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Abstract

This paper describes the speaker recognition systems from the
Department of Electronic Engineering, Tsinghua University
(THU-EE) for NIST SRE 2010. Three systems are submitted
for the evaluation, all of which are based on fusion of multiple
subsystems. We describe each subsystem briefly and give their
configurations. The processing speed of the primary system is
also given in the paper.

Index Terms: THU-EE, NIST SRE 2010.

1. Introduction

This paper describes the speaker recognition systems from
the Department of Electronic Engineering, Tsinghua Univer-
sity (THU-EE) for NIST 2010 Speaker Recognition Evaluation
(SRE).

Our submissions are built on the following feature vectors:

e MFCC 13+A+AA: 13-dimensional MFCC concate-
nated with delta and double delta cepstrum, forming a
39-dimensional feature vector.

e PLP 13+A+AA+AAA: 13-dimensional PLP concate-
nated with delta, double delta and triple delta cepstrum,
forming a 52-dimensional feature vector.

e High level: 6-dimensional pitch contour, 5-dimensional
energy and 1-dimensional duration polynomial coeffi-
cients are concatenated to form a 12-dimensional feature
vector.

e MFCC HLDA 51: MFCC 13+A+AA+AAA with
HLDA dimension reduction, forming a 51-dimensional
feature vector.

e PLP HLDA 51: PLP 13+A+AA+AAA with HLDA
dimension reduction, forming a 51-dimensional feature
vector.

e TFC 15+13+11 fLFA: Time-frequency ceptral (TFC) [1]
feature is extended for speaker recognition. 9 successive
frames of basic feature vectors are first extracted to form
a cepstrum matrix. A temporal (in horizontal direction)
DCT is then performed on the cepstrum matrix and the
first three columns with 15, 13, and 11 elements are con-
catenated to form a 39-dimensional feature vector. At
last, feature domain latent factor analysis (fLFA) [2] is
applied to reduce the effect of channel distortion.

e TFC 15+13+11 fSFA: TFC 15+13+11 with feature do-
main simplified joint factor analysis (fSFA) [3].

Our submissions are built on the following classifiers:

e GMM-UBM: Classical Gaussian mixture model - uni-
versal background model (GMM-UBM) [4].

e GSV-SVM: GMM super-vectors for support vector ma-
chines (GSV-SVM) [5].

e JFA: Joint factor analysis [6, 7].

e MLLR-SVM: Maximum likelihood linear regression
transforms as features for SVM (MLLR-SVM) [8].

e PGMM: Phonetic GMM [9].

2. Detailed system descriptions
2.1. JFA-MFCC39

This subsystem uses factor analysis based 39-dimension
MFCC. The UBM is gender-dependent with 1024 mixtures.
The UBM training data come from SRE04, SREO5, SRE06 and
Switch Board I, I and Cellular. The same data are used to train
eigenvoice. SREO5, SRE06, Mixer 5 and SREO8 follow-up data
are used to train eigenchannel. The eigenvoice factor is 300,
eigenchanel factor is 100.

2.2. JFA-PLP52

This subsystem is similar to JFA-MFCC39 except for the fea-
ture and data used to train eigenvoice and eigenchannl. 51-
dimensional PLP feature vector is used.

2.3. SVM-PLP51

This subsystem is built on GSV-SVM classifier using 51-
dimensional PLP feature vector with HLDA. The UBM is
gender-dependant and the number of mixture is 512 and the
SVM used linear kernel function. The UBM training data come
from SRE04 1-side training set. The HLDA training data come
from SREO4 8-side training set. The SVM negative pool come
from SREO4 1-side training set. The Nuisance attribute projec-
tion (NAP) [10] training data come from SRE04, SREO5 and
SREO06. The number of NAP channel is 128.

2.4. SYM-MFCCs1

This subsystem is similar to SVM-PLP51, except that 51-
dimensional MFCC feature vector is used.

2.5. GMM-TFC39

This subsystem is built on GMM-UBM classifier using 39-
dimensional TFC feature vector with fLFA. The UBM is
gender-dependant and the number of mixture is 2048. The
UBM training data come from SRE04 1-side training set. The
LFA training data come from SRE04 8-side training set and
SREOS8 deferment set. The UBM for LFA is 512-mixture and
the number of channel is 30.



2.6. MLLR-TFC39

This subsystem is built on MLLR-SVM classifier using 39-
dimensional TFC feature vector with fSFA. The UBM training
data come from SREO4 1-side training set. The SFA training
data come from SREO4 §-side training set and SREO8 defer-
ment set. The UBM for MLLR is 1024-mixture and the MLLR
supervector dimension is 7 x 39 x 40.

2.7. PGMM-MFCC39

This subsystem is built on PGMM classifier using 39-
dimensional MFCC feature vector. During training for both
UBM and target speaker, each utterance is divided into several
segments according to the recognition result obtained by the
same Hungarian phone recognizer [11]. Then these segments
are clustered to form seven broad phone classes: vowels, diph-
thongs, plosives, affricates, fricatives, liquids and nasals. The
maximum number of Gaussians per class is 1024 and the total
mixture number is 3072.

2.8. GMM-HL12

This subsystem is built on GMM-UBM classifier using 12-
dimensional high level feature vector. The UBM is gender-
dependant and the number of mixture is 256.

3. Fusion and calibration

A set of 1000 Z-norm and 500 T-norm speakers from SREOQS,
SREQO6 and Mixer5 is used to ZT-norm all the individual sys-
tems [12]. All the scores are then scaled and shifted using a
linear score to likelihood ratio mapping. For this, we use Niko
Brummer’s FoCal package [13]. Training the linear parame-
ters of this affine transformation is based on SREO8 data. The
threshold for decision is trained on SREOS test data.

4. Submission systems

The primary system consists of all the subsystems, but we al-
leviate the fusion weight of JFA-PLP52 subsystem, which may
be overfitted on the development set. The contrast1 system con-
sists of all the subsystems except for JEA-PLP52. The contrast2
system consists of all the subsystems optimized on the develop-
ment set.

5. Processing time

Performances of all subsystems were measured separately on
only one core of an Intel Core 2 Quad CPU 2.4GHz and 2 GB
memory. Results are shown in Table 1. Note that the real time
(RT) factor of the primary fusion system is less than the sum
of all subsystems. It is because several subsystems share some
common processing stages.
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