CLIK (CMU+LIMSI+KIT) 2010 Speaker Recognition System

Qin Jin, Runxin Li, Qian Yang and Tanja Schultz {qjin,lirx, tanja}@cs.cmu.edu; {qian, tanja}@ira.uka.de Claude Barras, Viet-Anh Tran, Viet-Bac Le and Jean-Luc Rouas {barras, tranviet, levb, rouas}@limsi.fr

Carnegie Mellon

General overview

CLIK is the result of a joint effort of speech processing teams from Carnegie Mellon University (Pittsburgh, USA), LIMSI-CNRS (Orsay, France) and KIT (Karlsruhe, Germany). This collaboration is carried out in the context of the French-funded QUAERO program on structuring and indexing of multimedia documents involving KIT and LIMSI [www.quaero.org].

Five sub systems are fused via linear regression: CMU-KIT contributes with two GMM/UBM+JFA sub-systems; LIMSI contributes with two GMM/UBM and one GSV-SVM sub-systems. Developments focused on the required core test, based on English telephone and microphone speech for 3 generic common conditions: interview-interview, interview-telephone and telephone-telephone.

Individual sub-systems

CMU/KIT

CMU-KIT developed two sub-systems based on GMM/UBM+JFA, which differ in the front-end features. The system architecture is shown in the figure below.

Sub-systems	Features	Models	Use of ASR	Intersession Variation Compensation	
L1	MFCC	GMM	No	Factor analysis	S
L2	MFCC	GMM	No	Factor analysis	
L3	Gaussian supervector of MFCC	SVM	No	NAP	F

MFCC-GMM: L1 & L2 differ only by the corpora used for training and normalization

LIMSI

Only simple MFCC-GMM and GSV-SVM systems; LIMSI'08 [C]MLLR & prosodic systems

(Ferras, 2007-2010, Leung, 2008) not presented due to technical and human constraints.

System	Features	M	lodel	Gender-dependent	ZT-norm
			Training data	Factor analysis (ALIZE)	
L1	Voiced frames	• 256 Gaussians	UBM trained from	SRE06 tel	SRE06 tel
	(pitch detection)	MAP adaptation	SRE04 tel		
L2	• 15PLP + E + Δ +	of gender-	UBM trained from	SRE05 mic + SRE06	SRE05 + SRE06
	ΔΔ	dependent UBMs	SRE04 tel + SRE05	(tel+mic)	(tel + mic)
	 Feature warping 		mic + SRE06 mic		

GSV-SVM (13)

	•••••		
System	Features	Model	Intersession variation compensation
L3	 Voiced frames (pitch detection) 15PLP + E + Δ + ΔΔ Feature warping Feature mapping 	Gaussian mean supervector as feature Gender-dependent 256 Gaussians Variance normalization Min-max normalization Linear Kernel SVM classifier SRE'04 telephone training data	NAP, 50 dimensions projected out, trained from SRE06 telephone data

UBM Training FA Target Decision nput Training

ront-end Feature Extraction

Sub-Sys C1: 20 MFCC + ∆ (16ms winsize + 10ms shift)

Training

- Sub-Sys C2: 13 MFCC + ∆ (25ms winsize + 10ms shift)
- · Cepstral mean subtraction and feature warping over 3s window (300 frms)
- · Both sub-systems use the VAD provided by NIST for interview speech
- · For telephone speech
 - Sub-Sys C1: bottom 30% of frames are excluded as nonspeech according to energy Sub-Sys C2: 3 Gaussian classifiers based on the C0 feature

UBM Training

gender-dependent UBMs trained using SRE06 training data, 1024 mixtures **Compensation with Joint Factor Analysis**

•300 Eigenvoice factors and 100 Eigenchannel factors

•8 conversations utterances from SRE04, 05 and 06 training data for Eigenvoice training for both telephone and interview conditions ·Same data for Eigenchannel training for telephone

•SRE05 auxiliary microphone data for Eigenchannel training for interview

Normalization

•ztnorm showed improvement on dev data, not able to contribute to final submission due to resources limitations

Score-level System Fusion and Performance Analysis

System fusion

- · Linear logistic regression (FoCal toolkit, N. Brummer): SRE08 short2-short3 (core) trials for training fusion weights and decision threshold
- 3 separate fusion configurations for 3 common evaluation condition sets interview-interview, interview-telephone and telephone-telephone.
- · Fusion using SRE'08 cost, then shift scores using new SRE'10 cost

Performances with SRE'08 cost function

	Interview-Interview			Interview-Telephone			Telephone-Telephone					
System	SRE'08 (c1)		SRE'10 (c2)		SRE'08 (c4)		SRE'10 (c3)		SRE'08 (c7)		SRE'10 (c5)	
	MDC	%EER	MDC	%EER	MDC	%EER	MDC	%EER	MDC	%EER	MDC	%EER
L1	0.942	24.7	0.991	29.4	0.678	19.3	0.723	18.4	0.248	5.2	0.291	6.6
L2	0.613	14.2	0.738	19.1	0.650	16.6	0.542	13.2	0.258	5.5	0.271	6.1
L3	0.852	25.8	0.991	33.1	0.510	12.7	0.482	11.0	0.219	5.0	0.262	6.3
C1	0.687	13.7	0.904	26.8	0.779	22.8	0.662	15.7	0.279	6.1	0.399	8.9
C2	0.635	12.7	0.658	13.9	0.802	22.6	0.687	16.7	0.581	13.6	0.654	15.7
CLIK	0.367	7.1	0.549	13.2	0.451	10.1	0.344	7.7	0.151	3.3	0.217	4.2

Large differences between sub-systems and conditions

C2 (GMM/UBM+JFA) best on Interview-Interview

Using microphone data useful (L2 > L1)

L3 (GSV-SVM) best on telephone speech (no mic. speech in training)

Conclusions

- First collaborative effort between CMU, LIMSI and KIT (wiki, teleconfs...) Simple MFCC-GMM and GSV-SVM systems
 - · Specific sub-systems and fusion settings for interview data
- · Interest in vocal effort condition, but not enough development data
- · New MDC setting not well supported by SRE'08 data