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1. Overview 
 

ILPIGB is submitting scores for the core task. In addition, PerSay is submitting scores for 

four other tasks. The score produced for all the tasks mentioned are obtained by different 

fusions of several different speaker verification systems: 

• PerSay LPCC NAP SGM: An SVM-based classifier, working in the GMM model 

space of LPCC features, using NAP for session compensation. 

• PerSay MFCC NAP SGM: An SVM-based classifier, working in the GMM model 

space of MFCC features, using NAP for session compensation. 

• PerSay LPCC SGM: An SVM-based classifier, working in the GMM model space 

of LPCC features 

• PerSay MFCC SGM: An SVM-based classifier, working in the GMM model 

space of MFCC features 

• PerSay MFCC TFA: a fast scoring Total Factor Analysis model which used JFA, 

LDA and WCCN (based on [1]). 

• GM MFCC GIB: A super-vector system that uses GIB transformation in order to 

reduce feature dimension. 

• IBM NAP: 2 wire NAP on MFCC super vectors, as described in section 5. 

The above systems used slightly different background data & parameters in each 

condition. 

 

 

The following table shows the systems used in each condition: 

Table 1: Systems used for the different conditions of NIST 2010. 

Condition

  

ILPGIP1 (Primary) ILPGIP 2 

Core-Core LPCC NAP SGM 

MFCC NAP SGM 

MFCC TFA  

GM MFCC GIB 

IBM 

LPCC NAP SGM 

 

core-10sec LPCC NAP SGM 

MFCC NAP SGM 

MFCC TFA  

MFCC TFA 



10sec-10sec LPCC SGM 

MFCC SGM 

MFCC TFA 

MFCC TFA 

core-summed LPCC NAP SGM 

MFCC NAP SGM 

 

8summed-

core 

LPCC NAP SGM 

MFCC NAP SGM  

LPCC NAP SGM 

 

 
2. PerSay SGM w/o NAP systems description  
  
  

2.1 Features: 

 

• The Qualcomm-ICSI-OGI Wiener filter ([2], 

http://www.icsi.berkeley.edu/Speech/papers/qio/) was applied to microphone 

recorded segments (mic and interview). 

• For phone recording energy detection over the “other” side of each 4-wire 

conversation was used to discard silent segments. For interview recording the 

ASR was used to remove the other side. 

Additional silent frames were removed by an energy-based voice activity detector 

with adaptive threshold. 

• LPCC: 20 LP Cepstrum Coefficients (LPCC) + 20 delta LPCC, with mean 

subtraction and variance normalization, computed over 250 msec frames with 125 

msec overlap. 

Or 

• MFCC: 19 Mel Frequency Cepstrum Coefficients (MFCC) + 19 delta MFCC, 

including RASTA filtering, mean subtraction and variance normalization, 

computed over 250 msec frames with 125 msec overlap. 

 

 

2.2 Super vector generation (Training & Test): 

 

 Means-only Bayesian adaptation of the same-gender UBM, using top 10 scoring 

Gaussians, creates a super vector of Gaussian means. The UBM has 512 

Gaussians. 

 The means of the UBM Gaussians were subtracted from the target super vector. 

 The means of each Gaussian were multiplied by the square root of the ratio 

between the Gaussian weight and the UBM Gaussian variance for this feature.  

 This super vector was normalized by its L2 norm. 

 

The relevance factor value used for most conditions is 3. For the 10sec-10sec a value of 1 

was used. 

 

 

 

 

http://www.icsi.berkeley.edu/Speech/papers/qio/


 

2.3 Training: 

 

The NAP-SGM systems used Nuisance Attribute Projection (NAP, [3]) to remove 

unwanted session & channel variability. The projection matrix was trained beforehand 

using data that matched the condition (see below). It was applied on the generated super 

vector. 

2.3.1 2-wire NAP training 

A more robust NAP projection was implemented by removing also directions of 

projection caused by other side speaker interference, as is done in [4]. In principle 

summed recording and it’s 2 separated sides are added to the NAP which tries to find 

directions to project away. The 2 wire projection dimension was 5 for males and 40 for 

females. 

 

An SVM was trained for each training file, using as features the super vector obtained by 

the previous steps. 

 

Additional details on SVM classification in the GMM model space can be found in [5]. 

The SVM classifier was implemented in SVMTorch [6], using a first-degree polynomial 

kernel. 

 

2.3.2 8-summed training 

8 summed training was done by first automatically separating each call to its 2 sides by 

[7]. We get 16 files. We train for each a super vector (after NAP) and an SVM model. 

Then we score with each SVM  model all the files. On this matrix we define the 

neighbors of each file as those who got scores > -0.9. We take a super vector to create the 

speaker model if it has at least 5 neighbors, and its pair (from the original conversation) 

has less than 5. Using all the chosen super vectors we create an SVM model.  

We do a 2
nd

 pass with this model –We choose from each pair of super vectors the one 

with the highest score with regards to the SVM model, given its score is above -0.9. The 

chosen files are used to create a new SVM model. Usually this model includes 7 to 8 

files. 

 

2.4 Testing: 

 

The trained SVM classifier was used to classify the test super vector, and output its 

margin, as the score. 

 

2.4.1 Summed audio testing: 

When the test segment was summed (2-wire), an external segmentation utility was used 

to divide the test segment to two sides. The external segmentation utility [7] is using two 

feature sets (FFT-based spectrum and LPCC) and two self-organizing–maps (SOM) 

classifiers in an iterative fashion to cut the summed file into two files which presumably 

hold the voice of only one speaker. Each such file was tested against a model created 

from the train segment. The highest score was selected as the score of this train-test pair. 

 



 

 

 

2.5 Parameters and background data 

The background model the system includes English audio from SRE 99, 03, 04, 05, 06, 

and 08. 

The 2008 SRE was partitioned. Speakers with many calls were used to train NAP. 

Speakers with a few calls were used to create a test set. 

In the core-10 seconds, the training audio was cut to 15 seconds pieces, to match the test 

audio length. 

NAP dimension was 20 for 10 seconds conditions, and between 50 to 200 in other cases. 

 

 

2.6 Execution times 

 

Wiener Filter: ~20 sec for each segment 

Preprocessing LPCC: ~ 1.5 sec for each segment, including feature extraction, Baum 

Welch statistics computation & super vectors generation 

Preprocessing MFCC: ~ 4 sec for each segment, including feature extraction & super 

vectors generation 

NAP projection: ~ 0.13 sec for each segment   

SVM training: ~ 1.2 sec for each segment  

SVM testing: ~ 0.02 sec for each segment 

Summed file separation: ~ 30 sec for each summed segment 

 

The execution times are per one 5 min segment. 

Processing was done on an Intel P4 with 4GB memory, running Linux. 

 
3.  PerSay Joint Factor Analysis with Fast Scoring System  
  
 

Joint Factor Analysis  (JFA) with simplified scoring based on cosines kernel. Channel 

normalization based on LDA+WCCN ([1]). The total variability model dimension is 150, 

reduced by LDA to 120. The JFA model and LDA/WCCN computed on two different 

subsets of FISHER + NIST04-08 data. The underlying feature set is 19MEL+19deltas. 

The final scores are normalized by znorm, with the znorm impostors taken from 

NIST04,05,06. The size of impostor set for znorm normalization is approximately 500 

speakers. 

 

3.1  Execution times 

Training: ~1.2 sec  for each 10sec segment, ~5 sec  for all others 

Testing:  ~1.2 sec  for each 10sec segment, ~5 sec  for all others  

Processing was done on an Intel 2140@1.60GHz with 4G memory, running Linux. 

 

 

 



 

4. GM MFCC GIB System 
 

One of the important challenges for super-vector systems [8],[9] is the super-vector 

dimension reduction. The goal of this challenge is to find a representation that is both 

compact and effective. In this system the dimension reduction procedure was based on 

the Information bottleneck (IB) [10] and more specifically on the Gaussian Information 

Bottleneck (GIB) [11]. This GIB evaluation system is based on [12].  

4.1 Experiment:  

Several sets of experiments were conducted on the NIST 2008 data. Those experiments 

were not conducted on the regular evaluation sets. A different partition of the 

conversations was made such that it better reflects the NIST 2010 scenarios. A total of 

four scenarios were defined according to the evaluation conditions: 

-All trials involving interview speech from the same microphone in the training and test. 

This scenario is denoted as int-int-same. 

-All trials involving interview speech from the different microphone in the training and 

test. This scenario is denoted as int-int-diff. 

-All trials involving telephone speech in the training and test. This scenario is denoted as 

phn-phn. 

-All trials involving interview speech for training and telephone speech for test. This 

scenario is denoted as int-phn. 

The scores were TZ normalized by a set of speakers that were omitted from the scenarios 

described above. A total of 3000 segments were used for the normalization. Those 

segments were used to estimate the GIB transformation as well. 

4.2 Results: 

Results of the different scenarios on the NIST 2008 are shown in the following table. 

Table 2: NIST 2008 recognition results (equal error rate) for different scenarios and genders. SV – represents 

super-vector system without dimension reduction. GIV- represents super-vector system with GIB based 

dimension reduction. 

Gender scenario SV(EER) GIB(EER) 

Female int int diff 17.7 7.7 

Female int int same 6.8 4.3 

Female phn phn 6.9 3.5 

Female Int phn 20.3 11.8 

Male int int diff 14.4 8.5 

Male int int same 4.7 4.2 

Male phn phn 7.3 6.6 

Male Int phn 18.6 10.6 

The GIB proves itself as an effective tool for extraction of relevant information. 

  
5. IBM System 
 

5.1 Features: 
 - Adaptive energy based voice activity detection 

 - MFCC features + deltas (26 in total) 

 - feature warping 



5.2 Model: 
- GMM supervector parameterization of all sessions (enrolment, development, 

test) estimated using relevance-MAP 

- NAP compensation using 2-wire variant described in [4]. 

- ZTnorm score normalization using unbiased scoring [13] 

 - H-norm for normalization of tel-tel vs. mic-mic scores 

 

5.3 Datasets used: 

NIST 04 -  UBM training, NAP estimation 

NIST 05 - ZT-norm, H-norm 

NIST 06  - NAP estimation, ZT-norm, H-norm 

NIST 08*  ZT-norm, H-norm 

* speakers not in ILNist dev. dataset 

 

6. Fusion & Score calibration 
 

The scores augmented by side-information based on the length of the respective 

utterances were fused using the Focal toolkit with[14], with the linear logistic regression 

algorithm. 
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