ABC and CRIM

AGNITIO, BUT, CRIM

SRE Worskshop, 24 June 2010

Outline

- Calibration
- Fusion
- Quality

ABC = AGNITIO + BUT + CRIM

The ABC submission is a collaboration between:

- Agnitio Labs, South Africa
- Brno University of Technology, Czech Republic
- CRIM, Canada

(In alphabetical order.)

Contributors

- AGNITIO Niko Brümmer, Luis Buera, Edward de Villiers
- BUT Ondřej Glembek, Pavel Matějka, Lukáš Burget, Doris Baum, Marcel Kockmann, Oldřich Plchot, Valiantsina Hubeika, Martin Karafiát
- **CRIM** Patrick Kenny, Pierre Ouellet, Gilles Boulianne, Mohammed Senoussaoui

(Presenters are highlighted.)

ABC Collaboration Goals

We tried to:

- survive the new DCF.
- use some new i-vector solutions.
- improve MLLR and prosodic recognizers.
- derive benefit from quality measures.
- ignore vocal effort variation.

Challenges induced by the new DCF

- We had to redefine our own development trial indices to maximize the number of non-target trials in our development database, rather than just re-using SRE 2008 trial lists.
- Duplicate PIN errors in SRE'08 tel-tel answer key caused false false-alarms. We will defer this issue to the discussion session later.

Submissions

- ABC submitted a fusion of multiple sub-systems for the core-core task, some analysis of which follows.
- CRIM also made their own submission for non-core tasks, which will be presented by Patrick Kenny.

Introduction	Calibratio
Analysis	
Conclusion	Quality

Results Analysis

- We analyse some of our results, to examine calibration, fusion and quality measures.
- We analyse only conditions 1–5, since we did no special development for vocal effort variation. If we got good results there, those are accidental.
- We analyse results only for the extended evaluation, the main evaluation results having been shown already by NIST.

Introduction Analysis Conclusion Quality

Calibration Goal

- We pursued log-likelihood-ratio calibration, rather than point calibration.
- We optimized our calibration transformation to minimize cross-entropy, rather than just setting a decision threshold.
- The cross-entropy was biased with prior = 0.001, to focus on an area centred around the new DCF.

Introduction Analysis Conclusion Quality

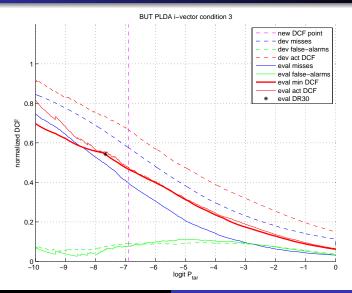
Calibration Analysis

We use the normalized DCF curve to analyse development and evaluation calibration:

- Y-axis: Normalized minimum and actual DCF against the operating point.
- X-axis: The operating point is parametrized by the prior. Examples follow.

Introduction Analysis Calibration

Normalized DCF: Example of Excellent Calibration

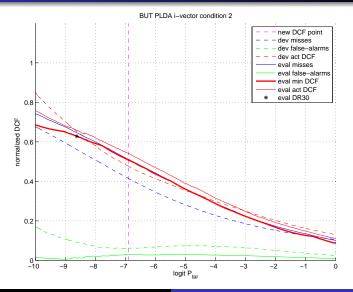


AGNITIO, BUT, CRIM

ABC

Calibration Fusion Quality

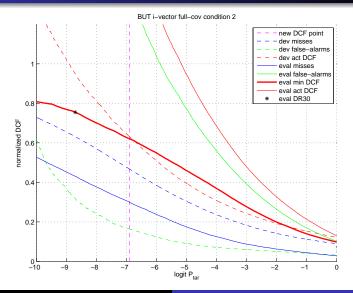
Normalized DCF Curve: Example of Good Calibration



AGNITIO, BUT, CRIM ABC

Introduction Analysis Calibration

Normalized DCF Curve: Example of Bad Calibration

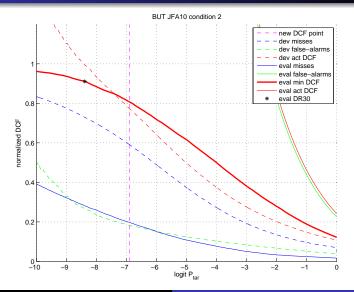


AGNITIO, BUT, CRIM

ABC

Introduction Analysis Calibration

Normalized DCF Curve: Example of Worse Calibration



AGNITIO, BUT, CRIM

ABC

Calibration Fusion Quality

Calibration Bottom Line

We had mixed success:

- Calibration failed for tel-tel, but we fixed it post-eval.
- Calibration was OK for int-tel.
- Calibration failed for int-int and int-auxmic. And we still can't explain or fix it.

(See printed notes for detailed DCF numbers.)

Introduction Analysis Conclusion Quality

ABC-1 Calibration Condition 5: Tel-Tel

	System	act DCF	min DCF
1	ABC-1	1.73	0.32
2	sub-system fixed	0.62	0.31
3	alt. dev. key	0.51	0.30
4	alt. dev. key & alt. fusion	0.36	0.30

- 1. Had a broken sub-system.
- 2. Broken sub-system fixed.
- 3. As 2, but corrected some ill-advised development trial index pruning.

4. As 3, but also replaced non-linear s-cal fusion with plain linear fusion.

- **Conditions 1,2,4:** Only one sub-system, the un-normalized PLDA got act. norm DCF < 1 and indeed, this system had very good calibration.
- **Condition 3:** All sub-systems and all fusions got mediocre to good calibration.

At present, we can offer no explanations, except for the ...

Un-normalized PLDA Robust against calibration mismatch?

The 'BUT PLDA' sub-system used:

- The same development data as all other ABC sub-systems.
- Same i-vectors as one of the other BUT systems (which used cosine score).
- AGNITIO's PLDA model training and scoring:
 - PLDA was Gaussian, not heavy-tailed like CRIM's PLDA.
 - Improved on Prince's PLDA training by including minimum-divergence¹.
- Some careful tuning by Lukas.
- No score normalization.

¹http://niko.brummer.googlepages.com/EMandMINDIV.pdf

Introduction Calibration Analysis Conclusion

Minimum Divergence Patrick's Envelope Explanation

dan D hidden H P(D, H)P(D, H) Postenin Q(H)(H) $L = E_{a} \left[\ln \frac{P(D, H)}{Q(H)} \right]$ $= E_{a} \left[\ln P(D|H) \right] \rightarrow E_{a} \left[\ln \frac{P(H)}{Q(H)} \right]$ $= E_{a} \left[\ln P(D|H) \right] \rightarrow DIV (Q(H)N P(H))$ = M auxiliary - DIV (Q(H)N P(H))

The 'BUT-PLDA' sub-system got good calibration for all conditions despite being very similar to—and using the same resources as—the other i-vector systems built by AGNITIO, BUT and CRIM.

- Is this because it has no score normalization?
- Did minimum-divergence help to stabilize calibration?

Calibration Fusion Quality

Extended vs Main for ABC-1 Core-Core

condition	norm act dcf	norm min dcf	prbep	%eer
main 1	3.57	0.26	95.52	1.15
ext 1	9.29	0.22	331.92	1.03
main 2	0.67	0.37	543.65	1.98
ext 2	1.16	0.34	1 867.60	1.77
main 3	0.49	0.30	83.22	1.34
ext 3	0.39	0.27	362.31	1.74
main 4	0.80	0.49	288.32	3.05
ext 4	1.93	0.36	528.86	1.94
main 5	0.83	0.27	49.71	1.60
ext 5	1.73	0.32	628.19	1.90
main 6	0.67	0.49	46.22	1.98
ext 6	0.75	0.68	858.22	2.76
main 7	0.72	0.63	86.93	3.92
ext 7	1.08	0.65	109.00	3.98
main 8	0.12	0.12	10.25	0.76
ext 8	0.50	0.34	333.17	1.12
main 9	0.54	0.39	34.84	2.50
ext 9	0.89	0.20	33.00	1.73

Introduction Analysis Conclusion Quality

Core-Core Extended vs Main Counts of Models, Segments and Trials

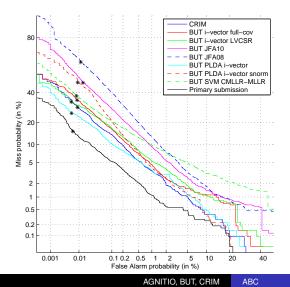
condition	male mods	male segs	male tar	male non	fem mods	fem segs	fem tar	fem non
main 1	990	991	989	28114	1 1 6 9	1 1 7 0	1 163	32 598
main 2	990	2 974	3 463	98 282	1 1 6 9	3516	4 072	114 025
main 3	750	239	837	26178	859	285	796	30 232
main 4	731	432	1 225	39166	789	407	1 1 4 1	44 370
main 5	290	355	353	13707	290	357	355	15 958
main 6	181	147	178	12825	184	185	183	15 486
main 7	180	149	179	12786	180	185	180	15211
main 8	119	116	119	10997	181	184	179	17 309
main 9	117	115	117	10697	176	181	173	16 533
ext 1	1 108	1 108	1978	346 857	1 283	1 283	2 326	449 138
ext 2	1 108	3 328	6932	1 215 586	1 283	3 858	8 152	1 573 948
ext 3	1 1 2 6	384	2031	303 412	1 347	430	1 958	334 438
ext 4	1 108	440	1 886	364 308	1 283	409	1 751	392 467
ext 5	1 906	388	3 465	175873	2 361	379	3 704	233 077
ext 6	2 0 9 6	181	1816	191 784	2 598	210	2 3 2 1	269 654
ext 7	219	183	179	39898	203	211	180	42 653
ext 8	2 0 9 6	137	1 4 4 7	144 982	2 598	205	2 3 7 4	259 866
ext 9	219	136	117	29667	203	202	173	40 833

Fusion Analysis

Ignoring calibration, our fusions worked well for all conditions. Below, we analyse our primary fusions for conditions 1–5:

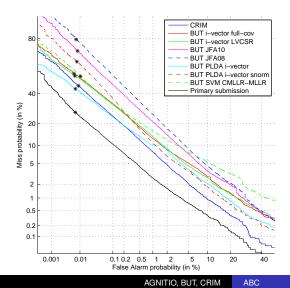
- We use DET-curves to ignore calibration.
- We show the primary fusions, compared to the sub-systems that were fused.
- For conditions 1–4, these fusions included quality measures.

ABC-1 Extended Core-Core Condition 1



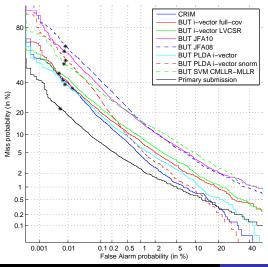
int-int, same microphone

ABC-1 Extended Core-Core Condition 2



int-int, different microphone

ABC-1 Extended Core-Core Condition 3

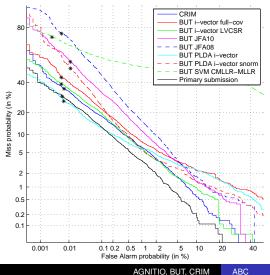


AGNITIO, BUT, CRIM

ABC

Introduction Fusion Analysis

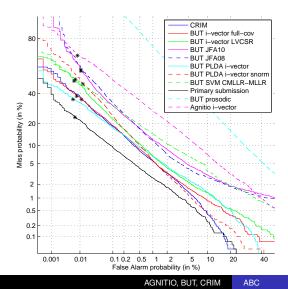
ABC-1 Extended Core-Core Condition 4



int-auxmic

AGNITIO, BUT, CRIM

ABC-1 Extended Core-Core Condition 5



tel-tel, different number

	Introduction Analysis Conclusion	Calibration Fusion Quality
ality Measures		

Our quality measures, computed for every test and every train segment, included:

- Iog number of frames
- gender recognizer score
- SNR

Qu

speech vs silence detector score

	Introduction Analysis Conclusion	Calibration Fusion Quality		
ty Measures				

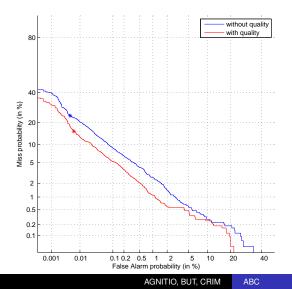
Ignoring calibration, quality measures contributed to better discrimination in all conditions (1–4) involving microphones, but was not helpful for tel-tel.

• We use DET-curves to ignore calibration.

Qualit Results

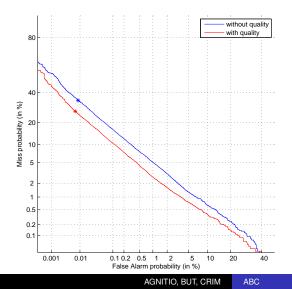
• We compare fusions, with and without quality measures.

Fusion with Quality for Ext. Core-Core Condition 1



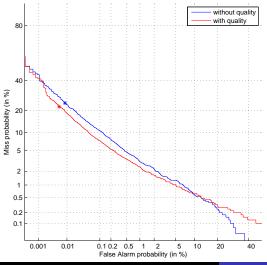
int-int, same microphone

Fusion with Quality for Ext. Core-Core Condition 2



int-int, different microphone

Fusion with Quality for Ext. Core-Core Condition 3

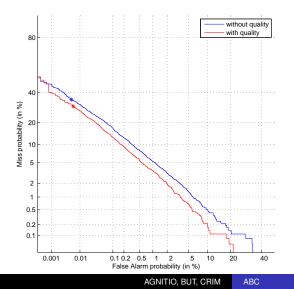


int-tel

AGNITIO, BUT, CRIM

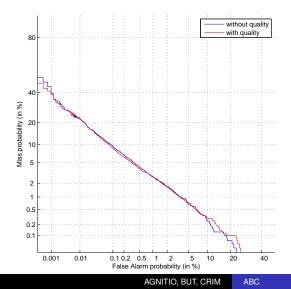
ABC

Fusion with Quality for Ext. Core-Core Condition 4



int-auxmic

Fusion with Quality for Ext. Core-Core Condition 5



tel-tel, different number

AGNITIO's Conclusion

- There is life after JFA:
 - we improved on the 2008 state-of-the-art
 - i-vectors contributed significantly
- Fusion helped.
- Quality measures helped (a first for us).
- Farewell score normalization?

Introduction Analysis Conclusion

AGNITIO's Conclusion

 The new DCF is difficult, but do-able. It forced most of us—participants and evaluator—well outside of our comfort zones, but I think it was a worthwhile exercise.

JFA Systems

UBM

• GD, 2048G, Diag Cov, NO Varflooring applied

JFA Systems

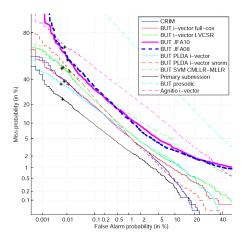
JFA08
$$V = 300, U_{tel} = 100, U_{mic} = 100, U_{int} = 20, U_{allcond} = (U_{tel}U_{mic}U_{int})$$

Linear scoring was used

ZT-norm score normalization was applied in both systems

Individual Systems

JFA Systems - Extended Core-Core Cond 5



tel-tel, different number

2/15

I-vector LDA+WCCN

UBMs

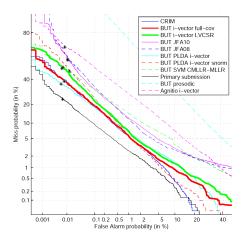
- GI, 2048G, FullCov, VarFlooring applied
- GI, 2048G, LVCSR Clustered phoneme GMMs

I-vector Extractor

- GD I-vector extractors trained on 1400 and 1000 hours of speech for females and males, respectively.
- Dimensionality reductors $2048 \times 60 = 122880 \rightarrow 400$
- Adopted Najim Dehak's concept:
 - Unwanted variability reduction using LDA+WCCN 400 \rightarrow 200
 - Score computed as cosine distance
- Simplified S-norm score normalization applied

Individual Systems

I-vector LDA+WCCN - Extended Core-Core Cond 5

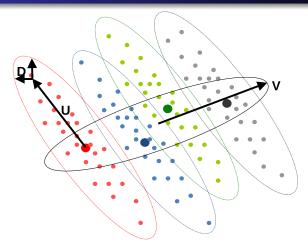


tel-tel, different number

- Simplified version of Joint Factor Analysis (JFA) introduced for face verification (Prince '07)
- LDA-like assumptions
 - Gaussian-distributed data
 - Gaussian-distributed data within each class
 - Shared within-class covariance matrix
 - Distributions pre-trained using large number of examples of speakers and conditions
- Modeling of variances makes use of sub-spaces, similarly to JFA.

$$\mathbf{o} = \mathbf{m} + \mathbf{V}\mathbf{y} + \mathbf{U}\mathbf{x} + \mathbf{D}\mathbf{z}$$

I-vector PLDA



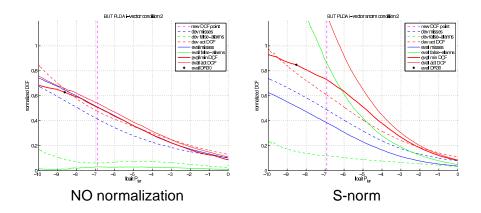
 $\mathbf{o} = \mathbf{m} + \mathbf{V}\mathbf{y} + \mathbf{U}\mathbf{x} + \mathbf{D}\mathbf{z}$

- Simple probabilistic model allowing for fast symmetric scoring
 - Allows us to evaluate the probability of both segments in a trial being pronounced by the same speaker
 - Instead of the usual probability that the test segment is produced by model trained (or adapted) on the enrollment segment
 - Not suitable for modeling sequences (a segment has to be represented by a fixed-length vector)

- tel-tel 90 eigenvoices, 400 eigenchannels (full rank). NO score normalization.
- int-tel, int-int 90 eigenvoices and 1600 eigenchannels. After V and D are trained, 4 separate U (400) are trained: mic, tel, int, and all together. These are concatenated. NO score normalization.

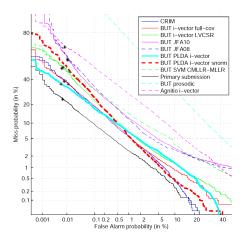
Individual Systems

I-vector PLDA - Extended Core-Core Cond 2



Individual Systems

I-vector PLDA - Extended Core-Core Cond 5



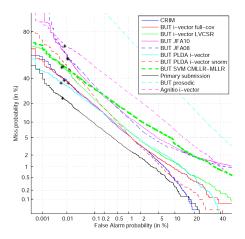
tel-tel, different number

SVM MLLR-CMLLR

- LVCSR PLP12_0DAT, VTLN, HLDA, fMPE + MPE, xwrd triphones, WER 24% on NIST eval01 task
- CMMLR 2 classes (speech, silence)
- MLLR 3 classes (2 speech, 1 silence)
- The SVM input is a concatenation of vectorized CMLLR_{speech}, MLLR_{speech1,2} matrices
- Rank normalization applied
- NAP
 - Trained on SRE04, SRE05
 - $U_{tel} = 20, U_{mic} = 10, U_{int} = 10$ $U_{tel-tel} = (U_{tel}U_{mic})$ $U_{int-tel,int-int} = (U_{tel}U_{mic}U_{int})$
- Linear kernel used
- NO score normalization

Individual Systems

SVM MLLR-CMLLR - Extended Core-Core Cond 5



tel-tel, different number

Prosodic JFA System

Features

- based on Duration and short time Pitch & Energy
- 6 DCT coefficients of temporal trajectories of pitch and energy
- only voiced part within fixed 300ms window (50ms shift)
- duration is number of voiced frames within 30 frame interval

Model

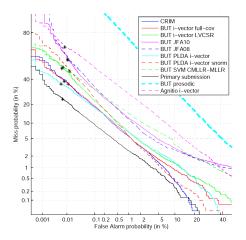
UBM GD, 512G, Diag Cov, Varflooring applied

JFA System V = 100, $U_{tel} = 40$

- Linear scoring was used
- ZT-norm score normalization applied

Individual Systems

Prosodic JFA Systems - Extended Core-Core Cond 5



tel-tel, different number

BUT's Conclusions

- PLDA system with NO score normalization seems to be always well calibrated.
- The best performing system for 2010 is 2-times better than the best 2008 system (at least for the new DCF).

Assume that there are matrices U (eigenchannels) and V (eigenvoices) such that

i-vector = m + Ux + Vy + noise

where x (channel factors) and y (speaker factors) have standard normal distributions.

Because each speech segment is represented by a single i-vector, rather than by a sequence of cepstral vectors, the UBM drops out. This version of JFA is known as **Probabilistic Linear Discriminant Analysis** (PLDA).

Because i-vectors are of relatively low dimension (e.g. 400), a fully Bayesian treatment is feasible. This is difficult to do with JFA.

Heavy-tailed PLDA

Retain the assumption that speaker and channel effects are additive and statistically independent:

```
i-vector = m + Ux + Vy + noise
```

but assume that the priors on x and y have **power law** rather than Gaussian distributions.

Power law: There is an exponent k > 0 such that

$$P(\mathbf{x}) = O(\|\mathbf{x}\|^{-k})$$

as $\|x\| \to \infty$.

Heavy-tailed PLDA can be implemented in such a way that Gaussian PLDA is a limiting case.

Gaussian modeling is ill-equipped to handle exceptional speaker and channel effects (e.g. speakers whose native language is not English, severe channel distortions)

- The Gaussian assumption effectively prohibits large deviations from the mean
- Maximum likelihood estimation of a Gaussian (i.e. least squares) can be thrown off by outliers (and by mislabeled data in particular).

Heavy-tailed PLDA includes additional hidden variables to model outliers.

In the Gaussian case, posterior and likelihood calculations can be performed exactly.

In the heavy-tailed case, variational Bayes is needed to handle the additional hidden variables. See my Odyssey presentation, available at

http://www.crim.ca/perso/patrick.kenny

Outlier modeling in heavy-tailed PLDA seems to do away with the need for score normalization in general. (Score normalization is actually harmful.)

For telephone speech we found that on NIST 2008 SRE data

- Heavy-tailed PLDA without score normalization works better than Gaussian PLDA with score normalization
- Gaussian PLDA with score normalization is comparable to cosine distance scoring
- All three work better than traditional JFA
- Error rates measured by 2008 DCF, EER

For **microphone speech** heavy-tailed PLDA modeling breaks down if it is left to its own devices. Microphone transducer effects are so non-Gaussian as to be pathological. More development is needed.

Performance of heavy-tailed PLDA on the core condition

- See the CRIM det curves in the first part of the presentation
- The Agnitio-BUT Gaussian PLDA system was developed independently of the CRIM heavy-tailed system
- Heavy-tailed did well in development, less well in the eval
- More experimentation needed

Table: Rankings of the CRIM stand-alone system on the non-core conditions. NDCF = normalized detection cost function.

condition	rank	actual NDCF	min NDCF
core-10sec	5	0.372	0.365
8summed-core	1	0.045	0.041
8conv-10sec	4	0.270	0.258
core-summed	2	0.193	0.158
10sec-10sec	1	0.590	0.548
8summed-summed	2	0.092	0.077
8conv-summed	3	0.127	0.068
8conv-core ¹	5	0.411	0.253

¹2010 cost function

The decision thresholds for the summed tests were poorly set.

The summed-tests involve **cross-gender** trials. These are tricky for systems that use score normalization, since the *z*-norm and *t*-norm imposter cohorts have to be chosen in a trial-dependent way.

We adopted a very simple strategy: for trials involving male targets we used a heavy-tailed PLDA model trained on male data (without score normalization) and similarly for females.

This is vulnerable to gender labeling errors. In the eyes of a male PLDA model, two female speakers may appear to be the same, resulting in a false alarm.

It may be better to design a system that does not make use of the gender labels.

Aside from its practical interest, this could pay off in the 4 wire tests as well.