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1. Submission Descriptions
1.1. Core systems

Our submissions were built upon5 core systems and novel norm-
ing methods:

• IPDF – Approximate KL divergence scoring with WNAP
compensation

• JFA – Joint factor analysis with GMM linear scoring

• Prosodic – Prosodic modeling system

• ECS – Eigenvoice comparison system

• GSV – SVM trained using GMM-UBM MAP adapted pa-
rameters and NAP compensation

• TV – Total variability space modeling with multiple com-
pensation methods

• ZAT-NORM/SAS-NORM – Adaptive norming to optimize
the minDCF

Details of the core systems are provided in the section below.

1.2. Submitted Systems

We examined various combinations of the core systems based on
dev fusion results for the different conditions represented in the
evaluation. We fused at the level of subconditions of the vari-
ous tasks, since the top were considered too broad. Subcondi-
tions were represented using a quadruple hyphenated string, (num
conversations)-(duration)-(style)-(channel).

Before fusing, we applied various combinations of adaptive
norming with the core systems. In addition to the core systems
which used either ZT-norm or S-NORM, we produced the follow-
ing systems:

• SAS-TV – TV system with S-norm followed by adaptive
S-norm

• IZAT – IPDF with Z-norm followed by adaptive T-norm

• ZAT3 – JFA with Z-norm followed by adaptive T-norm

Our secondary submission fused only the core systems for each
condition.
The final fusions were:

Primary Submissions:

• 1-long-int-mic/1-long-int-mic – GSV + TV + ZAT3

• 1-long-int-mic/1-short-cnv-4w – IPDF + TV + ZAT3

• 1-long-int-mic/1-short-cnv-mic – GSV + TV + ZAT3

• 1-long-int-mic/1-short-int-mic – GSV + TV + ZAT3

• 1-short-cnv-4w/1-short-cnv-4w – SASTV + IPDF + IZAT
+ PROS + ECS + TV + JFA + ZAT3

• 1-short-cnv-mic/1-short-cnv-mic – GSV + TV + ZAT3

• 1-short-int-mic/1-long-int-mic – GSV + TV + ZAT3

• 1-short-int-mic/1-short-cnv-4w – IPDF + TV + ZAT3

• 1-short-int-mic/1-short-cnv-mic – GSV + TV + ZAT3

• 1-short-int-mic/1-short-int-mic – GSV + TV + ZAT3

• 8-short-cnv-4w/1-short-cnv-4w – GSV + JFA

Secondary Submission:

• 1-long-int-mic/1-long-int-mic – GSV + TV + JFA

• 1-long-int-mic/1-short-cnv-4w – IPDF + TV + JFA

• 1-long-int-mic/1-short-cnv-mic – GSV + TV + JFA

• 1-long-int-mic/1-short-int-mic – GSV + TV + JFA

• 1-short-cnv-4w/1-short-cnv-4w – IPDF + PROS + ECS +
TV + JFA

• 1-short-cnv-mic/1-short-cnv-mic – GSV + TV + JFA

• 1-short-int-mic/1-long-int-mic – GSV + TV + JFA

• 1-short-int-mic/1-short-cnv-4w – IPDF + TV + JFA

• 1-short-int-mic/1-short-cnv-mic – GSV + TV + JFA

• 1-short-int-mic/1-short-int-mic – GSV + TV + JFA

• 8-short-cnv-4w/1-short-cnv-4w – GSV + JFA

2. Development Data and Front-End
Processing

2.1. Development Trial Lists

The corpora used for NIST SRE 2010 development lists consisted
entirely of data from the 2008 NIST speaker evaluation. These
lists were used for system tuning, system selection, and backend
fusion/calibtration. Several adjustments were made so that the data
would be suitable for developing a system designed to perform
well in the 2010 NIST SRE:

• additional background training data: the NIST SRE
2008 interview microphone data was partitioned into two
approximately equal sets one of which was used for sub-
space, ZT-norm or background model data and the other
was used for development train and test data.



Train Test
#Enrl Dur Style Chan Dur Style Chan

1 long int mic long int mic
1 long int mic short conv tel
1 long int mic short conv mic
1 long int mic short int mic
1 short conv tel short conv tel
1 short conv mic short conv mic
1 short int mic short conv tel
1 short int mic long int mic
1 short int mic short conv mic
1 short int mic short int mic
8 short conv tel short conv tel

Table 1: List of train and test conditions for SRE 2010.

• increased non-targets: an exhaustive set of non-target tri-
als was created for each development test data set in order
to match the much lower target prior in the 2010 NIST SRE.

The complete set of train and test conditions used for the LL/MIT
SRE 2010 submission are given in Table 1. No development data
was available for the two conditions that use interview datafor
training and conversational microphone data for testing. These
two conditions will be discussed further in Section 3.8.

2.2. Features

Two forms of preprocessing before feature extraction were per-
formed on the NIST data. For telephone speech, standard echo
cancellation (EC) was applied using the ISIP tools. For micro-
phone recorded data, noise reduction techniques were applied—1)
steady tone removal and 2) wideband noise reduction. The steady
tone suppression method used a very long analysis window, 8 sec-
onds, to exploit the coherent integration of the Fourier transform.
The wideband noise reduction algorithm used an adaptive Wiener-
filter approach directed toward preserving the dynamic compo-
nents of a speech signal while effectively reducing noise. Greater
detail can be found in [1].

Speech activity detection (SAD) was performed with two dis-
tinct methods based on the channel type. For 4-wire and con-
versational microphone data, non-speech was eliminated using
a feature-based GMM SAD detector. These speech/non-speech
marks were further refined with an energy-only based detector. For
interview microphone data, SAD was based on the NIST-supplied
ASR transcripts.

MFCC features are extracted from the speech signal every
10ms using a 20ms window to produce a 20-dimensional mel-
cepstral vector. The mel-cepstral vector is computed usinga sim-
ulated triangular filterbank on the DFT spectrum. All frequency
bands are kept from 0Hz-4kHz, and cepstral coefficients are com-
puted via a DCT transform. Delta cepstral are then computed over
a +-2 frame span and appended to the cepstra vector. Double delta
cepstral coefficients are formed on top of these, producing a60
dimensional feature vector. Finally, the cep+dcep+ddcep features
are normalized using feature warping on speech only frames.

For LPCC features, pre-emphasis with a coefficient of 0.97
and a Hamming window are applied to a 30ms window every 10ms
to obtain 18 LP coefficents. These LP coefficients are converted to
18 LPCCs and energy is appended to form a 19 dimensional vector.
Both delta- and acceleration coefficients are found to form a57

dimensional feature vector. Feature warping is applied to speech
only frames.

All systems used the common features excepted as noted in
the description.

3. Detailed System Descriptions
3.1. Inner Product Discriminant Function System (IPDF)

Inner product discriminant functions (IPDFs) are described in [2].
We use a comparison function from the IPDF framework based on
approximations to the KL divergence between two GMMs [3, 2],
CGM .

For a sequence of feature vectors from a speakeri, we adapt
a GMM UBM by using standard relevance MAP [4] on the means
and an ML estimate of the mixture weights. The adaptation yields
new parameters which we stack into a parameter vector,ai, where

ai =
ˆ

λi,1 · · · λi,Nm
m

t
i,1 · · · m

t
1,Nm

˜t
(1)

whereλi,j are the mixture weights,mi,j are the means, andNm

is the number of mixtures. A relevance factor of 0.01 was usedfor
MAP adaptation for the IPDF. The UBM used was gender inde-
pendent and had 512 mixtures.

The inner productCGM is given by

CGM (ai,aj) =

(mi − m)t(λ
1/2

i ⊗ In)Σ−1(λ
1/2

j ⊗ In)(mj −m).
(2)

In equation (2),m is the vector of stacked UBM means,Σ is the
block diagonal matrix of UBM covariances,⊗ is the Kronecker
product,In is the identity matrix of sizen, andλi and λj are
diagonal matrices of mixture weights from (1).

For compensation, weighted NAP (WNAP) [5] was used.
Weighted NAP optimizes the criterion,

min
U

X

j

Wj‖QU,Dδj‖2

D (3)

whereU is the nuisance subspace,QU,D is the WNAP projection,
D is the metric induced by the UBM,

D = (λ1/2 ⊗ In)Σ−1/2
, (4)

δj is the training set, andWj is set to the number of frames of
speech. WNAP used a fixed matrix multiply.

To obtain scores, we applied gender independent WNAP to
both enroll and verification mean parameter vectors. The WNAP
corank was fixed at 128. We then scored using theCGM kernel.
Both Z- and T-Norm were applied.

Depending on the task, different Z- and T-norm sets were used
as well as different training sets for the WNAP subspaces. IPDF
was run on3 subconditions of the core task:

• 4w/4w: The WNAP training set was speakers from NIST
SRE Eval04, SWB2 p1, p4, and p5. Z- and T-norm speakers
were taken from Eval04, Eval05, and Eval06 4w conditions.

• short-interview-mic/4w: This condition was run in
swapped mode where the role of enroll/verify was swapped.
The WNAP training set was speakers from Eval05/Eval06
cross 4w/microphone conditions and a background devel-
opment subset of cross 4w/interview microphone data from
Eval08. T-Norm speaker were the Eval04/05/06 4w tele-
phone set mentioned above. Z-norm utterances were from
the Eval05, Eval06 and Eval08 microphone conditions.



• long interview-mic/4w: This condition was also swapped.
Lists for the subspace, Z- and T-norm were the same as the
short interview mic/4w condition.

3.2. JFA System

The base system for our Joint Factor Analysis (JFA) work was the
MITLL GMM-UBM speaker detection system, fully described in
[4]. Our JFA setup is based on the work of [6], where the mean
supervector is decomposed as:

M = m + V y + Dz + Ux, (5)

wherem is the speaker-independent mean supervector of GMM
means,U defines the within-class (session/channel) variability
subspace,V defines the across-class (speaker) variability sub-
space, andD is a diagonal matrix describing the remaining speaker
variability.

We used gender-dependent UBMs with1024 mixtures. 300
eigenvoices were trained using a variation of PCA of the across-
class variability covariance matrix. To reduce over-estimation bias
of the eigenvalues, a cross-validation approach was used where the
eigenvectors were estimated from one partition of the training data
and the eigenvalues were estimated as the energy in these direc-
tions over the other partition. We found that using this approach,
the diagonal matrix could be estimated from the same data. Ina
similar way,100 eigenchannels were estimated from the within-
class covariance matrix. Two of these estimates were generated,
one for telephone channels and the other for microphone condi-
tions, and stacked together into a combined200-dimensional ma-
trix.

Enrollment of speakers in this system consists of estimating
V y + Dz in the presence ofUx, and is done by stacking all the
parameters together and extracting the speaker model. Testing is
done by removingUx from the test utterance. To speed up the
Gaussian scoring, only the linear (inner product) term is calculated
as in [7]. ZT-norm was applied to these output scores.

The following data was used to train this system:

• GMM background model – Trained from Switchboard II
and SRE 2004,5,6 corpora.

• Across-class (speaker) matrices – Trained from NIST SRE
SRE 2004,5,6 and switchboard II using data from speakers
with 8 or more enrollment sessions.

• Within-class (session) matrix, telephone – Trained from
NIST SRE 2004,5,6 using data from speakers with 8 or
more enrollment sessions.

• Within-class (session) matrix, microphone – Trained from
NIST SRE07 interview microphone data.

• Z-norm test utterances – NIST SRE SRE 2004,5.

• T-norm speakers – NIST SRE SRE 2004,5,6.

Two JFA systems were used, one based on MFCC features and
the other using LPCC. The scores from these systems were fused
to produce a single score as input for the final system fusion.

3.3. Prosodic System

A more extensive overview of the prosodic system and its fea-
tures is detailed in [8]. These features are extracted at thepseudo-
syllabic level and correspond to a Legendre polynomial approxi-
mation of the pitch and energy contours. We used six Legendre

polynomial coefficients each for pitch and energy, as well asthe
duration of the pseudo-syllable to obtain a feature vector of 13-
dimensions. We used a gender-dependent Universal Background
Model (UBM) composed of 512 Gaussians per gender and gender-
dependent total variability matrices of 200 eigenvectors trained
only on telephone speech [9]. LDA was used to reduce the dimen-
sion to 75, while WCCN normalized the cosine scoring. We used
cosine scoring and applied zt-norm to normalize the final decision
scores.

3.4. Eigenvoice Comparison System (ECS)

For this evaluation we also implemented an eigenvoice comparison
system (ECS). This is a speaker comparison system based on the
following two key ideas:

• a speaker model lies entirely in the eigenvoice (speaker fac-
tor) subspace

• the within-class variability in this subspace is Gaussian.

In this system, speaker model enrollment consists simply ofgen-
erating eigenvoice coeffients (speaker factors) for the enrollment
utterancestrain, without any session variability modeling or com-
pensation.

For the test utterance, a test speaker modelstest is generated
in the same way. Under the assumptions that the enrollment model
is correct and the within-class variability is Gaussian, the likeli-
hood that the test speaker model comes from the training speaker
is found by evaluatingstest with meanstrain and covarianceΣwc.
We have found good results using the non-target hypothesis of a
random speaker, with zero mean and covarianceI + Σwc. This
covariance represents the sum of the speaker and session varia-
tion, where speaker variation in the speaker space is identity. One
nice aspect of this system is that it does not require any formof
score normalization.

However, we found the best fusion with the other systems with
a simplified version of ECS. First, to simplify computation only
the inner product term of the Gaussian likelihood is preserved as
in JFA. Second, a small further improvement results from normal-
izing this inner product to both model magnitudes as in the cosine
similarity measure used in total variability space, resulting in the
score formula:

LL(stest|strain) =
s

T
testΣ

−1

wcstrain
q

(sT
testΣ

−1
wcstest)(sT

trainΣ
−1
wcstrain)

(6)

As in the JFA system, ZT-norm is applied to these log likelihood
scores. Note that this simplified ECS systems is essentiallythe
same as the speaker factor cosine distance with WCCN approach
proposed by Dehak et al at the JHU 08 Workshop.

The parameters needed for this modeling are the speaker sub-
space matrix in the full supervector space and the within-class co-
variance in the speaker subspace. For the first of these, we use the
same matrix as in the JFA system. For the second, we compute
a full covariance matrix in this 300-dimensional space using the
same training list as the session variability training for JFA. Note
that this system only used the MFCC features.

The performance of this new experimental system was quite
good, but not as good as our best acoustic systems. However, it
did provide a fusion gain for the telephone train and test condition,
so was used there.



3.5. SVM GMM Supervector System (SVM GSV)

The SVM GMM supervector system is based on [3] GMM super-
vectors were derived using MAP adaptation of means only with
a relevance factor of 4 on a per utterance basis. The kernel inner
product used was

K(ga, gb) =

N
X

i=1

λim
t
a,iΣ

−1

i mb,i

=

N
X

i=1

„√
λiΣ

−
1

2

i ma,i

«t „√
λiΣ

−
1

2

i mb,i

«

(7)

as in prior work. In equation (7),m∗,i are the adapted means,λi

are the mixture weight of the UBM, andΣi are the UBM covari-
ances. SVMs were trained using SVMTorch.

Data and strategy used for the SVM background, NAP and
ZT-norm varied depending on the task.

For trials involving microphone training and testing, the fol-
lowing configuration was used:

• GMM UBM with 2048 mixture components.

• SVM background – 4000 Fisher corpus utterances (includ-
ing non-English)

• NAP projection and T-Norm set–NIST SRE Eval05/06
speakers from the auxiliary microphone task and the NIST
SRE Eval08 interview microphone background set. The
NAP corank was 64.

Also, for microphone conditions, better performance was achieved
by eliminating the acceleration coefficients.

The SVM GSV was also used on the 8 conversation 4w train,
1 conversation 4w test task. The following configuration wasused:

• GMM UBM with 512 mixture components.

• SVM background – 4000 Fisher corpus utterances (includ-
ing non-English)

• NAP projection–Eval04 speakers plus Switchboard 2 part
1 speakers, approximately 8000 utterances. The projection
was trained using WNAP [5]. The WNAP corank was 64.

• ZT-Norm–Eval05/06 speakers with 8 conversation training.

3.6. Total Variability System

The total variability system is composed of two subsystems,one
exclusively for telephone speech and another for microphone or in-
terview data. The parameters for the first subsystem were trained
on telephone data. We used a gender-dependent Universal Back-
ground Model (UBM) of 2048 Gaussians and gender-dependent
total variability matrices consisting of 600 eigenvectorstrained on
telephone speech [9]. The use of Linear Discriminant Analysis
(LDA) reduces our dimensionality to 250, and Within Class Co-
variance Normalization (WCCN) carries out the channel compen-
sation in the total variability space [10]. Table 2 shows thelist of
corpora and their respective roles in the creation of our system.
Similar to [9], we use cosine scoring and zt-normalization to make
the final decision. As with everything else so far, the impostors for
zt-norm were entirely selected from telephone speech data.

The second subsystem is used when we have microphone and
interview data in training or in testing. This system is based on
the total variability space and its 600 total factors estimated on
telephone speech and an additional 200 total factors trained in mi-
crophone and interview data. We then use Probabilistic LDA [11]

to project all microphone and telephone total factors of dimension
800 into speaker space of dimension 600. The PLDA consists of
a mean vector of dimension 800 estimated from telephone data,
an eigenvoice matrix of dimension 800x600 trained on telephone
speech, an eigenchannels matrix of dimension 800x200 trained ex-
clusively on microphone and interview speech, and a full covari-
ance matrix trained from telephone speech. After the projection
with PLDA, we used LDA to reduce the 600 dimensions to 250
and WCCN to normalize the cosine kernel. These channel com-
pensation matrices are estimated using telephone, microphone and
interview data all together. And as before, the decision score is
computed using cosine scoring, but the final scores are normalized
using s-norm [11]. The impostors used for s-norm are taken from
NIST 2005, 2006 SRE telephone and microphone data, as well as
some interview data from NIST 2008 SRE.

Note that for the telephone data, we used a silence detector
provided by Brno University, which corresponds to the Hungarian
speech recognizer labels (for more details, please see Brno’s 2010
Submission). Additionally, the speech activity detectionfor mi-
crophone data was obtained from CRIM (for more details, please
see CRIM 2010 submission).

3.7. Adaptive Norming

Adaptive norming of scores showed promise in our development
set for minimizing the new minDCF criterion and was applied to
three systems—IPDF, JFA, and TV. Adaptive normalization tech-
niques were applied with inspiration from several sources includ-
ing cohort normalization [12, 13], T-Norm [14], Z-Norm [4],and
adaptive variants [15, 16].

As with classic cohort selection [13] and Z- and T-norm, there
are several issues in adaptive methods—cohort selection, cohort
normalization function, and whether the model or test scoreis nor-
malized.

The basic cohort normalization functions were:

• Z-Norm Adaptive T-Norm (ZATnorm): for each trial score,
the Z-Norm score was first computed:

sz(xmod, xmsg) =
s(xmod, xmsg) − µmod

σmod
(8)

whereµmod andσmod are computed across a large set of
Z-norm utterances (gender dependent). The ZAT-normed
score is

szat(xmod, xmsg) =
sz(xmod, xmsg) − µmsg,coh

σmsg,coh
, (9)

whereµmsg andσmsg are the speaker-dependent mean and
standard deviation of theK cohorts chosen from a large
T-Norm set applied to the message of interest.

• S-Norm followed by Adaptive Snorm (SASnorm): for
each evaluation message/model pair Z-norm and Z-norm on
the swapped evaluation message/model pair is performed
(known as symmetric or S-Norm [11]),

ss(x1, x2) =
1

2

s(xmod, xmsg) − µmod

σmod

+
1

2

s(xmod, xmsg) − µmsg

σmsg
,

whereµmod, σmod, µmsg andσmsg are the mean and stan-
dard deviations of the utterancesxmod and xmsg scores
against all of the Z-norm set.



Table 2: Corpora used for the TV system to estimate the UBM, total variability matrix (T), LDA and WCCN

UBM T LDA WCCN

Switchboard II, Phases 1, 2 and 3 X X X
switchboard Cellular, Parts 1 and 2 X X X
Fisher English database Part 1 and 2 X

NIST 2004 SRE X X X X
NIST 2005 SRE X X X X
NIST 2006 SRE X X X X

ASnorm is then applied:

ssas(xmod, xmsg) =
1

2

ss(xmod, xmsg) − µmod,coh

σmod,coh

+
1

2

ss(xmod, xmsg) − µmsg,coh

σmsg,coh
,

whereµmod,coh, σmod,coh, µmsg,coh andσmsg,coh are the
z-norm stats for the cohorts for the model and message.

Cohorts selection was accomplished by a simple method. For
a given message or model, cohorts were selected as the highest
scoring models or messages (respectively) from a large dataset.
For telephone only tasks, the cohorts were all 4-wire utterances
from Eval04, Eval05 and Eval06. For microphone data, the co-
horts were chosen from Eval05 microphone, Eval06 microphone,
and the heldout background Eval08 interview microphone data set.
For IZAT (IPDF with ZAT-norm), 500 cohorts were chosen. For
ZAT3 (JFA with ZAT-norm), 300 cohorts were chosen. SASnorm
was applied to the total variability system using 694 top scores for
males and 929 top scores for females (about 10%) of the data.

3.8. Fusion

Fusion was performed using a logistic regression. The criteria
function of the logistic regression, normalized conditional cross-
entropy or Cllr, was adjusted to use the new target prior for the
2010 NIST SRE:P (tar) = 0.001. Although the criteria function
is not the same as NIST performance metricCDet, we found that
CDet was generally improved when we optimized using the same
effective target prior that matches Baye’s optimal decision rule.

A separate logistic regression was trained for nine of the con-
ditions listed in Table 1. The interview microphone logistic regres-
sions with corresponding train and test durations were usedfor the
two unseen conditions mentioned in Section 2 that use interview
data for training and conversational microphone data for testing.
For each of the IPDF, IZAT, JFA, GSV and ZAT3 systems, the
MFCC and LPCC versions of these systems were fused together
before the final fusion.

For our secondary submission we attempted to address the
“same microphone” and “different microphone” sub-conditions.
Our approach was to scale the number of “same microphone” sam-
ples to equal the number of “different microphone” samples in
each condition where the same style microphone data was usedin
train and test. On our dev data we found that this approach greatly
improved the “same microphone” calibration results with a relative
small degradation to the “different microphone” performances.

3.9. Processing Times

Processing times were estimated for single trials of the core task
on an Intel Xeon CPU running at 2.00GHz with 4 megabytes of

Table 3: Per System Processing Speed in Real Time Factors for
core task estimated from single trials. The last column is the frac-
tion of real time. For systems that fused LPCC and MFCC features
(IPDF, JFA, SVM GSV), entries represent sum of both processing
times.

Frontend LPCC Features 0.07
MFCC Features 0.07

IPDF Total Enroll 0.026
Total Verify 0.024

JFA Total Enroll 0.15
Total Verify 0.08

Prosodic Total Enroll 0.035
Total Verify 0.035

ECS Total Enroll 0.05
Total Verify 0.05

SVM GSV Total Enroll 0.104
Total Verify 0.096

TV Total Enroll 0.16
Total Verify 0.16

Fusion Total Enroll 0.66
Total Verify 0.58

cache and 8 gigabytes of memory. Results are shown in Table 3.9.
The overall fused primary system runs about0.6 times real time.

Note that the adaptive norming versions (SAS-TV, IZAT, and
ZAT3) use the same system outputs as the traditional norm results,
so no significant extra system processing is required for these.

Also, these single-trial verification numbers are worst case for
many applications. Verification processing of multiple targets on
the same utterance requires a negligible increase in processing for
most systems, so the per trial complexities would be much less.
This savings is approximately linear with the number of targets,
so for example verification times should be multiplied by 0.1for
processing 10 targets at a time. This rule does not apply to situa-
tions where enroll and verify lists were swapped; in this case the
parallel processing savings will occur for enrollment.
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