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1. SUBMISSION OVERVIEW

There were two systems submitted for NIST SRE 2010 core evalua-
tion. The IBM primary submission is a score-level fusion of 6 core
systems as follows:

� 1 � Phonetically inspired NAP-GMM system
� 3 � Discriminatively trained NAP-GMM systems, varied

by choice of front-end features, data subsets and system con-
figurations.

� 2 � Factor analysis based systems trained on different front-
end features: LPCCs and MFCCs

The alternate submission consisted of just the “phonetically in-
spired NAP-GMM system”.

This write-up discusses the data pre-processing and parameter-
isation components in Section 2. In Section 3 we discuss the core
modelling components incorporated while Section 4 presents the
system combination technique applied. Finally, Section 5 identifies
the execution times of the major processing components.

2. DATA PRE-PROCESSING AND PARAMETERISATION

2.1. Data Pre-processing

For the NIST 2010 Core evaluation, we considered the data to be
represented by three main components:

� Basic Telephony (cellular, landline)
� Telephony with Distant Microphone
� Interview data with Distant Microphone

Before any other processing, the conversational interview data
was first pre-processed to remove the interviewer’s speech from the
audio. Here, NIST’s ASR transcripts for the interviewer’s lapel mi-
crophone were used to indicate when the interviewer was speaking.
Subsequently these sections were removed from the audio. After this
stage, all audio was treated in a similar manner.

For the systems using MFCCs or LPCCs, a fast dynamic energy
noise floor tracking algorithm was incorporated (similar to [1]). If
less than 30% of the audio was detected as non-silence the thresh-
old was reduced to capture more non-silence audio. For the ASR
inspired systems, information from an automatic speech recognition
system provided the detected speech segments.

2.2. Feature Extraction

Three different feature sets were produced and are labelled as as
MFCC36, LPCC36 and ASR40. These sets relate to Mel-Frequency
Cepstral Coefficients (MFCCs), Linear Prediction Cepstral Coeffi-
cients (LPCCs) and automatic speech recognition inspired features.
Basic details of each feature set follows below:

� MFCC36 is based on 12 cepstral coefficients generated from
20 filterbanks. Delta and acceleration coefficients are also
included. The filterbank features are calculated from 32ms
frames with a 10ms frame advance. The filterbanks span a
frequency range of 125-3800Hz.

� LPCC36 has 12 LPCCs with delta and acceleration features
added. The LPCCs were generated from 19 linear prediction
coefficients. (32ms frames, 10ms frame shift)

� ASR40 consists of 40 dimensional features generated from
the IBM ASR system. These features are estimated from se-
quences of 13-dimensional perceptual linear prediction (PLP)
features by using a linear discriminant analysis (LDA) projec-
tion, and then applying a maximum likelihood linear trans-
formation (MLLT). The acoustic model consists of 250K
diagonal-covariance Gaussian components. In the context
of speaker-adaptive training, vocal tract length normalization
(VTLN) and feature-space maximum likelihood linear regres-
sion (FMLLR) are used. An FMPE transform is applied on
top of the utterance-specific FMLLR transforms.

The first two sets of features have feature warping (Gaussian-
ization) [2] applied over all dimensions after silence removal was
applied. Feature warping can mitigate linear channel and slowly
varying additive noise effects. All LPCC features were generated
with the HTK Toolkit [3]. An interesting aspect to note is that fea-
tures generated with feature warping post-processing could be com-
pressed to approximately one-quarter of the size (using bzip2) over
our generic 4 byte float per parameter representation. This is very
useful when working with large parameter sets.

3. CORE SYSTEMS

3.1. Phonetically Inspired UBM Modelling

This approach was first applied to nonnative speaker and accent de-
tection in [4]. In this system, the UBM is estimated directly from
the Gaussians of the acoustic model of the ASR system by using
K-means clustering. A symmetric variant of the Kullback-Leibler



(KL) divergence between two Gaussian components is used as a dis-
tance measure in the K-means clustering algorithm to achieve the
final clustering of the ASR acoustic model to a UBM of 1024 Gaus-
sian components. Effectively, an ASR model of 250k Gaussians is
transformed into a 1024 component GMM. This novel method for
UBM construction is applied to ASR acoustic models trained in the
feature-based minimum phone error (FMPE) feature space [5]. The
front-end features also include VTLN, LDA, MLLT, and fMLLR.
More information on the specifics of the approach is available in [6].

Using the transformed ASR-GMM statistics, speaker recogni-
tion is performed based on a NAP compensated GMM-UBM frame-
work [7, 8]. As per our NIST 2008 SRE submission, the nuisance
directions used for NAP are based on finding the direction of the
largest within class covariance [9]. ZT-Norm [10] is also applied.

For this system, Switchboard II P3, NIST 2004, Dev 2008, Eval
20081 and Dev 2010 data were used for the NAP session compensa-
tion. For ZT-norm a combination of this data was applied.

3.2. Discriminatively Trained UBM-GMM

The UBM in speaker verification systems is typically a Gaussian
mixture model (GMM) trained on a large amount of data using the
EM algorithm. In this system we apply a discriminative method for
training the UBM by adding a regularization term to the maximum
likelihood objective function [6]. Here, the regularization term fa-
vors larger values for target trial scores and smaller values for im-
poster trial scores.

The objective function is,
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are the parameters of the imposter
regularization function, 0 is the number of target scores, and 1 is
the number of imposter scores. The parameters of the target and
imposter regularization functions are estimated on a held-out set to
provide proper conditioning of the target and imposter scores respec-
tively. The target and imposter scores are the speaker recognition
scores without NAP compensation and without ZT-normalization.
The objective function specified in Equation 1 can be optimized us-
ing an E-M like algorithm. Further details are available in [6].

Using this approach, three discriminatively trained systems are
constructed.
Interview only data using ASR based features:

This system uses the ASR based features with the UBM
trained with 20 iterations on NIST Dev 2008, Eval 2008 and
Dev 2010 data. The NAP approach utilizes the NIST Dev
2008, Eval 2008 and Dev 2010 data. ZT-Normalization is
applied using all available data.

Expanded interview only data using ASR based features:
This system is the same as the system above except the NIST
Eval 2006 data is also added as part of the UBM optimization.
Additionally, only 10 iterations were performed.

1Note (here and throughout): The NIST 2008 SRE data was split into
2 parts. The first part consisted of two-thirds of the available speakers and
the other part comprised the remainder. The larger portion was used for sys-
tem development purposes while the remaining third was kept for fusion and
calibration.

Interview data only using MFCC based features:
This system is based on the use of MFCC features with the
UBM trained on NIST Dev 2008, Eval 2008 and Dev 2010
data. The NAP compensation is trained on Switchboard II
Phase 3, NIST Dev 2008, Eval 2008 and Dev 2010. ZT-Norm
is applied using all available data.

3.3. Factor Analysis Systems

There are two factor analysis based systems in this year’s submis-
sion. The only difference between these two systems is type of fea-
tures; the feature sets used are MFCCs and LPCCs as described in
the feature extraction section. The factor analysis system is based on
the factor analysis work of Kenny [11]. We use Gauss-Seidel itera-
tive estimates (based on [12, 13]) to provide MAP estimates of the
session and speaker contributions.

The statistics are based on the use of a 1024 component Gaus-
sian mixture model. The factor analysis model is trained with rele-
vance adaptation, 300 speaker factors and 100 session factors. The
factor analysis system is trained first for relevance adaptation fol-
lowed by interleaved iterations of speaker and session optimization.
The speaker and session subspace optimization process is trained on
the relevance adaptation residual. The FA system uses all available
development data to train the factors.

Once trained on the development data, the factor analysis system
is used to compensate for session variability in the utterance specific
sufficient statistics from the NIST 2010 data. These statistics are
then used to calculate an approximation of the log-likelihood ratio.
That is, the log of the ratio of the likelihood of the test utterance
given the compensated adapted target model to the likelihood of the
test utterance given the UBM.

We also include ZT-Norm [10]. Here the ZT-Norm speaker set
was chosen to dynamically match both the gender and channel type
(interview microphone, ”telephone microphone” and telephone) of
the corresponding enrollment and test utterances for each trial. The
role of the enrollment and test utterances is also switched and scored
again to provide both the forward and reverse scores which is then
used to provide a symmetric score.

4. SUBMITTED SYSTEMS

Two systems were submitted for this evaluation. The primary sys-
tem submitted uses a combination of 6 systems based on the FoCal
toolkit [14]. The optimization weights were determined from a sub-
set of the NIST 2008 SRE. As mentioned earlier, two-thirds of the
data was used for improving core systems while one-third was kept
for optimizing the fusion weights. The bilinear version of the toolkit
was employed to utilize the side labels relating to the broad audio
recording types; interview microphone, telephone microphone and
telephone. The operating threshold was selected based on plotting
and finding the threshold of the minimum DCF over the range of
thresholds on the held-out data. It aligned reasonably well with the
theoretical log-likelihood ratio for the specified NIST cost function.
An additional margin was added to the threshold to reduce the risk
of high-cost false accepts.

The alternate system submitted is a single system designed for
improved telephony speaker recognition performance with the new
NIST minimum DCF criterion. Score calibration is performed in a
similar manner to the primary system setup.



5. SYSTEM EXECUTION TIMES

System Estimated Time on
Component single CPU (hours)

Offline System Development
Entire Parameterisation (ASR+non-ASR) 6000

Basic UBM training 400
Discriminatively trained UBM 1000

NAP Subspace Training 0.5
Factor Analysis Training 250

Online Evaluation System
Entire Parameterisation (ASR+non-ASR) 1500

Sufficient Stats + NAP + Dot-Product Scoring 10
Factor Analysis Inspired Scoring 150

These statistics are estimates for a single processor on a 2.2GHz
Pentium 4 machine.
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