easily deduce the bounds for the length of wGSC,p:

0 < Lw ≤ N

K
(N − K − 1)(Lg − 1) ≤ N

K
(N − K − 1)(N − 1)Lh. (7.56)

This means that there is a limit to interference suppression. Consider the
scenario where we have one desired source only (P = 1) and Q interferers. We
have M = Q + 1 = N − K and (7.56) is now:

0 < Lw ≤ NQ

N − Q − 1
(Lg − 1) ≤ N(N − 1)Q

N − Q − 1
Lh. (7.57)

We see from (7.57) that the upper bound of Lw depends on three factors: the
reverberation condition (Lg), the number of interference sources (Q), and the
number of microphones (N). When Q and N are fixed, if the length of the
room impulse response Lg increases, this indicates that the environment is
more reverberant and the interference suppression problem will become more
difficult. So we have to increase Lw to compensate for the additional reflec-
tions. In case that Lg and N remain the same, but the number of interference
sources Q increases, this implies that we have more interferers to cope with
so we have to use a larger Lw. Now suppose that Lg and Q remain the same,
if we increase the number of microphones, this will allow us to use a larger
1 There is no distinction here between the interference and desired sources. By

extracting the signal of interest sp(k) from the rest, the algorithm will see the
other desired sources as interferences. We assume that all sources are active at
the same time; if it’s not the case, we will be in a situation where we have more
microphones than sources.
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value for Lw. We should, however, make the distinction between this case
and the former two situations. When we have more microphones, we achieve
more realizations of the source signals. So we can increase Lw to augment
the interference-suppression performance. But in the former two situations,
we would expect some degree of performance degradation since the problem
becomes more difficult to solve as Lg and Q increase.

7.4.4 Minimum Variance Distortionless Response Approach

The minimum variance distortionless response (MVDR) method, due to
Capon [35], [149] is a particular case of the LCMV1. The MVDR applies
only one constraint

gT
:p(κp)hp: = 1, (7.58)

where g:p(κp) is the κpth column of the matrix G:p. The aim of this constraint
is to align the desired source signal, sp(k), at the output of the beamformer.
Hence, in the MVDR approach, we have the following optimization problem:

min
hp:

hT
p:Ryyhp: subject to gT

:p(κp)hp: = 1, (7.59)

whose solution is

hMVDR,p: =
R−1

yy g:p(κp)

gT
:p(κp)R−1

yy g:p(κp)
. (7.60)

The minimum required length for the filters hMVDR,pn is Lh = κp. In this
case, the performance of the MVDR beamformer is similar to that of the
classical delay-and-sum beamformer. As Lh is increased compared to κp, the
signal of interest will still be aligned at the output of the beamformer, while
other signals will tend to be attenuated.

This method can be very useful in practice, since it does not require the
full knowledge of the impulse responses but only the relative delays among
microphones. However, an adaptive implementation of the MVDR may cancel
the desired signal [30], [49], [50], [53], [219], [220], [241].

7.5 Simulations

The section compares different algorithms via simulations in a realistic acous-
tic environment.

7.5.1 Acoustic Environments and Experimental Setup

Same as in Section 5.10, the experiments were conducted with the acoustic
impulse responses measured in the varechoic chamber at Bell Labs. The layout
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Fig. 7.4. Layout of the experimental setup in the varechoic chamber (coordinate
values measured in meters). The three sources are placed, respectively, at (3.337,
4.662, 1.6), (1.337, 3.162, 1.6), and (5.337, 3.162, 1.6). The four microphones in the
linear array are located, respectively, at (2.437, 5.6, 1.4), (2.537, 5.6, 1.4), (2.637,
5.6, 1.4), and (2.737, 5.6, 1.4).

of the experimental setup is illustrated in Fig. 7.4, where a linear array which
consists of 4 omni-directional microphones were employed with their positions
being, respectively, at (2.437, 5.6, 1.4), (2.537, 5.6, 1.4), (2.637, 5.6, 1.4), and
(2.737, 5.6, 1.4) (coordinate values measured in meters). We have three sources
in the sound field: one target s1(k) is located at (3.337, 4.662, 1.6), and two
interferers, s2(k) and s3(k), are placed at (1.337, 3.162, 1.6) and (5.337, 3.162,
1.6) respectively. The objective of this study is to investigate how the desired
signal s1(k) can be dereverberated and the two interference sources, s2(k)
and s3(k), can be suppressed or cancelled when four microphones are used.
We consider the reverberation condition with the 60-dB reverberation time
T60 = 310 ms. The impulse response from each source to each microphone
was measured originally at 48 kHz, and then downsampled to 8 kHz. The
microphone outputs are computed by convolving the source signal with the
corresponding channel impulse responses.

To visualize the performance of different beamforming algorithms, we first
conduct a simple experiment where all the impulse responses are truncated to
only 64 points (the zeros commonly shared by all the impulse responses at the
beginning are removed). All the three source signals are prerecorded speech
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Fig. 7.5. Time sequence and the corresponding spectrogram of: the desired source
signal s1(k) from a male speaker (the upper trace) and the output of microphone 1,
i.e., x1(k) (the lower trace).

sampled at 8 kHz where s1(k) is from a male speaker and both s2(k) and s3(k)
are from a same female speaker. The waveform and spectrogram of the first 5
seconds of s1(k) are shown in Fig 7.5. The microphone outputs are obtained by
convolving the three source signals with the corresponding impulse responses.
Figure 7.5 also plots the first 5 seconds of the signal observed at the first
microphone.

To extract s1(k), we need to estimate the filter h1. This would require
knowledge about the impulse responses from the three sources to the four
microphones. In this experiment, we assume that the impulse responses are
known a priori, so the results in this case demonstrate the upper limit of each
algorithm in a given condition. Another parameter that has to be determined
is the length of the h1 filter, i.e., Lh. Throughout the text, we have analyzed
the bounds of Lh for different algorithms. In this experiment, Lh is chosen
as its maximum value that can be taken according to (7.37), (7.45), (7.50),
and (7.56) and is set to the same for all the algorithms. Note that with this
optimum choice of Lh, the pseudoinverse of the channel matrix is equal to
its normal inverse. So under this condition, the LS and LCMV2 methods will
produce the same results. In addition, we already see from Section 7.4 that
LCMV2 and MINT are the same. The outputs of the different beamformers
are plotted in Fig. 7.6.

It can be seen from Fig. 7.6 that both the LS and LCMV2 (MINT) ap-
proaches have achieved almost perfect interference suppression and speech
dereverberation. However, the outputs of the LCMV1 and GSC still consist
of a small amount of interference signals. Apparently, the LCMV1 and GSC
are less effective than the LS and LCMV2 (MINT) techniques in terms of
interference suppression. This is comprehensible since the LCMV1 and GSC
employ only the channel information from the desired source to the micro-
phones while both the LS and LCMV2 (MINT) techniques use not only the
impulse responses from the desired source but also those from all the inter-
ferers. In addition, we see that the MVDR is inferior to all the other studied
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Fig. 7.6. Time sequence and the corresponding spectrogram of different beamform-
ing algorithms, where Lg = 64 and Lh = 189 for all the algorithms. Note that under
this condition, the LS, LCMV2, and MINT methods are theoretically the same.

techniques in performance. Such a result is not surprising since the MVDR
poses less constraints as compared to the other techniques.

To quantitatively assess the performance of interference suppression and
speech dereverberation, we now evaluate two criteria, namely signal-to-
interference ratio (SIR) and speech spectral distortion. For the notion of SIR,
see [129]. Here, though we have M sources, our interest is in extracting only
the target signal, i.e., the first source s1(k), so the average input SIR at mi-
crophone n is defined as

SIRin
n =

E
{
[gn1 ∗ s1(k)]2

}
∑M

m=2 E {[gnm ∗ sm(k)]2}
, n = 1, 2, . . . , N. (7.61)

The overall average input SIR is then given by

SIRin =
1
N

N∑
n=1

SIRin
n . (7.62)

The output SIR is defined using the same principle but the expression will be
slightly more complicated. For a concise presentation, we denote the impulse
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Table 7.1. Performance of interference suppression and speech dereverberation us-
ing different beamforming algorithms where the MIMO impulse responses are known
a priori.

LS LCMV1 LCMV2 GSC MVDR
(MINT)

SIRin Lg Lh SIRo IS SIRo IS SIRo IS SIRo IS SIRo IS
(dB) (dB) (dB) (dB) (dB) (dB)

189∗ 187.6 0.00 18.0 0.00 187.6 0.00 14.5 0.00 4.8 6.28
−9.2 64 150 9.3 0.02 9.1 0.00 × × 9.1 0.00 4.3 6.65

100 7.2 0.08 −0.5 0.00 × × −0.5 0.00 3.4 7.86
50 4.5 0.13 −8.0 0.00 × × −8.0 0.00 2.7 8.17

381∗ 171.3 0.00 9.6 0.00 171.3 0.00 4.1 0.00 4.2 6.86
−8.1 128 360 24.7 0.01 3.9 0.00 × × 3.9 0.00 4.2 6.86

320 14.3 0.01 2.8 0.00 × × 2.8 0.00 4.2 6.75
200 3.8 0.13 −3.9 0.00 × × −3.9 0.00 3.3 7.22
765∗ 117.2 0.00 7.9 0.00 117.2 0.00 1.5 0.00 4.4 7.68

−8.3 256 700 24.8 0.03 1.3 0.00 × × 1.3 0.00 4.4 7.56
600 11.2 0.23 0.1 0.00 × × 0.1 0.00 4.5 7.38
300 4.0 0.15 −6.7 0.00 × × −6.7 0.00 3.0 9.07

NOTES: ∗: the maximum value that the Lh can take for the condition;
×: the Lh cannot take this value for the method in the given condition.

response of the equivalent channel between the mth source and the beam-
forming output as fm, which can be expressed as

fm =
N∑

n=1

h1n ∗ gnm, (7.63)

where h1n is the filter between microphone n and the beamforming output,
and gnm is the impulse response between source m and microphone n. The
output SIR can then be written as

SIRo =
E
{
[f1 ∗ s1(k)]2

}
∑M

m=2 E {[fm ∗ sm(k)]2}
. (7.64)

If we express both SIRo and SIRin in decibels, the difference between the two
reflects the performance of interference suppression.

To evaluate speech dereverberation, we investigate the IS distance [38],
[131], [185], [187] between s1(k) and s1(k) ∗ fm, which evaluates the amount
of reverberation present in the estimated speech signal after beamforming. The
smaller the IS distance, the more effective will be the beamforming algorithm
in dereverberation.

Table 7.1 summarizes the experimental results, where the source signals
are the same as used in the previous experiment. The following observations
can be made:



7.5 Simulations 161

• As the length of the impulse responses, i.e., Lg, increases, the maximum
achievable (with the maximum Lh) gain in SIR decreases. This occurs to
all the algorithms. Such a result should not come as a surprise. As Lg

increases, each microphone receives more reflections (with longer delays)
from both the desired and interference sources. Consequently, the received
speech becomes more distorted and the estimation problem tends to be
more difficult.

• In the ideal condition where impulse responses are known and Lh is set
to its maximum value, both the LS and LCMV2 (MINT) techniques can
achieve almost perfect interference suppression and speech dereverbera-
tion. The SIR gains are more than 100 dB and the IS distances are ap-
proximately zero. Similar to the LS and LCMV2 (MINT) methods, the
LCMV1 and GSC can also perform perfect speech dereverberation, but
their interference suppression performance is limited. The underlying rea-
son for this has been explained earlier on. Briefly, it is because the LCMV1
and GSC do not use the channel information from the interferers to the
microphones.

• In each reverberant condition (a fixed Lg), if we reduce the length of the
h1 filter, the amount of interference suppression decreases significantly for
all the methods except for the MVDR. Therefore, if we want a reasonable
amount of interference suppression, the length of the filter h1 should be
set to a large value. However, this length is upper bounded, as explained
in Section 7.4.

• The IS distances obtained by the LS, LCMV1, LCMV2 (MINT), and GSC
methods are close to zero, indicating that these techniques have accom-
plished good speech dereverberation. This coincides with the theoretical
analysis made throughout the text.

• In terms of interference rejection, the MVDR method is very robust to the
changes of both Lg and Lh. When Lh is small, this method can even achieve
more interference suppression than the other four approaches. However,
the values of the IS distance with this method are very large. Therefore,
we may have to use dereverberation techniques in order to further reduce
speech distortion.

In the preceding experiments, we assumed that the impulse responses were
known a priori. In real applications, it is very difficult if not impossible to know
the true impulse responses. Therefore, we have to estimate such information
based on the data observed at the microphones. In our application scenario,
the source signals are generally not accessible, so the estimation of channel
impulse responses have to be done in a blind manner. However, blind identifi-
cation of a MIMO system is a very difficult problem and no effective solution
is available thus far, particularly for acoustic applications. Fortunately, in nat-
ural communication environments, not all the sources are active at the same
time. In many time periods, the observation signal is occupied exclusively by
a single source. If we can detect those periods, the MIMO identification prob-
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Table 7.2. Performance of interference suppression and speech dereverberation with
different beamforming algorithms where the channel impulse responses are estimated
using a blind technique.

LS LCMV1 LCMV2 GSC MVDR
(MINT)

SIRin Lg Lĝ Lh SIRo IS SIRo IS SIRo IS SIRo IS SIRo IS
(dB) (dB) (dB) (dB) (dB) (dB)

−9.23 64 64 189 140.1 0.0 14.5 0.0 140.1 0.0 14.5 0.0 4.8 6.3
50 147 −5.9 6.1 8.3 0.6 × × 9.0 0.5 4.3 7.0

−8.04 128 128 381 133.1 0.0 4.1 0.0 133.1 0.0 4.1 0.0 4.2 6.9
100 297 −4.7 5.9 4.9 0.9 × × 3.6 0.9 4.1 7.1

NOTES: Lg: the length of true impulse responses;
Lĝ: the length of the channel impulse responses used during
blind channel identification.

lem can be converted to a SIMO identification problem in each time period.
This is assumed to be the case in our study and the channel impulse responses
are estimated using the techniques developed in [123]. After the estimation
of channel impulse responses, we can recover the desired source signals by
beamforming. The results for this experiment are shown in Table 7.2 where
we studied two situations. While in the first one, we assume that we know the
length of the true impulse responses during blind channel identification, in the
second case, the length of the modeling filter i.e., Lĝ, during blind channel
identification is set to less than Lg. Evidently, the second case is more realistic
since in reality the real impulse responses can be very long, but we cannot use
a very long modeling filter due to many practical limitations.

Comparing Tables 7.2 and 7.1, one can see that, when Lĝ = Lg, all the
techniques suffer some but not significant performance degradation. However,
if Lĝ is less than Lg, which is true in most real applications, the LS and
LCMV2 (MINT) suffer significant performance degradation in both interfer-
ence suppression and speech dereverberation. The reason may be explained
as follows. In our case, we truncated the impulse response to either 64 or
128 points. Due to the strong reverberation, the tail of the truncated impulse
responses consists of significant energy. As a result, dramatic errors were in-
troduced during channel identification when decreasing Lĝ. This in turn de-
grades the performance of beamforming. However, comparing with the LS and
LCMV2 (MINT), we see that the LCMV1 and GSC suffer some but not seri-
ous deterioration. We also noticed a very interesting property of the MVDR
approach from Tables 7.2 that its performance does not deteriorate much as
Lĝ decreases. This robust feature is due to the fact that the MVDR poses
less constraints than the other studied methods. But, as we noticed before,
the MVDR suffers dramatic signal distortion, as indicated by its large IS dis-
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tances. So further dereverberation techniques may have to be considered after
the MVDR processing if possible.

7.6 Conclusions

This chapter was concerned with interference suppression and speech dere-
verberation using microphone arrays. We developed a general framework for
microphone array beamforming, in which beamforming is treated as a MIMO
signal processing problem. Under this general framework, we analyzed the
lower and upper bounds for the length of the beamforming filter, which governs
the performance of beamforming in terms of speech dereverberation and inter-
ference suppression. We discussed the intrinsic relationships among the most
classical beamforming techniques and explained, from the channel condition
point of view, what are the necessary conditions for the different beamform-
ing techniques to work. Theoretical analysis as well as experimental results
showed that the impulse responses from both the desired sources and the in-
terferers have to be employed in order to achieve good interference suppression
and speech dereverberation. In practice, however, the true impulse responses
are in general not accessible. Therefore, we have to estimate them with blind
techniques. But these techniques, as of today, are still not very accurate and
lack robustness. As a result, microphone-array beamforming algorithms will
be affected. As to what degree the impulse responses mismatch would affect
the beamforming algorithms, it is worth of further investigation.
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Sequential Separation and Dereverberation:
the Two-Stage Approach

8.1 Introduction

This chapter will continue the discussion started in the previous chapter on
source extraction (or separation) and speech dereverberation with classical ap-
proaches. The same MIMO framework will be used for analysis. But instead
of trying to determine a solution in one step, we will present a two-stage ap-
proach for sequential separation and dereverberation. This will help the reader
better comprehend the interactions between spatial and temporal processings
in a microphone array system.

8.2 Signal Model and Problem Description

The problem of source separation and speech dereverberation has been clearly
described in Section 7.2. But for the self containment of this chapter and for
the convenience of the readers, we decide to briefly repeat the signal model in
the following.

We consider an N -element microphone array in a reverberant acoustic
environment in which there are M sound sources. This is an M × N MIMO
system. As shown in Fig. 8.1, the nth microphone output is expressed as

yn(k) =
M∑

m=1

gnm ∗ sm(k) + vn(k), n = 1, 2, . . . , N. (8.1)

The objective of separation and dereverberation is to retrieve the source
signals sm(k) (m = 1, 2, . . . ,M) by applying a set of filters hmn (m =
1, 2, . . . ,M , n = 1, 2, . . . , N) to the microphone outputs yn(k) (n =
1, 2, . . . , N), as illustrated by Fig. 8.1. In the absence of additive noise, the
resulting signal of separation and dereverberation is obtained as

za(k) = HGsML(k), (8.2)
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Fig. 8.1. Illustration of source separation and speech dereverberation.

where

za(k) =
[
z1(k) z2(k) · · · zM (k)

]T
,

H =

⎡
⎢⎢⎢⎣

hT
11 hT

12 · · · hT
1N

hT
21 hT

22 · · · hT
2N

...
...

. . .
...

hT
M1 hT

M2 · · · hT
MN

⎤
⎥⎥⎥⎦

M×NLh

,

hmn =
[
hmn,0 hmn,1 · · · hmn,Lh−1

]T
,
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m = 1, 2, . . . ,M, n = 1, 2, . . . , N,

G =

⎡
⎢⎢⎢⎣

G11 G12 · · · G1M

G21 G22 · · · G2M

...
...

. . .
...

GN1 GN2 · · · GNM

⎤
⎥⎥⎥⎦

NLh×ML

,

Gnm =

⎡
⎢⎢⎢⎣

gnm,0 · · · gnm,Lg−1 0 · · · 0
0 gnm,0 · · · gnm,Lg−1 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 gnm,0 · · · gnm,Lg−1

⎤
⎥⎥⎥⎦

Lh×L

,

n = 1, 2, . . . , N, m = 1, 2, . . . , M,

sML(k) =
[
sT
L,1(k) sT

L,2(k) · · · sT
L,M (k)

]T
,

sL,m(k) =
[
sm(k) sm(k − 1) · · · sm(k − L + 1)

]T
, m = 1, 2, . . . , M,

Lg is the length of the longest channel impulse response in the acoustic MIMO
system, Lh is the length of the separation-and-dereverberation filters, and
L = Lg + Lh − 1.

Since we aim to make

zm(k) = sm(k − τm), m = 1, 2, . . . , M, (8.3)

where τm is a constant delay, the conditions for separation and dereverberation
are deduced as

HG = U =

⎡
⎢⎢⎢⎣

uT
11 0T

L×1 · · · 0T
L×1

0T
L×1 uT

22 · · · 0T
L×1

...
...

. . .
...

0T
L×1 0T

L×1 · · · uT
MM

⎤
⎥⎥⎥⎦ , (8.4)

where umm =
[
0 · · · 0 1 0 · · · 0

]T is a vector of length L, whose τmth com-
ponent is equal to 1.

While in Section 7.4 we have exhaustively explored all the possible cases
for solving (8.4), such a one-step algorithm by direct inverse of the channel
matrix G does not tell us too much about the interactions between separation
and dereverberation. In the following sections, we will develop a procedure
which shows that separation and dereverberation are separable under some
conditions that are commonly met in practical acoustic MIMO systems.

Before we proceed, we want to present again the MIMO signal model in
the z-transform domain as follows

ya(z) = G(z)s(z) + va(z), (8.5)

where

ya(z) =
[
Y1(z) Y2(z) · · · YN (z)

]T
,
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G(z) =

⎡
⎢⎢⎢⎣

G11(z) G12(z) · · · G1M (z)
G21(z) G22(z) · · · G2M (z)

...
...

. . .
...

GN1(z) GN2(z) · · · GNM (z)

⎤
⎥⎥⎥⎦ ,

Gnm(z) =
Lg−1∑
l=0

gnm,lz
−l, n = 1, 2, . . . , N, m = 1, 2, . . . ,M,

s(z) =
[
S1(z) S2(z) · · · SM (z)

]T
,

va(z) =
[
V1(z) V2(z) · · · VN (z)

]T
.

As the reader will see, this z-domain expression is more extensively used in
this chapter.

8.3 Source Separation

In this section, we intend to show that interference from competing sources
and reverberation can be separated from the microphone outputs. We begin
the development with the example of a simple 2 × 3 MIMO system and then
extend it to the more general case for M × N systems.

8.3.1 2 × 3 MIMO System

For a 2×3 system, the co-channel interference (CCI) due to the simultaneous
existence of two competing sources can be cancelled by using two microphone
outputs at a time. For instance, we can remove the interference in Y1(z) and
Y2(z) caused by S2(z) (from the perspective of the first source) as follows:

Y1(z)G22(z) − Y2(z)G12(z)
= [G11(z)G22(z) − G21(z)G12(z)]S1(z) +

[G22(z)V1(z) − G12(z)V2(z)] . (8.6)

Similarly, the interference caused by S1(z) (from the perspective of the second
source) in these two outputs can also be cancelled. Therefore, by selecting
different pairs from the three microphone outputs, we can obtain 6 CCI-free
signals and then can construct two separate 1×3 SIMO systems with s1(k) and
s2(k) being their inputs, respectively. This procedure is visualized in Fig. 8.2
and will be presented in a more systematic way as follows.

Let’s consider the following equation:

Ys1,p(z) = Hs1,p1(z)Y1(z) + Hs1,p2(z)Y2(z) + Hs1,p3(z)Y3(z)

=
3∑

q=1

Hs1,pq(z)Yq(z), p = 1, 2, 3, (8.7)
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Fig. 8.2. Illustration of the conversion from a 2× 3 MIMO system to two CCI-free
SIMO systems with respect to (a) s1(k) and (b) s2(k).
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where Hs1,pp(z) = 0, ∀p. This means that (8.7) considers only two microphone
outputs for each p. The objective is to find the polynomials Hs1,pq(z), p, q =
1, 2, 3, p �= q, in such a way that

Ys1,p(z) = Fs1,p(z)S1(z) + Vs1,p(z), p = 1, 2, 3, (8.8)

which represents a SIMO system where s1(k) is the source signal, ys1,p(k)
(p = 1, 2, 3) are the outputs, fs1,p are the corresponding channel impulse
responses, and vs1,p is the noise at the pth output. Substituting (8.5) in (8.7)
for Yq(z), we deduce that

Ys1,1(z) = [Hs1,12(z)G21(z) + Hs1,13(z)G31(z)]S1(z) +
[Hs1,12(z)G22(z) + Hs1,13(z)G32(z)]S2(z) +
Hs1,12(z)V2(z) + Hs1,13(z)V3(z), (8.9)

Ys1,2(z) = [Hs1,21(z)G11(z) + Hs1,23(z)G31(z)]S1(z) +
[Hs1,21(z)G12(z) + Hs1,23(z)G32(z)]S2(z) +
Hs1,21(z)V1(z) + Hs1,23(z)V3(z), (8.10)

Ys1,3(z) = [Hs1,31(z)G11(z) + Hs1,32(z)G21(z)]S1(z) +
[Hs1,31(z)G12(z) + Hs1,32(z)G22(z)]S2(z) +
Hs1,31(z)V1(z) + Hs1,32(z)V2(z). (8.11)

As shown in Fig. 8.2, one possibility is to choose

Hs1,12(z) = G32(z), Hs1,13(z) = −G22(z),
Hs1,21(z) = G32(z), Hs1,23(z) = −G12(z),
Hs1,31(z) = G22(z), Hs1,32(z) = −G12(z).

(8.12)

In this case, we find that

Fs1,1(z) = G32(z)G21(z) − G22(z)G31(z),
Fs1,2(z) = G32(z)G11(z) − G12(z)G31(z), (8.13)
Fs1,3(z) = G22(z)G11(z) − G12(z)G21(z),

and

Vs1,1(z) = G32(z)V2(z) − G22(z)V3(z),
Vs1,2(z) = G32(z)V1(z) − G12(z)V3(z), (8.14)
Vs1,3(z) = G22(z)V1(z) − G12(z)V2(z).

Since deg [Gnm(z)] = Lg − 1, where deg[·] is the degree of a polynomial,
we deduce that deg [Fs1,p(z)] ≤ 2Lg − 2. We can see from (8.13) that the
polynomials Fs1,1(z), Fs1,2(z), and Fs1,3(z) share common zeros if G12(z),
G22(z), and G32(z), or if G11(z), G21(z), and G31(z), share common zeros.

Now suppose that
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C2(z) = gcd [G12(z), G22(z), G32(z)] , (8.15)

where gcd[·] denotes the greatest common divisor of the polynomials involved.
We have

Gn2(z) = C2(z)G′
n2(z), n = 1, 2, 3. (8.16)

It is clear that the signal S2(z) in (8.7) can be canceled by using the polyno-
mials G′

n2(z) [instead of Gn2(z) as given in (8.12)], so that the SIMO system
represented by (8.8) will change to

Y ′
s1,p(z) = F ′

s1,p(z)S1(z) + V ′
s1,p(z), p = 1, 2, 3, (8.17)

where

F ′
s1,p(z)C2(z) = Fs1,p(z),

V ′
s1,p(z)C2(z) = Vs1,p(z).

It is worth noticing that deg
[
F ′

s1,p(z)
] ≤ deg [Fs1,p(z)] and that the polyno-

mials F ′
s1,1(z), F ′

s1,2(z), and F ′
s1,3(z) share common zeros if and only if G11(z),

G21(z), and G31(z) share common zeros.
The second SIMO system corresponding to the second source S2(z) can

be derived in a similar way. We can find the output signals:

Ys2,p(z) = Fs2,p(z)S2(z) + Vs2,p(z), p = 1, 2, 3, (8.18)

by enforcing Fs2,p(z) = Fs1,p(z) (p = 1, 2, 3), which leads to

Vs2,1(z) = −G31(z)V2(z) + G21(z)V3(z),
Vs2,2(z) = −G31(z)V1(z) + G11(z)V3(z),
Vs2,3(z) = −G21(z)V1(z) + G11(z)V2(z).

This means that the two separated SIMO systems [for s1 and s2, represented
by equations (8.8) and (8.18)] have identical channels but different additive
noise at the outputs.

Now let’s see what we can do if Gn1(z) (n = 1, 2, 3) share common zeros.
Suppose that C1(z) is the greatest common divisor of G11(z), G21(z), and
G31(z). Then we have

Gn1(z) = C1(z)G′
n1(z), n = 1, 2, 3, (8.19)

and the SIMO system of (8.18) becomes

Y ′
s2,p(z) = F ′

s2,p(z)S2(z) + V ′
s2,p(z), p = 1, 2, 3, (8.20)

where
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F ′
s2,p(z)C1(z) = Fs2,p(z),

V ′
s2,p(z)C1(z) = Vs2,p(z).

We see that

gcd
[
F ′

s2,1(z), F ′
s2,2(z), F ′

s2,3(z)
]

= gcd [G12(z), G22(z), G32(z)]
= C2(z), (8.21)

and in general F ′
s1,p(z) �= F ′

s2,p(z).

8.3.2 M × N MIMO System

The approach to separating signals coming from different competing sources
that was explained in the previous subsection using a simple example will
be generalized here to M × N MIMO systems with M > 2 and M < N . We
begin with denoting Cm(z) as the greatest common divisor of G1m(z), G2m(z),
· · · , GNm(z) (m = 1, 2, . . . ,M), i.e.,

Cm(z) = gcd [G1m(z), G2m(z), · · · , GNm(z)] , m = 1, 2, . . . ,M. (8.22)

Then, Gnm(z) = Cm(z)G′
nm(z) and the channel matrix G(z) can be rewritten

as
G(z) = G′(z)C(z), (8.23)

where G′(z) is an N ×M matrix containing the elements G′
nm(z) and C(z) is

an M ×M diagonal matrix with Cm(z) as its nonzero, diagonal components.
Let us pick up M from N microphone outputs and we have

P = CM
N =

∏N
i=N−M+1 i∏M

i=1 i
(8.24)

different ways of doing this. For the pth (p = 1, 2, . . . , P ) combination, we
denote the index of the M selected output signals as pm, m = 1, 2, . . . ,M ,
which together with the M inputs form an M × M MIMO sub-system.

Consider the following equations:

ys,p(z) = Hs,p(z)ya,p(z), p = 1, 2, . . . , P, (8.25)

where

ys,p(z) =
[
Ys1,p(z) Ys2,p(z) · · · YsM ,p(z)

]T
,

Hs,p(z) =

⎡
⎢⎢⎢⎣

Hs1,p1(z) Hs1,p2(z) · · · Hs1,pM (z)
Hs2,p1(z) Hs2,p2(z) · · · Hs2,pM (z)

...
...

...
...

HsM ,p1(z) HsM ,p2(z) · · · HsM ,pM (z)

⎤
⎥⎥⎥⎦ ,

ya,p(z) =
[
Yp1(z) Yp2(z) · · · YpM

(z)
]T

.
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Let Gp(z) be the M × M matrix obtained from the system’s channel matrix
G(z) by keeping its rows corresponding to the M selected output signals.
Then similar to (8.5), we have

ya,p(z) = Gp(z)s(z) + va,p(z), (8.26)

where
va,p(z) =

[
Vp1(z) Vp2(z) · · · VpM

(z)
]T

.

Substituting (8.26) into (8.25) yields

ys,p(z) = Hs,p(z)Gp(z)s(z) + Hs,p(z)va,p(z). (8.27)

In order to remove the CCI, the objective here is to find the matrix Hs,p(z)
whose components are linear combinations of Gnm(z) such that the product
Hs,p(z)Gp(z) would be a diagonal matrix. Consequently, we have

Ysm,p(z) = Fsm,p(z)Sm(z) + Vsm,p(z), (8.28)
m = 1, 2, . . . ,M, p = 1, 2, . . . , P.

If Cp(z) [obtained from C(z) in a similar way as Gp(z) is constructed] is
not equal to the identity matrix, then Gp(z) = G′

p(z)Cp(z), where G′
p(z) has

full column normal rank1 (i.e. nrank
[
G′

p(z)
]

= M , see [214] for a definition
of normal rank), as we assume for separability of CCI and reverberation in a
MIMO system. Thereafter, the CCI-free signals are determined as

y′
s,p(z) = H′

s,p(z)G′
p(z)Cp(z)s(z) + H′

s,p(z)va,p(z), (8.29)

and
Y ′

sm,p(z) = F ′
sm,p(z)Sm(z) + V ′

sm,p(z). (8.30)

Obviously a good choice for H′
s,p(z) to make the product H′

s,p(z)G′
p(z)

a diagonal matrix is the adjoint of matrix G′
p(z), i.e., the (i, j)-th element

of H′
s,p(z) is the (j, i)-th cofactor of G′

p(z). Consequently, the polynomial
F ′

sm,p(z) would be the determinant of G′
p(z). Since G′

p(z) has full column
normal rank, its determinant is not equal to zero and the polynomial F ′

sm,p(z)
is not trivial.

Since

F ′
sm,p(z) =

M∑
q=1

H ′
sm,pq(z)Gpqm(z) (8.31)

and H ′
sm,pq(z) (q = 1, 2, . . . , M) are co-prime, the polynomials F ′

sm,p(z) (p =
1, 2, . . . , P ) share common zeros if and only if the polynomials Gnm(z) (n =
1, 2, . . . , N) share common zeros. Therefore, if the channels with respect to

1 For a square matrix M×M , the normal rank is full if and only if the determinant,
which is a polynomial in z, is not identically zero for all z. In this case, the rank
is less than M only at a finite number of points in the z plane.
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any one input are co-prime for an M × N MIMO system, we can convert it
into M CCI-free SIMO systems whose P channels are also co-prime, i.e., their
channel matrices are irreducible.

Also, it can easily be checked that deg
[
F ′

sm,p(z)
] ≤ M(Lg−1). As a result,

the length of the FIR filter f ′
sm,p would be

Lf ≤ M(Lg − 1) + 1. (8.32)

Before we finish this section, we would like to comment in a little bit
more detail on the condition for separability of the interference caused by
competing sources and the interference caused by reverberation in a MIMO
system. For an M × M MIMO system or an M × M subsystem of a larger
M × N (M < N) MIMO system, it is now clear that the reduced channel
matrix G′

p(z) needs to have full column normal rank such that the CCI and
reverberation are separable. But what happens and why is the CCI unable
to be separated from the reverberation if G′

p(z) does not have full column
normal rank?

Let’s first examine a 2× 2 system and its reduced channel matrix is given
by

G′
p(z) =

[
G′

p,11(z) G′
p,12(z)

G′
p,21(z) G′

p,22(z)

]
. (8.33)

If G′
p(z) does not have full column normal rank, then there exist two non-zero

polynomials A1(z) and A2(z) such that[
G′

p,11(z)
G′

p,21(z)

]
A1(z) =

[
G′

p,12(z)
G′

p,22(z)

]
A2(z), (8.34)

or equivalently

G′
p(z)

[
A1(z)
−A2(z)

]
= 0. (8.35)

As a result, in the absence of noise, we know that

Yp,1(z) = −A2(z)
A1(z)

Yp,2(z), (8.36)

which implies that the MISO systems corresponding to the two outputs are
identical up to a constant filter. Therefore the 2 × 2 MIMO is reduced to a
2 × 1 MISO system where the number of inputs is greater than the number
of outputs and the CCI cannot be separated from the reverberation.

For an M × M MIMO system with M > 2, if G′
p(z) does not have full

column normal rank, then there are only
{
nrank

[
G′

p(z)
]}

independent MISO
systems and the other

{
M − nrank

[
G′

p(z)
]}

MISO systems can be reduced.
This indicates that the MIMO system has essentially more inputs than outputs
and the CCI cannot be separated from the reverberation.

Extracting Cm(z) (m = 1, 2, . . . , M) from the mth column of G(z) (if
necessary) is intended to reduce the SIMO system with respect to each input.
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The purpose of examining the column normal rank of G′
p(z) is to check the

dependency of the MISO systems associated with the outputs. For the M ×N
MIMO systems (M < N), the column normal rank of G′(z) actually indicates
how many MISO subsystems are independent. As long as nrank [G′(z)] ≥ M ,
there exists at least one M × M subsystem whose M MISO systems are all
independent and whose CCI and reverberation are separable. Therefore the
condition for separability of CCI and reverberation in an M × N MIMO
system is nothing more than to require that there are more effective outputs
than inputs. This condition is quite commonly met in practice, particularly
in acoustic systems.

8.4 Speech Dereverberation

Reverberation is one of the two major causes (the other is noise) of speech
degradation. It leads to temporal and spectral smearing, which would distort
both the envelope and fine structure of a speech signal. As a result, speech
becomes difficult to be understood in the presence of room reverberation,
especially for hearing-impaired and elderly people [170] and for automatic
speech recognition systems [143], [193]. This gives rise to a strong need for
effective speech dereverberation algorithms in speech processing and speech
communication systems.

Using the technique developed in the previous section, we can separate the
co-channel interference and reverberation in an acoustic MIMO system. While
the outputs are free of co-channel interference, they sound probably more
reverberant since the equivalent channel impulses are prolonged. Consequently
a second-step processing of dereverberation is not simply preferable, but rather
imperative.

According to [126], speech dereverberation methods can be classified into
the following three groups: speech-source-model-based dereverberation, sep-
aration of speech and reverberation via homomorphic transformation, and
speech dereverberation by channel inversion and equalization. In the context
of this chapter, while the first two classes of speech dereverberation methods
can also be applied, we think that the third class is a more relevant technique.
Therefore we choose to discuss only channel inverse and equalization methods
for speech dereverberation in this section. Three widely used algorithms will
be developed, namely the direct inverse (also called zero forcing) method, the
minimum mean square error (MMSE) or least-squares (LS) method, and the
multichannel inverse theorem (MINT) method. The first two methods work
for SISO systems and the third for SIMO systems as illustrated in Fig. 8.3.

8.4.1 Direct Inverse

Among all existing channel inversion methods, the most straightforward is
the direct inverse method. This method assumes that the acoustic channel
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Fig. 8.3. Illustration of three widely-used channel equalization approaches to speech
dereverberation: (a) direct inverse (or zero-forcing), (b) minimum mean square error
(or least-squares), and (c) the MINT method.

impulse response is known or has already been estimated. Then as shown in
Fig. 8.3(a), the equalizer filter is determined by inverting the channel transfer
function G(z) which is the z-transform of the channel impulse response:

H(z) =
1

G(z)
. (8.37)

In practice, the inverse filter h needs to be stable and causal. It is well known
that the poles of a stable, causal, and rational system must be inside the unit
circle in the z-plane. As a result, a stable, causal system has a stable and
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causal inverse only if both its poles and zeros are inside the unit circle. Such a
system is commonly referred to as a minimum-phase system [177]. Although
many systems are minimum phase, room acoustic impulse responses are un-
fortunately almost never minimum phase [171]. Consequently, while a stable
inverse filter still can be found by using an all-pass filter, the inverse filter
will be IIR, which is noncausal and has a long delay. In addition, inverting
a transfer function is sensitive to estimation errors in the channel impulse
response, particularly at those frequencies where the channel transfer func-
tion has a small amplitude. These drawbacks make direct-inverse equalizers
impracticable for real-time speech dereverberation systems.

8.4.2 Minimum Mean-Square Error and Least-Squares Methods

If a reference source signal rather than an estimate of the acoustic channel
impulse response is available, we can directly apply a linear equalizer to the
microphone signal and adjust the equalizer coefficients such that the output
can be as close to the reference as possible, as shown in Fig. 8.3(b). The error
signal is defined as

e(k) = s(k − τ) − ŝ(k)
= s(k − τ) − h ∗ y(k), (8.38)

where τ is the decision delay for the equalizer. Then the equalization filter h
is determined as the one that either minimizes the mean square error or yields
the least squares of the error signal:

ĥMMSE = arg min
h

E
{
e2(k)

}
, (8.39)

ĥLS = arg min
h

K−1∑
k=0

e2(k), (8.40)

where K is the number of observed data samples. This is a typical problem
in estimation theory. The solution can be found with well-known adaptive or
recursive algorithms.

For minimum-phase single-channel systems, it can be shown that the
MMSE/LS equalizer is the same as the direct-inverse or zero-forcing equalizer.
But for non-minimum-phase acoustic systems, the MMSE/LS method essen-
tially equalizes the channel by inverting only those components whose zeros
are inside the unit circle [166]. In addition, it is clear that, for the MMSE/LS
equalizer, a reference signal needs to be accessible. However, although the
MMSE/LS method has these limitations, it is quite useful in practice and has
been successfully applied to many speech dereverberation systems.

8.4.3 MINT Method

For a SIMO system, let’s consider the polynomials Hn(z) (n = 1, 2, . . . , N)
and the following equation:
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Ŝ(z) =
N∑

n=1

Hn(z)Yn(z)

=

[
N∑

n=1

Hn(z)Gn(z)

]
S(z) +

N∑
n=1

Hn(z)Vn(z). (8.41)

The polynomials Hn(z) should be found in such a way that Ŝ(z) = S(z) in
the absence of noise by using the Bezout theorem which is mathematically
expressed as follows:

gcd [G1(z), G2(z), · · · , GN (z)] = 1

⇔ ∃ H1(z),H2(z), · · · ,HN (z) :
N∑

n=1

Hn(z)Gn(z) = 1. (8.42)

In other words, as long as the channel impulse responses gn are co-prime (even
though they may not be minimum phase), i.e., the SIMO system is irreducible,
there exists a group of h filters to completely remove the reverberations and
perfectly recover the source signal. The idea of using the Bezout theorem for
equalizing a SIMO system was first proposed in [166] in the context of room
acoustics, where the principle is more widely referred to as the MINT theory.

If the channels of the SIMO system share common zeros, i.e.,

C(z) = gcd [G1(z), G2(z), · · · , GN (z)] �= 1, (8.43)

then we have
Gn(z) = C(z)G′

n(z), n = 1, 2, · · · , N, (8.44)

and the polynomials Hn(z) can be found such that

N∑
n=1

Hn(z)G′
n(z) = 1. (8.45)

In this case, (8.41) becomes

Ŝ(z) = C(z)S(z) +
N∑

n=1

Hn(z)Vn(z). (8.46)

We see that by using the Bezout theorem, the reducible SIMO system can
be equalized up to the polynomial C(z). So when there are common zeros,
the MINT equalizer can only partially suppress the reverberations. For more
complete cancellation of the room reverberations, we have to combat the effect
of C(z) using either the direct inverse or MMSE/LS methods, which depends
on whether C(z) is a minimum phase filter.

To find the MINT equalization filters, we write the Bezout equation (8.42)
in the time domain as
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GT h =
N∑

n=1

GT
nhn = u1, (8.47)

where

G =
[
GT

1 GT
2 · · · GT

N

]T
,

h =
[
hT

1 hT
2 · · · hT

N

]T
,

hn =
[
hn,0 hn,1 · · · hn,Lh−1

]T
,

Lh is the length of the FIR filter hn,

Gn =

⎡
⎢⎢⎢⎣

gn,0 · · · gn,Lg−1 0 · · · 0
0 gn,0 · · · gn,Lg−1 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 gn,0 · · · gn,Lg−1

⎤
⎥⎥⎥⎦

Lh×L

, n = 1, 2, . . . , N,

is a Sylvester matrix of size Lh×L, with L = Lg+Lh−1, and u1 =
[
1 0 · · · 0

]T
is a vector of length L.

In order to have a unique solution for (8.47), Lh must be chosen in such a
way that G is a square matrix. In this case, we have

Lh =
Lg − 1
N − 1

. (8.48)

However, this may not be practical since (Lg − 1)/(N − 1) is not necessarily
always an integer. Therefore, a larger Lh is usually chosen and solve (8.47)
for h in the least squares sense as follows:

ĥMINT = GT †
u1, (8.49)

where
GT †

=
(
GGT

)−1
G

is the pseudo-inverse of the matrix GT .
If a decision delay τ is taken into account, then the equalization filters

turn out to be
ĥMINT = GT †

uτ , (8.50)

where uτ =
[
0 · · · 0 1 0 · · · 0

]T is a vector of length L with all elements being
zeros except its τth element being one.

MINT equalization is an appealing approach to speech dereverberation.
As long as the channels do not share any common zeroes, it can perfectly re-
move the effect of room reverberation even though acoustic impulse responses
are not minimum phase. But in practice, the MINT method was found very
sensitive to even small errors in the estimated channel impulse responses.
Therefore, it is only useful when background noise is weak or well controlled.

All the approaches developed in this chapter can be implemented in sub-
bands [229], [240]. This will reduced the computational load and sometimes
may be even more robust to noise or estimation errors [83].
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8.5 Conclusions

In this chapter, we continued to study the problem of separation and derever-
beration using a microphone array and developed a two-stage approach. When
there are multiple sound sources simultaneously in a reverberant environment,
the outputs of the microphone array observe both co-channel interference and
reverberation. In order to recover the source signals, spatio-temporal equal-
ization needs to be performed to suppress or even cancel these interference
signals. But instead of finding a solution in one step as we did in the previ-
ous chapter, we showed that co-channel interference and reverberation can be
separated by converting an M ×N MIMO system with M < N into M SIMO
systems that are free of co-channel interference. In the process of developing
such a conversion technique, insight was highlighted about the interactions be-
tween co-channel interference and reverberation in acoustic MIMO systems.
We also briefly reviewed traditional and emerging algorithms for speech dere-
verberation by channel inverse and equalization. They included the direct
inverse (or zero forcing), the MMSE (or LS), and the MINT methods.
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Direction-of-Arrival and
Time-Difference-of-Arrival Estimation

9.1 Introduction

In the previous chapters we have studied how to use a microphone array to
enhance a desired target signal and suppress unwanted noise and interference.
Another major functionality of microphone array signal processing is the es-
timation of the location from which a source signal originates. Depending on
the distance between the source and the array relatively to the array size, this
estimation problem can be divided into two sub problems, i.e., direction-of-
arrival (DOA) estimation and source localization.

The DOA estimation deals with the case where the source is in the array’s
far-field, as illustrated in Fig. 9.1. In this situation, the source radiates a plane
wave having the waveform s(k) that propagates through the non-dispersive
medium-air. The normal to the wavefront makes an angle θ with the line join-
ing the sensors in the linear array, and the signal received at each microphone
is a time delayed/advanced version of the signal at a reference sensor. To see
this, let us choose the first sensor in Fig. 9.1 as the reference point and denote
the spacing between the two sensors as d. The signal at the second sensor is
delayed by the time required for the plane wave to propagate through d cos θ.
Therefore, the time difference (time delay) between the two sensors is given
by τ12 = d cos θ/c, where c is the sound velocity in air. If the angle ranges
between 0◦ and 180◦ and if τ12 is known then θ is uniquely determined, and
vice versa. Therefore, estimating the incident angle θ is essentially identical to
estimating the time difference τ12. In other words, the DOA estimation prob-
lem is the same as the so-called time-difference-of-arrival (TDOA) estimation
problem in the far-field case.

Although the incident angle can be estimated with the use of two or more
sensors, the range between the sound source and the microphone array is
difficult (if not impossible) to determine if the source is in the array’s far-field.
However, if the source is located in the near-field, as illustrated in Fig. 9.2, it
is now possible to estimate not only the angle from which the wave ray reaches
each sensor but also the distance between the source and each microphone.
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Fig. 9.1. Illustration of the DOA estimation problem in 2-dimensional space with
two identical microphones: the source s(k) is located in the far-field, the incident
angle is θ, and the spacing between the two sensors is d.

To see this, let us consider the simple example shown in Fig. 9.2. Again,
we choose the first microphone as the reference sensor. Let θn and rn denote,
respectively, the incident angle and the distance between the sound source and
microphone n, n = 1, 2, 3. The TDOA between the second and first sensors is
given by

τ12 =
r2 − r1

c
, (9.1)

and the TDOA between the third and first sensors is

τ13 =
r3 − r1

c
. (9.2)

Applying the cosine rule, we obtain

r2
2 = r2

1 + d2 + 2r1d cos(θ1) (9.3)

and

r2
3 = r2

1 + 4d2 + 4r1d cos(θ1). (9.4)

For a practical array system, the spacing d can always be measured once the
array geometry is fixed. If τ12 and τ13 are available then we can calculate
all the unknown parameters θ1, r1, r2, and r3 by solving the equations from
(9.1) to (9.4). Further applying the sine rule, we can obtain an estimate of θ2
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Fig. 9.2. Illustration of the source localization problem with an equispaced linear
array: the source s(k) is located in the near-field, and the spacing between any two
neighboring sensors is d.

and θ3. Therefore, all the information regarding the source position relatively
to the array can be determined using the triangulation rule once the TDOA
information is available. This basic triangulation process forms the foundation
for most of the source-localization techniques, even though many algorithms
may formulate and solve the problem from a different theoretical perspective
[7], [26], [71], [74], [97], [116], [117], [188], [204], [221], [222], [223], [226].

Therefore, regardless if the source is located in the far-field or near-field,
the most fundamental step in obtaining the source-origin information is the
one of estimating the TDOA between different microphones. This estimation
problem would be an easy task if the received signals were merely a delayed
and scaled version of each other. In reality, however, the source signal is gen-
erally immersed in ambient noise since we are living in a natural environment
where the existence of noise is inevitable. Furthermore, each observation signal
may contain multiple attenuated and delayed replicas of the source signal due
to reflections from boundaries and objects. This multipath propagation effect
introduces echoes and spectral distortions into the observation signal, termed
as reverberation, which severely deteriorates the source signal. In addition,
the source may also move from time to time, resulting in a changing time de-
lay. All these factors make TDOA estimation a complicated and challenging
problem.

This chapter discusses the basic ideas underlying TDOA estimation. We
will begin our discussion with scenarios where there is only a single source in
the sound field. We will then explore what approaches can be used to improve
the robustness of TDOA estimation with respect to noise and reverberation.
Many fundamental ideas developed for the single-source TDOA estimation
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Fig. 9.3. Illustration of the ideal free-field single-source model.

can be extended to the multiple-source situation. To illustrate this, we will
discuss the philosophy underlying multiple-source TDOA estimation.

9.2 Problem Formulation and Signal Models

The TDOA estimation problem is concerned with the measurement of time
difference between the signals received at different microphones. Depending
on the surrounding acoustic environment, we consider two situations: the free-
field environment where each sensor receives only the direct-path signal, and
reverberant environments where each sensor may receive a large number of
reflected signals in addition to the direct path. For each situation, we differen-
tiate the single-source case from the multiple-source scenario since the estima-
tion principles and complexity in these two conditions may not necessarily be
the same. So, in total, we consider four signal models: the single-source free-
field model, the multiple-source free-field model, the single-source reverberant
model, and the multiple-source reverberant model.

9.2.1 Single-Source Free-Field Model

Suppose that there is only one source in the sound field and we use an array
of N microphones. In an anechoic open space as shown in Fig. 9.3, the speech
source signal s(k) propagates radiatively and the sound level falls off as a
function of distance from the source. If we choose the first microphone as the
reference point, the signal captured by the nth microphone at time k can be
expressed as follows:
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yn(k) = αns (k − t − τn1) + vn(k) (9.5)
= αns [k − t −Fn(τ)] + vn(k)
= xn(k) + vn(k), n = 1, 2, . . . , N,

where αn (n = 1, 2, . . . , N), which range between 0 and 1, are the attenuation
factors due to propagation effects, s(k) is the unknown source signal, t is the
propagation time from the unknown source to sensor 1, vn(k) is an additive
noise signal at the nth sensor, which is assumed to be uncorrelated with both
the source signal and the noise observed at other sensors, τ is the TDOA (also
called relative delay) between sensors 1 and 2, and τn1 = Fn(τ) is the TDOA
between sensors 1 and n with F1(τ) = 0 and F2(τ) = τ . For n = 3, . . . , N ,
the function Fn depends not only on τ but also on the microphone array
geometry. For example, in the far-field case (plane wave propagation), for a
linear and equispaced array, we have

Fn(τ) = (n − 1)τ, n = 2, . . . , N, (9.6)

and for a linear but non-equispaced array, we have

Fn(τ) =
∑n−1

i=1 di

d1
τ, n = 2, . . . , N, (9.7)

where di is the distance between microphones i and i + 1 ( i = 1, . . . , N − 1).
In the near-field case, Fn depends also on the position of the sound source.
Note that Fn(τ) can be a nonlinear function of τ for a nonlinear array geom-
etry, even in the far-field case (e.g., 3 equilateral sensors). In general τ is not
known, but the geometry of the array is known such that the mathematical
formulation of Fn(τ) is well defined or given. For this model, the TDE (time-
delay estimation) problem is formulated as one of determining an estimate τ̂
of the true time delay τ using a set of finite observation samples.

9.2.2 Multiple-Source Free-Field Model

Still in the anechoic environments, if there are multiple sources in the sound
field, the signal received at the nth sensor becomes

yn(k) =
M∑

m=1

αnmsm [k − tm −Fn(τm)] + vn(k) (9.8)

= xn(k) + vn(k), n = 1, 2, . . . , N,

where M is the total number of sound sources, αnm (n = 1, 2, . . . , N , m =
1, 2, . . . ,M), are the attenuation factors due to propagation effects, sm(k)
(m = 1, 2, . . . ,M) are the unknown source signals, which are assumed to be
mutually independent with each other, tm is the propagation time from the
unknown source m to sensor 1 (reference sensor), vn(k) is an additive noise



186 9 DOA and TDOA Estimation

   

.  .  .

Speech
Source

s(k)

Reverberation

Direct
Path

v1(k) v2(k) vN (k)

y1(k) y2(k) yN (k)
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signal at the nth sensor, which is assumed to be uncorrelated with not only
all the source signals but also with the noise observed at other sensors, τm is
the TDOA between sensors 2 and 1 due to the mth source, and Fn(τm) is the
TDOA between sensors n and 1 for the source m. For this model, the objective
of TDOA estimation is to determine all the parameters τm, m = 1, 2, . . . , M
using microphone observations.

9.2.3 Single-Source Reverberant Model

While the ideal free-field models have the merit of being simple, they do not
take into account the multipath effect. Therefore, such models are inadequate
to describe a real reverberant environment and we need a more comprehensive
and more informative alternative to model the effect of multipath propagation,
leading to the so-called reverberant models, which treat the acoustic impulse
response with an FIR filter. If there is only one source in the sound filed as
illustrated in Fig. 9.4, the problem can be modeled as a SIMO (single-input
multiple-output) system and the nth microphone signal is given by

yn(k) = gn ∗ s(k) + vn(k),
= xn(k) + vn(k), n = 1, 2, . . . , N, (9.9)

where gn is the channel impulse response from the source to microphone n.
In vector/matrix form, (9.9) is re-written as

yn(k) = Gns(k) + vn(k), n = 1, 2, . . . , N, (9.10)

where
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yn(k) =
[
yn(k) · · · yn(k − L + 1)

]T
,

Gn =

⎡
⎢⎣ gn,0 · · · gn,L−1 · · · 0

...
. . . . . . . . .

...
0 · · · gn,0 · · · gn,L−1

⎤
⎥⎦ ,

s(k) =
[
s(k) s(k − 1) · · · s(k − L + 1) · · · s(k − 2L + 2)

]T
,

vn(k) =
[
vn(k) · · · vn(k − L + 1)

]T
,

and L is the length of the longest channel impulse response of the SIMO
system. Again, it is assumed that vn(k) is uncorrelated with both the source
signal and the noise observed at other sensors.

In comparison with the free-field model, the TDOA τ in this reverberant
model is an implicit or hidden parameter. With such a model, the TDOA
can only be obtained after the SIMO system is “blindly” identified (since the
source signal is unknown), which looks like a more difficult problem but is
fortunately not insurmountable.

9.2.4 Multiple-Source Reverberant Model

If there are multiple sources in the sound filed, the array can be modeled
as a MIMO (multiple-input multiple-output) system with M inputs and N
outputs. At time k, we have

y(k) = GsML(k) + v(k), (9.11)

where

y(k) =
[
y1(k) y2(k) · · · yN (k)

]T
,

G =
[
G1 G2 · · · GM

]
,

Gm =

⎡
⎢⎢⎢⎣

g1m,0 g1m,1 · · · g1m,L−1

g2m,0 g2m,1 · · · g2m,L−1

...
...

. . .
...

gNm,0 gNm,1 · · · gNm,L−1

⎤
⎥⎥⎥⎦

N×L

,

m = 1, 2, . . . ,M,

v(k) =
[
v1(k) v2(k) · · · vN (k)

]T
,

sML(k) =
[
sT
1 (k) sT

2 (k) · · · sT
M (k)

]T
,

sm(k) =
[
sm(k) sm(k − 1) · · · sm(k − L + 1)

]T
.

and gnm (n = 1, 2, . . . , N , m = 1, 2, . . . ,M) is the impulse response of the
channel from source m to microphone n. Similar to the multiple-source free-
field model, we assume that all the source signals are mutually independent,
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and vn(k) is uncorrelated with not only all the source signals but also with
the noise observed at other sensors.

For this model, in order to estimate the TDOA, we have to “blindly”
identify the MIMO system, which can be an extremely difficult problem.

9.3 Cross-Correlation Method

We are now ready to investigate the algorithms for TDOA estimation. Let
us start with the most simple and straightforward method: cross-correlation
(CC). Consider the single-source free-field model with only two sensors, i.e.,
N = 2. The cross-correlation function (CCF) between the two observation
signals y1(k) and y2(k) is defined as

rCC
y1y2

(p) = E [y1(k)y2(k + p)] . (9.12)

Substituting (9.5) into (9.12), we can readily deduce that

rCC
y1y2

(p) = α1α2r
CC
ss (p − τ) + α1r

CC
sv2

(p + t) +

α2rsv1(p − t − τ) + rv1v2(p). (9.13)

If we assume that vn(k) is uncorrelated with both the signal and the noise
observed at the other sensor, it can be easily checked that rCC

y1y2
(p) reaches its

maximum at p = τ . Therefore, given the CCF, we can obtain an estimate of
the TDOA between y1(k) and y2(k) as

τ̂CC = arg max
p

rCC
y1y2

(p), (9.14)

where p ∈ [−τmax, τmax], and τmax is the maximum possible delay.
In digital implementation of (9.14), some approximations are required be-

cause the CCF is not known and must be estimated. A normal practice is
to replace the CCF defined in (9.12) by its time-averaged estimate. Sup-
pose that at time instant k we have a set of observation samples of xn,
{xn(k), xn(k + 1), · · · , xn(k + K − 1)}, n = 1, 2, the corresponding CCF can
be estimated as either

r̂CC
y1y2

(p) =

⎧⎪⎨
⎪⎩

1
K

K−p−1∑
i=0

y1(k + i)y2(k + i + p), p ≥ 0

r̂CC
y2y1

(−p), p < 0

, (9.15)

or

r̂CC
y1y2

(p) =

⎧⎪⎨
⎪⎩

1
K − p

K−p−1∑
i=0

y1(k + i)y2(k + i + p), p ≥ 0

r̂CC
y2y1

(−p), p < 0

, (9.16)
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Fig. 9.5. CCF between y1(k) and y2(k): the source is a narrowband signal, the
incident angle is θ = 0◦, there is no noise, i.e., vn(k) = 0, the spacing between the
two sensors is d = 8 cm, and the sampling frequency is 16 kHz.

where K is the block size. The difference between (9.15) and (9.16) is that the
former leads to a biased estimator, while the latter is an unbiased one. How-
ever, since it has a lower estimation variance and is asymptotically unbiased,
the former has been widely adopted in many applications.

The CC method is simple to implement. However, its performance is often
affected by many factors such as signal self correlation, reverberation, etc.
Many efforts have been devoted to improving this method, which will be dis-
cussed in the next section. But before we finish this section, we would like to
point out one potential problem that is often neglected in TDOA estimation:
spatial aliasing. In Chapter 3, we have shown that spatial aliasing may cause
ambiguity for the array to distinguish signals propagating from different di-
rections. Similarly, this problem will also affect the TDOA estimation. To see
this, let us consider a simple example where the source is a narrowband signal
in the form of

s(k) = cos(2πfk). (9.17)
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If we neglect both the propagation attenuation and noise effects in (9.5), we
get

y1(k) = cos[2πf(k − t)], (9.18)
y2(k) = cos[2πf(k − t − τ)]. (9.19)

Substituting (9.18) and (9.19) into (9.12), we easily obtain

rCC
y1y2

(p) = E [y1(k)y2(k + p)] =
1
2

cos[2πf(p − τ)]. (9.20)

Figure 9.5 plots the CCF for different frequencies. The spacing between the
two microphones is 8 cm. Assuming that the sound velocity is 320 m/s, one can
easily check, based on the analysis given in Section 3.3, that when f > 2 kHz,
there will be spatial aliasing for beamforming. From Fig. 9.5, we see that
when f > 2 kHz, the CCF experiences multiple peaks in the range of [−τmax,
τmax] (τmax is the maximum possible TDOA and can be determined from the
spacing between the two microphones), which makes it difficult to search for
the correct TDOA. In microphone-array applications, the source is usually
speech, which consists of rich frequency components. In order to avoid the
spatial aliasing problem and improve TDOA estimation, one should low-pass
filter the microphone signal before feeding it to the estimation algorithms. The
cutoff frequency can be calculated using the sensor spacing, i.e., fc = c/2d.

9.4 The Family of the Generalized Cross-Correlation
Methods

The generalized cross-correlation (GCC) algorithm proposed by Knapp and
Carter [145] is the most widely used approach to TDOA estimation. Same as
the CC method, GCC employs the free-field model (9.5) and considers only
two microphones, i.e., N = 2. Then the TDOA estimate between the two
microphones is obtained as the lag time that maximizes the CCF between the
filtered signals of the microphone outputs [which is often called the generalized
CCF (GCCF)]:

τ̂GCC = arg max
τ

rGCC
y1y2

(p), (9.21)

where

rGCC
y1y2

(p) = F−1 [Ψy1y2(f)]

=
∫ ∞

−∞
Ψy1y2(f)ej2πfpdf

=
∫ ∞

−∞
ϑ(f)φy1y2(f)ej2πfpdf (9.22)

is the GCC function, F−1[·] stands for the inverse discrete-time Fourier trans-
form (IDTFT),
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φy1y2(f) = E [Y1(f)Y ∗
2 (f)] (9.23)

is the cross-spectrum with

Yn(f) =
∑

k

yn(k)e−j2πfk, n = 1, 2,

ϑ(f) is a frequency-domain weighting function, and

Ψy1y2(f) = ϑ(f)φy1y2(f) (9.24)

is the generalized cross-spectrum.
There are many different choices of the frequency-domain weighting func-

tion ϑ(f), leading to a variety of different GCC methods.

9.4.1 Classical Cross-Correlation

If we set ϑ(f) = 1, it can be checked that the GCC degenerates to the cross-
correlation method discussed in the previous section. The only difference is
that now the CCF is estimated using the discrete Fourier transform (DFT)
and the inverse DFT (IDFT), which can be implemented efficiently thanks to
the fast Fourier transform (FFT).

We know from the free-field model (9.5) that

Yn(f) = αnS(f)e−j2πf [t−Fn(τ)] + Vn(f), n = 1, 2. (9.25)

Substituting (9.25) into (9.24) and noting that the noise signal at one micro-
phone is uncorrelated with the source signal and the noise signal at the other
microphone by assumption, we have

ΨCC
y1y2

(f) = α1α2e
−j2πfτE

[
|S(f)|2

]
. (9.26)

The fact that ΨCC
y1y2

(f) depends on the source signal can be detrimental for
TDOA estimation since speech is inherently non-stationary.

9.4.2 Smoothed Coherence Transform

In order to overcome the impact of fluctuating levels of the speech source
signal on TDOA estimation, an effective way is to pre-whiten the microphone
outputs before their cross-spectrum is computed. This is equivalent to choos-
ing

ϑ(f) =
1√

E [|Y1(f)|2] E [|Y2(f)|2] , (9.27)

which leads to the so-called smoothed coherence transform (SCOT) method
[36]. Substituting (9.25) and (9.27) into (9.24) produces the SCOT cross-
spectrum:
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ΨSCOT
y1y2

(f) =
α1α2e

−j2πfτE
[|S(f)|2]√

E [|Y1(f)|2] E [|Y2(f)|2]

=
α1α2e

−j2πfτE
[|S(f)|2]√

α2
1E [|S(f)|2] + σ2

v1
(f) ·

√
α2

2E [|S(f)|2] + σ2
v2

(f)

=
e−j2πfτ√

1 + 1
SNR1(f) ·

√
1 + 1

SNR2(f)

, (9.28)

where

σ2
vn

(f) = E
[|Vn(f)|2] ,

SNRn(f) =
α2

nE
[|S(f)|2]

E [|Vn(f)|2] , n = 1, 2.

If the SNRs are the same at the two microphones, then we get

ΨSCOT
x1x2

(f) =
[

SNR(f)
1 + SNR(f)

]
· e−j2πfτ . (9.29)

Therefore, the performance of the SCOT algorithm for TDOA estimation
would vary with the SNR. But when the SNR is large enough,

ΨSCOT
x1x2

(f) ≈ e−j2πfτ , (9.30)

which implies that the estimation performance is independent of the power of
the source signal. So, the SCOT method is theoretically superior to the CC
method. But this superiority only holds when the noise level is low.

9.4.3 Phase Transform

It becomes clear by examining (9.22) that the TDOA information is conveyed
in the phase rather than the amplitude of the cross-spectrum. Therefore, we
can simply discard the amplitude and only keep the phase. By setting

ϑ(f) =
1

|φy1y2(f)| , (9.31)

we get the phase transform (PHAT) method [145]. In this case, the generalized
cross-spectrum is given by

ΨPHAT
y1y2

(f) = e−j2πfτ , (9.32)

which depends only on the TDOA τ . Substituting (9.32) into (9.22), we obtain
an ideal GCC function:

rPHAT
y1y2

(p) =
∫ ∞

−∞
ej2πf(p−τ)df =

{∞, p = τ,
0, otherwise. (9.33)
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As a result, the PHAT method performs in general better than the CC and
SCOT methods for TDOA estimation with respect to a speech sound source.

The GCC methods are computationally efficient. They induce very short
decision delays and hence have a good tracking capability: an estimate is pro-
duced almost instantaneously. The GCC methods have been well studied and
are found to perform fairly well in moderately noisy and non-reverberant en-
vironments [37], [128]. In order to improve their robustness to additive noise,
many amendments have been proposed [25], [174], [175], [222]. However, these
methods still tend to break down when room reverberation is high. This is
insightfully explained by the fact that the GCC methods model the surround-
ing acoustic environment as an ideal free field and thus have a fundamental
weakness in their ability to cope with room reverberation.

9.5 Spatial Linear Prediction Method

In this section, we explore the possibility of using multiple microphones (more
than 2) to improve the TDOA estimation in adverse acoustic environments.
The fundamental underlying idea is to take advantage of the redundant in-
formation provided by multiple sensors. To illustrate the redundancy, let us
consider a three-microphone system. In such a system, there are three TDOAs,
namely τ12, τ13, and τ23. Apparently, these three TDOAs are not independent
but are related as follows: τ13 = τ12 + τ23. Such a relationship was used in
[144] and a Kalman filtering based two-stage TDE algorithm was proposed.
Recently, with a similar line of thoughts, several fusion algorithms have been
developed [55], [93], [172]. In what follows, we present a TDOA estimation
algorithm using spatial linear prediction [14], [39], which takes advantage of
the TDOA redundancy among multiple microphones in a more intuitive way.

Consider the free-field model in (9.5) with a linear array of N (N ≥ 2)
microphones. If the source is in the far-field and we neglect the noise terms,
it can be easily checked that

yn[k + Fn(τ)] = αns(k − t), ∀n = 1, 2, . . . , N. (9.34)

Therefore, y1(k) is aligned with yn[k +Fn(τ)]. From this relationship, we can
defined the forward spatial prediction error signal

e1(k, p) = y1(k) − yT
a,2:N (k, p)a2:N (p), (9.35)

where p, again, is a dummy variable for the hypothesized TDOA τ ,

ya,2:N (k, p) =
[
y2[k + F2(p)] · · · yN [k + FN (p)]

]T
, (9.36)

is the aligned (subscript a) signal vector, and

a2:N (p) =
[
a2(p) a3(p) · · · aN (p)

]T
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contains the forward spatial linear prediction coefficients. Minimizing the
mean-square value of the prediction error signal

J1(p) = E
[
e2
1(k, p)

]
(9.37)

leads to the linear system

Ra,2:N (p)a2:N (p) = ra,2:N (p), (9.38)

where

Ra,2:N (p) = E
[
ya,2:N (k, p)yT

a,2:N (k, p)
]

=

⎡
⎢⎢⎢⎣

σ2
y2

ra,y2y3(p) · · · ra,y2yN
(p)

ra,y3y2(p) σ2
y3

· · · ra,y3yN
(p)

...
...

. . .
...

ra,yN y2(p) ra,yN y3(p) · · · σ2
yN

⎤
⎥⎥⎥⎦ (9.39)

is the spatial correlation matrix of the aligned signals with

σ2
yn

= E
[
y2

n(k)
]
, n = 1, 2, . . . , N,

ra,yiyj
(p) = E {yi[k + Fi(p)]yj [k + Fj(p)]} , i, j = 1, 2, . . . , N,

and
ra,2:N (p) =

[
ra,y1y2(p) ra,y1y3(p) · · · ra,y1yN

(p)
]T

.

Substituting the solution of (9.38), which is

a2:N (p) = R−1
a,2:N (p)ra,2:N (p),

into (9.35) gives the minimum forward prediction error

e1,min(k, p) = y1(k) − yT
a,2:N (k, p)R−1

a,2:N (p)ra,2:N (p). (9.40)

Accordingly, we have

J1,min(p) = E
{
e2
1,min(k, p)

}
= σ2

y1
− rT

a,2:N (p)R−1
a,2:N (p)ra,2:N (p). (9.41)

Then we can argue that the lag time p inducing a minimum J1,min(p) would
be the TDOA between the first two microphones:

τ̂FSLP = arg min
p

J1,min(p), (9.42)

where the superscript “FSLP” stands for forward spatial linear prediction.
If there are only two microphones, i.e., N = 2, it can be easily checked

that the FLSP algorithm is identical to the CC method. However, as the num-
ber of microphones increases, the FLSP approach can take advantage of the
redundant information provided by the multiple microphones to improve the
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Fig. 9.6. Comparison of J1,min(p) for different number of microphones. (a) SNR =
10 dB and (b) SNR = −5 dB. The source (speech) is in the array’s far-field, the
sampling frequency is 16 kHz, the incident angle is θ = 75.5◦, and the true TDOA
is τ = 0.0625 ms.

TDOA estimation. To illustrate this, we consider a simple simulation example
where we have an equispaced linear array consisting of 10 omnidirectional mi-
crophones. The spacing between any two neighboring sensors is 8 cm. A sound
source located in the far-field radiates a speech signal (female) to the array,
with an incident angle of θ = 75.5◦. At each microphone, the signal is cor-
rupted by a white Gaussian noise. The microphone signals are digitized with a
sampling rate of 16 kHz. Figure 9.6 plots the cost function J1,min(p) computed
from a frame (128 ms in length) of data in two SNR conditions. When SNR
= 10 dB, it is seen that the system can achieve correct estimation of the true
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TDOA with only two microphones. However, as the number of microphone
increases, the valley of the cost function becomes better defined, which will
enable an easier search of the minimum. When SNR drops to −5 dB, this time
the estimate with two microphones is incorrect. But when 4 or more micro-
phones are employed, the system produces a correct estimate. Both situations
clearly indicate that the TDOA estimation performance increases with the
number of microphones

Similarly, the TDOA estimation can be developed using backward predic-
tion or interpolation with any one of the N microphone outputs being regarded
as the reference signal [39], which will be left to the reader’s investigation.

9.6 Multichannel Cross-Correlation Coefficient
Algorithm

It is seen from the previous section that the key to the spatial prediction based
techniques is the use of the spatial correlation matrix. A more natural way
of using the spatial correlation matrix in TDOA estimation is through the
so-called multichannel cross-correlation coefficient (MCCC) [14], [39], which
measures the correlation among the outputs of an array system and can be
viewed as a seamless generalization of the classical cross-correlation coefficient
to the multichannel case and where there are multiple random processes.

Following (9.36), we define a new signal vector

ya(k, p) =
[
y1(k) y2[k + F2(p)] · · · yN [k + FN (p)]

]T
. (9.43)

Similar to (9.39), we can now write the corresponding spatial correlation ma-
trix as

Ra(p) = E
[
ya(k, p)yT

a (k, p)
]

=

⎡
⎢⎢⎢⎣

σ2
y1

ra,y1y2(p) · · · ra,y1yN
(p)

ra,y2y1(p) σ2
y2

· · · ra,y2yN
(p)

...
...

. . .
...

ra,yN y1(p) ra,yN y2(p) · · · σ2
yN

⎤
⎥⎥⎥⎦ . (9.44)

The spatial correlation matrix Ra(p) can be factored as

Ra(p) = ΣR̃a(p)Σ, (9.45)

where

Σ =

⎡
⎢⎢⎢⎣

σy1 0 · · · 0
0 σy2 · · · 0
...

...
. . .

...
0 · · · 0 σyN

⎤
⎥⎥⎥⎦
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is a diagonal matrix,

R̃a(p) =

⎡
⎢⎢⎢⎣

1 ρa,y1y2(p) · · · ρa,y1yN
(p)

ρa,y2y1(τ) 1 · · · ρa,y2yN
(p)

...
...

. . .
...

ρa,yN y1(p) ρa,yN y2(p) · · · 1

⎤
⎥⎥⎥⎦

is a symmetric matrix, and

ρa,yiyj
(p) =

ra,yiyj
(p)

σyi
σyj

, i, j = 1, 2, . . . , N,

is the correlation coefficient between the ith and jth aligned microphone sig-
nals.

Since the matrix R̃a(p) is symmetric and positive semi-definite, and its
diagonal elements are all equal to one, it can be shown that [14], [39]

0 ≤ det
[
R̃a(p)

]
≤ 1, (9.46)

where det(·) stands for determinant.
If there are only two channel, i.e., N = 2, it can be easily checked that the

squared correlation coefficient is linked to the normalized spatial correlation
matrix by

ρ2
a,y1y2

(p) = 1 − det
[
R̃a(p)

]
. (9.47)

Then by analogy, the squared MCCC among the N aligned signals yn[k +
Fn(p)], n = 1, 2, . . . , N , is constructed as

ρ2
a,y1:yN

(p) = 1 − det
[
R̃a(p)

]
(9.48)

= 1 − det [Ra(p)]∏N
n=1 σ2

yn

.

The MCCC has the following properties (presented without proof) [14], [39]:

1. 0 ≤ ρ2
a,y1:yN

(p) ≤ 1;
2. if two or more signals are perfectly correlated, then ρ2

a,y1:yN
(p) = 1;

3. if all the signals are completely uncorrelated with each other, then
ρ2
a,y1:yN

(p) = 0;
4. if one of the signals is completely uncorrelated with the N−1 other signals,

then the MCCC will measure the correlation among those N−1 remaining
signals.

Using the definition of the MCCC, we deduce an estimate of the TDOA
between the first two microphone signals as

τ̂MCCC = arg max
p

ρ2
a,y1:yN

(p), (9.49)
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which is equivalent to computing

τ̂MCCC = arg max
p

{
1 − det

[
R̃a(p)

]}
= arg max

p

{
1 − det [Ra(p)]∏N

n=1 σ2
yn

}

= arg min
p

det
[
R̃a(p)

]
= arg min

p
det [Ra(p)] . (9.50)

To illustrate the TDOA estimation with the MCCC algorithm, we study
the same example that was used in Section 9.5. The cost function det [Ra(p)]
computed for the same frame of data used in Fig 9.6 is plotted in Fig 9.7. It
is clearly seen that the algorithm achieves better estimation performance as
more microphones are used.

To investigate the link between the MCCC and FSLP methods, let us
revisit the spatial prediction error function given by (9.41). We define

a(p) =
[
a1(p) a2(p) · · · aN (p)

]T
=
[
a1(p) aT

2:N (p)
]T

. (9.51)

Then, for a1(p) = −1, the forward spatial prediction error signal (9.35) can
be written as

e1(k, p) = −yT
a (k, p)a(p), (9.52)

and (9.37) can be expressed as

J1(p) = E
[
e2
1(k, p)

]
+ µ

[
uT a(p) + 1

]
= aT (p)Ra(p)a(p) + µ

[
uT a(p) + 1

]
, (9.53)

where µ is a Lagrange multiplier introduced to force a1(p) to have the value
−1 and

u =
[
1 0 · · · 0

]T
.

Taking the derivative of (9.53) with respect to a(p) and setting the result to
zero yields

∂J1(p)
∂a(p)

= 2Ra(p)a(p) + µu = 0N×1. (9.54)

Solving (9.54) for a(p) produces

a(p) = −µR−1
a (p)u
2

. (9.55)

Substituting (9.55) into (9.53) leads to

J1(p) = µ

[
1 − uT R−1

a (p)u
4

µ

]
, (9.56)
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Fig. 9.7. Comparison of det [Ra(p)] for an equispaced linear array with different
number of microphones. (a) SNR = 10 dB and (b) SNR = −5 dB. The source
is in the array’s far-field, the sampling frequency is 16 kHz, the incident angle is
θ = 75.5◦, and the true TDOA is τ = 0.0625 ms.

from which we know that

J1,min(p) =
1

uT R−1
a (p)u

. (9.57)

Substituting (9.45) into (9.57) and using the fact that

Σ−1u =
u

σy1

,

we have
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J1,min(p) =
σ2

y1

uT R̃−1
a (p)u

. (9.58)

Note that uT R̃−1
a (p)u is the (1, 1)th element of the matrix R̃−1

a (p), which is
computed using the adjoint method as the (1, 1)th cofactor of R̃a(p) divided
by the determinant of R̃a(p), i.e.,

uT R̃−1
a (p)u =

det
[
R̃a,2:N(p)

]
det

[
R̃a(p)

] , (9.59)

where R̃a,2:N(p) is the lower-right submatrix of R̃a(p) by removing the first
row and the first column. By substituting (9.59) into (9.58), we get

J1,min(p) = σ2
y1

·
det

[
R̃a(p)

]
det

[
R̃a,2:N(p)

] . (9.60)

Therefore, the FSLP estimate of τ is found as

τ̂FSLP = arg min
p

J1,min(p)

= arg min
p

det
[
R̃a(p)

]
det

[
R̃a,2:N(p)

] . (9.61)

Comparing (9.50) to (9.61) reveals a clear distinction between the two methods
in spite of high similarity. In practice, the FSLP method may suffer numerical
instabilities since the calculation of the FSLP cost function (9.60) involves
the division by det

[
R̃a,2:N(p)

]
, while the MCCC method is found to be fairly

stable. If we compare Figs. 9.6 and 9.7, one can notice that the peak of the
MCCC cost function is better defined than that of the FSLP function, which
indicates that the MCCC algorithm is superior to the FSLP method.

It is worth pointing out that the microphone outputs can be pre-whitened
before computing their MCCC as was done in the PHAT algorithm in the
two-channel scenario. By doing so, the TDOA estimation algorithms become
more robust to the volume variation of the speech source signal.

9.7 Eigenvector-Based Techniques

Another way to use the spatial correlation matrix for TDOA estimation is
through the eigenvector-based techniques. These techniques were originally
developed in radar for DOA estimation [184], [192], [198], and have been
recently extended to processing a broadband speech using microphone arrays
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[58]. We start with the narrowband formulation since it is much easier to
comprehend. We consider the single-source free-field model in (9.5) with N
microphones. For ease of analysis, we assume that the source is in the array’s
far-field, all the attenuation coefficients αn are equal to 1, and the observation
noises vn(k), n = 1, 2, . . . , N , are mutually independent Gaussian random
processes with the same variance.

9.7.1 Narrowband MUSIC

If we transform both sides of (9.5) into the frequency domain, the nth micro-
phone output can be written as

Yn(f) = Xn(f) + Vn(f)
= S(f)e−j2π[t+Fn(τ)]f + Vn(f), (9.62)

where Yn(f), Xn(f), Vn(f), and S(f) are, respectively, the DTFT of yn(k),
xn(k), vn(k), and s(k). Let us define the following frequency-domain vector:

⇀y =
[
Y1(f) Y2(f) · · ·YN (f)

]T
. (9.63)

Substituting (9.62) into (9.63), we get

⇀y = ⇀x + ⇀v

= ς(τ)S(f)e−j2πtf + ⇀v, (9.64)

where

ς(τ) =
[
e−j2πF1(τ)f e−j2πF2(τ)f · · · e−j2πFN (τ)f

]T
,

and ⇀v is defined similarly to ⇀y. It follows that the output covariance matrix
can be written as

RY = E
(

⇀y⇀yH
)

= RX + σ2
V I, (9.65)

where

RX = σ2
Sς(τ)ςH(τ), (9.66)

and σ2
S = E[|S(f)|2] and σ2

V = E[|V1(f)|2] = · · · = E[|VN (f)|2] are, respec-
tively, the signal and noise variances. It can be easily checked that the positive
semi-definite matrix RX is of rank 1. Therefore, if we perform the eigenvalue
decomposition of RY , we obtain

RY = BΛBH , (9.67)

where
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Λ = diag[λY,1 λY,2 · · · λY,N ]
= diag[λX,1 + σ2

V σ2
V · · · σ2

V ] (9.68)

is a diagonal matrix consisting of the eigenvalues of RY ,

B =
[
b1 b2 · · ·bN

]
, (9.69)

bn is the eigenvector associated with the eigenvalue λY,n, and λX,1 is the only
non-zero positive eigenvalue of RX .

Therefore, for n ≥ 2, we have

RY bn = λY,nbn = σ2
V bn. (9.70)

We also know that

RY bn =
[
σ2

Sς(τ)ςH(τ) + σ2
V I
]
bn. (9.71)

The combination of (9.70) and (9.71) indicates that

σ2
Sς(τ)ςH(τ)bn = 0, (9.72)

which is equivalent to

ςH(τ)bn = 0 (9.73)

or

bH
n ς(τ) = 0 (9.74)

This is to say that the eigenvectors associated with the N−1 lowest eigenvalues
of RY are orthogonal to the vector corresponding to the actual TDOA. This
remarkable observation forms the cornerstone for almost all eigenvector-based
algorithms. If we form the following cost function

JMUSIC(p) =
1

N∑
n=2

∣∣bH
n ς(p)

∣∣2 , (9.75)

where the subscript “MUSIC” stands for MUltiple SIgnal Classification (MU-
SIC) [198]. The lag time p that gives the maximum of JMUSIC(p) corresponds
to the TDOA τ :

τ̂MUSIC = arg max
p

JMUSIC(p). (9.76)
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9.7.2 Broadband MUSIC

While the narrowband formulation of the MUSIC algorithm is straightfor-
ward to follow, it does not work well for microphone arrays because speech is
nonstationary in nature. Even during the presence of speech, each frequency
band may not permanently be occupied with speech, and for a large percent-
age of the time the band may consist of noise only. One straightforward way
of circumventing this issue is to fuse the cost function given in (9.75) across
all the frequency bands before searching for the TDOA. This fusion method
will, in general, make the peak less well defined, thereby degrading the es-
timation performance. A more natural broadband MUSIC formulation has
been recently developed [58]. This broadband MUSIC is derived based on the
spatial correlation matrix defined in Section 9.5. Let us rewrite the alignment
signal vector given in (9.43),

ya,1:N (k, p) =
[
y1[k + F1(p)] y2[k + F2(p)] · · · yN [k + FN (p)]

]T
, (9.77)

The spatial correlation matrix is given by

Ra(p) = E
[
ya,1:N (k, p)yT

a,1:N (k, p)
]

= Rs(p) + σ2
vI, (9.78)

where the source signal covariance matrix Rs(p) is given by

Rs(p) =

⎡
⎢⎢⎢⎣

σ2
s rss,12(p, τ) · · · rss,1N (p, τ)

rss,21(p, τ) σ2
s · · · rss,2N (p, τ)

...
...

. . .
...

rss,N1(p, τ) rss,N2(p, τ) · · · σ2
s

⎤
⎥⎥⎥⎦ , (9.79)

and

rss,ij(p, τ) = E {s[k − t −Fi(τ) + Fi(p)]s[k − t −Fj(τ) + Fj(p)]} .(9.80)

If p = τ , we easily check that

Rs(τ) = σ2
s

⎡
⎢⎢⎢⎣

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎤
⎥⎥⎥⎦ , (9.81)

which is a matrix of rank 1. If p �= τ , the rank of this matrix de-
pends on the characteristics of the source signal. If the source signal is a
white process, we can see that Rs(p) is a diagonal matrix with Rs(p) =
diag

[
σ2

s σ2
s · · · σ2

s

]
. In this particular case, Rs(p) is of full rank. In gen-

eral, if p �= τ , Rs(p) is positive semi-definite, and its rank is greater than
1. Let us perform the eigenvalue decomposition of Ra(p) and Rs(p). Let
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λs,1(p) ≥ λs,2(p) ≥ · · · ≥ λs,N (p) denote the N eigenvalues of Rs(p). Then
the N eigenvalues of Ra(p) are given by

λy,n(p) = λs,n(p) + σ2
v . (9.82)

Further let b1(p), b2(p), · · ·, bN (p) denote their associated eigenvectors (since
Ra(p) is symmetric and Toeplitz, all the eigenvectors are real-valued), then

Ra(p)B(p) = B(p)Λ(p), (9.83)

where

B(p) =
[
b1(p) b2(p) · · · bN (p)

]
, (9.84)

Λ(p) = diag
[
λy,1(p) λy,2(p) · · · λy,N (p)

]
. (9.85)

When p = τ , we already know that Rs(τ) is of rank 1. Therefore, for n ≥ 2,
we have

Ra(τ)bn(τ) =
[
Rs(τ) + σ2

vI
]
bn(τ) = σ2

vbn(τ), (9.86)

which implies

bT
n (p)Ra(p)bn(p) =

{
σ2

v , p = τ
λy,n(p) ≥ σ2

v , p �= τ
. (9.87)

Therefore, if we form the following function

JBMUSIC(p) =
1

N∑
n=2

bT
n (p)Ra(p)bn(p)

, (9.88)

the peak of this cost function will correspond to the true TDOA τ :

τ̂BMUSIC = arg max
p

JBMUSIC(p). (9.89)

Although the forms of the broadband and narrowband MUSIC algorithms
look similar, they are different in many aspects, such as

• the broadband algorithm can take either broadband or narrowband signals
as its inputs, while the narrowband algorithm can only work for narrow-
band signals;

• in the narrowband case, we only need to perform the eigenvalue decompo-
sition once, but in the broadband situation we will have to compute the
eigenvalue decomposition for all the spatial correlation matrices Ra(p),
−τmax ≤ p ≤ τmax;

• in the narrowband case, when p = τ , the objective function JMUSIC(p)
approaches infinity, so the peak is well defined. However, in the broadband
situation, the maximum of the cost function JBMUSIC(p) is 1/[(N − 1)σ2

v ],
which indicates that the peak may be less well-defined.
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9.8 Minimum Entropy Method

So far, we have explored the use of the cross-correlation information between
different channels for TDOA estimation. The correlation coefficient, regardless
if it is computed between two or multiple channels, is a second-order-statistics
(SOS) measure of dependence between random Gaussian variables. However
for non-Gaussian source signals such as speech, higher order statistics (HOS)
may have more to say about their dependence. This section discusses the use
of HOS for TDOA estimation through the concept of entropy.

Entropy is a statistical (apparently HOS) measure of randomness or un-
certainty of a random variable; it was introduced by Shannon in the context
of communication theory [203]. For a random variable y with a probability
density function (PDF) p(y) (note here we choose not to distinguish random
variables and their realizations), the entropy is defined as [52]

H(y) = −
∫

p(y) ln p(y)dy

= −E [ln p(y)] . (9.90)

The entropy (in the continuous case) is a measure of the structure contained
in the PDF [146]. As far as the multivariate random variable ya(k, p) given
by (9.43) is concerned, the joint entropy is

H [ya(k, p)] = −
∫

p [ya(k, p)] ln p [ya(k, p)] dya(k, p). (9.91)

It was then argued in [19] that the time lag p that gives the minimum of
H [ya(k, p)] corresponds to the TDOA between the two microphones:

τ̂ME = arg min
p

H [ya(k, p)] , (9.92)

where the superscript “ME” refers to the minimum entropy method.

9.8.1 Gaussian Source Signal

If the source is Gaussian, so are the microphone outputs in the absence of
noise. Suppose that the aligned microphone signals are zero mean and joint
Gaussian random signals. Their joint PDF is then given by

p [ya(k, p)] =
exp [−ηa(k, p)/2]√
(2π)N det [Ra(p)]

, (9.93)

where

ηa(k, p) = yT
a (k, p)R−1

a (p)ya(k, p). (9.94)

By substituting (9.93) into (9.91), the joint entropy can be computed [19] as
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H [ya(k, p)] =
1
2

ln
{
(2πe)N det [Ra(p)]

}
. (9.95)

Consequently, (9.92) becomes

τ̂ME = arg min
p

det [Ra(p)] . (9.96)

It is clear from (9.50) and (9.96) that minimizing the entropy is equivalent to
maximizing the MCCC for Gaussian source signals.

9.8.2 Speech Source Signal

Speech is a complicated random process and there is no rigorous mathematical
formula for its entropy. But in speech research, it was found that speech can
be fairly well modeled by a Laplace distribution [85], [186].

The univariate Laplace distribution with mean zero and variance σ2
y is

given by

p(y) =
√

2
2σy

e−
√

2|y|/σy , (9.97)

and the corresponding entropy is [52]

H(y) = 1 + ln
(√

2 σy

)
. (9.98)

Suppose that ya(k, p) has a multivariate Laplace distribution with mean
0 and covariance matrix Ra(p) [147], [67]:

p [ya(k, p)] =
2 [ηa(k, p)/2]Q/2

KQ

[√
2ηa(k, p)

]
√

(2π)N det [Ra(p)]
, (9.99)

where Q = (2 − N)/2 and KQ(·) is the modified Bessel function of the third
kind (also called the modified Bessel function of the second kind) given by

KQ(a) =
1
2

(a

2

)Q
∫ ∞

0

z−Q−1 exp
(
−z − a2

4z

)
dz, a > 0. (9.100)

The joint entropy is

H [ya(k, p)] =
1
2

ln
{

(2π)N det [Ra(p)]
4

}
− Q

2
E

{
ln
[
ηa(k, p)

2

]}
−

E
{

lnKQ

[√
2ηa(k, p)

]}
. (9.101)

The two quantities E {ln [ηa(k, p)/2]} and E
{

lnKQ

[√
2ηa(k, p)

]}
do not

seem to have a closed form. So a numerical scheme needs to be developed
to estimate them. One possibility to do this is the following. Assume that all
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processes are ergodic. As a result, ensemble averages can be replaced by time
averages. If there are K samples for each element of the observation vector
ya(k, p), the following estimators were proposed in [19]:

E {ln [ηa(k, p)/2]} ≈ 1
K

K−1∑
k=0

ln [ηa(k, p)/2] , (9.102)

E
{

lnKQ

[√
2ηa(k, p)

]}
≈ 1

K

K−1∑
k=0

lnKQ

[√
2ηa(k, p)

]
. (9.103)

The simulation results presented in [19] show that the ME algorithm performs
in general comparably to or better than the MCCC algorithm. Apparently
the ME algorithm is computationally intensive. But the idea of using entropy
expands our horizon of knowledge in pursuit of new TDOA estimation algo-
rithms.

9.9 Adaptive Eigenvalue Decomposition Algorithm

The adaptive eigenvalue decomposition (AED) algorithm approaches the
TDOA estimation problem from a different point of view as compared to the
methods discussed in the previous sections. Similar to the GCC family, the
AED considers only the scenario with a single source and two microphones,
but it adopts the real reverberant model instead of the free-field model. It first
identifies the two channel impulse responses from the source to the two sen-
sors, and then measures the TDOA by detecting the two direct paths. Since
the source signal is unknown, the channel identification has to be a blind
method.

Following the single source reverberant model (9.9) and the fact that, in
the absence of additive noise,

y1(k) ∗ g2 = x1(k) ∗ g2 = s(k) ∗ g1 ∗ g2 = x2(k) ∗ g1 = y2(k) ∗ g1, (9.104)

we deduce the following cross-relation in vector/matrix form at time k:

yT (k)w = yT
1 (k)g2 − yT

2 (k)g1 = 0, (9.105)

where

y(k) =
[
yT

1 (k) yT
2 (k)

]T
,

w =
[
gT

2 −gT
1

]T
,

gn =
[
gn,0 gn,1 · · · gn,L−1

]T
, n = 1, 2.

Multiplying (9.105) by y(k) from the left-hand side and taking expectation
yields
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Ryyw = 02L×1, (9.106)

where Ryy = E
[
y(k)yT (k)

]
is the covariance matrix of the two microphone

signals. This indicates that the vector w, which consists of the two impulse
responses, is in the null space of Ryy. More specifically, w is an eigenvector
of Ryy corresponding to the eigenvalue 0. If Ryy is rank deficient by 1, w can
be uniquely determined up to a scaling factor, which is equivalent to saying
that the two-channel SIMO system can be blindly identified. Using what has
been proved in [238], we know that such a two-channel acoustic SIMO sys-
tem is blindly identifiable using only the second-order statistics (SOS) of the
microphone outputs if and only if the following two conditions hold:

• the polynomials formed from g1 and g2 are co-prime, i.e., their channel
transfer functions share no common zeros;

• the autocorrelation matrix Rss = E[s(k)sT (k)] of the source signal is of
full rank (such that the SIMO system can be fully excited).

In practice, noise always exists and the covariance matrix Ryy is positive
definite rather than positive semi-definite. As a consequence, w is found as
the normalized eigenvector of Ryy corresponding to the smallest eigenvalue:

ŵ = arg min
w

wT Ryyw subject to ‖w‖ = 1. (9.107)

In the AED algorithm, solving (9.107) is carried out in an adaptive manner
using a constrained LMS algorithm:

Initialize

ĝn(0) =
[ √

2
2 0 · · · 0

]T
, n = 1, 2,

ŵ(0) =
[
ĝT

2 (0) −ĝT
1 (0)

]T
,

Compute, for k = 0, 1, . . .

e(k) = ŵT (k)y(k),

ŵ(k + 1) =
ŵ(k) − µe(k)y(k)

‖ŵ(k) − µe(k)y(k)‖ , (9.108)

where the adaptation step size µ is a small positive constant.
After the AED algorithm converges, the time difference between the direct

paths of the two identified channel impulse responses ĝ1 and ĝ2 is measured
as the TDOA estimate:

τ̂AED = arg max
l

|ĝ1,l| − arg max
l

|ĝ2,l|. (9.109)
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9.10 Adaptive Blind Multichannel Identification Based
Methods

The AED algorithm provides us a new way to look at the TDOA estimation
problem, which was found particularly robust in a reverberant environment. It
applies the more realistic real-reverberant model to a two-microphone acous-
tic system at a time and attempts to blindly identify the two-channel impulse
responses, from which the embedded TDOA information of interest is then
extracted. Clearly the blind two-channel identification technique plays a cen-
tral role in such an approach. The more accurately the two impulse responses
are blindly estimated, the more precisely the TDOA can be inferred. But for
a two-channel system, the zeros of the two channels can be close especially
when their impulse responses are long, which leads to an ill-conditioned sys-
tem that is difficult to identify. If they share some common zeros, the system
becomes unidentifiable (using only second-order statistics) and the AED algo-
rithm may not be better than the GCC methods. It was suggested in [120] that
this problem can be alleviated by employing more microphones. When more
microphones are employed, it is less likely for all channels to share a common
zero. As such, blind identification deals with a more well-conditioned SIMO
system and the solutions can be globally optimized over all channels. The re-
sulting algorithm is referred as the adaptive blind multichannel identification
(ABMCI) based TDOA estimation.

The generalization of blind SIMO identification from two channels to mul-
tiple (> 2) channels is not straightforward and in [118] a systematic way was
proposed. Consider a SIMO system with N channels whose outputs are de-
scribed by (9.10). Each pair of the system outputs has a cross-relation in the
absence of noise:

yT
i (k)gj = yT

j gi, i, j = 1, 2, . . . , N. (9.110)

When noise is present or the channel impulse responses are improperly mod-
eled, the cross-relation does not hold and an a priori error signal can be
defined as follows:

eij(k + 1) =
yT

i (k + 1)ĝj(k) − yT
j (k + 1)ĝi(k)

‖ĝ(k)‖ , i, j = 1, 2, . . . , N, (9.111)

where ĝi(k) is the model filter for the ith channel at time k and

ĝ(k) =
[
ĝT

1 (k) ĝT
2 (k) · · · ĝT

N (k)
]T

.

The model filters are normalized in order to avoid a trivial solution whose
elements are all zeros. Based on the error signal defined here, a cost function
at time k + 1 is given by

J(k + 1) =
N−1∑
i=1

N∑
j=i+1

e2
ij(k + 1). (9.112)
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The multichannel LMS (MCLMS) algorithm updates the estimate of the chan-
nel impulse responses as follows:

ĝ(k + 1) = ĝ(k) − µ∇J(k + 1), (9.113)

where µ is again a small positive step size. As shown in [118], the gradient of
J(k + 1) is computed as

∇J(k + 1) =
∂J(k + 1)

∂ĝ(k)
=

2
[
R̄y+(k + 1)ĝ(k) − J(k + 1)ĝ(k)

]
‖ĝ(k)‖2

, (9.114)

where

R̄y+(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
n�=1

R̄ynyn
(k) −R̄y2y1(k) · · · −R̄yN y1(k)

−R̄y1y2(k)
∑
n�=2

R̄ynyn
(k) · · · −R̄yN y2(k)

...
...

. . .
...

−R̄y1yN
(k) −R̄y2yN

(k) · · ·
∑
n�=N

R̄ynyn
(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and
R̄yiyj

(k) = yi(k)yT
j (k), i, j = 1, 2, . . . , N.

If the model filters are always normalized after each update, then a simplified
MCLMS algorithm is obtained

ĝ(k + 1) =
ĝ(k) − 2µ

[
R̄y+(k + 1)ĝ(k) − J(k + 1)ĝ(k)

]∥∥ĝ(k) − 2µ
[
R̄y+(k + 1)ĝ(k) − J(k + 1)ĝ(k)

]∥∥ . (9.115)

A number of other adaptive blind SIMO identification algorithms were also
developed with faster convergence and lower computational complexity, e.g.,
[119], [122]. But we would like to refer the reader to [125] and references
therein for more details.

After the adaptive algorithm converges, the TDOA τ is determined as

τ̂ABMCI = arg max
l

|ĝ1,l| − arg max
l

|ĝ2,l|. (9.116)

More generally, the TDOA between any two microphones can be inferred as

τ̂ABMCI
ij = arg max

l
|ĝi,l| − arg max

l
|ĝj,l|, i, j = 1, 2, . . . , N, (9.117)

where we have assumed that in every channel the direct path is always dom-
inant. This is generally true for acoustic waves, which would be considerably
attenuated by wall reflection. But sometimes two or more reverberant signals
via multipaths of equal delay could add coherently such that the direct-path
component no longer dominates the impulse response. Therefore a more robust
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way to pick the direct-path component is to identify the Q (Q > 1) strongest
elements in the impulse responses and choose the one with the smallest delay
[120]:

τ̂ABMCI
ij = min

[
arg max

l

q|ĝi,l|
]
− min

[
arg max

l

q|ĝj,l|
]

, (9.118)

i, j = 1, 2, . . . , N, q = 1, 2, . . . , Q,

where maxq computes the qth largest element.

9.11 TDOA Estimation of Multiple Sources

So far, we have assumed that there is only one source in the sound field. In
many applications such as teleconferencing and telecollaboration, there may
be multiple sound sources active at the same time. In this section, we consider
the problem of TDOA estimation for the scenarios where there are more than
one source in the array’s field of view. Fundamentally, the TDOA estimation in
such situations consists of two steps, i.e., determining the number of sources,
and estimating the TDOA due to each sound source. Here we assume that the
number of sources is known a priori, so we focus our discussion on the second
step only.

Many algorithms discussed in Sections 9.3–9.8 can be used or extended
for TDOA estimation of multiple sources. Let us take, for example, the CC
method. When there are two sources, using the signal model given in (9.8),
we can write the CCF between y1(k) and y2(k) as

rCC
y1y2

(p) = α11α21r
CC
s1s1

(p − τ1) + α11α22r
CC
s1s2

(t1 + p − t2 − τ2) +

α11r
CC
s1v2

(p + t1) + α12α21r
CC
s2s1

(p + t2 − t1 − τ1) +

α12α22rCC
s2s2

(p − τ2) + α12r
CC
s2v2

(p + t2) +

α2,1r
CC
v1s1

(p − t1 − τ1) + α22r
CC
v1s2

(p − t2 − τ2) +

rCC
v1v2

(p). (9.119)

Noting that the source signals are assumed to be mutually independent with
each other and the noise signal at one sensor is assumed to be uncorrelated
with the source signals and the noise at the other microphones, we get

rCC
y1y2

(p) = α11α21r
CC
s1s1

(p − τ1) + α12α22r
CC
s2s2

(p − τ2). (9.120)

The two correlation functions rCC
s1s1

(p − τ1) and rCC
s2s2

(p − τ2) will reach their
respective maximum at p = τ1 and p = τ2. Therefore, we should expect to see
two large peaks in rCC

y1y2
(p), each corresponding to the TDOA of one source.

The same result applies to all the GCC methods [26], [27].
To illustrate the TDOA estimation of two sources using the correlation

based method, we consider the simulation example used in Section 9.5 except
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Fig. 9.8. The CCF computed using the PHAT algorithm: (a) there is only one source
at θ = 75.5◦ and (b) there are two source at θ1 = 75.5◦ and θ2 = 41.4◦ respectively.
The microphone noise is white Gaussian with SNR = 10 dB. The sampling frequency
is 16 kHz.

that now we have two sources in the far-field and their incident angles are θ1 =
75.5◦ and θ2 = 41.4◦ respectively. Figure 9.8 plots the CCF computed using
the PHAT algorithm. We see from Fig. 9.8(b) that there are two large peaks
corresponding to the two true TDOAs. However, if we compare Figs. 9.8(b)
and (a), one can see that the peaks in the two-source situation are not defined
as well as the peak for the single-source scenario. This result should not come
as a surprise. From (9.120), we see that the two correlation functions rCC

s1s1
(p−

τ1) and rCC
s2s2

(p− τ2) interfere with each other. So, one source will behave like
noise to the other source, thereby making the TDOA estimation more difficult.
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Fig. 9.9. Comparison of det [Ra(p)] for an equispaced linear array with different
number of microphones. There are two source at θ1 = 75.5◦ and θ2 = 41.4◦ respec-
tively. The microphone noise is white Gaussian with SNR = 10 dB. The sampling
frequency is 16 kHz.

This problem will become worse as the number of sources in the array’s field
increases.

Similar to the single-source situation, we can improve the TDOA estima-
tion of multiple sources by increasing the number of microphones. Figure 9.9
plots the cost function computed from the MCCC method with different num-
ber of microphones. It is seen that the estimation performance improves with
the number of sensors.

The GCC, spatial prediction, MCCC, and entropy based techniques can
be directly used to estimate TDOA for multiple sources. The extension of the
narrowband MUSIC to the multiple-source situation is also straightforward.
Consider the signal model in (9.8) where we neglect the attenuation difference,
we have

Yn(f) =
M∑

m=1

Sm(f)e−j2π[tm+Fn(τm)]f + Vn(f). (9.121)

Following the notation used in Section 9.7.1, we can write ⇀y as

⇀y = Ω⇀s + ⇀v, (9.122)

where

Ω =
[
ς(τ1) ς(τ2) · · · ς(τM )

]
,

is a matrix of size N × M , and
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⇀s =
[
S1(f)ej2πt1f S2(f)ej2πt2f · · · SM (f)ej2πtM f

]T
.

The covariance matrix RY has the form

RY = E
(

⇀y⇀yH
)

= ΩRSΩH + σ2
V I, (9.123)

where

RS = E
(

⇀s⇀sH
)
. (9.124)

It is easily seen that the rank of the product matrix ΩRSΩH is of M . There-
fore, if we perform the eigenvalue decomposition of RY and sort its eigenvalues
in descending order, we get

ΩRSΩHbn = 0, n = M + 1, . . . , N, (9.125)

where, again, bn is the eigenvector associated with the nth eigenvalue of RY .
This result indicates that

bH
n ς(τm) = 0, m = 1, 2, . . . ,M, M + 1 ≤ n ≤ N. (9.126)

Following the same line of analysis in Section 9.7.1, after the eigenvalue de-
composition of RY , we can construct the narrowband MUSIC cost function
as

JMUSIC(p) =
1

N∑
n=M+1

∣∣bH
n ς(p)

∣∣2 . (9.127)

The M largest peaks of JMUSIC(p) should correspond to the TDOAs τm,
m = 1, 2, . . . ,M .

As we have pointed out earlier, the narrowband MUSIC may not be very
useful for microphone array due to the nonstationary nature of speech. The
extension of the broadband MUSIC (presented in Section 9.7.2) to multiple-
source situation, however, is not straightforward. To see this, let us assume
that there are M sources. With some mathematical manipulation, the spatial
covariance matrix Ra(p) can be written as

Ra(p) =
M∑

m=1

Rsm
(p) + σ2I. (9.128)

Now even when p = τm and Rsm
(p) becomes a matrix of rank 1, the super-

imposed signal matrix,
∑M

m=1 Rsm
(p), may still be of rank N . Therefore, the

signal and noise subspaces are overlapped and we cannot form a broadband
MUSIC algorithm for multiple sources. But in one particular case where all
the sources are white, we can still use the estimator in (9.89). In general, for
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multiple source TDOA estimation, we would recommend to use the MCCC
approach.

Another possible approach for TDOA estimation of multiple sources is
to blindly identify the impulse responses of a MIMO system. However, blind
MIMO identification is much more difficult than blind SIMO identification,
and might be even unsolvable. The research on this problem remains at the
state of feasibility investigations. To finish this section, let us mention that
recently some algorithms based on the MIMO model of (9.11) have been
proposed in [157], [158].

9.12 Conclusions

This chapter presented the problem of DOA and TDOA estimation. We have
chosen to focus exclusively on the principles of TDOA estimation since the
problem of the DOA estimation is essentially the same as the TDOA esti-
mation. We have discussed the basic idea of TDOA estimation based on the
generalized cross-correlation criterion. In practice, the estimation problem can
be seriously complicated by noise and reverberation. In order to improve the
robustness of TDOA estimation with respect to distortions, we have discussed
two basic approaches: exploiting the fact that we can have multiple micro-
phones and using a more practical reverberant signal model, which resulted
to a wide range of algorithms such as the spatial prediction, multichannel
cross-correlation, minimum entropy, and adaptive blind channel identification
techniques. Also discussed in this chapter were the principles for TDOA esti-
mation of multiple sources.
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Unaddressed Problems

10.1 Introduction

Microphone array signal processing is a technical domain where traditional
speech and array processing meet. The primary goal is to enhance and extract
information carried by acoustic waves received by a number of microphones at
different positions. Due to the random, broadband, and nonstationary essence
of speech and the presence of room reverberation, microphone array signal
processing is not only a very broad but also a very complicated topic. Most,
if not all, of the array signal processing algorithms need to be re-developed
and specially tailored for the problems with the use of microphone arrays.
Therefore, one cannot expect that one book could and should cover all these
problems. As a matter of fact, in this area and every year, a great number of
Ph.D. dissertations and numerous journal papers are produced. A key thing
that we want to demonstrate to the readers is how an algorithm can be devel-
oped to properly process broadband speech signals no matter whether they
propagate from far-field or near-field sources. We selected those problems for
which we achieved promising results in our research as examples. But the un-
addressed problems in microphone array signal processing are also important.
They are either still open for research or better discussed in other books. In
the following, we will briefly describe the state of the art of three unaddressed
problems and provide useful references to help the reader for further detailed
studies.

10.2 Speech Source Number Estimation

Microphone arrays, as a branch of array signal processing, offer an effective
approach to extending the sense of hearing of human beings. Genetically, en-
hancement of acoustic signals from desired sound sources and separation of
an interested acoustic signal (either speech or non-speech audio) from other
competing interference are the primary goals. But whether these goals can be
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satisfactorily achieved depends not only on speech enhancement and separa-
tion algorithms themselves (as evidenced by the great efforts made in most,
if not all, parts of this book for their advancement), but also on an array’s
capability of characterizing its surrounding acoustic environment. Such a char-
acterization, sometimes termed as auditory scene analysis (ASA), includes de-
termination of the number of active sound sources, localization and tracking
of these sources, and the like technologies. Speech source number estimation
is an important problem since many of the algorithms for processing micro-
phone array signals make the assumption that the number of sources is known
a priori and may give misleading results if the wrong number of sources is
used. A good example is the failure of a blind source separation algorithm
when the wrong number of sources is assumed. While acoustic source local-
ization and tracking have been discussed in the previous chapter, no section
was devoted to the problem of speech source number estimation in this book.
This is not because speech source number estimation is easy to solve, but on
the contrary, because it is a real challenge that is still open for research in
practice.

Determining the number of sources is a traditional problem in array sig-
nal processing for radar, sonar, communications, and geophysics. A common
formulation is to compute the spatial correlation matrix of the narrowband
outputs of the sensor array [135]. The spatial correlation matrix can be de-
composed into the signal-plus-noise and noise-only subspaces using eigenvalue
decomposition. The number of sources is equal to the dimension of the signal-
plus-noise subspace, which can be estimated using either decision theoretic
approaches (e.g., the sphericity test [235]) or information theoretic approaches
(e.g., the Akaike information criterion (AIC) [3], and the minimum description
length (MDL) [190], [201]) – the reader can also refer to [227], [236], [237],
[239], and the references therein for more information. These subspace anal-
ysis methods perform reasonably well, but only for narrowband signals. In
microphone arrays, speech is broadband and nonstationary. The preliminary
results from our own research on this problem indicates that a straightforward
application of the traditional source number estimation approaches to micro-
phone arrays by choosing an arbitrary frequency for testing produces little
success, if it is not completely useless. A possible direction for improvement is
to re-define the original subspace analysis framework such that processing at
multiple frequency bins can be carried out, and meanwhile exploit the knowl-
edge about unique speech characteristics to help address such questions as
how many and which frequency bins should be examined.

10.3 Cocktail Party Effect and Blind Source Separation

It has been recognized for some time that a human has the ability of focusing
on one particular voice or sound amid a cacophony of distracting conversa-
tions and background noise. This interesting psychoacoustic phenomenon is
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referred to as the cocktail party effect or attentional selectivity. The cocktail
party problem was first investigated by Colin Cherry in his pioneering work
published in 1953 [45] and has since been studied in a large variety of diverse
fields: psychoacoustics, neuroscience, signal processing, and computer science
(in particular human-machine interface). Due to the apparently differing in-
terests and theoretical values in these different domains, the cocktail party
effect is explored from different perspectives. These efforts can be broadly
categorized as addressing the following two questions:

1. how do the human auditory system and the brain solve the cocktail party
problem?

2. can we replicate the ability of the cocktail party effect for man-made
intelligent systems?

While a comprehensive understanding of the cocktail party effect that is
gained from the first efforts will certainly help tackle the second problem
(which can be referred to as the computational cocktail party problem), it
does not mean that we have to replicate every aspect of the human auditory
system or we have to exactly follow every step of the acoustic perception proce-
dure in solving the computational cocktail party problem. However, although
only a simplified solution is pursued and the problem has been continuously
investigated for a number of decades, no existing systems or algorithms can
convincingly allow us to claim or just foresee a victory. In particular, we do
not have all the necessary know-hows in order to provide a recipe in this book
that a computer programmer can readily follow to build an intelligent acoustic
interface working properly in a reverberant, cocktail-party-like environment.

Microphone array beamforming is one of the focuses of this book. A beam-
former is a spatial filter that enhances the signal coming from one direction
while suppressing interfering speech or noise signals coming from other direc-
tions. Apparently a primary requirement for beamforming is that the direc-
tions of the sound sources (at least the source of interest) need to be known in
advance or pre-estimated from the microphone observations. Therefore tradi-
tional microphone array beamforming is a typical example of the class of the
computational auditory scene analysis (CASA) approach aimed to solve the
computational cocktail party problem. Proceeding by steps, the CASA first
detects and classifies sound sources by their low-level spatial locations in addi-
tion to spectro-temporal structures, and then performs an unblind, supervised
decomposition of the auditory scene.

Blind source separation (BSS) by independent component analysis (ICA)
is another class of approaches to the computational cocktail party problem,
but is not covered in this book. BSS/ICA assumes that an array of micro-
phones records linear mixtures of unobserved, statistically independent source
signals. A linear de-mixing system is employed to process the microphone
signals such that an independence measure of the separated signals is max-
imized. Since there is no available information about the way in which the
source signals are mixed, the de-mixing procedure is carried out in a blind
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(i.e., unsupervised) manner. ICA was first introduced by Herault, Jutten, and
Ans in 1985 [104] (a paper in French) and has quickly blossomed into an im-
portant area of the ever-expanding discipline of statistical signal processing.
In spite of the swift popularity of ICA, its proven effectiveness is mainly lim-
ited in the cases of instantaneous mixtures. When convolutive mixtures are
concerned as encountered in almost all speech-related applications, a common
way is to use the discrete Fourier transform and transform the time-domain
convolutive mixtures into a number of instantaneous mixtures in the frequency
domain [65], [202], [207]. ICA is then performed independently at each fre-
quency bin with respect to the instantaneous mixtures. It is noteworthy that
independent subband source signals in an instantaneous mixture can at best
be blindly separated up to a scale and a permutation. This results in the
possibility that a recovered fullband, time-domain signal is not a consistent
estimate of one of the source signals over all frequencies, which is known as
the permutation inconsistency problem [129], [202]. The degradation of speech
quality caused by the permutation ambiguity is only slightly noticeable when
the length of the mixing channels is short. The impact becomes more evident
when the channels are longer in reverberant environments. Although a num-
ber of methods were proposed to align permutations of the de-mixing filters
over all the frequency bins [130], [169], [180], [194], [196], [202], this is still
an open problem under active research. In addition, in the human cocktail
party effect, we only separate the source signal of interest from the competing
signals. But the BSS/ICA try to calculate estimates of all the source signals
at a time. Therefore, we choose not to include the development of BSS in
this book but would like to refer the interested reader to a very recent re-
view of convolutive BSS [182] and the references therein for a deeper, more
informative exploration.

10.4 Blind MIMO Identification

In traditional antenna array signal processing, source signals are narrowband
and the arrays work in fairly open space. As a result, the channel is relatively
flat. Even when multipath exists, the delays between the reflections and the
signal coming from the direct path are short. For example, in wireless com-
munications, the channel impulse responses are at longest tens of samples.
However, as we mentioned in various places in this book, speech is broadband
by nature and a microphone array is used most of the time in an enclosure.
Moreover, the human ear has an extremely wide dynamic range and is much
more sensitive to weak tails of the channel impulse responses. Consequently,
it is not uncommon to model an acoustic channel with an FIR filter of thou-
sands of samples long in microphone array signal processing. Therefore, while
system identification may have already been regarded as an off-the-shelf tech-
nique in antenna array processing for wireless communication, estimating a
very long acoustic impulse response is a real challenge when source signals are
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accessible (e.g., multichannel acoustic echo cancellation [10]), and otherwise
can be fundamentally intractable or even unsolvable. But unfortunately, for
a majority of microphone array applications, source signals are not known
and a blind MIMO identification algorithm has to be developed. Needless to
explain, the challenges are great, but so are the potential rewards. If we can
blindly identify an acoustic MIMO system in practice, the solutions to many
difficult acoustic problems become immediately obvious [124].

The innovative idea of identifying a system without reference signals was
first proposed by Sato in [195]. Early studies of blind channel identification
and equalization focused primarily on higher (than second) order statistics
(HOS) based methods. Because HOS cannot be accurately computed from
a small number of observations, slow convergence is the critical drawback of
all existing HOS methods. In addition, a cost function based on the HOS is
barely concave and an HOS algorithm can be misled to a local minimum by
corrupting noise in the observations. Therefore, after it was recognized that
the problem can be solved in the light of only second-order statistics (SOS) of
system outputs [212], the focus of the blind channel identification research has
shifted to SOS methods. Using SOS to blindly identify a system requires that
the number of sensors would be greater than the number of sources. Hence
for a microphone array only the SIMO and MIMO models are concerned.

Blind SIMO identification using only SOS is relatively simple and two
necessary and sufficient conditions (one on the channel diversity and the other
on the input signals) were clearly given in [238] and as follows:

1. the polynomials formed from the acoustic channel impulse responses are
co-prime, i.e., the channel transfer functions do not share any common
zeroes;

2. the autocorrelation matrix of the solo input signal is of full rank (such
that the SIMO system can be fully excited).

There has been a rich literature on this technique. Not only batch methods
[6], [96], [114], [155], [168], [206], [213], [238], but also a number of adaptive
algorithms [13], [118], [119], [122] were developed.

On the contrary, blind MIMO identification is still an open research prob-
lem. A necessary condition for identifiability using only SOS on the channel
impulse responses resembles that for a SIMO system: the transfer functions
with respect to the same source signal do not share any common zeros (i.e.,
the MIMO system is irreducible). But the conditions on the source signals that
are sufficient for identifiability using only SOS depend on whether the acoustic
channels are memoryless or convolutive. For a memoryless MIMO system, it
was shown in [9], [115], and [212] that the uncorrelated source signals must be
colored and must have distinct power spectra. But for a convolutive MIMO
system, while either colored inputs with distinct power spectra or white, non-
stationary inputs can guarantee blind identifiability, no practically realizable
algorithm has yet been invented.
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Even though this subject is important and may be of interest to a lot of
readers, it has been comprehensively discussed in one of the previous books of
the same authors [125]. Nevertheless, channel identification is more relevant
to microphone array signal processing from a MIMO perspective than from a
spatial-filtering perspective. Therefore, we choose not to repeat this subject
in this book.

10.5 Conclusions

As a wrapping up, three unaddressed problems, namely, speech source number
estimation, cocktail party effect and blind source separation, and blind MIMO
identification, were briefly reviewed. The state of the art of these problems
was described and we explained why they were not covered in this book.
A fairly comprehensive, though not necessarily exhaustive, list of references
was supplied to help the interested readers know where they can find useful
information on these topics.
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