
A Generic Framework for Building Dialogue Games for

Language Learning: Application in the Flight Domain

Yushi Xu, Stephanie Seneff

Spoken Language Systems Group

MIT Computer Science and Artificial Intelligence Laboratory, United States
{yushixu, seneff}@csail.mit.edu

Abstract

This paper presents a generic web-based dialogue game

framework, “Mercurial”, for language learning. The system

capabilities are demonstrated within a flight domain

application. The system randomly generates a flight-booking

scenario according to the current difficulty level. The student

accomplishes the scenario by interacting with the system

through speech. The system gives real-time feedback on the

dialogue progress and scores, and summarizes the whole

dialogue at the end of each scenario. The system uses generic

language understanding, language generation, dialogue

management, and user simulation modules to conduct the

dialogue and give contextual help. Preliminary experiments

yielded positive feedback from the subjects.

1. Introduction

Dialogue interaction is a natural setting to use speech

communicatively, and is therefore an important and effective

activity for second-language learners. Dialogue activities

represent an integrated exercise for both expressing meaning

and comprehending meaning. It requires correct understanding

of the utterances by both dialogue partners, especially in a

goal-directed conversation, in order to lead the dialogue to a

successful termination point. With a flexible dialogue design,

the student can have many options at each turn in the dialogue,

which crucially makes the task challenging and interesting.

 While the student benefits significantly from dialogue with

a partner, this is a high-cost activity for both traditional

language learning and computer-aided language learning

(CALL). For a computer to act as a dialogue partner, the

system has to not only recognize what the student has said, but

also understand the meaning in the context of the dialogue task,

and provide appropriate feedback. The computer plays two

roles in this situation: both a party for continuing the dialogue

and a tutor for language learning purposes.

 Many existing language learning systems use short

dialogues as part of the exercise material [1] [2], but the

dialogues are scripted and the students are only allowed to

speak exactly what is expected. This has the advantage of high

accuracy in judging the student’s performance, but it sacrifices

the flexibility and attractiveness of the dialogue activity itself.

 The spoken dialogue community has been researching

different types of dialogue management models for more than

two decades. Systems using rule-based methods [3] [4] or

complex statistical models [5] [6] have proved effective, and

some have been released to the public [7]. These systems,

however, from the standpoint of language learning, lack the

second role as a learning assistant. They are designed for

native speakers, and would not give students feedback on

whether the dialogue is on the right track, or give hints when

the student does not know how to express a certain meaning.

 Our group has been working on robust speech and language

processing technologies for many years. Utilizing these

technologies, we are able to build different speech-enabled

language learning games that understand the student’s speech

[8]. This paper describes our first generic framework

“Mercurial” for complex task-directed dialogue games with an

abundance of language tutoring features. Mercurial combines

four generic modules: language understanding, dialogue

management, language generation, and user simulation, as

well as a game control module that assesses the student’s

performance and gives real-time feedback. This paper focuses

on the application in the flight-reservation domain.

 The rest of this paper is organized as follow: Section 2

introduces the interface and functionality of the game system.

Section 3 describes the key technologies. Section 4 describes

our preliminary experiments. Section 5 gives the conclusion.

2. Game System

Figure 1 shows the interface of the flight domain game system.

The Web-based system can be accessed via a URL. In this

paper, we will discuss the game system mainly in a Mandarin-

learning setting. However, because all the modules in the

system are language independent, the game can be configured

into an English-learning setting simply by switching the

language model, parsing grammar, and generation rules.

 The goal of the game is to book a flight itinerary according

to a give scenario by talking with the system. The scenario is

generated randomly according to the current level: the higher

the level, the more complex the scenario. The scenario is

represented as a natural paragraph, which is phrased in a

number of different ways. The crucial points in the scenario

are gathered to form a checklist, shown in the lower left part of

the figure. As the dialogue proceeds, the items in the list will

be marked with a green check or a red cross according to the

student’s utterances. The lower right part shows the current

itinerary information. In the center of the webpage, a feedback

message is given for each dialogue turn. It offers praise when

the student has progressed through the dialogue correctly, or it

might provide a hint for correction when the student has said

anything wrong. The “repeat” buttons allow the student to hear

again the system’s reply either in Chinese or in English. “Help”

utterances are generated based on context, using a variety of

sentence patterns to provide multiple ways to express

appropriate actions at the current stage.

 The system generates a score for the dialogue so far, which

is displayed on the screen. When the scenario is successfully

accomplished, or is aborted by the student, the system

summarizes the complete dialogue between the system and the

student, and shows the student the detailed scores in each

aspect. When enough points have been accumulated, the

student will be advanced to the next level, and can then

practice via a more complex scenario.

Figure 1. Game Interface during a dialogue.

3. Technical Components

3.1. Overview

The Mercurial system uses a client-server schema, where the

client side simply provides a graphical/speech user interface

and all the processing is done on the server side. The system

uses the WAMI toolkit [9] to handle the web interface

including capturing and transmitting the audio waveform.

waveform is sent to the recognizer to produce an N

hypothesis list. A control script dictates the order and

parameters of the language processing and game pr

steps. The final outputs, i.e., the updated webpage content and

the synthetic waveform, are presented to the user via WAMI.

 The system has access to a number of language

domain-independent generic modules such as language

understanding, language generation, dialogue management,

and user simulation. After the appropriate parameters, such as

the language for parsing and generation, and the

dialogue management and simulation, are specified

game can be built by adding just one more module

the game progress. Figure 2 illustrates the system diagram.

will discuss these modules in more detail in

subsections.

3.2. Scenario Generation

At the beginning of each dialogue, a scenario is shown to the

student as his/her task. The scenario describes the source,

destination, date, type of itinerary and other constraints that

the student needs to fulfill when booking the flights. The

scenario can be expressed linguistically in a number of

different ways, randomly selected for each dialogue. The

complexity of the scenario grows with difficulty level. As the

student graduates to a higher level, new types of constraints

and/or more constraints are added.

 The random scenario is obtained by initializing the user

simulator, which creates a user intention frame. This frame

uses compact key-value representations, in which some keys

have a deterministic value, such as source and destination, and

others have a probability distribution over a set of values, such

as preferred airlines and departure time.

 Each possible key in the intention frame is assigned a

difficulty level, and a scenario frame is formed

keys from the intention frame in a random order, as many as

possible until the difficulty level of the scenario exceeds the

specified level. The difficulty level of a scenario is defined in

Equation (1), where dbase is the base difficulty l

difficulty level of each key, and D is the difficulty of a

during a dialogue.

Technical Components

server schema, where the

client side simply provides a graphical/speech user interface

and all the processing is done on the server side. The system

to handle the web interface,

audio waveform. The

waveform is sent to the recognizer to produce an N-best

control script dictates the order and

parameters of the language processing and game progressing

, the updated webpage content and

to the user via WAMI.

The system has access to a number of language- and

independent generic modules such as language

language generation, dialogue management,

appropriate parameters, such as

the domain for

are specified, a dialogue

by adding just one more module to handle

trates the system diagram. We

in more detail in the following

is shown to the

student as his/her task. The scenario describes the source,

destination, date, type of itinerary and other constraints that

lfill when booking the flights. The

in a number of

different ways, randomly selected for each dialogue. The

complexity of the scenario grows with difficulty level. As the

es of constraints

The random scenario is obtained by initializing the user

simulator, which creates a user intention frame. This frame

value representations, in which some keys

lue, such as source and destination, and

others have a probability distribution over a set of values, such

Each possible key in the intention frame is assigned a

 by drawing the

keys from the intention frame in a random order, as many as

possible until the difficulty level of the scenario exceeds the

specified level. The difficulty level of a scenario is defined in

is the base difficulty level, di is the

is the difficulty of a

Figure 2. The Mercurial system

scenario. Thus, D is dominated by the highest difficulty level

among all the keys, and is also affected by the

� � �log��2
��� � �2
�
�

��
 After the scenario frame is formed, it is simplified so

the probabilistic values are determinized

and then converted into a natural paragraph

language using the randomized language generation module.

 The generation of the scenario is independent from our

flight database. This will sometimes result in an unsatisfiable

scenario. In this situation, when the system notices a zero

match search result during the dialogue, it will adjust the

scenario by changing the constraints or dropping some

constraints, and notify the student of this change

message. This also increases the scenario difficulty

a bonus score when the scenario is successfully

This feature can partition the system into two

system A helps the student find some flights, and system B

which is ignorant of the flight information, constantly listens

to the dialogue between the student and system A, notices

what is happening, and makes appropriate comments

3.3. Language Processing and Dialogue Management

The game has two input modalities: speech as the primary and

recommended modality, and text as the back

both modalities, an N-best list of Chinese characters is

produced from the audio waveform or the typed Pinyin string.

Each utterance in the list is parsed by an extended CFG parser

[10] [11]. The top-most utterance with a full par

the best input, and the parse result is converted to

meaning representation, and sent to the dialogue manager.

 For text inputs, students type using toned Pinyin strings.

The system then expands the string into a word graph to

account for possible tone errors. An N

obtained by using an n-gram language model. After parsing,

the best selected character list is aligned with the

input, and any detected tone errors will be highlighted.

 We use an entity-constraint based dialogue manager

where a domain-dependent specification define

WAMI

Language

Understander

Dialogue

Manager

Language

Generator

User

Simulator

Game Progress

Controller

Input

Progress

“Help

Reply

Reply

Language

Layer

Interface

Layer

Meaning

Layer

Game

Layer

Game initialization

Game turn

The Mercurial system diagram.

the highest difficulty level

, and is also affected by the number of keys.

� (1)

it is simplified so that

zed by random selection,

into a natural paragraph in the desired

zed language generation module.

is independent from our

flight database. This will sometimes result in an unsatisfiable

scenario. In this situation, when the system notices a zero-

logue, it will adjust the

scenario by changing the constraints or dropping some

of this change via a natural

increases the scenario difficulty, producing

bonus score when the scenario is successfully completed.

the system into two separate roles:

some flights, and system B,

which is ignorant of the flight information, constantly listens

to the dialogue between the student and system A, notices

what is happening, and makes appropriate comments.

Language Processing and Dialogue Management

The game has two input modalities: speech as the primary and

text as the back-off modality. For

best list of Chinese characters is

produced from the audio waveform or the typed Pinyin string.

Each utterance in the list is parsed by an extended CFG parser

most utterance with a full parse is chosen as

converted to a key-value

meaning representation, and sent to the dialogue manager.

For text inputs, students type using toned Pinyin strings.

The system then expands the string into a word graph to

account for possible tone errors. An N-best character list is

gram language model. After parsing,

d character list is aligned with the original text

tone errors will be highlighted.

constraint based dialogue manager [12],

ion defines the entity

Language

Generator

User

Simulator

Game Progress

Controller

Help”

Intention

Scenario

(dash),

Feedback

types and the knowledge sources (e.g. database) constraints. In

this game, we supply the dialogue manager a specification that

is exactly the same as the one that would be used in a normal

flight reservation dialogue system. Statistical inference is

incorporated for certain decisions. In this game, the statistical

engine uses the models obtained from [12]. A simulated flight

database is used for simplicity. A small number of airports and

airlines are defined. Random flights are generated between

each possible pair of airports at initialization.

 The dialogue manager produces a reply in the meaning

representation format, which is then converted into a natural

sentence via a language generation module. As described in

[13], generation rules specify the order of constituents, and an

associated lexicon maps words into proper surface forms in the

target language. In order to avoid generating the same reply

pattern given a certain reply type, the language generation

module is enhanced by introducing randomness. Both the rules

and the lexicon can include multiple instances for each entry,

which represent different ways to phrase an intended meaning.

The module randomly chooses one rule or lexicon mapping

from multiple instances. The combination of randomized rules

and a randomized lexicon gives a fairly rich variety of

different generation results.

3.4. Game Scoring and Level Assessment

After a dialogue turn is finished, the progress assessment

module evaluates the student’s performance, and posts a credit

or deduction toward the total score. This module works at the

meaning representation level, and therefore the whole system

maintains the property of language independence.

 The student’s performance is assessed in four aspects.

 (1) Sentence wellness. The student earns some points when

his/her utterance goes through the language understanding

component and a meaning representation is successfully

obtained. The points are then proportional to the complexity of

the sentence, which is currently based on sentence length.

 (2) Dialogue progress. From the generated scenario frame, a

scenario checklist is produced and shown to the student.

Whenever a piece of information is correctly conveyed to the

dialogue manager, the corresponding item gets a check, and

the student earns a point. On the other hand, if the wrong

information is conveyed, a point is deducted.

 (3) Context wellness. The student should conform to the

dialogue manager’s prompts, as opposed to talking without

understanding the system’s speech. Whenever the student’s

answer does not match the dialogue manager’s question,

points are deducted. We do, however, allow the student to

correct any information that was spoken incorrectly without

penalty, regardless of the dialogue manager’s prompt.

 (4) Independence and scenario bonuses. At the end of a

successfully completed scenario, the student is awarded a

bonus score. The bonus is proportional to the scenario

difficulty, which includes any scenario changes in the middle

of the dialogue. It is also proportional to the student’s

independent performance; i.e., the fewer times he/she asked

for help, the more points are awarded.

 According to the turn assessment, the module updates the

total score, and generates a feedback message to praise the

student or to alert him/her of a mistake. When the scenario is

finished or aborted, a dialogue record together with a detailed

score report is displayed. The student can review what has

been said and what mistakes were made.

 The score earned from one scenario will be accumulated to

the next one. When enough points are accumulated, the

student will be advanced to the next level.

3.5. Help Function through User Simulation

For a language learning system, it is very important to provide

various clues when the student needs assistance. In this game

system, help is provided in three ways. First, proper noun

phrases appearing in the scenario are accompanied with their

Chinese translation and pronunciation, and can be accessed by

mouse moves and clicks. Second, the system’s reply can be

replayed in either Chinese or English. Third, “help” sentences

are generated dynamically according to the specific scenario

and the current dialogue context. The student can expand the

“help” section, and see and hear the “help” sentences.

 The generation of the “help” sentences is done by

simulating a very cooperative user. The user simulator loads a

set of conditioned rules to produce user responses in the

meaning representation format. The syntax is simple yet

powerful to describe the condition and various types of

responses. The simulator matches the conditions against a state

frame, and assigns all the responses a score. To represent high

cooperativeness, the penalty for not matching the condition is

set to 1, so that only the responses for which the conditions are

strictly satisfied may survive.

 The state frame that is sent to the user simulator contains the

scenario information, the dialogue manager’s reply, and the

progress assessment result. The simulator is controlled by 20

rules which cover both the possible user responses from the

current dialogue context and the possible ways to correct a

mistake made in previous turns.

4. Preliminary Experiments

4.1. System Configuration

Some preliminary experiments were performed in a Mandarin-

learning setting. The system accepts spoken Chinese input or

typed Pinyin input, and speaks in Chinese. The scenario and

the feedback message, however, are shown in English, to

assure student understanding of the task.

 We use the SUMMIT [14] speech recognizer, trained on an

n-gram language model on a flight-domain corpus, to

constrain the recognizer search space. Parsing is based on a

generic Chinese grammar, augmented with a domain-specific

lexicon, such as airline names and city names. The Chinese

synthesizer is provided by the Chinese Academy of Science.

 Five subjects, three learners and two native Chinese

speakers, interacted with the system, following some verbal

instructions. Afterwards, they were asked to fill out a

questionnaire. Table 1 shows the average scores of the three

learners’ Mandarin proficiency according to the questionnaire.

Reading Writing Speaking Listening

2.3 2.7 3.3 3.0

Table 1. Average scores of self-ranked Mandarin

proficiency (1-very poor, 5-native-like).

4.2. Recognition Performance

During the development of the system, we noticed that the

recognition accuracy is one of the major issues that cause

system failures. The acoustic model of our recognizer is

trained on native data, to encourage better pronunciation from

the students. This compromises the recognition accuracy on

accented speech. However, assuming the student acts

cooperatively, the scenario and the dialogue context contains

information to predict the input speech. Thus, we adopted a

global N-best selection strategy similar to [15].

 For each hypothesis on the recognizer’s output N-best list,

language understanding and dialogue management are

performed. The progress assessment module then evaluates the

resulting dialogue state as described in Section 3.4. The

hypothesis that maximizes the sum of the progress score and

the context score is selected.

 We collected 305 utterances from the three learners, and

134 utterances from the two native speakers. To compare the

global N-best re-ranking method with conventional methods,

we removed the ungrammatical utterances from the learners’

utterances, as well as the native utterances that were not

covered in the recognizer’s language model, i.e., utterances

that can never be recognized correctly. This results in 278 non-

native utterances, with average length of 7.1 characters, and

112 native utterances with average length of 8.7 characters.

 Native

WER

Non-native

WER

Native

CER

Non-native

CER

1-best 13.89% 15.47% 37.37% 47.21%

Top full parse 13.99% 15.37% 36.30% 45.72%

Global 12.89% 14.06% 33.45% 39.41%

 Table 2. WER and CER of different N-best selection

methods.

��� � #�������� � #�����
� � #������!"#�����#�$ (2)

 The character-based word error rates and concept error rates

(CER) are shown in Table 2. The first column shows the

results of using 1-best recognition output. The second column

shows the results of selecting the topmost hypothesis that

produces a full parse from a 10-best recognition output. The

third column shows the results of using global selection on a

10-best recognition output. The CER is calculated from

flattened meaning representations using Equation (2). The

global selection method achieved significant improvements for

both WER and CER, for both native and non-native data.

4.3. Game Survey

The subjects responded positively about the game. The

average scores for interest value and helpfulness of the game

on a 5-point basis are 4.3 and 4.2 respectively. All subjects

would recommend the game to other learners of Chinese.

Figure 3. Average scores of helpfulness of various

tutoring features.

 We also surveyed the helpfulness of various features

provided in the game. Figure 3 shows the result. Most features

received high scores and were favored by the users.

5. Conclusions and Future Work

This paper presented a generic dialogue framework, Mercurial,

demonstrated in a flight reservation domain. The framework

incorporates generic language understanding, language

generation, dialogue management and user simulation

modules to generate random scenarios, handle conversation,

and provide students instant feedback.

 We conducted some preliminary experiments with three

learners and two native speakers. The results indicated that

using a global N-best selection strategy can significantly

improve the recognition results. The subjects also gave

positive feedback about the game.

 In the future, we plan to set up another version of the game

for learners of English. A more detailed evaluation will be

conducted with a larger group of users.

6. Acknowledgements

This research is partially supported by Quanta Computers, Inc.

7. References

[1] (2008) NTU Chinese. [Online]. http://chinese.ntu.edu.tw/

[2] (2006) Active Chinese. [Online]. http://www.activechinese.com

[3] S. Seneff, "Response Planning and Generation in the Mercury
Flight Reservation System," Computer Speech and Language,

vol. 16, pp. 283-312, 2002.

[4] D. Bohus and A. I. Rudnicky, "RavenClaw: Dialog Management
Using Hierarchical Task Decomposition and an Expectation

Agenda," in Proc. Eurospeech, Geneva, Switzerland, 2003.

[5] M. Frampton and O. Lemon, "Learning more effective dialogue

strategies using limited dialogue move features," in Proc. ACL,

Sidney, Australia, 2006, pp. 185 - 192.

[6] J. D. Williams and S. Young, "Partially observable Markov

decision processes for spoken dialog systems," Computer Speech

& Language, vol. 21, no. 2, pp. 393-422, 2007.

[7] A. W. Black, S. Burger, B. Langner, G. Parent, and M. Eskenazi,
"Spoken Dialog Challenge 2010," in Proc. SLT, Berkeley, CA,

USA, 2010.

[8] Y. Xu and S. Seneff, "Speech-Based Interactive Games for
Language Learning: Reading, Translation, and Question-

Answering," International Journal of Computational Linguistics

and Chinese Language Processing, vol. 14, no. 2, 2009.

[9] A. Gruenstein, I. McGraw, and I. Badr, "The WAMI Toolkit for

Developing, Deploying, and Evaluating Web-Accessible

Multimodal Interfaces," in Proc. ICMI, Chania, Crete, Greece,

2008.

[10] S. Seneff, "TINA: A Natural Language System for Spoken

Language Applications," Computational Linguistics, vol. 18, no.

1, pp. 61 - 86, March 1992.

[11] Y. Xu, J. Liu, and S. Seneff, "Mandarin Language Understanding

in Dialogue Context," in Proc. ISCSLP, Kunming, China, 2008.

[12] Y. Xu and S. Seneff, "Dialogue Management Based on Entities

and Constraints," in Proc. SIGDIAL 2010, Tokyo, Japan, 2010.

[13] L. Baptist and S. Seneff, "Genesis-II: A Versatile System for
Language Generation in Conversational System Applications," in

ICSLP, Beijing, China, 2000, pp. 271-274.

[14] J. Glass, "A probabilistic framework for segment-based speech
recognition," Computer Speech and Language, vol. 17, no. 2-3,

pp. 137-152, April/July 2003.

[15] A. Gruenstein, "Response-Based Confidence Annotation for

Spoken Dialogue Systems," in Proc. SIGDial, Columbus, Ohio,

USA, 2008.

0

1

2

3

4

5

A
v

e
ra

g
e

 S
c
o

re

