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I. INTRODUCTION

A. System overview

Four main component systems were developed by QUT for this evaluation. The four systems are:
1) Joint factor GMM-UBM system
2) Superfactor system
3) GMM Supervector SVM System (MFCC Features)
4) GMM Supervector SVM System (MFDP Features)
In line with previous evaluations, the main focus of our development was on the English-only telephone condition.

Microphone data was included in session compensation models (NAP etc.) in order to account for the variation
encountered in this form of data.

The QUT primary system used for the core–core task used the output from all four systems. Results for the
primary system are designated QUT 1 in the submission. Alternate systems were submitted for the core-10sec, and
10sec-10sec conditions that utilised scores produced by the Joint factor GMM-UBM subsystem only.

B. Evaluation tasks performed

Three main evaluation tasks were addressed with QUT systems. The core-core, core-10sec, and 10sec-10sec
conditions. In addition, a system was evaluated for the extended core-core condition.

C. Development data and procedures

The NIST 2008 SRE data and protocol were used as the development database and testing protocol. All system
tuning and fusion training was performed using the short2–short3, long–short3 and long–long conditions of this
data set.

Data from the SRE ’04, SRE ’05 and Switchboard II corpora were utilised for background model training, score
normalisation and other system development components as detailed below. Data from the Fisher corpora was also
used for SVM background training examples.

II. JOINT FACTOR GMM-UBM SYSTEM

The acoustic subsystem was a GMM-UBM [1] system with a joint factor analysis model based on the approach
of Kenny, et al. [2] with elements as described in [3] and [4], and dot-product scoring [5].

A. Feature Extraction

Short-term cepstral feature vectors consisting of 13 MFCCs, including c0, and the corresponding delta coefficients
were used in this system. Before the features were extracted, the audio was band filtered between 300Hz and 3.2KHz,
followed by an energy based speech activity detection (SAD) process. After extracting the cepstral features, feature
warping [6] was also applied using a 500 frame window.

Unlike previous years, no effort was made to perform echo cancellation. Additionally, NIST’s voice activity
detector (speech) was not used. While this caused some mismatch in the signal processing of the development
data from various sources (e.g. SRE’04 data, Switchboard, etc.), removing these steps greatly simplified feature
extraction. It was also found that echo cancellation significantly degraded the room microphone recorded speech.

Apart from simplifying the signal processing, no specific allowance was made to account for the interview
conditions of the evaluation. We expect that this will have negative consequences on system performance, however,
implementing and testing a speaker diarisation front end, as required by this data, was far too costly an exercise to
enter into, and falls outside the scope of “speaker recognition evaluation.”
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B. Joint Factor Model

A joint-factor modelling approach [2] was once again utilised for this evaluation with low-dimensional subspaces
for modelling both speaker characteristics and session/channel characteristics. The dimensianality of the gender-
dependent speaker and session subspaces were set to 400 and 100 dimensions, respectively. Residual relevance
MAP adaptation was also applied. The JFA hyperparameters V , U and d were estimated following the procedure
presented in [7].

An additional session subspace was estimated on auxiliary microphone data drawn from the SRE ’05 corpus. A
100-dimensional session subspace transform was created as an orthogonalised combination of the first 50 dimensions
of both the telephone and auxiliary mic session transforms.

1) Model Training: Gender dependent, 512-component UBMs were trained based on all of the SRE ’04 data.
Individual speaker models were adapted from the UBMs using a MAP process that simultaneously optimised both

the speaker and session factors as well as the relevance MAP adaptation. For efficiency/practicality, this simultaneous
optimisation used an approach similar to the Gauss-Seidel method for solving linear systems as described in [3].

C. Scoring and Normalisation

Scoring was performed using Brümmer’s dot-product approximation of the log-likelihood ratio between the
speaker model and the UBM, incorporating channel compensation [5].

Gender-dependent ZT-Norm was utilised for this system. The same set of utterances, drawn from SRE’04 and
SRE’05, were used for both Z-Norm and T-Norm. A core set of 420 female and 307 male telephone segments were
used in all cases, with the additional inclusion of 133 female and 113 male microphone segments in microphone-
recorded conditions. For example, an interview-train, telephone-test trial used tel + mic for T-Norm, but tel-only
for Z-Norm.

D. Reverse Scoring

Reverse scoring was also performed for the core-core and extended core-core conditions, whereby the evaluation
protocol is performed in the reverse sense. In the reversed scoring scenario, the test utterances and training utterances
are switched such that models are created from the test utterances while these models are scored using the training
utterances.

E. Modifications for the 10sec-10sec Condition

To account for the differences of very limited train and test data in the 10sec-10sec condition, alterations were
made to the session factor loading matrix and the score normalisation cohorts. For both the session factor training
and normalisation, the utterances used for these tasks were truncated to approximately 10 seconds of active speech
to match the evaluation conditions. All data was telephone-only. No other changes were made.

F. Modifications for the core-10sec Condition

For the mismatched-length condition of core-10sec, a combined session factor loading matrix was produced using
a combination of the full-length and truncated session factor matrices. The 50 leading dimensions from each matrix
were concatenated and orthogonalised to produce the final 100-dimensional session subspace. No other changes
were made and the standard telephone-only normalisation cohort was used in this condition.

III. SUPERFACTOR GMM-UBM SYSTEM

A superfactor variant [8] of the the above Joint Factor GMM-UBM system was also included in the primary
system for the core-core condition. With this variant, a number of estimates of the speaker factors, y, are produced
for each model using the Baum-Welch statistics corresponding to a subset of the UBM mixture components;
these y estimates are then concatenated to form a supervector of speaker factors. The Superfactor system uses a
symmetric scoring approach by performing a dot-product between the speaker superfactors of the training and test
utterances. The 512 components were divided into 32 splits for this evaluation. In all other respects, the Superfactor
configuration mirrored the standard Joint Factor GMM-UBM system.
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IV. SUPPORT VECTOR MACHINE (SVM) SYSTEM COMMONALITIES

Two different SVM systems were used in this years evaluation for the core-core condition: A GMM Supervector
SVM system based on MFCC feature extraction, and an alternate GMM Supervector system utilising Mel-frequency
Delta Phase (MFDP) features.

A. Intersession Variability Compensation

Nuisance attribute projection (NAP) was applied to both SVM systems. Gender-dependent NAP projection
matrices were trained on both telephone and auxiliary microphone data sets respectively. A combined projection
matrix was then created as an orthogonal combination of the first N dimensions of both the telephone and auxiliary
mic transforms. The datasets used to train the gender-dependent projection matrices were based on a collection of
utterances from male and female speakers from NIST 2004, NIST 2005 and Switchboard 2 data.

B. Model Generation

The process for training a speaker model consists of creating a target speaker supervector from a training utterance
and a set of impostor supervectors from a group of out-of-set speaker utterances (also refered to as the background
dataset). We used gender-dependent background datasets derived from NIST 2004 and NIST 2005 data consisting
of 487 male and 467 female utterances. Both SVM systems were based on the linear kernel. An optimal separating
hyperplane is then calculated. The speaker model is represented by a normal vector to the hyperplane and an offset.

C. Scoring and Normalisation

In testing, the test supervector is created in the same manner as the training supervector. A dot product between
this vector and the normal to the training model hyperplane with the offset is used to provide the speaker score.
Scores were further normalized using both Z- and T-Norm datasets [9] which were constructed from the NIST
2004 and 2005 datasets.

V. GMM SUPERVECTOR SVM SYSTEM (MFCC)

A. Feature Extraction

The GMM supervector feature space is created from Gaussian Mixture Models (GMMs) trained through maximum-
a-posteriori (MAP) adaptation [10] from a Universal Background Model (UBM) to the features of a speaker’s
utterance. The mixture component means are adapted using a relevance factor or τ = 8 while the weights and
variances remain constant. The feature space of the SVM is based on the supervector formed from the concatenation
of the adapted mixture component mean vectors. More specifically, the SVM feature space is established by taking
the difference between the supervector of the concatenated Gaussian means of a UBM from the supervector formed
from the means of the adapted GMM. The 80 greatest dimensions contributing to session variation were removed
from all observations using NAP (40 dimensions trained on each of both telephony and microphone data, stacked
and orthognalised)

B. SVM Kernel

The GMM supervector SVM configuration is based on the application of background-normalisation prior to
the computation of the linear SVM kernel matrix [11]. In this technique, each dimension of the SVM feature
space is normalised by the mean and standard deviation of the corresponding dimension of the observations in the
background dataset.

VI. GMM SUPERVECTOR SVM SYSTEM (MFDP)

The MFDP GMM Supervector system differs only from the MFCC implementation in the type of features
extracted.
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A. Feature Extraction

This system utilises a newly derived Mel-frequency Delta Phase (MFDP) feature set [12]. These mel-frequency
cepstral coefficients are derived from the Delta-Phase Spectrum. These features were proposed as a simple phase
domain representation that lend to consistent comparison across multiple frames and sequences, while circumventing
issues associated with phase wrapping. The feature extraction used follows that described in [12], with a 250ms
frame length and 10ms step size. For the implementation used in this evaluation, the first 12 cepstral coefficients
with appended deltas were extracted, resulting in a 24-dimensional MFDP feature vectors.

Feature extraction was once again followed by GMM training through MAP adaptation using a relevance factor
τ = 8. The feature space of the SVM is based on the supervector formed from the concatenation of the adapted
mixture component mean vectors. For the MFDP system, the 60 greatest dimensions contributing to session variation
were removed from all observations using NAP (30 dimensions trained on each of both telephony and microphone
data, stacked and orthognalised)

B. SVM Kernel

The GMM supervector SVM configuration is based on the application of background-normalisation prior to
the computation of the linear SVM kernel matrix [11]. In this technique, each dimension of the SVM feature
space is normalised by the mean and standard deviation of the corresponding dimension of the observations in the
background dataset.

VII. FUSION AND DEVELOPMENT

In order to obtain an overall score for each test segment, the scores from the various subsystems were fused.
Fusion was performed on the output scores using linear weights calculated through use of bilinear logistic regression.
This was performed using the Bilinear FoCal toolkit provided by Niko Brümmer.

The side information used in the core-core and extended conditions encoded combinations of training and testing
source. We had three distinct categories of source for both training and testing, being mic, tel and long defined as
follows:

• mic includes all data recorded through room microphone channels, including both conversational style and
interview style data, excluding long interview recordings (form the interview/8min directory).

• tel includes all data recorded over telephone channels.
• long includes interview segments with long durations (that is, from the interview/8min directory).
The core-core condition exhibits 7 of the possible 9 unique combinations of these conditions (omitting tel-long

and tel-mic). We used a development protocol comprising a combination of short2-short3, long-short3 and long-
short3 in the reverse sense from the SRE 2008 data. This development set covered all combinations exposed in the
SRE 2010 core-core condition.

Our primary submission, QUT 1 was a fusion of 5 components; JFA, Reverse JFA, Superfactors, GSV-SVM
with MFCC features, GSV-SVM with MFDP features.

The QUT 2 alternate system was a fusion of the same components but excluding the MFDP feature based GSV-
SVM system. This excluded system appeared to have a anomalous score distribution for the evaluation data and
we suspect some processing errors may have occurred.

The QUT 3 alternate system comprises only the forward and reverse JFA systems. This system was included
for direct comparison between the core-core and extend core-core conditions as it was not practical to run all 5
component systems of QUT 1 for the extended condition.

The submitted systems for the core-10sec and 10sec-10sec conditions consist of only the forward JFA system,
with logistic regression applied to improve score calibration. These systems were designated QUT 1.
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