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Abstract
An important aspect of a Computer-Assisted Language Learn-
ing (CALL) system for pronunciation acquisition is the auto-
matic detection of mispronunciations. This problem can be for-
mulated as a phone verification task. For each phone to be ver-
ified, the system generates a verification score and a decision
threshold is applied to accept or reject the pronunciation of that
phone. Most verification systems use the HMM phone acous-
tic models to compute the log posterior probabilities (LPPs) as
the verification score. A discriminative back-end using the Sup-
port Vector Machine (SVM) can also be applied to the vector of
LPPs to further improve the verification performance. This pa-
per investigates the use of a NN/HMM hybrid phone recogniser
to obtain the LPP scores. The NN/HMM hybrid framework has
been shown to yield superior phone recognition performance
over the conventional GMM/HMM based systems. In addition,
this paper also examines the use of frame-level phone or state
posterior features directly with SVM. Experimental results re-
ported on the TIMIT database show that state-level average pos-
terior features with SVM yielded 9.5% relative Equal Error Rate
(EER) improvement over the NN/HMM system.

1. Introduction
Computer-Assisted Language Learning (CALL) is a computer-
based teaching software that is used to facilitate language acqui-
sition. A CALL system for pronunciation acquisition consists
of two major components: 1) the detection of mispronuncia-
tions at the phone level [1, 2]; 2) the overall assessment of the
pronunciation quality at the sentence or speaker levels [3, 4].
The former provides a simple binary feedback to the users to
identify the locations at which a pronunciation error has been
made. The latter provides an overall assessment score which
can be used for comparison between sentences or speakers. The
scores can also be used for automatic assessment for oral exam-
ination which can be costly and time consuming if conducted
by human examiners.

Mispronunciation can be defined in terms of the sound of
the phonemes, the tone and intonation, duration as well as other
prosodic attributes. This paper investigates only the mispronun-
ciation in terms of the phoneme sound itself and its confusabil-
ity with the sound of other phonemes. The detection of this
kind of mispronunciation can be formulated as a phone veri-
fication task [2]. For each phone to be verified, a verification
score is generated by the system and a decision threshold is
applied to the verification scores, above which the pronuncia-
tion is accepted and vice versa. Typically the verification scores
are obtained as the log posterior probabilities (LPPs) computed
using a phone recogniser. The phone verification performance

depends on the quality of the phone recogniser used to compute
the LPPs. Hidden Markov Models (HMMs) are commonly used
to model the phonemes based on the Mel Frequency Cepstral
Coefficients (MFCCs) or Perceptual Linear Prediction (PLP)
coefficients. To improve the quality of phone recognition, dis-
criminative training paradigms such as Maximum Mutual In-
formation (MMI) [5] can be used, instead of the conventional
Maximum Likelihood (ML) approach.

Recently, the hybrid of neural network (NN) and HMM
system based on the Temporal Patterns (TRAPS) features [6]
with long temporal contexts has been shown to yield high qual-
ity phone recognition performance. This system, referred to as
NN/HMM, uses a cascade of multiple neural networks to gen-
erate frame-level state posterior probabilities. This probabilities
are used as the HMM state emission probabilities to perform the
Viterbi decoding. While the NN/HMM phone recognisers can
be used to generate the LPPs, the state posterior probabilities
generated by the neural networks can also be used with a SVM
back-end to produce the verification scores.

The remaining of this paper is organised as follows: Sec-
tion 2 describes the phone verification mispronunciation detec-
tion system. Section 3 describes the NN/HMM hybrid phone
recognition system. This is followed by the discussion of dis-
criminative back-end using support vector machine in Section 4.
The effect of speaker adaptation using CMLLR is described
in Section 5. Experimental results are reported on the TIMIT
database in Section 6. Finally, conclusions are drawn in Sec-
tion 7.

2. System Description
The typical architecture of a phone verification mispronuncia-
tion detection system is shown in Figure 1. Given the speech
waveform and its corresponding word-level orthographic tran-
scription, phone segmentation can be achieved by forced-
aligning the speech waveform with the text transcription using
a phone recogniser and a pronunciation dictionary. For each
phone segment, a verification score is generated using phone
recogniser. The log posterior probabilities (LPP) can be used as
the verification scores. It is computed as follows:

log P (m∗|O) = log

„
p(O|m∗)P (m∗)P
m∈M p(O|m)P (m)

«
(1)

where m∗ is the identity of the actual phone to be uttered. O
is the sequence of observations aligned to m∗. p(O|m) is the
likelihood of m generatingO and P (m) is the prior probability
of m. Typically, uniform prior distribution is assumed and the
term P (m) can be eliminated from the above equation. M is
the set of phones in the system.
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Figure 1: Architecture of a phone verification mispronunciation
detection system.

A decision threshold is applied to the verification scores to
determine if the pronunciation should be accepted or rejected.
The decision threshold can be adjusted to compromise the trade-
off between false acceptance and false rejection rates. Typically,
equal costs are assigned to both false acceptance and false re-
jection errors. Hence, the decision threshold is adjusted so that
these errors are equal. The error at this operating point is known
as the Equal Error Rate (EER). EER metric is commonly used
for verification tasks such as speaker and language verification.
It will be used to evaluate the phone verification performance in
this paper. There are two ways of computing the overall EER of
the system:

• Pooled EER: This approach pools all the true and false
scores from all the phone segments and compute the
EER based on a global decision threshold.

• Average EER: This approach computes the EER for
each reference phone and then compute the overall EER
by taking the average. This effectively applies a different
decision threshold to different phones.

3. The NN/HMM Hybrid Phone Recogniser
The HMM acoustic models used to model the phonemes for
speech recognition typically adopt the 3-state left-to-right topol-
ogy with self-transitions. The state emission probabilities are
commonly represented as a Gaussian Mixture Model (GMM).
The HMM parameters can be estimated efficiently using the
Baum-Welch algorithm in the case of Maximum Likelihood
(ML) training. Alternatively, discriminative training criterion
such as Maximum Mutual Information (MMI) [5] has been
found to yield better recognition performance.

Recently, NN/HMM hybrid phone recognition systems
have been shown to outperform conventional GMM/HMM
phone recognisers [7]. In this paper, the use of the NN/HMM
system as described in [7] for phone verification is investigated.
This system uses a cascade of neural networks to estimate
the posterior probabilities for each HMM state in the system.
Firstly, the TRAPS features [6] are computed for each critical
band and then split into the left and right contexts. The TRAPS
features are generated at every 10ms frame shift. A neural net-
work is trained on each of these TRAPS features to predict the

state posteriors. Then, a final neural network is trained to com-
bine the output from the previous neural networks to yield the
final state posterior probabilities. These posterior probabilities
are used directly as the HMM state emission probabilities to
perform the standard Viterbi decoding to obtain the best phone
sequence.

4. Discriminative Back-end Using SVM
Instead of using the LPP scores corresponding to the target
phone alone, it is possible to use the entire vector of LPPs com-
puted for all the phones and perform a second stage of clas-
sification. This vector of LPPs is referred to as the posterior
features:

PF =
ˆ

P (m1|O) P (m2|O) . . . P (mM |O)
˜T (2)

where M , the dimension of the feature vector, is the total num-
ber of phones in the system. This can be performed efficiently
using support vector machine to serve as a discriminative back-
end. In this paper, the SVM back-end uses the Radial Basis
Function (RBF) kernels for classification. One SVM classifier
is trained for each phone. The LPP vectors corresponding to
the target phone are used as the positive samples while the re-
maining vectors are used as the negative samples. This is a
one-versus-rest classification strategy.

While the LPP vectors are a natural choice of features for
HMM based systems, the frame-level state posterior probabil-
ities generated by the neural network of the NN/HMM system
can also be fed directly into an SVM classifier for the back-
end. Since a posterior probability vector is generated every
10ms, there will be a sequence of posterior feature vectors for
each phone segment. To represent each phone segment by a
single feature vector, the Average Posterior Feature (APF) is
computed for each phone segment. Therefore, if there were N
frames in the phone segment, the APF is computed as:

APF =
1

N

NX
i=1

PFi (3)

where PFi denotes the posterior feature vector of the ith frame.
APF can be computed based on the state or phone posterior
probabilities. They are referred to as State-level APF (SAPF)
and Phone-level APF (PAPF) respectively. For SAPF, the pos-
terior features are generated by the cascade of neural networks
from the NN/HMM system. To obtain PAPF, all the state pos-
terior probabilities of each phone are summed together to yield
the phone posterior probabilities.

5. Speaker Adaptation
Adaptation techniques are commonly applied to speech recog-
nition systems to compensate for channel and/or speaker vari-
ability. Maximum Likelihood Linear Regression (MLLR) [8]
is widely used to perform adaptation of HMM-based acoustic
models. This paper considers the Constrained MLLR (CM-
LLR) [8] technique which applies a global affine transformation
to the acoustic feature vectors. Adaptation can be performed in
two modes: supervised and unsupervised. In the former case,
the transcription labels for the adaptation data is available. In
the latter case, the transcription labels are generated by perform-
ing an initial phone recognition. For pronunciation learning, the
transcription labels are available since the users are prompted
with text to speak. However, it is important to note that the
users may make pronunciation mistakes. In this paper, phone



verification is performed on native speech. Hence, the perfor-
mance of supervised adaptation is clearly superior, as shown in
Section 6. For the NN/HMM system, adaptation of the neural
networks cannot be performed easily. Adaptation has always
been as issue for neural networks. Adaptation of neural net-
works is not explored in this paper and will be investigated for
future research.

6. Experimental Results
This section presents the experimental results of phone verifi-
cation on the TIMIT database. A summary of the training and
testing data sets used in this paper is tabulated in Table 1. All the

Table 1: Summary of the TIMIT training and testing data sets
used in this paper.

Data # of # of Amount of
Set Speakers Utterances Data (hours)

train 462 3696 3.12
dev 88 640 0.60
eval 80 740 0.54

HMM-based acoustic models used in this paper are trained on
the 3696 training utterances provided with the TIMIT database,
which amounts to about 3.12 hours of speech data. The TIMIT
test data is divided into two sets: dev and eval. The dev
set will be used later to train the SVM back-end. The odd and
even numbered sessions were chosen as the dev set and eval
set respectively. This yields a total of 0.60 and 0.54 hours of
speech data for the two sets.

All the phone recognisers used in this paper are context-
independent monophone systems. The reduced TIMIT phone
set with 40 phones (including the silence model) was used. First
of all, two GMM/HMM systems were trained on the 39 dimen-
sional feature vectors. This consists of 13 static coefficients (12
MFCC plus the C0 energy term) and the ∆ and ∆∆ param-
eters. Each monophone is modelled by a 3-state left-to-right
HMM. The observation probability distribution of each HMM
state is modelled by a 32-component GMM. The parameters of
the first GMM/HMM system were estimated using the ML cri-
terion. The second GMM/HMM system was trained using the
MMI criterion. These two systems are referred to as HMM-ML
and HMM-MMI respectively. In addition, a hybrid NN/HMM
phone recogniser is also used for the experiments. This phone
recogniser is available for download from the BUT website1.
The neural networks of this phone recogniser were trained on
the same training data as the GMM/HMM systems. Hence, the
results will be comparable.

6.1. Phone Recognition

The quality of the phone recognisers were compared by eval-
uating the Phone Error Rate (PER) performance on the dev
and eval data sets. The PER results are shown in Table 2.
The HMM-ML system achieved PER of 41.0% and 40.7% on
the dev and eval data sets respectively. With discriminative
training of the HMM parameters, the HMM-MMI system gave
a consistent absolute PER improvement of 3.1% and 3.9% over
the HMM-ML system. Finally, the NN/HMM system yields
further absolute PER reduction of 4.7% and 3.8% over the

1http://speech.fit.vutbr.cz/en/software/
phoneme-recognizer-based-long-temporal-context

Table 2: Comparison of PER (%) performance of HMM-ML,
HMM-MMI and NN/HMM systems on the dev and eval data
sets.

System dev eval
HMM-ML 41.0 40.7

HMM-MMI 37.9 36.8
NN/HMM 33.2 33.0

HMM-MMI system, giving the best phone recognition perfor-
mance of 33.2% and 33.0% on the two data sets.

6.2. Pooled versus Average EER

Next, phone verification performance is evaluated for these sys-
tems. To perform verification, phone segmentation is performed
by applying Viterbi forced-alignment. For each phone segment,
the log posterior probability (LPP) of the phone given the obser-
vation sequence associated with the segment is computed using
Equation (1). This is used as the positive scores for that phone
and negative scores for the rest of the phones in the system. Us-
ing the positive and negative scores, a decision threshold can be
determined to yield the Equal Error Rate (EER).

Table 3: Comparison of pooled and average EER performance
for various systems without SVM back-end on the dev and
eval data sets.

System Pooled EER Average EER
dev eval dev eval

HMM-ML 6.72 6.67 6.19 6.06
HMM-MMI 5.68 5.65 5.44 5.35
NN/HMM 5.54 5.33 4.64 4.45

The comparison of pooled and average EER performance is
given in Table 3. The average EER is consistently lower than the
pooled EER for all the systems on both test sets. This suggests
that it is better to use phone specific decision thresholds. Hence,
for subsequent results, only the average EERs will be reported.
As shown in the table, the average EERs of the HMM-ML sys-
tem are 6.19% and 6.06% on the dev and eval data sets re-
spectively. The HMM-MMI system gave absolute EER reduc-
tion of 0.71 – 0.75% over the HMM-ML system. Finally, the
hybrid NN/HMM system yields the best performance of 4.64%
and 4.45% on the two test sets, which are 0.80 – 0.90% absolute
better than the HMM-MMI system.

6.3. Phone Verification With SVM Back-end

Table 4: Comparison of EER (%) performance of various phone
verification systems with and without SVM back-end

System Without SVM With SVM
dev eval dev eval

HMM-ML 6.19 6.06 4.84 5.81
HMM-MMI 5.44 5.35 4.38 5.34
NN/HMM 4.64 4.45 4.10 4.32

The effect of using a SVM back-end on phone verifica-
tion performance is shown in Table 4. One SVM classifier is
trained for each phone. The input to each SVM classifier is a
40-dimensional LPP vector. Radial Basis Function (RBF) ker-
nel was used and the classifiers were trained on the dev data



set. Hence, the improvement from using the SVM back-end is
greater on the dev set. On the eval set, the absolute EER im-
provements from using a SVM back-end were 0.25%, 0.01%
and 0.13% respectively for the HMM-ML, HMM-MMI and
NN/HMM systems. Hence, the NN/HMM system with SVM
back-end yields the lowest EER of 4.32%.

6.4. Average Posterior Features

For the NN/HMM system, instead of using the state-level pos-
teriors as the HMM state emission probabilities to generate the
LPP scores, it is also possible to use the posterior vectors as in-
put features to the SVM back-end to generate the final scores
for verification. The SAPF and PAPF features as described in
Section 4 will be investigated.

Table 5: Comparison of Average EER (%) performance of sys-
tems with SVM back-end using different posterior features.

System dev eval
NN/HMM 4.10 4.32

PAPF 3.42 4.62
SAPF 1.49 3.91

The EER performance of these systems are summarised
in Table 5. When the PAPF were used as input to the SVM
back-end classifier, there was an absolute EER improvement of
0.68% on the dev set that was used to train the SVM classifier.
However, on the eval set, the EER performance deteriorated
by 0.30% absolute compared to the NN/HMM system where the
LPP vectors generated by the HMMs were used instead. On the
other hand, using the SAPF gave a huge improvement of 2.61%
on the dev set and an absolute improvement of 0.41% on the
eval data set. This translates to approximately 9.5% relative
improvement. The results show that there is a clear advantage
of generating posterior probabilities at a granularity higher than
phone level, such as state level.

6.5. CMLLR Speaker Adaptation

Table 6: Comparison of EER (%) performance of various
phone verification systems using no, unsupervised and super-
vised CMLLR speaker adaptation with SVM back-end.

System Adaptation dev eval

HMM-ML
none 4.84 5.81
unsup 4.55 5.62

sup 4.09 4.99

HMM-MMI
none 4.38 5.34
unsup 4.28 5.22

sup 3.80 4.62

Finally, the effect of CMLLR speaker adaptation on the
EER performance of the HMM-ML and HMM-MMI systems
is summarised in Table 6. Two speaker adaptation modes
were considers: unsup and sup refer to unsupervised and
supervised speaker adaptation respectively. Speaker adapta-
tion is performed using a global CMLLR affine transforma-
tion with a bias vector. none denotes no speaker adaptation
were performed. Unsupervised adaptation yields 0.19–0.29%
and 0.10–0.12% absolute EER improvements for the HMM-ML
and HMM-MMI systems respectively. As expected, supervised
adaptation achieves much greater performance improvements

of 0.75–0.82% and 0.58–0.72% for the two systems. Note that
the best performance of the adapted system is 4.62 on the eval
data set. This is still not as good as the unadapted performance
of the NN/HMM and SAPF systems. As for future work, we
will explore adaptation techniques for neural networks to fur-
ther improve the NN/HMM and SAPF systems.

7. Conclusions
This paper has presented a comparative study of different ap-
proaches for phone verification and proposed a new approach
based on the state average posterior features with SVM to im-
prove verification performance. The results reported in this pa-
per showed that the log posterior probability scores produced by
an HMM system yielded better phone verification performance
if the HMM parameters were discriminatively trained using
the MMI criterion compared to the conventional ML training
paradigm. Furthermore, the hybrid NN/HMM which is based
on long temporal TRAPS features outperformed both ML and
MMI trained HMM systems. In addition, the posterior prob-
abilities of all the phones can be used as input features to the
SVM back-end to further improve the verification performance.
Finally, instead of generating the phone posterior scores using
a set of HMM models, the average state-level posterior features
generated by a cascade of neural networks can also be used as
input features to the SVM back-end. This was shown to yield
approximately 9.5% relative improvement over the NN/HMM
system on the TIMIT database.
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