HKPolyU System for NIST 2010 Speaker Recognition Evaluation

M.W. Mak

May 2010

Feature Extraction

	Specification/Method
Acoustic Features	 12 MFCC + 12 ΔMFCC 100 Hz frame rate 25ms per frame
Feature Normalization	CMN followed by feature warping
Voice Activity Detection	Spectral subtraction followed by energy-based detection with cross talk removal

Speaker Modeling

	Specification/Method
UBMs	 512 centers, diagonal covariance Gender- and channel-dependent Channel: mic or tel K-means followed by EM Telephone speech UBM: Data selected from NIST04+05+06 Mic speech UBM: Data selected from NIST05+06
GMM Speaker Models	 Gender- and channel-dependent MAP Relevance factor = 16
GMM-SVM Speaker Models	 12288-dim GMM-supervectors 300 gender- and channel-dependent background speakers (one utterance per speaker) as impostor-class data SVM penalty factor C=100 for speaker-class C=1 for impostor-class Use the SVM Toolbox for Matlab provided by Anton Schwaighofer (Same performance as symlight but much faster)

Channel Compensation

	Specification
NAP Corank	 Corank = 16 for telephone speech Corank = 128 for microphone/interview speech
Training Data	 Telephone speech 457 male speakers from NIST04,05,06 861 female speakers from NIST04,05,06 Microphone speech 143 male speakers from NIST05,06,08 178 female speakers from NIST05,06,08 Each speaker has at least 8 utterances
NAP Matrices	Gender-dependentSpeech-type dependent

Score Normalization (T-norm)

	Specification
Training Data	 Positive-class data: Telephone speech: 261 male utterances from NIST05 277 female utterances from NIST05 Microphone speech 300 male speakers from NIST05,06 300 female speakers from NIST05,06 Impostor-class data: 300 gender- and channel-dependent background utterances
GMM-SVM T-norm Models	 Gender and speech-type dependent SVM penalty factor C=100 for speaker-class C=1 for impostor-class

Score Fusion

NIST10 System 1:Fusion of 5 Systems

FSH: Fishervoice

GSV: GMM-SVM

JSV: JFA-SVM

JSF: JFA-SVM on channel factor

Score Fusion

NIST10 System 2: Selecting the Best System in NIST08

Gender	Condition	System	
Male	phonecall_tel	FSH	
Male	phonecall_mic	GSV	
Male	interview	GSV	
Female	phonecall_tel	FSH	
Female	phonecall_mic	GSV	
Female	interview	GSV	

FSH: Fishervoice GSV: GMM-SVM

Score Fusion

NIST10 System 3: Selecting the Best-3 Systems in NIST08

Gender	Condition	System	
Male	phonecall_tel	GSV+FSH+JSV	
Male	phonecall_mic	GSV+FSH+JSV	
Male	interview	GSV+FSH+JSV	
Female	phonecall_tel	GSV+JFA+FSH	
Female	phonecall_mic	GSV+FSH+JSV	
Female	interview	GSV+FSH+JSV	

FSH: Fishervoice GSV: GMM-SVM JSV: JFA-SVM

Computation Time

Task	
CPU	CPU: Intel Core 2 Quad CPU Q9550 @ 2.83GHz
Operating System	Linux Fedora 11 (Kernel 2.6.27, 32 bits)
Memory	4G

Task	CPU Time (sec)	
Training NAP matrix (phone speech)	711.0	
Training NAP matrix (mic speech)	637.9	

Computation Time

CPU: Intel Core 2 Quad CPU Q9550 @ 2.83GHz (Running-time on 1 core)

Task	CPU Time (sec) per utt.	% of Real-Time
VAD with Crosstalk Removal (8min)	103.0	21.5%
VAD w/o Crosstalk Removal (5min)	23.5	7.8%
VAD with Crosstalk Removal (3min)	19.7	10.9%
Feature Extraction with FW (8min)	34.7	7.2%
Feature Extraction with FW (5min)	29.5	9.8%
Feature Extraction with FW (3min)	12.4	6.9%
Creating GMM-Supervector (8min)	85.1	16.1%
Creating GMM-Supervector (5min)	68.1	22.7%
Creating GMM-Supervector (3min)	30.2	16.8%
Creating GMM-SVM	5.7	1.2%
GMM-SVM Scoring (8min)	8.1	1.7%
GMM-SVM Scoring (5min)	8.1	2.7%
GMM-SVM Scoring (3min)	8.1	4.5%

Computation Time

Enrollment time per 8min-utterance:

103+34.7+85.1+5.7 = 228.5 sec = 47.6% of real-time Enrollment time per 5min-utterance:

23.5+29.5+68.1+5.7 = 126.8 sec = 42.3% of real-time Enrollment time per 3min-utterance:

19.7+12.4+30.2+5.7 = 68.0 sec = 37.7% of real-time

Scoring time per 8min-utterance:

103+34.7+85.1+8.1 = 230.9 sec = 48.1% of real-time Scoring time per 5min-utterance:

23.5+29.5+68.1+8.1 = 129.2 sec = 43.1% of real-time Scoring time per 3min-utterance:

19.7+12.4+30.2+8.1 = 70.4 sec = 39.1% of real-time