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Abstract
Automatic estimation of pronunciation proficiency has its spe-
cific difficulty. Adequacy in controlling the vocal organs is of-
ten estimated from spectral envelopes of input utterances but
the envelope patterns are also affected by alternating speakers.
To develop a good and stable method for automatic estimation,
the envelope changes caused by linguistic factors and those by
extra-linguistic factors should be properly separated. In our
previous study [1], to this end, we proposed a mathematically-
guaranteed and linguistically-valid speaker-invariant represen-
tation of pronunciation, called speech structure. After the pro-
posal, we have tested that representation also for ASR [2, 3, 4]
and, through these works, we have learned better how to apply
speech structures for various tasks. In this paper, we focus on
a proficiency estimation experiment done in [1] and, using the
recently developed techniques for the structures, we carry out
that experiment again but under different conditions. Here, we
use a smaller unit of structural analysis, speaker-invariant sub-
structures, and relative structural distances between a learner
and a teacher. Results show higher correlation between human
and machine rating and also show extremely higher robustness
to speaker differences compared to widely used GOP scores.

1. Introduction
How to separate the spectral envelope changes caused by pro-
nunciation improvement within a learner and those caused by
alternation of learners? A good candidate answer was given to
this question by regarding the pronunciation not as a mere set
of language sounds but as a system organized by the sounds [1].
In other words, for pronunciation proficiency estimation, a fo-
cus was put not on each segment of an utterance independently
but on the relationships among the segments of that utterance.

Language sounds of interest are organized into a system or a
speaker-invariant sound shape, shown conceptually in Figure 1.
The definition of the system is given by a distance matrix among
these sounds because, geometrically speaking, a distance matrix
can fix its own shape uniquely. In voice transformation stud-
ies, speaker difference is usually modeled as space mapping,
x′=h(x). This indicates that, if sound-to-sound distance is cal-
culated using transform-invariant measure, the distance matrix
or the speech structure becomes speaker-invariant. In Figure 1,
every sound is characterized as distribution and sound-to-sound
distance is measured using Bhattacharyya distance (BD) be-
cause BD is invariant with any kind of invertible transform [5].
As is well-known in ASR, vocal tract length difference and mi-
crophone difference is well modeled globally as c′=Ac and
c′=c+b in the cepstrum domain, respectively [6].

Acoustic assessment of each sound in an utterance can be
viewed as phonetic assessment and that of the entire system of
the sounds can be regarded as phonological assessment. In clas-
sical phonology, Jakobson proposed a theory of acoustic and
relational invariance, called distinctive feature theory. In [7],
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Figure 1: Speaker-invariant system of language sounds

Figure 2: Jakobson’s invariant system of the French vowels

he repeatedly emphasizes the importance of relational and sys-
temic invariance among speech sounds and also denies the ab-
solute invariance strongly. Figure 2 shows his speaker-invariant
system of the French vowels and semi-vowels.

We consider that the BD-based distance matrix is a mathe-
matical realization of Jakobson’s claim and that pronunciation
assessment should be done not by evaluating individual sounds
in a learner’s pronunciation independently but by examining
whether an adequate sound system underlies a learner’s pronun-
ciation of the target language. Based on this philosophy, we’ve
already conducted a series of studies of structure-based CALL
systems [1, 8, 9]. In addition, we’ve also done a series of studies
of structure-based ASR systems [2, 3, 4]. In this paper, a profi-
ciency estimation experiment, which was done in [1], is carried
out again but in new experimental conditions. Here, the tech-
niques we’ve developed for the structure-based ASR are applied
and more accurate and robust estimation is highly expected.

2. Structure analysis for ASR and CALL
In the structure-based ASR studies [2, 3, 4], to form a BD-based
distance from an input utterance, the utterance, i.e. a cepstrum
vector sequence, is converted to a distribution sequence (See
Figure 3). This preprocessing is implemented as MAP-based
training of an HMM and an utterance is automatically converted
into an HMM. Once two structures are formed from two differ-
ent utterances, how to match them? In the current implemen-
tation of the structure-based ASR, two structures have to have
the same number of distributions. The matching score is simply
calculated in the following formula. It approximates well the
minimum summation of the distances between corresponding
two distributions after shifting and rotating a structure so that
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Figure 3: An utterance structure composed only of BDs
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Figure 4: Structure comparison through shift & rotation

the two structures are overlapped the best (See Figure 4).
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(Sij − Tij)2, (1)

where S and T are two distance matrices whose elements are
calculated as

√
BD. M is the number of distributions. In the

cepstrum domain, shift and rotation of a structure correspond
to cancellation of differences in microphone and in vocal tract
length, respectively [10]. This indicates that the structure-based
ASR gives matching scores after global adaptation without ex-
plicit adaptation. This is why the structure-based ASR is ex-
tremely robust to microphone and speaker differences [2, 3, 4].

In the structure-based CALL studies [1, 8, 9], a student’s
structure S and a teacher’s structure T are extracted from their
plural utterances. In [1], from about 60 sentence utterances, a
structure of the entire phonemes is formed for a student while,
in [8, 9], a vowel structure is extracted from eleven word utter-
ances containing the eleven American English monophthongs.
In [1], through structural comparison between each student of
a Japanese-English database [11] and a specific teacher, pro-
nunciation proficiency is automatically estimated. The obtained
scores are compared to the proficiency scores given by five na-
tive teachers of American English and high correlation is found.
In [8, 9], D1(S, T ) is decomposed into vowel pairs and, through
pairwise structural analysis, diagnostic instructions on which
vowel to correct at first are provided for each student.

3. Proficiency estimation of Japanese
learners reading English sentences

3.1. What we have developed for the structure-based ASR

Experimental discussions of the structure-based ASR enabled
us to apply the structures in a more proper way to various tasks.
In this paper, we examine the following three techniques.

As shown in Figure 3, a speech structure is a BD-based dis-
tance matrix among speech events, namely, distributions. In
[1], phonemes were used as units of estimating distributions and
forming their structure. In [2, 3, 4], however, we found that a
phoneme-based distance matrix is too coarse to obtain a good
performance for ASR. Three to five distributions per phoneme
gave us the best performance. In other words, after estimating
usual HMMs from an utterance, its speech structure should be
formed by using states of these HMMs. The finer structures are
expected to improve the performance also for CALL.

The use of speech structures enabled us to introduce a new
normalization technique, that is normalization of the magnitude
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Figure 5: Sub-structure extraction for a student and a teacher

of articulatory efforts. The size of a structure is highly corre-
lated with how articulate a speaker’s phonation is and the per-
formance of ASR should not be affected by this. In [2, 3, 4],
the size-normalized structures improved the performance and,
in this paper, this technique is tentatively examined.

In CALL, a structure of an utterance and another structure
of another utterance are compared based on Equation (1). For
ASR, two utterances of two different words should be modeled
discriminatively. In [2, 3, 4], features observed commonly in
different words were removed and not used to form their struc-
tures. PCA, LDA, and feature selection were examined and we
found that parameter (dimension) reduction was highly effec-
tive to improve the ASR performance. In this paper, adequate
selection of distribution pairs is also investigated to find the op-
timum sub-structures for estimating pronunciation proficiency
and emphasizing differences between good and bad learners.

In addition to these three techniques, we examine another
new technique, that is normalization of local and structural dif-
ferences. In [2, 3, 4], a speech structure formed from an input
utterance was matched with template structure patterns, which
were statistical structure patterns trained with several training
speakers. Use of the statistical patterns can calculate matching
scores by taking parameter variances into account. In the case of
one-to-one comparison in Equation (1), however, this is impos-
sible and accidentally large values of |Sij − Tij | can dominate
pronunciation estimation. To avoid this defect, the following
formula is tested experimentally in this paper.
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Figure 5 shows the procedure of extracting state-based sub-
structures from two corpuses of a student and a teacher. First,
a set of speaker-dependent HMMs are trained, where each state
corresponds to an event (distribution). Then, a BD-based dis-
tance matrix is formed. Next, by selecting an appropriate subset
of state pairs, a sub-structure is formed. This procedure is con-
ducted for a teacher and a learner and their sub-structures are
compared to estimate the proficiency of that learner.

3.2. The speech database used in the experiment

ERJ (English Read by Japanese) corpus is used in our exper-
iments, which contains eight sets of read sentence utterances
[11]. Each set is composed of about 75 sentences and they are
read by about 25 university students, among whom about a half
are male and the other are female. Those sentences are a part of



Table 1: Condition for the acoustic analysis
sampling 16bit / 16kHz
windows 25ms length and 10ms shift
training data about 75 sentences per speaker
parameters MFCC + ∆ + ∆Power (25dim.)
HMMs speaker-dependent, context-independent, and

1-mixture monophones with diagonal matrix
topology 5 states and 3 distributions per HMM
monophones aa,ae,ah,ao,aw,ax,axr,ay,b,ch,d,dh,eh,er,ey,

f,g,hh,ih,iy,j,jh,k,l,m,n,ng,ow,oy,p,r,s,sh,t,th,
uh,uw,v,w,y,z,zh,sil

the TIMIT sentences and students of different sets read differ-
ent sentences. The eight sets cover the TIMIT sentences com-
pletely. Proficiency scores are also provided for all the students,
which were manually given by five native teachers of American
English with good knowledge of phonetics and Japanese En-
glish. In addition to speech and label data of Japanese English,
in the corpus, the utterances of the same sentences read by 20
native speakers of General American English (GA) are also in-
cluded. 18 of them read a half of the entire sentences and two
read all the sentences. In this paper, a male speaker (M08) of
the two is used as a teacher commonly for all the 200 students.

3.3. Structure-based analysis and GOP-based analysis

Table 1 shows the acoustic analysis conditions and the number
of AE monophones is 43. From the students, 200 sets of mo-
hophone HMMs are trained. From the single teacher, eight sets
of HMMs are trained, each corresponding to a sentence set in
ERJ. From all the sets of HMMs, 208 129×129(=43×3) BD-
based distance matrices are formed in total. Using the students
of all the sets but set-6, the optimal definition of state-based
sub-structures is estimated. Selection of state pairs is incremen-
tally determined to maximize the correlation between machine
rating and human rating. Here, −D1 or −D2 is used as ma-
chine scores and they are calculated by matching a student’s
sub-structure and the sub-structure of the corresponding sen-
tence set of the teacher. Following the obtained optimal defini-
tion of sub-structures, those of the 26 students of set-6 are used
as open data and compared to the teacher’s sub-structure. Then,
correlation between machine and human is calculated.

For comparison, the pronunciation proficiency is estimated
as GOP (Goodness Of Pronunciation) scores, i.e. posterior
probabilities of the intended phonemes given input utterances.

GOP (o1, ..., oT , p1, ..., pN )

= P (p1, ..., pN |o1, ..., oT )

≈ 1

N

N
X

i=1

1

Dpi

log



P (opi |pi)

maxq∈Q P (opi |q)

ff

, (3)

where T is the total length of given observation sequences and
N is the number of the intended phonemes. opi is the speech
segment obtained for pi through forced alignment and Dpi is
its duration. {op1 ,...,opN } correspond to {o1,...,oT }. Q is the
inventory of phonemes. The GOP was originally proposed in
[12] and is widely accepted as pronunciation proficiency. Since
GOP is probability ratio, it internally has a function of cancel-
ing acoustic mismatch between teachers’ HMMs and a learner’s
utterance. In this paper, nine sets of HMMs are prepared to cal-
culate the GOP. Eight sets are from eight sentence sets of the
common teacher (M08). The other set is trained with all the
utterances of the 20 native speakers of American English.
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Figure 6: Correlations with phoneme-based structure analysis
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Figure 7: Correlations with state-based structure analysis
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Figure 8: Correlations with GOP analysis

3.4. Results of pronunciation proficiency estimation

Results of proficiency estimation by phoneme-based structure
analysis are shown in Figure 6. X-axis represents the num-
ber of selected phoneme pairs. The maximum is 43C2=903.
Colors indicate differences in normalization methods. The red
curve is obtained using relative and structural differences of
Equation (2) and the green one is drawn by normalizing the size
of sub-structures. The blue curve indicates no normalization.

When we used finer units of structure analysis, state-based
structure analysis, as we expected, higher correlations were ob-
tained, shown in Figure 7. Here, X-axis is the number of se-
lected state pairs and its maximum is 43×3C2=8,256. Similarly
to Figure 6, colors indicate differences in normalization.

Looking at both the figures, we can find easily that feature
selection works effectively to improve the performance and that
finer units of structure analysis, i.e. state-based sub-structures,
are also beneficial. Checking each of them, we can find that
the effect of normalization somewhat differs between them. In
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the phoneme-based structure analysis, the size-based normal-
ization works poorly and, in the state-based structure analy-
sis, the effect of Equation (2) is significant. In Figure 7, with
Equation (2), the highest correlation (0.84) is obtained in the
case of 86 selected state pairs. Although this number is very
small, the 172(=86×2) states cover 41 phonemes out of 43.

Figure 8 shows the results of estimating the GOP scores for
two cases. One is using the HMMs of the common teacher and
the other is using those of all the AE speakers. As in structure
analysis, we carried out incremental phoneme selection to real-
ize discriminative comparison. This selection is also effective
here and the highest correlation (0.87) is found at the number of
27. The performance difference between two sets of HMMs can
be interpreted as follows. Although GOP has an internal func-
tion of mismatch cancelation, this function works only when
forced alignment performs well. In some cases, this condition
is less satisfied. Then, the GOP scores of the common teacher
shows less correlations than those of all the teachers.

4. Robustness of the proposed method with
respect to speaker differences

4.1. Urgent requirement for extremely robust technologies

The Japanese government decided to introduce lessons for oral
English communication to every primary school from 2011 but
we don’t have a sufficient number of English teachers. The gov-
ernment expects class teachers, many of whom did not receive
a good education for teaching English, to play an important role
in the lessons. In this situation, we consider that some technical
solutions will be introduced to classrooms. Automatic estima-
tion of pronunciation proficiency is one of the key technologies
and it requires high robustness because the pronunciations of
adult teachers and young children have to be treated properly.

4.2. Robustness of the structures and the GOP

Figure 9 shows the results of proficiency estimation using the
structures (the common teacher) and the GOP (all the teachers).
In this case, by using frequency warping techniques, all the in-
put utterances of set-6 were transformed as if they had been
generated by speakers of various vocal tract lengths. X-axis
means warping parameter α and, with α=−0.4/+0.4, the vocal
tract length is doubled/halved. Two speech segments warped
from the same segment with α=+0.3 and α=−0.3 are shown.
Frequency warping resulted in a drastic acoustic modification.
In spite of this large change, Figure 9 shows the extreme robust-
ness of the structures but it also shows the extreme weakness of
the GOP. We can say that even a single teacher’s structure can
be used directly and effectively for any student of any size.

5. Discussions and conclusions
In this paper, the improvement of structure-based proficiency
estimation is realized and its high robustness to speaker vari-
ability is experimentally verified. Further, the weakness of GOP
is also made clear. As GOP is basically a posterior probabil-
ity, it internally has a function of canceling acoustic mismatch
between HMMs and learners. But this function only works
when forced alignment (numerator of Equation (3)) and contin-
uous phoneme recognition (denominator of Equation (3)) per-
form properly. With a large acoustic mismatch, however, the
two processes inevitably fail. To avoid this, teachers’ models
(HMMs) are often adapted to learners. If one wants to prepare
the most adequate models for a specific learner, one has to build
the models trained with that learner who would pronounce the
target language correctly. It is ideal that a student and his/her
teacher have the same voice quality because of no mismatch.

This technical requirement leads us to consider that GOP
should stand for, not Goodness Of Pronunciation, but Goodness
Of imPersonation, which quantifies how well a learner can im-
personate the model speaker [13]. But learning to pronounce is
not learning to impersonate at all. No male student tries to pro-
duce female voices when asked to repeat what a female teacher
said. No young child produces deep voices to repeat what a tall
male teacher said. As Jakobson claimed, we consider that they
extract a speaker-invariant sound system underling a given ut-
ternace and try to reproduce that system orally. But inevitable
differences in size and shape of the vocal organs between a
learner and a teacher have to cause acoustic differences between
their utterances. Computer-Aided Language Learning (CALL)
or Computer-Aided Impersonation Learning (CAIL), which is
needed for classrooms? We believe that the answer is obvious.
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