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1. Submission Descriptions
1.1. Coresystems
Our submissions were built updncore systems and novel norm-
ing methods:

e |PDF — Approximate KL divergence scoring with WNAP
compensation

JFA — Joint factor analysis with GMM linear scoring
Prosodic — Prosodic modeling system
ECS - Eigenvoice comparison system

GSV — SVM trained using GMM-UBM MAP adapted pa-
rameters and NAP compensation

TV — Total variability space modeling with multiple com-
pensation methods

ZAT-NORM/SAS-NORM — Adaptive norming to optimize
the minDCF

Details of the core systems are provided in the section below

1.2. Submitted Systems

We examined various combinations of the core systems based o
dev fusion results for the different conditions represéritethe
evaluation. We fused at the level of subconditions of the-var
ous tasks, since the top were considered too broad. Subcondi
tions were represented using a quadruple hyphenated,tnimg
conver sations)-(duration)-(styl€)-(channel).

Before fusing, we applied various combinations of adaptive
norming with the core systems. In addition to the core system
which used either ZT-norm or S-NORM, we produced the follow-
ing systems:

e SASTV — TV system with S-norm followed by adaptive

S-norm

e |ZAT — IPDF with Z-norm followed by adaptive T-norm
e ZAT3 - JFA with Z-norm followed by adaptive T-norm

Our secondary submission fused only the core systems fér eac
condition.
The final fusions were:

Primary Submissions:

e 1l-long-int-mic/1-long-int-mic— GSV + TV + ZAT3
e 1-long-int-mic/1-short-cnv-4w — IPDF + TV + ZAT3
e 1-long-int-mic/1-short-cnv-mic— GSV + TV + ZAT3

1-long-int-mic/1-short-int-mic— GSV + TV + ZAT3

1-short-cnv-4w/1-short-cnv-4w — SASTV + IPDF + IZAT
+ PROS + ECS + TV + JFA + ZAT3

1-short-cnv-mic/1-short-cnv-mic— GSV + TV + ZAT3
1-short-int-mic/1-long-int-mic— GSV + TV + ZAT3
1-short-int-mic/1-short-cnv-4w — IPDF + TV + ZAT3
1-short-int-mic/1-short-cnv-mic— GSV + TV + ZAT3
1-short-int-mic/1-short-int-mic— GSV + TV + ZAT3
8-short-cnv-4w/1-short-cnv-4w — GSV + JFA
Secondary Submission:
1-long-int-mic/1-long-int-mic— GSV + TV + JFA
1-long-int-mic/1-short-cnv-4w — IPDF + TV + JFA
1-long-int-mic/1-short-cnv-mic— GSV + TV + JFA
1-long-int-mic/1-short-int-mic— GSV + TV + JFA

1-short-cnv-4w/1-short-cnv-4w — IPDF + PROS + ECS +
TV +JFA

1-short-cnv-mic/1-short-cnv-mic— GSV + TV + JFA
1-short-int-mic/1-long-int-mic— GSV + TV + JFA
1-short-int-mic/1-short-cnv-4w — IPDF + TV + JFA
1-short-int-mic/1-short-cnv-mic— GSV + TV + JFA
1-short-int-mic/1-short-int-mic— GSV + TV + JFA
8-short-cnv-4w/1-short-cnv-4w — GSV + JFA

2. Development Data and Front-End
Processing
2.1. Development Trial Lists

The corpora used for NIST SRE 2010 development lists catbist
entirely of data from the 2008 NIST speaker evaluation. €hes
lists were used for system tuning, system selection, ankelnaic
fusion/calibtration. Several adjustments were made ddtikalata
would be suitable for developing a system designed to parfor
well in the 2010 NIST SRE:

e additional background training data: the NIST SRE
2008 interview microphone data was partitioned into two
approximately equal sets one of which was used for sub-
space, ZT-norm or background model data and the other
was used for development train and test data.



Train Test dimensional feature vector. Feature warping is appliept®sh
#Enrl | Dur [ Style| Chan| Dur | Style [ Chan only frames.
1 long int mic | long int mic All systems used the common features excepted as noted in
1 long int mic | short | conv | tel the description.
1 long int mic | short | conv | mic
1 long int mic | short | int mic 3. Detailed System Descriptions
i :Eg:: Eg:x r;ellc :Eg:: Eg:x rfqe||c 3.1. Inner Product Discriminant Function System (IPDF)
1 short | int mic | short | conv | tel Inner product discriminant functions (IPDFs) are desdtilve[2].
1 short | int mic | long int mic We use a comparison function from the IPDF framework based on
1 short int mic | short | conv | mic approximations to the KL divergence between two GMMs [3, 2],
1 short | int mic | short | int mic Caum.
8 short | conv tel short | conv tel For a sequence of feature vectors from a speakere adapt
a GMM UBM by using standard relevance MAP [4] on the means
Table 1: List of train and test conditions for SRE 2010. and an ML estimate of the mixture weights. The adaptatioldgie

new parameters which we stack into a parameter vegtpwhere

=M1 o N\ toL ¢ ¢
e increased non-targets: an exhaustive set of non-target tri- ai = [Ai Ai, Ny M mj v, | @)
als was created for each development test data set in ordefyhere ), ; are the mixture weightan; ; are the means, anty,,,
to match the much lower target prior in the 2010 NIST SRE. is the number of mixtures. A relevance factor of 0.01 was tised

The complete set of train and test conditions used for th&/LT/ MAP adaptation for the IPDF. The UBM used was gender inde-
SRE 2010 submission are given in Table 1. No development dataPendent and had 512 mixtures.

was available for the two conditions that use interview data The inner producCc s is given by

training and conversational microphone data for testingresg Can(ai,a;) =
two conditions will be discussed further in Section 3.8.
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2.2. Features In equation (2)m is the vector of stacked UBM means,is the

Two forms of preprocessing before feature extraction wae p  block diagonal matrix of UBM covariances; is the Kronecker
formed on the NIST data. For telephone speech, standard echgroduct, I,, is the identity matrix of size:, andX; and A; are
cancellation (EC) was applied using the ISIP tools. For micr diagonal matrices of mixture weights from (1).

phone recorded data, noise reduction techniques weresdppli) For compensation, weighted NAP (WNAP) [5] was used.
steady tone removal and 2) wideband noise reduction. Tlaewgte Weighted NAP optimizes the criterion,

tone suppression method used a very long analysis windog¢-8 s ) 5

onds, to exploit the coherent integration of the Fouriensfarm. mUmZ W;||Qu,pd;lp )
The wideband noise reduction algorithm used an adaptive&¥ie J

filter approach directed toward preserving the dynamic @mp  whereU is the nuisance subspac@y,  is the WNAP projection,
nents of a speech signal while effectively reducing noiseear D is the metric induced by the UBM,

detail can be found in [1].

Speech activity detection (SAD) was performed with two dis- D=AY?@,)27 " (4)
tinct methods based on the channel type. For 4-wire and con-
versational microphone data, non-speech was eliminatedy us S
a feature-based GMM SAD detector. These speech/non-speech
marks were further refined with an energy-only based deteétw
interview microphone data, SAD was based on the NIST-se@pli
ASR transcripts.

MFCC features are extracted from the speech signal every
10ms using a 20ms window to produce a 20-dimensional mel-
cepstral vector. The mel-cepstral vector is computed usisign-
ulated triangular filterbank on the DFT spectrum. All freqog

d0; is the training set, and’; is set to the number of frames of
peech. WNAP used a fixed matrix multiply.

To obtain scores, we applied gender independent WNAP to
both enroll and verification mean parameter vectors. The \WNA
corank was fixed at 128. We then scored using@hke, kernel.
Both Z- and T-Norm were applied.

Depending on the task, different Z- and T-norm sets were used
as well as different training sets for the WNAP subspace®FIP
was run orB subconditions of the core task:

bands are kept from OHz-4kHz, and cepstral coefficients ame c e 4w/4w: The WNAP training set was speakers from NIST
puted via a DCT transform. Delta cepstral are then computed o SRE Eval04, SWB2p1, p4, and pS. Z- and T-norm speakers
cepstral coefficients are formed on top of these, produciBg a e short-interview-mic/4w:  This condition was run in
dimensional feature vector. Finally, the cep+dcep+ddespuies swapped mode where the role of enroll/verify was swapped.
are normalized using feature warping on speech only frames. The WNAP training set was speakers from Eval05/Eval06
For LPCC features, pre-emphasis with a coefficient of 0.97 cross 4w/microphone conditions and a background devel-
and a Hamming window are applied to a 30ms window every 10ms opment subset of cross 4w/interview microphone data from
to obtain 18 LP coefficents. These LP coefficients are coasec Eval08. T-Norm speaker were the Eval04/05/06 4w tele-
18 LPCCs and energy is appended to form a 19 dimensionalrvecto phone set mentioned above. Z-norm utterances were from

Both delta- and acceleration coefficients are found to forGv a the Eval05, Eval06 and Eval08 microphone conditions.



e long interview-mic/4w: This condition was also swapped.

polynomial coefficients each for pitch and energy, as welthas

Lists for the subspace, Z- and T-norm were the same as theduration of the pseudo-syllable to obtain a feature vectdt3s

short interview mic/4w condition.

3.2. JFA System

The base system for our Joint Factor Analysis (JFA) work \as t
MITLL GMM-UBM speaker detection system, fully described in
[4]. Our JFA setup is based on the work of [6], where the mean
supervector is decomposed as:

M=m+Vy+ Dz+ Uz, (5)
wherem is the speaker-independent mean supervector of GMM
means,U defines the within-class (session/channel) variability
subspace,V defines the across-class (speaker) variability sub-
space, and is a diagonal matrix describing the remaining speaker
variability.

We used gender-dependent UBMs witb24 mixtures. 300
eigenvoices were trained using a variation of PCA of the ssro
class variability covariance matrix. To reduce over-eation bias
of the eigenvalues, a cross-validation approach was useckvine
eigenvectors were estimated from one partition of the itngidata
and the eigenvalues were estimated as the energy in thexe dir
tions over the other partition. We found that using this apph,
the diagonal matrix could be estimated from the same data In
similar way, 100 eigenchannels were estimated from the within-
class covariance matrix. Two of these estimates were gekra
one for telephone channels and the other for microphonei-cond
tions, and stacked together into a combiRed-dimensional ma-
trix.

Enroliment of speakers in this system consists of estirgatin
Vy + Dz in the presence df/z, and is done by stacking all the
parameters together and extracting the speaker modelingeést
done by removing/x from the test utterance. To speed up the
Gaussian scoring, only the linear (inner product) term isutated
as in [7]. ZT-norm was applied to these output scores.

The following data was used to train this system:

e GMM background model — Trained from Switchboard Il
and SRE 2004,5,6 corpora.

e Across-class (speaker) matrices — Trained from NIST SRE

SRE 2004,5,6 and switchboard Il using data from speakers

with 8 or more enrollment sessions.

e Within-class (session) matrix, telephone — Trained from
NIST SRE 2004,5,6 using data from speakers with 8 or
more enrollment sessions.

e Within-class (session) matrix, microphone — Trained from
NIST SREOQ7 interview microphone data.

e Z-norm test utterances — NIST SRE SRE 2004,5.
e T-norm speakers — NIST SRE SRE 2004,5,6.

Two JFA systems were used, one based on MFCC features an
the other using LPCC. The scores from these systems weré fuse

to produce a single score as input for the final system fusion.

3.3. Prosodic System

A more extensive overview of the prosodic system and its fea-

tures is detailed in [8]. These features are extracted gigshado-
syllabic level and correspond to a Legendre polynomial axpr

dimensions. We used a gender-dependent Universal Baakdjrou
Model (UBM) composed of 512 Gaussians per gender and gender-
dependent total variability matrices of 200 eigenvectoasned

only on telephone speech [9]. LDA was used to reduce the dimen
sion to 75, while WCCN normalized the cosine scoring. We used
cosine scoring and applied zt-norm to normalize the finaisiat
scores.

3.4. Eigenvoice Comparison System (ECS)

For this evaluation we also implemented an eigenvoice cosma
system (ECS). This is a speaker comparison system base@ on th
following two key ideas:

e aspeaker model lies entirely in the eigenvoice (speaker fac
tor) subspace

e the within-class variability in this subspace is Gaussian.

In this system, speaker model enrollment consists simptyeof
erating eigenvoice coeffients (speaker factors) for thelknent
utterances:.q.n, Without any session variability modeling or com-
pensation.

For the test utterance, a test speaker megdel is generated
in the same way. Under the assumptions that the enrolimedé¢imo
is correct and the within-class variability is Gaussiarg likeli-
hood that the test speaker model comes from the trainingkspea
is found by evaluating:.s: with means,q.» and covarianc&,,..
We have found good results using the non-target hypothéss o
random speaker, with zero mean and covariaheeX .. This
covariance represents the sum of the speaker and sessian var
tion, where speaker variation in the speaker space is fgiefine
nice aspect of this system is that it does not require any fafrm
score normalization.

However, we found the best fusion with the other systems with
a simplified version of ECS. First, to simplify computationly
the inner product term of the Gaussian likelihood is preseras
in JFA. Second, a small further improvement results fronmrad¥
izing this inner product to both model magnitudes as in ttemn
similarity measure used in total variability space, rasglin the
score formula:

T —1
Stest ch Strain

\/(S?est E'Z)éstest) (StTminEEé St'rain)

LL(Stest|strain) = ©

As in the JFA system, ZT-norm is applied to these log likeditio
scores. Note that this simplified ECS systems is essentiadly
same as the speaker factor cosine distance with WCCN agproac
proposed by Dehak et al at the JHU 08 Workshop.

The parameters needed for this modeling are the speaker sub-
pace matrix in the full supervector space and the withiaisscto-
ariance in the speaker subspace. For the first of these, evihes

same matrix as in the JFA system. For the second, we compute
a full covariance matrix in this 300-dimensional space gighe
same training list as the session variability training féA.JNote
that this system only used the MFCC features.

The performance of this new experimental system was quite
good, but not as good as our best acoustic systems. However, i
did provide a fusion gain for the telephone train and testlitam,

mation of the pitch and energy contours. We used six Legendreso was used there.



3.5. SYM GMM Supervector System (SVM GSV)

The SVM GMM supervector system is based on [3] GMM super-
vectors were derived using MAP adaptation of means only with
a relevance factor of 4 on a per utterance basis. The kemet in
product used was

N
K(ga,gv) = Z )‘imfz,iz;lmb,i

i=1

G
N 1 t 1

=3 (vasT i) (VesT i)
i=1

as in prior work. In equation (7)n. ; are the adapted means,
are the mixture weight of the UBM, arg, are the UBM covari-
ances. SVMs were trained using SVMTorch.

Data and strategy used for the SVM background, NAP and
ZT-norm varied depending on the task.

For trials involving microphone training and testing, thod-f
lowing configuration was used:

e GMM UBM with 2048 mixture components.
e SVM background — 4000 Fisher corpus utterances (includ-
ing non-English)

e NAP projection and T-Norm set-NIST SRE Eval05/06
speakers from the auxiliary microphone task and the NIST
SRE Eval08 interview microphone background set. The
NAP corank was 64.

Also, for microphone conditions, better performance wéseved
by eliminating the acceleration coefficients.

The SVM GSV was also used on the 8 conversation 4w train,
1 conversation 4w test task. The following configuration weed:

e GMM UBM with 512 mixture components.

e SVM background — 4000 Fisher corpus utterances (includ-

ing non-English)
e NAP projection—Eval04 speakers plus Switchboard 2 part

1 speakers, approximately 8000 utterances. The projection

was trained using WNAP [5]. The WNAP corank was 64.
e ZT-Norm—Eval05/06 speakers with 8 conversation training.

3.6. Total Variability System

The total variability system is composed of two subsysteong,
exclusively for telephone speech and another for microplowin-
terview data. The parameters for the first subsystem weireetta
on telephone data. We used a gender-dependent Universal Bac

ground Model (UBM) of 2048 Gaussians and gender-dependent

total variability matrices consisting of 600 eigenvectimesned on
telephone speech [9]. The use of Linear Discriminant Anslys
(LDA) reduces our dimensionality to 250, and Within Class Co
variance Normalization (WCCN) carries out the channel cemrp
sation in the total variability space [10]. Table 2 showslikeof
corpora and their respective roles in the creation of outesys
Similar to [9], we use cosine scoring and zt-normalizatmmike
the final decision. As with everything else so far, the imposfor
zt-norm were entirely selected from telephone speech data.

The second subsystem is used when we have microphone and

interview data in training or in testing. This system is lthee
the total variability space and its 600 total factors estedaon
telephone speech and an additional 200 total factors ttaimeni-
crophone and interview data. We then use Probabilistic LDY [

to project all microphone and telephone total factors ofatision

800 into speaker space of dimension 600. The PLDA consists of
a mean vector of dimension 800 estimated from telephone data
an eigenvoice matrix of dimension 800x600 trained on tedeph
speech, an eigenchannels matrix of dimension 800x20GentaEk-
clusively on microphone and interview speech, and a fulbcev
ance matrix trained from telephone speech. After the ptiojec
with PLDA, we used LDA to reduce the 600 dimensions to 250
and WCCN to normalize the cosine kernel. These channel com-
pensation matrices are estimated using telephone, mionepéind
interview data all together. And as before, the decisionrest®
computed using cosine scoring, but the final scores are fiaeda
using s-norm [11]. The impostors used for s-norm are takem fr
NIST 2005, 2006 SRE telephone and microphone data, as well as
some interview data from NIST 2008 SRE.

Note that for the telephone data, we used a silence detector
provided by Brno University, which corresponds to the Hurega
speech recognizer labels (for more details, please seesEHd0
Submission). Additionally, the speech activity detectfon mi-
crophone data was obtained from CRIM (for more details,gdea
see CRIM 2010 submission).

3.7. Adaptive Norming

Adaptive norming of scores showed promise in our developmen
set for minimizing the new minDCF criterion and was applied t
three systems—IPDF, JFA, and TV. Adaptive normalizatiaite
nigues were applied with inspiration from several sourcetud-
ing cohort normalization [12, 13], T-Norm [14], Z-Norm [4dnd
adaptive variants [15, 16].

As with classic cohort selection [13] and Z- and T-norm, ¢her
are several issues in adaptive methods—cohort selectadrgric
normalization function, and whether the model or test soner-
malized.

The basic cohort normalization functions were:

e Z-Norm Adaptive T-Norm (ZATnorm): for each trial score,
the Z-Norm score was first computed:

S(xmodv -Tmsg) — Hmod

Omod

8)

where timoq ando.,.q are computed across a large set of
Z-norm utterances (gender dependent). The ZAT-normed
score is

Sz (wmocb Imsg) =

_ Sz(mmod7 m'msg) — Mmsg,coh
Szat(l'mudy xmsg) = 5
Omsg,coh

9)

wherepn,sg andon,s4 are the speaker-dependent mean and
standard deviation of th& cohorts chosen from a large
T-Norm set applied to the message of interest.

e S-Norm followed by Adaptive Snorm (SASnorm): for
each evaluation message/model pair Z-norm and Z-norm on

the swapped evaluation message/model pair is performed
(known as symmetric or S-Norm [11]),

1 S(Imoch Irnsg) — HMmod
Omod
1 S(xmodv -Tmsg) — Hmsg

ss(x1, w2)

[\

+

)

[\V]

Omsg

Wheretimod, Omod, fimsg @Ndomsg are the mean and stan-
dard deviations of the utterances,.q and x,sy scores
against all of the Z-norm set.



Table 2: Corpora used for the TV system to estimate the UBM)] t@riability matrix (T), LDA and WCCN
| [ UBM [ T | LDA | WCCN |

Switchboard Il, Phases 1,2and 3 X X X
switchboard Cellular, Parts 1 and 2 X X X
Fisher English database Part 1 and 2 X
NIST 2004 SRE X X X X
NIST 2005 SRE X X X X
NIST 2006 SRE X X X X

ASnorm is then applied: . . )
! Ppl Table 3: Per System Processing Speed in Real Time Factors for

$s(Tmod; Tmsg) — Hmod,coh core task estimated from single trials. The last columnésfthc-
tion of real time. For systems that fused LPCC and MFCC featur

SSO,S(:E"LOdymeg) =

1
2 Omod,coh g )
1 5(Zmods Tmsg) — Himsg.coh (.IPDF, JFA, SVM GSV), entries represent sum of both processi
+ 3 - , times.

msg,col Frontend | LPCC Features| 0.07
Wherefimod,coh, Tmod,cohs thmsg,coh @NUTmsg, con are the MFCC Features 0.07
z-norm stats for the cohorts for the model and message. IPDF Total Enroll 0.026
Cohorts selection was accomplished by a simple method. For Total Verify | 0.024
a given message or model, cohorts were selected as the highes JFA Total Enroll | 0.15
scoring models or messages (respectively) from a largesetata i Total Verify 0.08
For telephone only tasks, the cohorts were all 4-wire utieza Prosodic Total Enroll | 0.035
from EvalO4, Eval05 and Eval06. For microphone data, the co- Total Verify | 0.035
horts were chosen from Eval05 microphone, Eval06 microphon ECS Total Enroll 0.05
and the heldout background Eval08 interview microphona siet. Total Verify 0.05
For IZAT (IPDF with ZAT-norm), 500 cohorts were chosen. For SVM GsvV Total Enroll | 0.104
ZAT3 (JFA with ZAT-norm), 300 cohorts were chosen. SASnorm Total Verify | 0.096
was applied to the total variability system using 694 topssdor TV Total Enroll 0.16
males and 929 top scores for females (about 10%) of the data. Total Verify 0.16
Fusion Total Enroll 0.66
3.8. Fusion Total Verify 0.58

Fusion was performed using a logistic regression. Thera@ite
function of the logistic regression, normalized conditibnross- . )
entropy or ClIr, was adjusted to use the new target priorier t ~ cache and 8 gigabytes of memory. Results are shown in Tehle 3.

2010 NIST SREP(tar) = 0.001. Although the criteria function ~ The overall fused primary system runs about times real time.

is not the same as NIST performance mefis.;, we found that Note that the adaptive norming versions (SAS-TV, IZAT, and
Cpe: Was generally improved when we optimized using the same ZAT3) use the same system outputs as the traditional noraftses
effective target prior that matches Baye's optimal deciside. so no significant extra system processing is required faethe

A separate logistic regression was trained for nine of the co Also, these single-trial verification numbers are worsedas
ditions listed in Table 1. The interview microphone logistgres- ~ many applications. Verification processing of multiplegets on
sions with corresponding train and test durations were foetie the same utterance requires a negligible increase in pincefor
two unseen conditions mentioned in Section 2 that use iistgry ~ Most systems, so the per trial complexities would be much les
data for training and conversational microphone data fstirtg. This savings is approximately linear with the number of ¢4sg

For each of the IPDF, IZAT, JFA, GSV and ZAT3 systems, the SO for example verification times should be multiplied by fad

MFCC and LPCC versions of these systems were fused togethefProcessing 10 targets at a time. This rule does not applytua-si

before the final fusion. tions where enroll and verify lists were swapped; in thisecte
For our secondary submission we attempted to address theParallel processing savings will occur for enroliment.

“same microphone” and “different microphone” sub-corafis.

Our approach was to scale the number of “same microphone” sam 4. Acknowledgments

ples to equal the number of “different microphone” samples i o L )
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