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Abstract

This paper introduces a method to assess lexical stress patterns
in American English words automatically using machine learn-
ing algorithms, which could be used on the computer assisted
language learning (CALL) system. We aim to model human
production concerning lexical stress patterns by training stress
patterns in a native speaker’s utterances and making use of it to
detect erroneous stress patterns from a trainee.

In this paper, all the possible lexical stress patterns in 3- and
4-syllable American English words are presented and four ma-
chine learning algorithms, CART, AdaBoost+CART, SVM and
MaxEnt, are trained with acoustic measurements from a na-
tive speaker’s utterances and corresponding stress patterns. Our
experimental results show that MaxEnt correctly classified the
best, 83.3% stress patterns of 3-syllable words and 88.7% of
4-syllable words.
Index Terms: automatic assessment, lexical stress, machine
learning

1. Introduction
Learning a new language is a challenging task which involves
several components of a language, such as vocabulary, gram-
mar, and intonation, etc. This paper focuses on lexical stress
patterns. Even if a foreign speaker pronounces a word with
the correct sequence of phones, it may still be difficult to un-
derstand if the syllable stress is incorrect. Non-native speakers
might not be aware of specific stress patterns in English words
and put stress on the wrong syllables, especially those speakers
whose native language doesn’t have lexical stress.

English has strong-weak alternating rhythm and each word
has its own specific stress pattern. While many other languages
have an entirely predictable stress pattern (e.g. either the first
or the last syllable in a multi-syllable word), various stress pat-
terns can be found in words from English and other Germanic
languages[1]. Vowel identities can also be changed depending
on the existence of stress, i.e. unstressed vowels in American
English are often reduced to schwa, /ax/. Therefore, an incor-
rect stress pattern is not only disruptive by itself, but can also
degrade the intelligibility of of the speech.

Tutoring lexical stress is a very important area in English
education and requires native-speakers’ monitoring, therefore
it should be introduced in computer assisted language learning
(CALL). Thanks to automatic speech recognition (ASR) tech-
nology, English word pronunciation assessment has become
popular in CALL [2] [3]. On the other hand, automatic stress
assessment has received less attention from researchers.

A previous work related to automatic word assessment in
CALL [4] enforces copying a native-speaker’s intonation by

comparing both pitch and energy based on dynamic time warp-
ing (DTW). Instead, our work introduces machine learning al-
gorithms, allowing a greater degree of prosodic variation by
modeling human production. A similar approach is proposed in
[5], which trains SVMs to distinguish phoneme pairs, then ap-
plies them to detect pronunciation errors in L2 learners’ speech.

Figure 1: Stress Assessment for CALL

In this work, we propose a new stress assessment method
using machine learning algorithms, aiming to allow natural in-
tonation variations while monitoring incorrect lexical stress pat-
terns as shown in Fig 1. First, we describe possible stress pat-
terns for American English words and measure acoustic param-
eters of units in a recorded corpus. Human production related to
acoustic parameters is modeled using several machine learning
algorithms, CART, AdaBoost+CART, SVM and MaxEnt.

2. Lexical Stress Patterns
A correctly produced sentence in English comes from the suc-
cessful imposition of stresses at two levels: the correct syllable
in a multi-syllabic word, lexical stress, and the correct place-
ment within the sentence, sentential stress [6].

Determination of sentential stress is still an open problem
because so many factors influence the placement of stress, in-
cluding type of sentence, emotional status, context, and inten-
tions, etc. On the other hand, prediction of lexical stress is well-
established and is the first step in prosody realization [7]. In this
paper, we narrow our focus to the correlation between lexical
stress patterns and acoustic realization in natural utterances.

Since the stress can be assigned to any syllable in a multi-
syllabic word in American English, there are a number of stress
patterns possible to appear in native-speakers’ utterances. Table
1 shows the stress patterns of 3- / 4-syllable words and the num-
bers of each patterns found in 20 hours of one female speaker’s



Table 1: Lexical stress patterns in 3- / 4-syllable words in the
target speaker’s database (around 15 hours of speech). The
primary stress is written in bold and upper cases, and the sec-
ondary stress in upper cases only in the examples.

Stress No. of Example
pattern instances

3-syllable 010 3032 dePARTment
words 100 3489 CItizen

102 2988 JACKsonVILLE
120 895 WESTMINster
201 515 ILLiNOIS
210 1099 MONTAna

4-syllable 0100 1015 aMErican
words 0102 74 reLAtionSHIP

1000 71 TEMperature
1002 32 LIbertyTOWN
1020 361 OperAtor
1200 29 PAINSTAkingly
2010 1953 PENNsylVAnia
2100 283 MONGOlia

recording which includes many American street and city names.
Stress patterns consist of primary (’1’), secondary (’2’) stressed,
or unstressed (’0’) syllables. This stress patterns are trained as
target classes by machine learning algorithms.

In previous work by Clopper [8], she differentiated stress
patterns solely by the position of the primary stress in a word.
In addition to primary stress, another level of stress, secondary
stress is found in American English dictionary and stress as-
signment rules [9] [10], which is also considered in this work.
Considering both primary and secondary stress provides a more
accurate stress pattern, but also could bring a wider range of
variations.

Even though any stress value can be assigned to any syllable
in a English word, stress patterns in our recording are not evenly
distributed, as shown in Table 1. For example, we don’t have
any 4-syllable word which has the primary stress in the final
syllable. Another interesting result is that there are more 4-
syllable words which have the primary stress in the second or
the third syllable than ones which have the primary stress in the
first syllable.

3. Acoustic Measures for Lexical Stress
It is well known that a stressed syllable is uttered with a greater
amount of energy than an unstressed syllable [1]. The perceived
syllable energy is realized in various acoustic forms in speech;
increase in pitch (fundamental frequency), in amplitude or in
length duration.

To learn how acoustic parameters are used to deliver lexical
stress patterns by humans, pitch, amplitude and duration were
measured quantitatively from a female native speaker’s utter-
ances. Speech signals are sampled at 16 bit, 16 kHz linear PCM
and segmented by sentence. Prior to acoustic measurement, au-
dio files used in this work were energy-normalized by sentence
in order to reduce unwanted variations from a series of record-
ing sessions. Even though the native speaker was asked to utter
sentences in the consistent manner, some amount of variation
cannot be avoided.

Pitch and amplitude were both measured from speech files
at 10 ms intervals and then averaged at the nucleus of the syl-

lable. For amplitude measurement, log value were used rather
than raw value. Durations of phone segments were computed
from automatically segmented phone boundaries [11]. Another
indication of stress is the rise in pitch that usually occurs caused
by additional muscular activity. We modeled such phenomena
with the slope of pitch (∆f0), which was also computed in ev-
ery half-phone.

In addition to features mentioned above, we included nor-
malized values of the parameters which depend on phone iden-
tity: duration and amplitude. Some vowel sounds are known
to have more acoustic energy than others due to the different
degrees of mouth opening. Diphthongs tend to be longer than
other vowels, for example, /ay/ in ‘time’ is typically longer than
/aa/ in ‘Tom’ in comparable contexts. By introducing Z-score
at the n-th syllable, Zi(n), in Eq. (1), we can use stylized stress
patterns independent of the phone’s intrinsic variations [12].

Zi(n) =
(Xi(n)− µi)

δi
(1)

where µi and δi are the mean and the standard deviation
of one feature (e.g. duration) across all segments i of a given
phone type in the target speaker’s database.

With the features described above an attribute selection
test, CFS (Correlation-based Feature Subset Selection) [13] in
WEKA, was performed [14]. This method provides high scores
to the subsets that include features that are highly correlated to
the class attribute, but have low correlation to each other. As
shown in Table 2, the amplitude and duration of syllables are
more highly correlated to the lexical stress pattern class than
other features.

Table 2: Result of attribute subset evaluation for lexical stress
pattern classification in the case of 4-syllable words

Attribute Subset Evaluator
(supervised, Class: 37 class):

CFS Subset Evaluator
Including locally predictive attributes

Selected attributes:
2,6,8,9,12,15,17,18,24,26,27 : 11

eng[1]
dur z[1]
eng[2]
dur[2]
dur z[2]
dur[3]
eng z[3]
dur z[3]
dur z[4]
f0 norm[2]
f0 norm[3]

Though the amplitude and the duration of a syllable are
most influencing features for realization of stressed syllables
shown in Table 2, however, it is still difficult to draw a clear line
between the stressed and the unstressed in actual data, as shown
in Figure 2. Each plot shows the distributions of energy (a) or
duration (b) at both the stressed syllable and the unstressed syl-
lable for each of two stress patterns of 3-syllable words (‘100’
in red and ‘010’ in blue).

The average amplitude and duration in stressed syllables
are slightly larger than those at unstressed syllables, but it is not
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Figure 2: Distribution of Z-score energy (a) and duration (b)
of the stressed syllable and the unstressed syllable in the stress
pattern, ’010’ and ’100’

a distinct bimodal distribution. We believe that lexical stresses
are not related any acoustic attribute alone, but related with the
combination of several acoustic attributes.

In this study, machine learning algorithms are introduced to
distinguish lexical stress patterns in the acoustic feature space.
Additional duration normalization was done within words con-
sidering phrase position and speaking rate. For example, the
final syllable in 3-syllable words tends to be longer regardless
of stress, so compensation of this intrinsic bias is helpful.

4. Classification using Machine Learning
Our goal in this work is to model human production concern-
ing lexical stress patterns and make use of it to detect erroneous
stress patterns. To model human production, we employed ma-
chine learning algorithms. All algorithms were trained with the
given acoustic parameters from each syllable in a word and the
corresponding stress pattern as a target class.

The machine learning algorithms used in this work came
from WEKA which is a collection of machine learning algo-
rithms for data mining tasks [14]. It also provides a graphical
user interface so that it is convenient to develop and test learning
algorithms.

CART Classification and regression tree, decides the target
class with the given input variables. Quinlan’s C4.5 de-
cision tree implementation was used.

AdaBoost+CART Adaptive Boosting, calls a weak classifier
repeatedly and updates the importance of training exam-
ples to focus the misclassified instances. In this work, it
is used in conjunction with CART algorithm.

SVM Support Vector Machine, maps the examples to the sep-
arate categories so that they are divided by a clear gap
as wide as possible [15]. Implements John Palate’s se-
quential minimal optimization algorithm for training a
support vector classifier.

MaxEnt Maximum Entropy, building and using a multinomial
logistic regression model with a ridge estimator. Like
many other regression models, it makes use of several
predictor variables that may be either numerical or cate-
gorical.

5. Experimental Results
All the machine learning algorithms were trained by supervised
learning methods with acoustic measurements input parameters
and stress patterns as the target class. Then, they were tested by
10-fold validation.

Table 3: Experimental results of natural stress patterns classifi-
cation using machine learning algorithms

Machine Learning Correctly
Algorithm Classified (%)

3-syllable CART 74.8
words AdaBoost+CART 81.3

SVM 81.6
MaxEnt 83.3

4-syllable CART 77.8
words AdaBoost+CART 83.6

SVM 85.3
MaxEnt 88.7

In both 3- and 4-syllable word stress pattern classifications,
MaxEnt outperforms the other algorithms, and correctly classi-
fied 83.3% stress patterns for 3-syllable words and 88.7% for
4-syllable words. All methods classified 4-syllable stress pat-
terns correctly more often than 3-syllable patterns, but this may
be due to the concentration of 4-syllable words in two cate-
gories (’0100’ and ’2010’). Distribution is more uniform in the
3-syllable words.

Table 4: Confusion matrix in stress pattern classification using
MaxEnt for (a) 3-syllable and (b) 4-syllable words

classified as
010 100 102 120 201 210

010 2867 41 9 45 6 64
100 33 3063 269 72 8 44
102 13 322 2539 28 68 18
120 56 202 42 457 2 136
201 3 66 180 6 252 8
210 72 78 18 90 4 837

(a)



classified as
0100 0102 1000 1002 1020 1200 2010 2100

0100 967 6 1 1 2 4 5 29
0102 20 45 0 1 2 0 0 6
1000 1 0 47 5 6 3 5 4
1002 2 2 2 19 2 2 0 3
1020 1 0 3 2 214 0 136 5
1200 2 0 8 2 1 13 0 3
2010 8 1 1 0 67 0 1870 6
2100 41 4 1 4 4 5 12 212

(b)

Table 4 shows the confusion matrix when MaxEnt algo-
rithm was used to classify stress patterns. From the experi-
ment result, secondary stress brought more confusions, 9% of
’100’ patterns were misclassified into ’102’, and vice versa. In
stress pattern classification for 4-syllable words, the stress pat-
tern ’2010’ far outnumbers other patterns. This resulted in the
misclassification of a large fraction of ’1020’ stress patterns as
’2010’ shown in Table 4 (b).

In the preliminary experiment, we randomly pick 100 utter-
ances from 1996 CSR Hub-4 corpus, extract the acoustic fea-
tures except f0 considering speaker variability to see how for-
eign speakers actually generate lexical stress patterns. The ex-
perimental result shows that there are some differences between
native and foreign speakers’ lexical stress realization as shown
in Table 5. The further study should be performed with the ac-
tual L2 learners’ speech since the acoustic conditions of foreign
speakers in the broadcast news audio may not be equivalent to
the ones of natives.

Table 5: Experimental results of stress patterns classification
from broadcast news audio

Number of Syllable Correctly
in a word Classified (%)

Native, Planned 3-syllable 71.6
(F0) 4-syllable 75.3
Foreign, Spontaneous 3-syllable 49.8
(F5) 4-syllable 56.1

6. Conclusions
Several machine learning techniques were used to model human
production of stress patterns, aiming to detect erroneous stress
patterns from a trainee. Input data included raw and normalized
feature values from a large database of high-quality recorded
speech. The MaxEnt models produced the best results in clas-
sification of a native speaker’s stress patterns. In the prelimi-
nary experiment using broadcast news audio, it is observed that
there are differences between native and foreign speakers’ lexi-
cal stress realization.

For further work, this work to detect erroneous lexical stress
patterns could be extended to correct a speaker’s mistake using
signal processing technologies. Signal processing enables to
embed natives’ intonation on a trainee’s utterance by modify-
ing pitch, energy, and duration of signal. Instead hearing other
native speakers’ utterances, hearing his/her own utterances cor-
rected would be more effective for computer assisted language
learning.
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