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1. Introduction 

Technical University of Liberec (TUL) submitted 
three systems to the NIST SRE 2010. All systems were 
applied only to the core test condition. The primary system 
is a JFA system. The first contrastive system is a UBM-
GMM system with eigenchannel adaptation and the second 
contrastive system is an i-vectors based system. All sys-
tems are gender-dependent. 

2. Common processing 

2.1 Feature extraction and segmentation 

All systems used the same type of short-term acoustic 
features. 19 Mel-frequency cepstral coefficients + c0 were 
extracted using 25 ms windows with shift of 10 ms, short-
time gaussianized using window of 300 frames (3 s) and 
augmented with their first derivatives forming a 40-
dimensional feature vector. The resulting vectors were 
mean normalized over the whole utterance. 

For segmentation, we used the time information from 
ASR transcripts provided by NIST with some merging and 
padding of speech segments. Energy based detector was 
subsequently used for the telephone data to label silence 
regions determined by a high energy drop. 

2.2 UBMs 

All systems need a UBM for initial processing. Gend-
er dependent UBMs were trained on both telephone and 
microphone data from previous NIST evaluations, ranging 
from SRE04 to SRE08. In total, 22,872 recordings (1,931 
hours) from female speakers and 16,899 recordings (1,432 
hours) from male speakers were used in training. UBMs 
with 1024 Gaussian components were trained using the EM 
algorithm with binary splitting and using 20 iterations for 
all models’ sizes.  

2.3 Sufficient statistics 

Zero-, first- and second1-order sufficient statistics 
were computed and stored for all development data, train-
ing and test segments using the gender-specific UBMs. In 

                                                           
1 Please note that second-order statistics were ex-

tracted but not actually used, because we used the dot-
product scoring in JFA system 

all further processing, no information about speech signal 
other than these statistics is required. Estimation of system 
hyper-parameters, training of models and scoring of test 
segments was done using only these statistics.  

3. JFA system (primary) 

The JFA system is based on the joint factor analysis 
model introduced by Patrick Kenny [1, 2]. This model is 
based on the assumption that a recording can be 
represented by a speaker- and channel-dependent supervec-
tor M which can be decomposed as follows: 
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This system used UBMs with 1024 Gaussian compo-
nents and hence supervectors M are 40960-dimensional. 

3.1 Hyper-parameters estimation 

The UBM’s mean supervector was used as an estima-
tion of the global mean supervector m and it was not re-
estimated during the hyper-parameters estimation process. 
In estimation of all remaining hyper-parameters, we used 
only the data from SRE04, SRE05 and SRE06 which we 
will further refer to as to the background set. The data from 
SRE05 and SRE06 were considered as coming from one 
database because of the overlap of speakers and segments. 
We used decoupled estimation of the system hyper-
parameters. 

First, the eigenvoices space matrices v were estimated 
using both telephone and microphone data. For both chan-
nel-types, we used the data from those speakers for which 
at least 8 recordings are available per a given channel. The 
maximum number of recording used per speaker and chan-
nel-type was set to 32. In total, there were 9010 recordings 
from 593 male speakers and 11989 recordings from 819 
female speakers used in estimation of 200 eigenvoices. We 
used seven iterations of maximum likelihood (ML) estima-
tion and two iterations of minimum divergence (MD) esti-
mation. 

Next, eigenchannels space matrices u were estimated. 
More specifically, two channel-specific eigenchannels 
space matrices were estimated separately for telephone and 
microphone channel data and concatenated to form matrix 
u. For both channel-types, a set of 100 eigenchannels was 
estimated using the data from speakers for which at least 8 
recordings are available per a given channel. The maxi-
mum number of recordings used per speaker was set to 16 
and 32 recordings for telephone and microphone data re-
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spectively. The sets of recordings used to estimate the 
matrix u and matrix v shares most of recordings.  In total, 
there were 6218 recordings from 490 male speakers and 
8691 recordings from 704 female speakers used in tele-
phone eigenchannels training and 2224 recordings from 82 
male speakers and 2688 recordings from 98 female speak-
ers used in microphone eigenchannels training. For the 
recordings, MAP point estimates of speaker factors were 
calculated using all recordings of the speaker and used 
within the eigenchannels training process to center the 
statistics. Again, we used seven iterations of ML estimation 
and two iterations of MD estimation. 

Finally, the diagonal matrices d describing the re-
maining variability were estimated. Here, the data from 
speakers for which less than 8 recordings but at least 5 
recordings are available were selected. Thus, here we used 
disjunct set of speakers and recordings compared to the 
previous sets. In total, there were 392 recordings from 68 
male speakers and 528 recordings from 89 female speakers. 
For the recordings, decoupled estimation of speaker and 
channel factors was performed. First, MAP point estimate 
of speaker factors was calculated using all recordings of the 
speaker and then MAP point estimate of channel factors 
was calculated for each recording. Again, we used seven 
iterations of ML estimation and two iterations of MD esti-
mation.  

3.2 Scoring 

We used dot-product linear scoring as described in [3] 
instead of the integration over the whole distribution of 
channel factors [4]. The score for the trial is given as: 
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where O represents the sequence of feature vectors ex-
tracted from the test segment, s is the speaker-dependent 
supervector (s = m + vy + dz) estimated in the speaker’s 
enrollment, x is a vector of channel factors estimated for 
the test segment using the UBM, ∑ is diagonal supercova-
riance matrix (we used concatenation of UBM’s covariance 
matrices as its estimate) and finally N is zero-order suffi-
cient statistics of the test segment.  

3.3 Score normalization 

Gender dependent ZT-norm normalization was ap-
plied on the scores obtained by the linear scoring. For fe-
male trials, we used 205 T-norm models (64 trained on 
microphone data and 141 trained on telephone data) and 
328 Z-norm recordings (79 drawn from microphone data 
and 249 from telephone data). For male trials, we used 154 
T-norm models (50 trained on microphone data and 104 
trained on telephone data) and 261 Z-norm recordings (69 
drawn from microphone data and 192 from telephone data). 
We made no use of information about the channel-type of 
T-norm models and Z-norm segments during the score 
normalization process.  

4. UBM-GMM system (1st alternate) 

The UBM-GMM system is based on standard relev-
ance MAP adaptation [5]. Speaker models are derived from 
a UBM by MAP adaptation of UBM’s means with relev-
ance factor 16. The implementation of this system closely 
follows the Niko Brummer’s description of the linearized 
eigenchannel GMM system [6]. Eigenchannel adaptation 
was applied for channel compensation in both training of 
models and scoring of test segments. On contrary to the 
other systems, this system uses UBMs with only 512 Gaus-
sian components. 

Like for the JFA system, two eigenchannels space 
matrices were estimated for telephone and microphone 
speech data separately and concatenated. The same data 
sets as described in section 3.1 were used for training of 
eigenchannels but here only 50 eigenchannels were trained 
for each channel-type.  

The gender-dependent ZT-norm was applied using the 
same sets of T-norm models and Z-norm recordings as 
described in section 3.3. 

5. I-Vectors system (2nd alternate) 

The I-Vectors system is based on representation of a 
recording in a low-dimensional total variability space using 
so called i-vectors [7]. For scoring, the raw cosine kernel 
distance between the i-vector of an enrollment utterance 
and the i-vector of a test segment is used. This system uses 
sufficient statistics derived using UBMs with 1024 Gaus-
sian components. 

The total variability matrices were estimated using 
both telephone and microphone data. For both channel-
types, we used the data from those speakers for which at 
least 4 recordings are available per a given channel. The 
maximum number of recordings used per speaker was set 
to 4 and 8 recordings for telephone and microphone data 
respectively. In total, there were 2800 recordings from 618 
male speakers and 3916 recordings from 881 female speak-
ers used in estimation of total variability matrices. We used 
300 total factors. 

The total variability space is supposed to contain both 
speaker and channel variability. Several techniques to re-
move channel effects from i-vectors are described in [7]. 
We used the combination of Linear Discriminant Analysis 
(LDA) followed by the Within Class Covariance Normali-
zation (WCCN). The LDA and WCCN projection matrices 
were estimated using the same data as the total variability 
space matrices. The LDA projection reduces the dimension 
of i-vectors from 300 to 200. 

For this system, S-norm normalization as described in 
[8] is applied instead of ZT-norm normalization. The S-
norm cohort is formed from utterances used in Z-norm 
normalization for the other systems. 
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6. Calibration 

Output scores produced by all systems can be inter-
preted as log-likelihood-ratios. We used our perl port of 
Focal toolkit2 for LLR calibration. The hard decisions were 
made using the threshold value 6.9.  

The calibration is performed in two stages. First, 
gender-dependent channel-type conditioned calibration is 
performed based on the channel-type of the model’s enrol-
ment segment and the channel-type of a test segment. In 
next stage, gender conditioning is applied.  Knowledge of 
whether or not a segment involves telephone channel 
transmission as well as knowledge of the gender of a target 
speaker is determined by categorization of data as provided 
by NIST.  

7. Processing time and hardware 

The processing time is measured on a machine with 
Intel Core i7 920 CPU (@2.66GHz) and 3 GB RAM 
(DDR3@1.6GHz). Gathering of sufficient statistics was 
performed completely in a single-threaded way on one 
core, other operations were performed in Matlab and thus 
some of them run on two cores. Table 1 reports real-time 
factors of the processing times in some sub-tasks per-
formed by the systems as well as the total times required to 
process the evaluation data. 

 
Real-time factors Training 

Models 
Scoring 
Trials 

Gathering sufficient statistics 

512 Gaussians 0.007 0.007 

1024 Gaussians 0.012 0.012 

JFA system 

raw training / scoring 0.004 0.003 

+ ZT-norm 0.012 0.008 

+ gathering statistics (total) 0.024 0.019 

UBM-GMM system 

raw training / scoring 0.0008 0.0012 

+ ZT-norm 0.001 0.002 

+ gathering statistics (total) 0.008 0.009 

I-Vectors system 

raw training / scoring + S-norm 0.003 0.003 

+ gathering statistics (total) 0.015 0.015 

Tab. 1. Real-time factors for systems. 

8. Development results 

We used the core condition of the NIST SRE08 for 
development experiments. Tables 2, 3 and 4 summarize 
results achieved in the subsets of the core test trials as de-
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fined by NIST SRE08 evaluation plan3. The JFA system 
performed best in all subsets of trials except for the det5 
subset, which refers to the trials using telephone training 
speech and non-interview microphone test speech. We 
believe that this singularity is caused by the composition of 
Z- and T-norm sets, because for the other subsets of trials 
we observed improvement of results after application of 
ZT-norm normalization, but no such effect was observed 
for det5 subset. The other systems performed worse but the 
results were more balanced across all the subsets of trials.  

 
 det1 det4 det5 det6 det7 

JFA system 

EER [%] 5.48 7.65 10.94 6.55 3.55 

UBM-GMM system 

EER [%] 7.66 8.40 8.42 8.16 4.43 

I-Vectors system 

EER [%] 7.51 8.99 9.26 8.70 5.58 

Tab. 2. Results on female part of the development evaluation set 
(NIST SRE08 data, core condition) 

 
 det1 det4 det5 det6 det7 

JFA system 

EER [%] 3.64 6.40 8.75 5.49 2.96 

UBM-GMM system 

EER [%] 5.16 5.69 6.84 4.80 2.73 

I-Vectors system 

EER [%] 6.43 5.29 7.19 7.55 6.38 

Tab. 3. Results on male part of the development evaluation set 
(NIST SRE08 data, core condition) 

 

 det1 det4 det5 det6 det7 

JFA system 

EER [%] 4.74 7.14 9.85 6.19 3.18 

Cllr
4 0.183 0.267 0.371 0.249 0.144 

UBM-GMM system 

EER [%] 6.62 7.24 7.68 6.98 3.90 

Cllr 0.239 0.268 0.288 0.278 0.175 

I-Vectors system 

EER [%] 7.06 7.58 8.23 8.37 5.78 

Cllr 0.255 0.279 0.358 0.315 0.233 

Tab. 4. Results on complete development evaluation set (NIST 
SRE08 data, core condition) 

                                                           
3 http://www.itl.nist.gov/iad/mig/tests/sre/2008/sre08_

evalplan_release4.pdf 
4 Please note that systems were both calibrated and 

evaluated on the development set 
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