HKPolyU System for NIST 2010 Speaker Recognition Evaluation M.W. Mak May 2010 ## **Feature Extraction** | | Specification/Method | |--------------------------|---| | Acoustic Features | 12 MFCC + 12 ΔMFCC 100 Hz frame rate 25ms per frame | | Feature Normalization | CMN followed by feature warping | | Voice Activity Detection | Spectral subtraction followed by energy-based detection with cross talk removal | Speaker Modeling | | Specification/Method | |---------------------------|---| | UBMs | 512 centers, diagonal covariance Gender- and channel-dependent Channel: mic or tel K-means followed by EM Telephone speech UBM: Data selected from NIST04+05+06 Mic speech UBM: Data selected from NIST05+06 | | GMM Speaker Models | Gender- and channel-dependent MAP Relevance factor = 16 | | GMM-SVM Speaker
Models | 12288-dim GMM-supervectors 300 gender- and channel-dependent background speakers (one utterance per speaker) as impostor-class data SVM penalty factor C=100 for speaker-class C=1 for impostor-class Use the SVM Toolbox for Matlab provided by Anton Schwaighofer (Same performance as symlight but much faster) | # **Channel Compensation** | | Specification | |---------------|---| | NAP Corank | Corank = 16 for telephone speech Corank = 128 for microphone/interview speech | | Training Data | Telephone speech 457 male speakers from NIST04,05,06 861 female speakers from NIST04,05,06 Microphone speech 143 male speakers from NIST05,06,08 178 female speakers from NIST05,06,08 Each speaker has at least 8 utterances | | NAP Matrices | Gender-dependentSpeech-type dependent | # Score Normalization (T-norm) | | Specification | |--------------------------|---| | Training Data | Positive-class data: Telephone speech: 261 male utterances from NIST05 277 female utterances from NIST05 Microphone speech 300 male speakers from NIST05,06 300 female speakers from NIST05,06 Impostor-class data: 300 gender- and channel-dependent background utterances | | GMM-SVM T-norm
Models | Gender and speech-type dependent SVM penalty factor C=100 for speaker-class C=1 for impostor-class | ### Score Fusion #### NIST10 System 1:Fusion of 5 Systems FSH: Fishervoice **GSV: GMM-SVM** JSV: JFA-SVM JSF: JFA-SVM on channel factor ## Score Fusion #### NIST10 System 2: Selecting the Best System in NIST08 | Gender | Condition | System | | |--------|---------------|--------|--| | Male | phonecall_tel | FSH | | | Male | phonecall_mic | GSV | | | Male | interview | GSV | | | Female | phonecall_tel | FSH | | | Female | phonecall_mic | GSV | | | Female | interview | GSV | | FSH: Fishervoice GSV: GMM-SVM ## Score Fusion #### NIST10 System 3: Selecting the Best-3 Systems in NIST08 | Gender | Condition | System | | |--------|---------------|-------------|--| | Male | phonecall_tel | GSV+FSH+JSV | | | Male | phonecall_mic | GSV+FSH+JSV | | | Male | interview | GSV+FSH+JSV | | | Female | phonecall_tel | GSV+JFA+FSH | | | Female | phonecall_mic | GSV+FSH+JSV | | | Female | interview | GSV+FSH+JSV | | FSH: Fishervoice GSV: GMM-SVM JSV: JFA-SVM # **Computation Time** | Task | | |------------------|--| | CPU | CPU: Intel Core 2 Quad CPU Q9550 @ 2.83GHz | | Operating System | Linux Fedora 11 (Kernel 2.6.27, 32 bits) | | Memory | 4G | | Task | CPU Time (sec) | | |------------------------------------|----------------|--| | Training NAP matrix (phone speech) | 711.0 | | | Training NAP matrix (mic speech) | 637.9 | | # **Computation Time** CPU: Intel Core 2 Quad CPU Q9550 @ 2.83GHz (Running-time on 1 core) | Task | CPU Time (sec) per utt. | % of Real-Time | |-----------------------------------|-------------------------|----------------| | VAD with Crosstalk Removal (8min) | 103.0 | 21.5% | | VAD w/o Crosstalk Removal (5min) | 23.5 | 7.8% | | VAD with Crosstalk Removal (3min) | 19.7 | 10.9% | | Feature Extraction with FW (8min) | 34.7 | 7.2% | | Feature Extraction with FW (5min) | 29.5 | 9.8% | | Feature Extraction with FW (3min) | 12.4 | 6.9% | | Creating GMM-Supervector (8min) | 85.1 | 16.1% | | Creating GMM-Supervector (5min) | 68.1 | 22.7% | | Creating GMM-Supervector (3min) | 30.2 | 16.8% | | Creating GMM-SVM | 5.7 | 1.2% | | GMM-SVM Scoring (8min) | 8.1 | 1.7% | | GMM-SVM Scoring (5min) | 8.1 | 2.7% | | GMM-SVM Scoring (3min) | 8.1 | 4.5% | ## **Computation Time** Enrollment time per 8min-utterance: 103+34.7+85.1+5.7 = 228.5 sec = 47.6% of real-time Enrollment time per 5min-utterance: 23.5+29.5+68.1+5.7 = 126.8 sec = 42.3% of real-time Enrollment time per 3min-utterance: 19.7+12.4+30.2+5.7 = 68.0 sec = 37.7% of real-time Scoring time per 8min-utterance: 103+34.7+85.1+8.1 = 230.9 sec = 48.1% of real-time Scoring time per 5min-utterance: 23.5+29.5+68.1+8.1 = 129.2 sec = 43.1% of real-time Scoring time per 3min-utterance: 19.7+12.4+30.2+8.1 = 70.4 sec = 39.1% of real-time