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Overview of the submission 
The score provided as results of the joint submission of 

Loquendo and Politecnico di Torino primary system for SRE10 
is the combination of acoustic speaker models based on 
Gaussian Mixture Models (GMMs) estimated by using 
eigenvoices [1][2] and relevance MAP [3]. 

 In particular, the system combines the results of 8 core 
acoustic systems, based on two modeling approaches and four 
sets of features of different dimensions.  

The results of the primary system were supplied for all the 
proposed train and test conditions. 

1. System overview 
These are the main modules that have been used for this year 
evaluation: 

 Voice Activity Detection (VAD) 
 Echo cancellation 
 Feature extraction 
 Feature warping  
 Joint Factor Analysis modeling 
 Total Variability modeling 
 Score normalization 
 Score combination and calibration 
 Speaker segmentation for the summed-channel condition 

In the next sections we describe these modules and the 
databases that have been used for training the models and for 
the development of the systems. 

2. Voice Activity Detection  
Voice Activity Detection is performed by means of a phonetic 
decoder. The decoder is a hybrid HMM-ANN model trained to 
recognize 11 language independent phone classes. Each phone 
class is modeled by a three state left-to-right automaton with 
self-loops. The ANN is a Multilayer Perceptron that estimates 
the posterior probability of each phone class, given an acoustic 
feature vector. The ANN has been trained using 20 hours of 
speech of 10 different languages using corpora not specifically 
collected for speaker recognition evaluations. More details are 
given in [4].  

 

3. Echo cancellation 
Echo cancellation is obtained performing voice activity 

detection on the two channels of the telephone conversations, 
and comparing the energy of the regions where the VAD reports 
speech both on the alternate and on the target speaker channel. 
If the energy of the alternate channel region is greater than the 
corresponding energy of the target channel, the frames of the 
region is labeled as “echo”. Files with more than 20% of echo 
labels are filtered removing the echo labeled frames. 

In the interview tests, the interviewee speech regions are 
defined as the complement of the regions where the interviewer 
is speaking. These regions are detected by means of our 
phonetic decoder if the Signal to Noise Ratio of the interviewer 
channel is greater than 10 dB, otherwise our phonetic 
transcription would be not reliable. Thus, for low SNRs 
interviews we rely on the information provided by the NIST 
ASR for the same channel. 

 We don’t use the NIST ASR information for all the 
interviews because it is obtained on the close talk microphone 
of the interviewer before the noise masking the speech has been 
added. Thus, possible interviewee echoes can erroneously be 
assigned to interviewer speech. 

4. Feature extraction  
Four sets of feature have been extracted for training the models 
used in this evaluation, two “small” and two “large”. All the 
features are warped by means of short  term gaussianization [5].  

The first set (MFCC-25) is the “small” one we used in the 
SRE08 evaluation. It includes 12 Mel Frequency Cepstral 
Coefficients (MFCC) plus 13 delta cepstral parameters (∆c0-
∆c12) computed every 10 ms. For this set of features, the 
analysis bandwidth is 300-3400 Hz, and feature warping to a 
Gaussian distribution is performed, for each static parameter 
stream, on a 3 sec sliding window excluding silence frames. 

All the other feature sets are extracted analyzing the full 0-
4000 Hz bandwidth, and feature warping is performed before 
the VAD has been applied, thus including silence frames. 
The second set of “small” features (PLP-26) includes 13 PLP 
coefficients (c0-c12) and their first order derivatives. 
The two set of “large” features consist of 60 parameters, 20 
MFCC coefficients (c0-c20) and their first and second order 



derivatives, and 20 PLP parameters and their first and second 
order derivatives.  

5. Speaker models 
For this evaluation we estimated models according to the Joint 
Factor Analysis (JFA) [6] and the Total variability [7] 
approaches, which allow obtaining accurate speaker models 
taking into account intersession variability. 

In the JFA approach a speaker model is estimated as 
 

+ ⋅ + ⋅ + ⋅s = UBM U x V y D z   (1) 
 

The next subsections will illustrate how we estimate the terms 
in the model equation. 

5.1.  Universal Background Model (UBM) 
Gender dependent Universal Background Models were trained 
on telephone data only. In particular on Switchboard II Phases 
3, Switchboard Cellular Parts 1 and 2, and the English 
conversations of the NIST SRE 2004, 2005 and 2006 databases. 
The final training set (SWB+NIST) includes 445 hours for 
speech selected from the 12498 conversations of 1183 female 
speakers and 328 hours from 9678 conversations of 963 male 
speakers. The models, consisting of 2048 Gaussian mixtures, 
were trained running 10 iterations of an approximation of the 
EM algorithm, which updates for each frame only the best 
Gaussian statistics for the sake of efficiency. 

5.2. Joint Factor Analysis  

The Joint Factor Analysis (JFA) models have been trained 
following the guidelines of [6] and [8] with some slight 
variations. Gender dependent models are trained using the 
corresponding UBMs to collect the zero-th and first order 
statistics necessary for estimating the eigenvoice matrix V.  

5.2.1. Eigenvoice subspace estimation 

The eigenvoice matrix V has been trained using the speaker 
models estimated by relevance MAP on a subset of the 
SWB+NIST dataset, including at least 4 conversations per 
speaker. The V matrix is trained, thus, on English telephone 
speech only. The number of eigenvoices is kept fixed at 300 for 
all the conditions in this evaluation. The estimation of matrix is 
initialized by EM Principal Component Analysis [9] followed 
by Maximum Likelihood estimation [8].  

5.2.2. Eigenchannel subspace estimation 

For each conversation of the same speaker collected from 
different sessions, a GMM is estimated by MAP estimation of 
the factor analysis vector y in 
 

 + ⋅s = UBM V y    (2) 
 

by collecting the zero-th and first order statistics from a single 
conversation. In addition, the average model of every speaker is 
obtained from all the conversation of the same speaker. The 
difference supervector between each speaker model and its 
average supervector is collected for all the available speakers, 
and matrix U in  

 
+ ⋅ + ⋅s = UBM V y U x    (3) 

 
is obtained performing Principal Component Analysis (PCA) 
followed by Maximum Likelihood estimation [8] using as 
features the difference supervectors. 

Three versions of gender dependent U matrices have been 
estimated for this evaluation:  

 Ut trained on the telephone data selected from the NIST part 
of the SWB+NIST database. (6684 and 5487 recordings of 
711 female and 622 male speakers, respectively). 

 Um trained on the microphone data of the NIST SRE 2005 e 
2006, and  also including telephone conversations of the 
speakers contributing to the microphone databases (3461 
and 2893 recordings of 95 female and 82 male speaker, 
respectively). 

 Ui trained on the small set of interview data provided as 
development for the NIST 2008 evaluation.  Training has 
been performed by splitting the audio files into chunks of 3 
minutes and estimating a supervector for each chunk, for a 
total of 1520 and 1560 recordings of 3 female and 3 male 
speakers, respectively. We then performed the difference 
with respect to the corresponding chunk supervector 
estimated on the “clean” condition of the same session (the 
interviewee near microphone, channel 2). Since the speaker 
and the phonetic content of parallel chunks are the same, the 
compensation is focused on channel and microphone 
differences. 

 
The dimensions of the subspaces estimated for the “small” 

models are 60 for the Ut , 60 for Um and 20 for the Ui matrices, 
whereas for the “large” models the dimensions becomes 100, 
100, and 20, respectively. 

5.2.3. Residual variability estimation 

The diagonal matrix D describing the residual variability in the 
JFA speaker model (1) is set to a constant value that allows 
obtaining the same behavior of relevance MAP. 
 

5.3.  Speaker model training  

A speaker model is estimated by JFA, stacking the V and U 
matrices and jointly estimating the speaker and channel factors. 
Relevance MAP is performed in all conditions excluding 10sec-
10sec. Finally the contribution  ⋅ trainU x  is discarded. 

5.4. Scoring 

For these models scoring was performed computing and 
summing the frame by frame log-likelihoods on the channel 
dependent model obtained adding to the channel independent 
GMM speaker model (3) the estimated test channel contribution 
 

 + ⋅ + ⋅ + ⋅ tests = UBM V y D z U x   (5) 
 



5.5. Total Variability 

A second set of models, using the same features described in 
Section 4, has been estimated according to the Total variability 
approach proposed in [7]. The approach is interesting because it 
get rid of the distinction between speaker and channel 
variability in its first dimensionality reduction step, where a 
total variability subspace, represented by a matrix T, is 
estimated.  
 

5.5.1. Total subspace estimation 

The T matrix has been trained using the same dataset and 
features of the V matrix. The same procedure that allows the 
eigenvoice V matrix to be obtained can be used for estimating 
the total variability matrix T, providing the procedure a 
supervector per conversation rather than a supervector per 
speaker. Since T is a low rank matrix, a large number of 
correlated variables in a supervector is projected into the total 
subspace producing a small number of speaker and channel 
dependent uncorrelated variables: the total factor vector w in the 
model 
 

+ ⋅s = UBM T w    (4) 
 

5.5.2. Intersession compensation 

Intersession compensation is then performed by means of 
Linear Discriminant Analysis (LDA), where all the total factor 
vectors of the same speaker are associated with the same class. 
The LDA transformation ⋅w' = A w  seeks a rotation matrix A 
that project the total factor vectors w on new axes so that the 
differences between the classes are maximized. The matrix A is 
obtained by minimizing the intra-speaker variance (caused by 
intersession variability of the same speaker), while the variance 
between speakers is maximized. 
The A matrix has been trained using not only telephone data 
(SWB+NIST), but also the microphone and interview data sets 
from NIST 2006. 

In these experiments the dimension of total variability 
matrix T and of the LDA matrix have been set to 400 and 200, 
respectively, according to the setting proposed in [7], and 
confirmed by our experiments on the NIST 2008 evaluation 
data. 

 

5.5.3. Within Class Covariance Normalization 

After LDA transformation has further reduced the feature 
dimensions, removing the nuisance directions, a final step is 
performed to normalize the speaker features by means of Within 
Class Covariance Normalization (WCCN) [10][9][7].  
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where W is the within class covariance matrix of a subset of the 
training data (NIST SRE 2005 and 2006 in our settings). All the 
conversations of a speaker are associated to a single class. 

5.5.4. Fast scoring 

Scoring for these models was performed computing the value of 
the cosine kernel between the target speaker factors 
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6. Score normalization 
Similar to the 2008 evaluation, the scores of each system are 
subject to score normalization. First the raw score are speaker-
normalized by means of Z-norm. Separate statistics have been 
collected for the female and male speakers both for the JFA and 
the Total variability models. 

For the JFA telephone models, the Z-norm parameters for 
each speaker model have been evaluated using the audio 
samples of 323 female and 256 male impostor speakers, a subset 
of speaker samples included in the SRE04 and SRE05 database. 
The same data have been used for training the impostor models 
necessary for T-normalization [11]. The T-norm parameters for 
each test sample were estimated using the Z-normalized scores 
of the impostor voiceprints.  

A much larger set can be used for the Total variability models 
due to the fast computation of the dot-product scores. In 
particular, 1183 female and 963 male impostor speakers have 
been used for this condition. 

For the 10-sec and the 8conv training and test conditions, the 
list of the impostor speaker samples was selected in accordance 
with the condition, and the impostor models were trained with 
the appropriate amount of data.  

The list of impostor speakers for the normalization of the 
scores of the microphone conditions is smaller due to the 
relatively poor amount of data: Z-norm and T-norm is 
performed in this case against 164 and 190 female and male 
microphone models, respectively.  

The normalization of the interview conditions uses the 
impostor speakers of the microphone data.  

Some core conditions have associated the new NIST Decision 
Cost Function, which weights False Alarms errors a thousand 
times more than Miss Classification errors. In our development 
experiments we have found that Adaptive T-normalization [12], 
which finds from a large set the T-norm impostor models more 
similar to the current model, improved the performance of the 
Total variability models. The same normalization does not 
perform as well in the JFA framework, possibly because the 
selection set is kept small for the sake of efficiency.  

7. Score combination and calibration 
The combination of the 8 GMM systems is obtained by linear 
fusion with prior-weighted Logistic Regression objective [13] 
estimating the combination parameters on the SRE 2008 data 
using the FOCAL tool [14]. The estimation is condition 
dependent. 

Lacking development data for the microphone/microphone 
conditions, the weights combination is borrowed by the most 
similar interview conditions. 



Table 1. Systems and models used for the evaluation, and their 
approximate average processing time 
 

Systems & Models 
(MFCC or PLP) 

Training 
Average  

processing time 
per voiceprint 

(sec) 

Testing    
Average  

processing time  
per audio file 

(sec) 
Small JFA  26 15 
Large JFA 47 28 
Small Total variability 4 4 

Large Total variability 6 6 
Fusion of 8 
MFCC and PLP systems X 53*2 = 106 

8. Summed-channels trials 
In addition to the four wires conditions, we performed speaker 

model training for the summed condition. In these conditions a 
set of 8 whole conversations between two speakers is supplied 
as training audio files, and a single speaker or a summed 
channel conversation is proposed as test. 

For the multi-speaker conversations trials we use 
unsupervised speech segmentation to detect speaker clusters, 
followed by voiceprint creation and scoring.  

For the two wire tests, speaker segmentation is performed, and 
each putative speaker cluster is scored against the speaker 
models in the index list. For each model, we select the speaker 
cluster that gives the best score. 

Our procedure for speaker clustering is described in [15]. In 
our development experiments, performed on the NIST 2008 
data, a relevant performance boost has been obtained by using 
the language dependent eigenvoices estimated as described in 
Section 5.2.1. 

In the development experiments executed on the 2008 data, 
we found that mislabeled gender models affect the performance 
of our systems. In particular, the False Alarm rate increases due 
to the use of gender mismatched UBMs and speaker models. 
Thus, before speaker recognition is performed, we execute a 
gender detector, based on the gender dependent UBMs. If the 
gender detector does not agree with the NIST supplied gender 
labels, and if its confidence is greater than a given threshold, the 
trials against that model are considered impostor trials, and their 
scores are randomly set to very low values.  

9. Threshold setting 
The theoretical log likelihood-ratio threshold decision threshold 
is fixed for the scores calibrated by means of the logistic 
regression, according to the NIST evaluation plan Decision Cost 
Functions, to log 999 ≅ 6.9 for the core and 8conv core 
conditions, and to log 9.9 ≅ 2.29 for all the other conditions. 

10. Processing speed 
Table 1 summarizes the systems used for our primary 
submission, and their approximate average processing time per 
voiceprint training or per audio segment scoring. These times 
have been obtained for the core condition on a dual quad-core 
Xeon 2.53 GHz Linux processor, with 32 GB of memory, 

exploiting at our best the underlying hardware and the 
organization of the tests for this evaluation.  
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