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ABC = AGNITIO + BUT + CRIM

The ABC submission is a collaboration between:
Agnitio Labs, South Africa
Brno University of Technology, Czech Republic
CRIM, Canada

(In alphabetical order.)
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Contributors

AGNITIO Niko Brümmer, Luis Buera, Edward de Villiers
BUT Ondřej Glembek, Pavel Matějka, Lukáš Burget, Doris
Baum, Marcel Kockmann, Oldřich Plchot, Valiantsina
Hubeika, Martin Karafiát
CRIM Patrick Kenny, Pierre Ouellet, Gilles Boulianne,
Mohammed Senoussaoui

(Presenters are highlighted.)

AGNITIO, BUT, CRIM ABC



Introduction
Analysis

Conclusion

ABC Collaboration Goals

We tried to:
survive the new DCF.
use some new i-vector solutions.
improve MLLR and prosodic recognizers.
derive benefit from quality measures.
ignore vocal effort variation.
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Challenges induced by the new DCF

We had to redefine our own development trial indices to
maximize the number of non-target trials in our
development database, rather than just re-using SRE 2008
trial lists.
Duplicate PIN errors in SRE’08 tel-tel answer key caused
false false-alarms. We will defer this issue to the
discussion session later.
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Submissions

ABC submitted a fusion of multiple sub-systems for the
core-core task, some analysis of which follows.
CRIM also made their own submission for non-core tasks,
which will be presented by Patrick Kenny.
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Results Analysis

We analyse some of our results, to examine calibration,
fusion and quality measures.
We analyse only conditions 1–5, since we did no special
development for vocal effort variation. If we got good
results there, those are accidental.
We analyse results only for the extended evaluation, the
main evaluation results having been shown already by
NIST.
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Calibration Goal

We pursued log-likelihood-ratio calibration, rather than
point calibration.
We optimized our calibration transformation to minimize
cross-entropy, rather than just setting a decision threshold.
The cross-entropy was biased with prior = 0.001, to focus
on an area centred around the new DCF.
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Calibration Analysis

We use the normalized DCF curve to analyse development and
evaluation calibration:

Y-axis: Normalized minimum and actual DCF against the
operating point.
X-axis: The operating point is parametrized by the prior.

Examples follow.
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Normalized DCF: Example of Excellent Calibration
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Normalized DCF Curve: Example of Good Calibration

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
0

0.2

0.4

0.6

0.8

1

logit P
tar

no
rm

al
iz

ed
 D

C
F

BUT PLDA i−vector condition 2

 

 
new DCF point
dev misses
dev false−alarms
dev act DCF
eval misses
eval false−alarms
eval min DCF
eval act DCF
eval DR30

AGNITIO, BUT, CRIM ABC



Introduction
Analysis

Conclusion

Calibration
Fusion
Quality

Normalized DCF Curve: Example of Bad Calibration
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Normalized DCF Curve: Example of Worse Calibration
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Calibration Bottom Line

We had mixed success:
Calibration failed for tel-tel, but we fixed it post-eval.
Calibration was OK for int-tel.
Calibration failed for int-int and int-auxmic. And we still
can’t explain or fix it.

(See printed notes for detailed DCF numbers.)
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ABC-1 Calibration
Condition 5: Tel-Tel

System act DCF min DCF
1 ABC-1 1.73 0.32
2 sub-system fixed 0.62 0.31
3 alt. dev. key 0.51 0.30
4 alt. dev. key & alt. fusion 0.36 0.30

1. Had a broken sub-system.
2. Broken sub-system fixed.
3. As 2, but corrected some ill-advised development trial index
pruning.
4. As 3, but also replaced non-linear s-cal fusion with plain
linear fusion.
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ABC-1 Calibration
Conditions 1–4: Involving Microphones

Conditions 1,2,4: Only one sub-system, the
un-normalized PLDA got act. norm DCF < 1 and indeed,
this system had very good calibration.
Condition 3: All sub-systems and all fusions got mediocre
to good calibration.

At present, we can offer no explanations, except for the ...
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Un-normalized PLDA
Robust against calibration mismatch?

The ‘BUT PLDA’ sub-system used:
The same development data as all other ABC
sub-systems.
Same i-vectors as one of the other BUT systems (which
used cosine score).
AGNITIO’s PLDA model training and scoring:

PLDA was Gaussian, not heavy-tailed like CRIM’s PLDA.
Improved on Prince’s PLDA training by including
minimum-divergence1.

Some careful tuning by Lukas.
No score normalization.

1http://niko.brummer.googlepages.com/EMandMINDIV.pdf
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Minimum Divergence
Patrick’s Envelope Explanation

AGNITIO, BUT, CRIM ABC



Introduction
Analysis

Conclusion

Calibration
Fusion
Quality

Un-normalized PLDA
Robust against calibration mismatch?

The ‘BUT-PLDA’ sub-system got good calibration for all
conditions despite being very similar to—and using the same
resources as—the other i-vector systems built by AGNITIO,
BUT and CRIM.

Is this because it has no score normalization?
Did minimum-divergence help to stabilize calibration?
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Extended vs Main for ABC-1 Core-Core
DCF Details

condition norm act dcf norm min dcf prbep %eer
main 1 3.57 0.26 95.52 1.15
ext 1 9.29 0.22 331.92 1.03
main 2 0.67 0.37 543.65 1.98
ext 2 1.16 0.34 1 867.60 1.77
main 3 0.49 0.30 83.22 1.34
ext 3 0.39 0.27 362.31 1.74
main 4 0.80 0.49 288.32 3.05
ext 4 1.93 0.36 528.86 1.94
main 5 0.83 0.27 49.71 1.60
ext 5 1.73 0.32 628.19 1.90
main 6 0.67 0.49 46.22 1.98
ext 6 0.75 0.68 858.22 2.76
main 7 0.72 0.63 86.93 3.92
ext 7 1.08 0.65 109.00 3.98
main 8 0.12 0.12 10.25 0.76
ext 8 0.50 0.34 333.17 1.12
main 9 0.54 0.39 34.84 2.50
ext 9 0.89 0.20 33.00 1.73
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Core-Core Extended vs Main
Counts of Models, Segments and Trials

condition male mods male segs male tar male non fem mods fem segs fem tar fem non
main 1 990 991 989 28 114 1 169 1 170 1 163 32 598
main 2 990 2 974 3 463 98 282 1 169 3 516 4 072 114 025
main 3 750 239 837 26 178 859 285 796 30 232
main 4 731 432 1 225 39 166 789 407 1 141 44 370
main 5 290 355 353 13 707 290 357 355 15 958
main 6 181 147 178 12 825 184 185 183 15 486
main 7 180 149 179 12 786 180 185 180 15 211
main 8 119 116 119 10 997 181 184 179 17 309
main 9 117 115 117 10 697 176 181 173 16 533
ext 1 1 108 1 108 1 978 346 857 1 283 1 283 2 326 449 138
ext 2 1 108 3 328 6 932 1 215 586 1 283 3 858 8 152 1 573 948
ext 3 1 126 384 2 031 303 412 1 347 430 1 958 334 438
ext 4 1 108 440 1 886 364 308 1 283 409 1 751 392 467
ext 5 1 906 388 3 465 175 873 2 361 379 3 704 233 077
ext 6 2 096 181 1 816 191 784 2 598 210 2 321 269 654
ext 7 219 183 179 39 898 203 211 180 42 653
ext 8 2 096 137 1 447 144 982 2 598 205 2 374 259 866
ext 9 219 136 117 29 667 203 202 173 40 833
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Fusion Analysis

Ignoring calibration, our fusions worked well for all conditions.
Below, we analyse our primary fusions for conditions 1–5:

We use DET-curves to ignore calibration.
We show the primary fusions, compared to the
sub-systems that were fused.
For conditions 1–4, these fusions included quality
measures.
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ABC-1 Extended Core-Core Condition 1
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ABC-1 Extended Core-Core Condition 2
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ABC-1 Extended Core-Core Condition 3
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ABC-1 Extended Core-Core Condition 4
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ABC-1 Extended Core-Core Condition 5
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Quality Measures

Our quality measures, computed for every test and every train
segment, included:

log number of frames
gender recognizer score
SNR
speech vs silence detector score

AGNITIO, BUT, CRIM ABC
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Quality Measures
Results

Ignoring calibration, quality measures contributed to better
discrimination in all conditions (1–4) involving microphones, but
was not helpful for tel-tel.

We use DET-curves to ignore calibration.
We compare fusions, with and without quality measures.
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Fusion with Quality for Ext. Core-Core Condition 1
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Fusion with Quality for Ext. Core-Core Condition 2
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Fusion with Quality for Ext. Core-Core Condition 3
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Fusion with Quality for Ext. Core-Core Condition 4
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Fusion with Quality for Ext. Core-Core Condition 5
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AGNITIO’s Conclusion

There is life after JFA:
we improved on the 2008 state-of-the-art
i-vectors contributed significantly

Fusion helped.
Quality measures helped (a first for us).
Farewell score normalization?
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AGNITIO’s Conclusion

The new DCF is difficult, but do-able. It forced most of
us—participants and evaluator—well outside of our
comfort zones, but I think it was a worthwhile exercise.
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BUT Part Individual Systems

JFA Systems

UBM

GD, 2048G, Diag Cov, NO Varflooring applied

JFA Systems

JFA08 V = 300, Utel = 100, Umic = 100, Uint = 20,
Uallcond = (UtelUmicUint)

JFA10 V = 300, Utel = 100, Umic = 100, Uint = 50,
Utel−tel = (UtelUmic)
Uint−tel,int−int = (UtelUmicUint)

Linear scoring was used

ZT-norm score normalization was applied in both systems

1 / 15 AGNITIO, BUT, CRIM ABC 2010 Speaker Recognition Evaluation



BUT Part Individual Systems

JFA Systems - Extended Core-Core Cond 5

tel-tel, different
number
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BUT Part Individual Systems

I-vector LDA+WCCN

UBMs

GI, 2048G, FullCov, VarFlooring applied

GI, 2048G, LVCSR - Clustered phoneme GMMs

I-vector Extractor

GD I-vector extractors trained on 1400 and 1000 hours of
speech for females and males, respectively.

Dimensionality reductors 2048× 60 = 122880→ 400
Adopted Najim Dehak’s concept:

Unwanted variability reduction using LDA+WCCN
400→ 200
Score computed as cosine distance

Simplified S-norm score normalization applied

3 / 15 AGNITIO, BUT, CRIM ABC 2010 Speaker Recognition Evaluation



BUT Part Individual Systems

I-vector LDA+WCCN - Extended Core-Core Cond 5

tel-tel, different
number
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BUT Part Individual Systems

I-vector PLDA

Simplified version of Joint Factor Analysis (JFA) introduced
for face verification (Prince ’07)
LDA-like assumptions

Gaussian-distributed data
Gaussian-distributed data within each class
Shared within-class covariance matrix
Distributions pre-trained using large number of examples of
speakers and conditions

Modeling of variances makes use of sub-spaces, similarly
to JFA.

o = m + Vy + Ux + Dz

5 / 15 AGNITIO, BUT, CRIM ABC 2010 Speaker Recognition Evaluation



BUT Part Individual Systems

I-vector PLDA

o = m + Vy + Ux + Dz
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BUT Part Individual Systems

I-vector PLDA

Simple probabilistic model allowing for fast symmetric
scoring

Allows us to evaluate the probability of both segments in a
trial being pronounced by the same speaker
Instead of the usual probability that the test segment is
produced by model trained (or adapted) on the enrollment
segment
Not suitable for modeling sequences (a segment has to be
represented by a fixed-length vector)
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BUT Part Individual Systems

I-vector PLDA

tel-tel – 90 eigenvoices, 400 eigenchannels (full rank). NO
score normalization.

int-tel, int-int – 90 eigenvoices and 1600 eigenchannels.
After V and D are trained, 4 separate U (400) are trained:
mic, tel, int, and all together. These are concatenated. NO
score normalization.
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BUT Part Individual Systems

I-vector PLDA - Extended Core-Core Cond 2

NO normalization S-norm
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BUT Part Individual Systems

I-vector PLDA - Extended Core-Core Cond 5

tel-tel, different
number
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BUT Part Individual Systems

SVM MLLR-CMLLR

LVCSR - PLP12_0DAT, VTLN, HLDA, fMPE + MPE, xwrd
triphones, WER 24% on NIST eval01 task

CMMLR - 2 classes (speech, silence)

MLLR - 3 classes (2 speech, 1 silence)

The SVM input is a concatenation of vectorized
CMLLRspeech, MLLRspeech1,2 matrices

Rank normalization applied
NAP

Trained on SRE04, SRE05
Utel = 20, Umic = 10, Uint = 10
Utel−tel = (UtelUmic)
Uint−tel,int−int = (UtelUmicUint)

Linear kernel used

NO score normalization
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BUT Part Individual Systems

SVM MLLR-CMLLR - Extended Core-Core Cond 5

tel-tel, different
number
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BUT Part Individual Systems

Prosodic JFA System

Features
based on Duration and short time Pitch & Energy

6 DCT coefficients of temporal trajectories of pitch and
energy

only voiced part within fixed 300ms window (50ms shift)

duration is number of voiced frames within 30 frame
interval

Model

UBM GD, 512G, Diag Cov, Varflooring applied

JFA System V = 100, Utel = 40

Linear scoring was used

ZT-norm score normalization applied
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BUT Part Individual Systems

Prosodic JFA Systems - Extended Core-Core Cond 5

tel-tel, different
number
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BUT Part Individual Systems

BUT’s Conclusions

PLDA system with NO score normalization seems to be
always well calibrated.

The best performing system for 2010 is 2-times better than
the best 2008 system (at least for the new DCF).
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JFA with i-vectors as features

Assume that there are matrices U (eigenchannels) and V
(eigenvoices) such that

i−vector = m + Ux + Vy + noise

where x (channel factors) and y (speaker factors) have
standard normal distributions.

Because each speech segment is represented by a single
i-vector, rather than by a sequence of cepstral vectors, the UBM
drops out. This version of JFA is known as Probabilistic
Linear Discriminant Analysis (PLDA).

Because i-vectors are of relatively low dimension (e.g. 400), a
fully Bayesian treatment is feasible. This is difficult to do with
JFA.
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Heavy-tailed PLDA

Retain the assumption that speaker and channel effects are
additive and statistically independent:

i−vector = m + Ux + Vy + noise

but assume that the priors on x and y have power law rather
than Gaussian distributions.

Power law: There is an exponent k > 0 such that

P(x) = O(||x ||−k )

as ||x || → ∞.

Heavy-tailed PLDA can be implemented in such a way that
Gaussian PLDA is a limiting case.

2 / 9 AGNITIO, BUT, CRIM ABC 2010 Speaker Recognition Evaluation



Gaussian vs. heavy-tailed

Gaussian modeling is ill-equipped to handle exceptional
speaker and channel effects (e.g. speakers whose native
language is not English, severe channel distortions)

The Gaussian assumption effectively prohibits large
deviations from the mean

Maximum likelihood estimation of a Gaussian (i.e. least
squares) can be thrown off by outliers (and by mislabeled
data in particular).

Heavy-tailed PLDA includes additional hidden variables to
model outliers.
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In the Gaussian case, posterior and likelihood calculations can
be performed exactly.

In the heavy-tailed case, variational Bayes is needed to handle
the additional hidden variables. See my Odyssey presentation,
available at

http://www.crim.ca/perso/patrick.kenny

Outlier modeling in heavy-tailed PLDA seems to do away with
the need for score normalization in general. (Score
normalization is actually harmful.)
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For telephone speech we found that on NIST 2008 SRE data

Heavy-tailed PLDA without score normalization works
better than Gaussian PLDA with score normalization

Gaussian PLDA with score normalization is comparable to
cosine distance scoring

All three work better than traditional JFA

Error rates measured by 2008 DCF, EER

For microphone speech heavy-tailed PLDA modeling breaks
down if it is left to its own devices. Microphone transducer
effects are so non-Gaussian as to be pathological. More
development is needed.

5 / 9 AGNITIO, BUT, CRIM ABC 2010 Speaker Recognition Evaluation



Performance of heavy-tailed PLDA on the core
condition

See the CRIM det curves in the first part of the
presentation

The Agnitio-BUT Gaussian PLDA system was developed
independently of the CRIM heavy-tailed system

Heavy-tailed did well in development, less well in the eval

More experimentation needed
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Performance of heavy-tailed PLDA on the non-core
conditions

Table: Rankings of the CRIM stand-alone system on the non-core
conditions. NDCF = normalized detection cost function.

condition rank actual NDCF min NDCF

core-10sec 5 0.372 0.365
8summed-core 1 0.045 0.041
8conv-10sec 4 0.270 0.258
core-summed 2 0.193 0.158
10sec-10sec 1 0.590 0.548
8summed-summed 2 0.092 0.077
8conv-summed 3 0.127 0.068
8conv-core1 5 0.411 0.253

12010 cost function
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Cross-gender trials

The decision thresholds for the summed tests were poorly set.

The summed-tests involve cross-gender trials. These are
tricky for systems that use score normalization, since the
z-norm and t-norm imposter cohorts have to be chosen in a
trial-dependent way.

We adopted a very simple strategy: for trials involving male
targets we used a heavy-tailed PLDA model trained on male
data (without score normalization) and similarly for females.

This is vulnerable to gender labeling errors. In the eyes of a
male PLDA model, two female speakers may appear to be the
same, resulting in a false alarm.
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Parting thought

It may be better to design a system that does not make use of
the gender labels.

Aside from its practical interest, this could pay off in the 4 wire
tests as well.
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