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Abstract 
Computer Assisted Pronunciation Training (CAPT) is 
becoming more and more popular among language learners. 
Most effective CAPT systems take advantage of the learner’s 
L1 and cater exercises and feedback specific to the language 
transfer effects. This paper presents a statistical machine 
translation (MT) based approach to model salient phonological 
errors present in an L1 population. The output of the MT 
system is coupled with a speech recognition system to detect 
non-native phonological errors. On a Korean learners of 
English corpus, the MT approach shows a 32.9% relative 
improvement in phone error detection and a 49% relative 
improvement in phone error identification compared to edit 
distance based modeling techniques. Similar performance 
improvements were observed on Japanese learners of English 
corpus. 
Index Terms: phonological error modeling, machine 
translation, speech recognition 

1. Introduction 
The use of technology in classrooms has been steadily 
increasing in the past decade and the comfort level of students 
in using technology has never been higher. Computer Assisted 
Pronunciation Training (CAPT) has been quietly inching its 
way into many language learning curriculum. The high 
demand and shortage of language tutors especially in Asia has 
lead to CAPT systems playing a prominent and increasing role 
in language learning [1]. 
CAPT systems can be very effective among language learners 
who prefer to go through the curriculum at their own pace. 
Also, CAPT systems exhibit infinite patience while 
administering repeated practice drills which is a necessary evil 
in order to achieve automaticity. Most CAPT systems are L1 
independent and cater to a wide audience of language learners 
from different language backgrounds. These systems take the 
learner through pre-designed prompts and provide limited 
feedback based on the closeness of the acoustics of the 
learners’ pronunciation to that of native/canonical 
pronunciation [2]. In most of these systems, the corrective 
feedback, if any, is implicit in the form of pronunciation 
scores. The learner is forced to self-correct based on his/her 
own intuition about what went wrong. This method can be 
very ineffective especially when the learner suffers from the 
inability to perceive certain native sounds.  
A recent trend in CAPT systems is to capture language 
transfer effects [4][5] between the learner’s L1 and L2 
languages. This makes the CAPT system better equipped to 
detect, identify and provide actionable feedback to the learner. 
These specialized systems have become more viable with 
enormous demand for English language learning products in 
Asian countries like China and India [1]. If the system is able 
to successfully pinpoint errors, it can not only help the learner 
identify and self-correct a problem, but can also be used as 
input for a host of other applications including content 

recommendation systems and individualized curriculum-based 
systems. For example, if the learner consistently 
mispronounces a phoneme contrast pair, he/she can be 
recommended remedial perception exercises before continuing 
the speech production activities. Also, language tutors can 
receive regular error reports on learners, which might be very 
useful in periodic tuning of customizable curriculum. 
Linguistic experience and literature can be used to get a 
collection of error rules that represent negative transfer effects 
for a given L1-L2 pair. But this is not a foolproof process as 
most linguists are biased to certain errors based on their 
personal experience. Also, there are always inconsistencies 
among literature sources that list error rules for a given L1-L2 
pair. Most of the relevant studies have been conducted on 
limited speaker population and most of them lack sufficient 
coverage of all phonological error phenomena [5]. It might be 
very convenient and cost effective to automatically derive 
error rules from L2 data.  
In [5], Wai-Kit Lo et al. have tried automatically deriving 
context sensitive phonological rules by aligning the canonical 
pronunciations against phonetic transcriptions obtained from 
an annotator. Most alignment techniques used in similar 
automated approaches are variants of the basic edit distance 
(ED) algorithm. The algorithm is constrained to one to one 
mapping which is ineffective in discovering phonological error 
phenomena that occur over phone chunks. As edit distance 
based techniques poorly model dependencies between error 
rules, it’s not straightforward to generate all possible non-
native pronunciations given a set of error rules. Extensive rule 
selection and application criteria needs to be developed as it 
not modeled as part of the alignment process. 
In order to remedy some of these short comings, in this paper, 
we formulate the phonological error modeling problem as a 
machine translation (MT) problem. The canonical 
pronunciation is considered to be in the source language and 
we attempt to generate the best non-native pronunciation 
(target language) that is a good representative translation of 
the canonical pronunciation (for a given L1 population). We 
can demonstrate that a statistical machine translation based 
framework can not only model phonological errors but also 
model dependencies between error rules. The framework also 
provides a more principled search paradigm that can generate 
N-best non-native pronunciations for a given canonical 
pronunciation. 

2. Statistical Machine Translation 
Framework 
Machine translation is the problem of generating the best 
sequence of words in the target language that is a good 
representation of a sequence of words in the source language. 
The Bayesian formulation of the MT problem is as follows: 
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Where, T and S are word sequences in the target and source 
languages respectively. P(S|T) is the translation model that 
models word/phrase correspondences between the source and 
target languages. P(T) represents the language model of the 
target language. In this paper, we utilize the Moses [6] phrase-
based machine translation system for phonological error 
modeling. In the following subsections, we will give a brief 
overview of Moses. 

2.1. Translation model estimation 

Estimation of the translation model requires a parallel corpus 
of sentences in the source and target languages. Word 
alignments between the source and target language are 
obtained using Giza++ tool kit [7]. Giza++ is the 
implementation of the original IBM machine translation 
models. It has some drawbacks including limitation to one-to-
one mapping which is not necessarily true for most language 
pairs. In order to obtain more realistic alignments, Moses 
applies a series of transformations to the word alignments 
produced by Giza++ to grow the word alignments into phrasal 
alignments. The parallel corpus is aligned in both directions 
i.e., source language against the target language and vice 
versa. The two word alignments are reconciled by obtaining 
the intersection which gives the high precision alignment 
points (the points carrying high confidence). By taking the 
union of these two alignments one can obtain the high recall 
alignment points. In order to grow the alignments, the space 
between the high precision alignment points and high recall 
alignment points is explored. Moses starts with the intersection 
of the two word alignments and then adds new alignment 
points that exist in the union of the two word alignments. It 
uses various criteria and expansion heuristics for growing the 
phrases as explained by Och and Ney in [7]. This process 
generates phrase pairs of different word lengths with 
corresponding phrase translation probabilities based on their 
relative frequency of occurrence in the parallel corpus. 

2.2. Language model estimation 

The language model learns the most probable sequence of 
words that occur in the target language. It guides the search 
during the decoding phase by providing prior knowledge about 
the target language. Moses can read language models created 
from popular open source language modeling toolkits like 
SRI-LM, RandLM and IRST-LM. In this paper, we used the 
IRST-LM tool kit [8] to estimate the language models. 

2.3. Decoder 

The Moses decoder implements a beam search [9] to generate 
the best sequence of words in the target language that 
represents the word sequence in the source language. At each 
state, the current cost of the hypothesis is computed by 
combining the cost of previous state with the cost of the 
translating the current phrase and the language model cost of 
the phrase. The cost also includes a distortion metric that takes 
into account the difference in phrasal positions between the 
source and the target language. Competing hypotheses can 
potentially be of different lengths and a word can compete 
with a phrase as a potential translation. In order to solve this 
problem, a future cost is estimated for each competing path. 
As the search space is very large for an exhaustive search, 
competing paths are pruned away using a beam which is 
usually based on a combination of a cost threshold and 
histogram pruning. Additional details of the decoding 
algorithm are described in [9]. 

3. Modeling Phonological Errors of an L1-
population 

In this work, we implicitly model the phonological errors in 
L2 data by reformulating it as a machine translation problem. 
The native/canonical phone sequence is considered to be in the 
source language and we attempt to generate the best non-
native phone sequence (target language) that represents a good 
translation of the canonical phone sequence. The 
corresponding Bayesian formulation looks like this: 
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Where, N and NN are the corresponding native and non-native 
phone sequences. P(N|NN) is the translation model which 
models the phonological transformations between the native 
and non-native phone sequences. P(NN) is the language model 
for the non-native phone sequences, which models the 
likelihood of a certain non-native phone sequence occurring in 
L2 data. 

3.1. Training the Phonological Error model and 
Non-native Phone Language model 

A parallel phone corpus of canonical and annotated phone 
sequences is run through Giza++ [7] to obtain phone 
alignments. The phone alignments from Giza++ are loaded 
into Moses to grow the one to one alignments into phone-
chunk based alignments. This process is analogous to growing 
word alignments into phrasal alignments in traditional 
machine translation. The resulting phonological error model 
has phone-chunk pairs with differing phone lengths and a 
translation probability associated with each one of them. 

The non-native phone language model was trained using 
IRSTLM toolkit [8] by feeding in annotated phone sequences 
from the L2 data. It’s a 3-gram phone model with Witten-Bell 
smoothing applied to its probabilities. 

Given the phonological error model and a non-native 
phone language model, the Moses decoder can generate the N-
best non-native phone sequences for a given canonical native 
phone sequence. 

3.2. Advantages of the MT approach 

The MT approach offers several distinct advantages over 
previous phonological modeling approaches. In contrast to 
knowledge-based approaches in which linguistic rules are 
applied to model an L1 population, the MT approach 
automatically learns all phenomena that consistently occur in 
the annotated data. This includes language transfer effects and 
other phenomena like mispronunciations caused by 
interference due to word orthography. For example, non-native 
speakers of English often pronounce the “b” in the word 
“debt”. 

At an algorithmic level, the MT approach employs a more 
complex algorithm than an edit distance based extraction of 
phonological errors. It’s capable of one-to-many, many-to-one 
and many-to-many alignments which allow for better 
modeling of phonological error phenomena that span across 
phone chunks. This can be especially effective in modeling 
severe insertion or deletion problems spanning across 
phoneme subsequences. For example, Korean learners of 
English often mispronounce the word refrigerator (pronounced 
“� ə f � � � � e� � ��) as “l i p � � � i � e� � �”. The MT 
system has the ability to learn the correspondence between the 
native phone chunk “� ə f” and the non-native chunk “l i p”. 
Also, due to one-to-many alignment capability, it can learn the 
rule “�”=>“i �”. In the case of an edit distance based approach, 



this rule needs to be modeled as separate substitution and 
insertion rules. In traditional MT, word sequences in a 
language pair are not expected to be in the same order. In 
order to accommodate this behavior, a distortion metric is 
employed to allow alignments between words that are at 
different positions in the language pair. For example, the first 
word in a sentence in one language can be aligned to the last 
word in the corresponding sentence pair in another language. 
This feature can be useful in modeling after effects of certain 
mispronunciations that can manifest itself in the 2nd or 3rd 
syllable from the actual location of the mispronunciation. 

Current approaches to phonological error modeling lack a 
strong mathematical framework that would facilitate auto-
generation of non-native phone sequences. Most of these 
systems employ heuristic based rule selection and application 
techniques (as rule interdependencies are not explicitly 
modeled). The decoding paradigm that the MT approach offers 
is a much more principled way of combining error rule 
probabilities and interdependencies between error rules to 
generate the most probable non-native phone sequences. 

4. Corpora 
For experimentation, we collected and phonetically annotated 
a corpus consisting of Japanese learners of English (RS-JLE) 
and Korean learners of English (RS-KLE). The corpora consist 
of prompted speech data from an assortment of different types 
of content. It includes minimal pairs (e.g. right/light), stress 
minimal pairs (e.g. CONtent/conTENT), short paragraphs of 
text, sentence prompts, isolated loan words and words with 
particularly difficult consonant clusters (e.g. refrigerator).   
Phone level annotation was conducted on each corpus by three 
human annotators. The RS-JLE corpus used in this paper 
consists of 105 speakers who are residents of Japan. In total, 
data from 6 speakers were inter-annotated and another 15 
speakers were intra-annotated. The RS-KLE corpus consists of 
111 speakers of which data from 15 speakers have been inter-
annotated and another 15 speakers are intra-annotated. We 
used 80% of the speakers for model training and the rest 20% 
for evaluation. Each speaker recorded only one session in the 
corpus and there is no speaker overlap between the test and 
train data. As each speaker recorded roughly the same amount 
of data, a speaker level split equates to a rough 80-20 split at 
the corpus level. The train split was used for modeling the 
phonological errors using MT. The test split consisted of inter 
and intra graded directories and was used for evaluation of the 
MT approach against an edit distance based approach. 

5. System Architecture 
Figure 1 summarizes the phonological error modeling as 
described in section 3 and its coupling with Rosetta Stone’s 
speech recognition engine (SRE). We utilize the phonological 
error model and non-native phone language model to 
automatically generate non-native alternatives for every native 
pronunciation. The Moses decoder has the ability to generate 
N-best lists and based on empirical observations, we use a 4-
best list to strike a good balance between under generation and 
over generation of pronunciation alternatives. The generated 
non-native lexicon (includes canonical pronunciations) along 
with an American English acoustic model is used to recognize 
the spoken utterance. For this paper, we assume the expected 
utterance to be produced is known and perform utterance 
verification followed by a Viterbi alignment of the audio and 
the expected text. The search space is constrained to the native 
and non-native variants of the expected utterance. The phone 
sequence which maximizes the Viterbi path probability is then 

aligned against the native/canonical phone sequence to extract 
the phonological errors produced by the learner. 

 
Figure 1: Block Diagram summarizing Phonological 
Error modeling and its coupling with the SRE. 

6. System Evaluation 
The MT approach was evaluated against an edit distance based 
approach similar to the one described in [5]. For the MT 
approach, the system described in Figure 1 was used to detect 
phonological errors in the test set. In order to build the edit 
distance based baseline system, we initially extracted 
phonological errors using ED from the training set. The 
phonological errors were ranked by occurrence probability. 
From empirical observations, we set the cutoff probability 
threshold at 0.001. This gave us approximately 1500 frequent 
error patterns. The frequent error rules were loaded into the 
Lingua Phonology Perl module [10] to generate non-native 
phone sequences. The tool was constrained to apply rules only 
once for a given triphone context as the edit distance approach 
does not model interdependencies between error rules. The N-
best list obtained from the Lingua module was ranked by the 
occurrence probability of the rules that were applied to obtain 
that particular alternative. The non-native lexicon was created 
with an N-best cutoff of 4 so that it’s comparable to the non-
native lexicon produced by the MT approach. The approaches 
were evaluated using the following metrics: (i) Overall 
accuracy of the system (ii) Diagnostic performance as 
measured by precision and recall (iii) F-1 score, which is the 
harmonic mean of precision and recall. It gives us one number 
to track changes in operating point of the system. These 
metrics were calculated for the phone detection and phone 
identification tasks along with their corresponding human 
annotator upper bounds. 

Table 1. Performance of MT and ED approaches 
normalized to Human performance (set at 100%) in 

phone error detection 
RS-KLE Accuracy Precision Recall F-1 

ED 92.7 58.2 41.1 48.7 
MT 91.9 64.6 64.9 64.7 

 
RS-JLE Accuracy Precision Recall F-1 

ED 90.0 66.3 48.1 56.2 
MT 90.2 72.4 71.3 71.9 

 

6.1. Phone error detection 

Phone error detection is defined as the task of flagging a 
phoneme as containing a mispronunciation. The accuracy 
metric measures overall classification accuracy of the system 
on the phone error detection task, while precision and recall 
measure the diagnostic performance of the system. Precision 
measures the number of correct mispronunciations over all the 



mispronunciations flagged by the system. Recall measures the 
number of correct mispronunciations over the total number of 
mispronunciations found in the test set (as flagged by the 
annotator). 

As shown in Table 1, across the corpora, the MT system 
achieves between 65 to 72% of the performance achieved by 
humans on F-1 score. The more holistic modeling approach 
employed by the MT system is evidenced by higher 
normalized performance (NP) in recall in comparison to 
precision.  The MT system achieves a 28-33% relative 
improvement in F-1 in comparison to the ED approach. Figure 
2 shows NP on F-1 for varying number of pronunciation 
alternatives. There is a significant increase in performance for 
lexicons with 3-4 best alternatives beyond which the 
performance asymptotes. 

 

Figure 2: The normalized performance of F-1 score in 
phone error detection for varying number of 
pronunciation alternatives 

6.2. Phone identification 

Phone identification is defined as the task of identifying 
the phone label spoken by the learner. The identification 
accuracy metric measures the overall performance on the 
identification task. Precision measures the number of correctly 
identified error rules over the total number of error rules 
discovered by the system. Recall measures the number of 
correctly identified error rules over the number of error rules 
in the test set (as annotated by the human annotator).  

Table 2. Performance of MT and ED approaches 
normalized to Human performance (set at 100%) in 

phone error identification 

RS-KLE Accuracy Precision Recall F-1 
ED 94.1 47.5 33.5 39.7 
MT 92.5 59.1 59.4 59.2 

 
RS-JLE Accuracy Precision Recall F-1 

ED 91.8 62.2 45.1 52.8 
MT 90.9 72.0 70.9 71.4 

 
Table 2 shows that the MT approach achieves a 59-71% 

NP on F1-score across the corpora. This constitutes a 35-49% 
relative improvement compared to the ED approach. Given the 
difficulty of error identification task, it should be noted that 
the performances are relatively lower in comparison to phone 
error detection. Similar to the behavior in phone error 
detection, Figure 3 shows that the highest NPs are achieved 
with 3-4 best alternatives. 

7. Conclusions 
We present an automatic, data driven approach to modeling 
phonological errors in L2 data. The MT approach not only 

offers conceptual advantages (as elaborated in section 3.2) to 
existing techniques but also produces significant 
improvements on phone error detection and phone error 
identification tasks. On the RS-KLE corpus, the MT approach 
achieves a 32.9% relative improvement (F-1 score) in phone 
error detection and a 49% relative improvement in phone error 
identification compared to the edit distance based approach. 
On RS-JLE corpus, a 27.8% relative improvement was 
achieved in phone error detection and a 35.3% improvement in 
phone error identification. Tighter coupling between the MT 
system and the SRE is a good candidate for future exploration. 
Likelihood scores from the phonological error model can be 
imported into the SRE to bias the recognition results. This 
concept is analogous to language model weights used in 
traditional large vocabulary speech recognition. This could 
lead to precise tuning of CAPT systems to the proficiency 
level of the language learner. 
 

 

Figure 3: The normalized performance of F-1 score in 
phone error identification for varying number of 
pronunciation alternatives 
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