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Abstract
In the inEvent EU project [1], we aim at structuring, re-

trieving, and sharing large archives of networked, and dynam-
ically changing, multimedia recordings, mainly consisting of
meetings, videoconferences, and lectures. More specifically,
we are developing an integrated system that performs audio-
visual processing of multimedia recordings, and labels them in
terms of interconnected “hyper-events” (a notion inspired from
hyper-texts). Each hyper-event is composed of simpler facets,
including audio-video recordings and metadata, which are then
easier to search, retrieve and share. In the present paper, we
mainly cover the audio processing aspects of the system, includ-
ing speech recognition, speaker diarization and linking (across
recordings), the use of these features for hyper-event indexing
and recommendation, and the search portal. We present initial
results for feature extraction from lecture recordings using the
TED talks.
Index Terms: Networked multimedia events; audio processing:
speech recognition; speaker diarization and linking; multimedia
indexing and searching; hyper-events.

1. Introduction
Databases and information management systems have been in
reactive mode for the last decade, trying to keep up with novel
and rapidly evolving applications, data characteristics, and data
volumes. However, databases continue to extend the relational
model to deal with standard “static” data management prob-
lems. Search engines derived their initial inspiration from text
retrieval and have been developed around the bag-of-words
model and the link structure of the web. More recently there
has been intense activity on developing search engines to deal
with dynamic data streams (such as Twitter and newswires), de-
ployed within search engines such as Google and Bing.

As the amount of audio and video data found on the web
has exploded, systems which allow searching for audio-visual
content have been deployed, such as Google Videos or Yahoo!
Video Search. Video repositories such as YouTube or Daily-
motion have deployed their own search solutions. More re-
cently, lecture repositories such as TED [2], Videolectures.Net,
or Khan Academy have followed suit. However these systems
are still largely based on text retrieval and rely on textual meta-
data, tags added by users, or text found on the same (or a linked)

webpage. Any link structure for multimodal search relies solely
on textual links rather than implicit links found thanks to the
media content.

Over the last 10-15 years, there has been an intense research
activity on semantic indexing of multimedia content using vi-
sual, audio, and text cues (see e.g. [3, 4]). There have also been
some deployed audio search engines based on speech recogni-
tion, which enable content-based search and retrieval of pod-
casts and videos, for example Everyzing1 and Blinkx2.

However, most current systems do not address a number of
key issues, including (1) disparate, heterogeneous, data sources
capturing audio-visual data taken at different locations at differ-
ent times to represent a holistic situation; (2) multimodal re-
sources that represent social and communicative interactions
(such as videoconferences, meetings and symposia); (3) dy-
namic, rapidly evolving multimodal streams; and (4) implicit
links and connections contained within the multimodal streams,
rather than easily accessible textual links and metadata.

In the present paper, we discuss our current efforts to-
wards automatically analyzing, structuring, linking and retriev-
ing multimedia networked objects consisting of archives of rich
and complex A/V documents resulting from meetings, video-
conferences, symposia, and lectures. Exploiting initial propos-
als presented in [5] and [6], an archive of multimedia recorded
events is here represented in terms of a collection of hyper-
events3 accommodating all necessary attributes (either automat-
ically extracted or manually annotated), including structural,
temporal and spatial information, as well as contextual and so-
cial information. The resulting archive should be accompanied
by tools that automatically reorganize events to satisfy different
viewpoints and naturally incorporate new data types.

In the inEvent project, hyper-events are thus being used
as a primary structure for organizing and accessing complex
objects like multimedia recordings. This paper describes our
initial steps towards the analysis of those hyper-events for fea-
ture extraction (speech recognition in Section 2 and diarization
in Section 3), the use of features for linking and recommend-
ing similar hyper-events (Section 4), and the portal allowing
users to access hyper-event repositories (Section 5). The system

1http://www.everyjoe.com/
2http://www.blinkx.com
3In reference to the hyper-texts used for static documents.
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components are tested on TED lectures, on lectures recorded by
Klewel, or on the AMI Corpus [7] (for formal evaluation), thus
providing a promising proof of concept for inEvent’s vision.

2. Speech recognition
Automatic speech recognition (ASR) derives from the audio
signal a text representation of the words that were spoken. Usu-
ally the input is segmented into utterances (delimited by pauses
or changes of speaker) and the output consists of a transcription
of each utterance. Variations on this paradigm include keyword
spotting (where only selected words are transcribed) and the
output of multiple hypotheses, in the form of an N -best list or a
confusion network, to handle uncertainties as to what was said.

For the purposes of inEvent, ASR output is an impor-
tant data stream both for searching across recordings, to find
those most relevant to a given query, and for searching within a
recording, to find time intervals in which particular words and
phrases were spoken. For searching across recordings, it will
often be best to derive an intermediate representation, such as
a summary or a list of keywords, from the ASR output, rather
than use the transcript directly. Indeed, as results in Section 4
show, using the entire transcript is less useful for indexing than
the talk title or a short description. This may be more so when
the transcript is derived automatically rather than manually and
contains recognition errors. However, for searching within a
recording, direct use of the transcript is more likely to be appro-
priate.

The speech recognition system should ideally be trained on
data similar to the recordings to which it is to be applied. This
applies both to the acoustic characteristics of the data (speaker
characteristics, noise level, microphone type, etc.) and to the
vocabulary and style of the spoken content.

The system currently in use in inEvent is a variant of the
system developed for the IWSLT 2012 ASR evaluation [8, 9]
and was trained primarily on recordings and transcripts of TED
talks [2]. For further details of the modeling see [10].

2.1. Acoustic modeling

The recognition system adopts a hybrid modeling approach, in
which HMM observation probabilities are computed using a
deep neural network (DNN), as described in [10]. The current
system does not incorporate MLAN features [10, 11], but it is
planned to add these in future versions.

The core acoustic model training set was derived from 813
TED talks dating prior to the end of 2010. The recordings were
automatically segmented, giving a total of 153 hours of speech.
Each segment was matched to a portion of the manual transcrip-
tions for the relevant talk using a lightly supervised technique
described in [12]. For this purpose, we used existing acoustic
models trained on multiparty meetings.

Three-state left-to-right HMMs were trained on features de-
rived from the aligned TED data, and a re-alignment of the
training segments and transcriptions was carried out, following
which around 143 hours of speech remained for the final estima-
tion of state-clustered cross-word triphone models. The result-
ing models contained approximately 12,000 tied states, with 16
Gaussians per state. The state tying from these (HMM-GMM)
models was used in the final hybrid models, as described in [10].

The first pass of recognition uses a 7-layer hybrid DNN
trained on PLP features (13-dimensional vectors with first, sec-
ond and third order differential coefficients, projected to 39 di-
mensions using an HLDA transform). The first-pass output

is used to estimate a single CMLLR transform [13] for each
speaker, which is used to generate speaker-normalized features.
The second pass uses a 6-layer hybrid DNN trained on speaker-
normalized features from the training data.

This configuration is essentially as in the fifth row of Table
4 in [10] (baseline hybrid + SAT, giving word error rates of
18.6% and 17.6% on the dev2010 and tst2010 data sets), but
with an improved language model and lattice rescoring in the
final pass as described below.

2.2. Language modeling

The language models for the IWSLT 2012 evaluation were
obtained by interpolating individual modified Kneser-Ney
discounted LMs trained on the small in-domain corpus of
TED transcripts (2.4M words) and seven larger out-of-domain
sources. The out-of-domain sources were Europarl (v7), News
Commentary (v7) and News Crawl data from 2007 to 2011. A
random 1M sentence subset of each of News Crawl 2007-2010
was used, instead of the entire available data, for quicker pro-
cessing. The total amount of out-of-domain data used was about
166M words. The vocabulary was fixed at 60,000 words, in-
cluding all words found in the TED training set plus the most
frequent additional words in the other sources.

The language models in the current system were obtained
by interpolating the IWSLT evaluation LMs described above
with the LM built for the 2009 NIST Rich Transcription evalu-
ation (RT09), based on a range of data sources including con-
versational speech and meetings [14].

The system generates word lattices using a trigram model,
and rescores them with a 4-gram model for the final output.

2.3. Current and future work

Work is in progress on improving the language models trained
for the IWSLT 2012 evaluation. As mentioned above, the
amount of data used to train the existing models was restricted
because of time constraints, and it was noted that other partici-
pants in the evaluation had obtained better LMs by using more
data and by refinements including domain adaptation and re-
current neural network modeling [15]. Subsequent experiments
[16] have shown WER reductions of about 2% absolute due to
using the NICT trigram LM [15] instead of the original UEDIN
trigram LM of [9], with 4-gram and factored RNN models giv-
ing further improvements. Current work within inEvent is fo-
cused on applying similar techniques to obtain an improved
baseline LM. This will then be taken as the starting point for
topic adaptation based on generating queries from the first-pass
ASR output and running web searches to retrieve relevant text
[17]. It may also be helpful to use any text associated with the
recording (e.g. from slides or lecture notes) for LM adaptation
[18, 19].

In order to perform speaker adaptation, the ASR system re-
quires a speaker diarization stage. In the present system this
is based on the diarization module of the AMIDA system [14],
applied separately to each recording. It should be possible to
improve on this by performing speaker linking across record-
ings as described in Section 3.

Recordings of interactive meetings, as obtained for instance
from a videoconferencing system, pose a particularly difficult
challenge for ASR, since they typically contain more frequent
changes of speaker, higher levels of noise and more disfluent
speech than lecture-style recordings. Work will be required on
both acoustic modeling and language modeling in order to ex-
tend the inEvent system successfully to data of this type.
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3. Speaker diarization and linking
Speaker diarization technology structures audio data in terms of
“who spoke when”. In a project like inEvent, such information
is used to enrich the semantic annotation of events to enable
speaker-based search and recommendation. Speaker diarization
can also drive higher-level semantic annotation by fusion with
other technologies such as speech recognition, video processing
and social signal processing.

Speaker diarization within the inEvent project must cope
with specific challenges:

• A large amount of data to be processed in an appropri-
ate time, although off-line is acceptable for a search and
retrieval application.

• A large number of speakers are present in the data set,
with some of them appearing in multiple recordings. Di-
arizing the whole data set, i.e. structuring the speaker
space across all recordings, would be more than desir-
able, as opposed to per-recording operation of the current
diarization solutions.

• The data is dynamic and the algorithms should be able
to work incrementally as new data are available.

• Large variability in the recording quality and acoustic
conditions, with special attention to robustness to varia-
tions of noise and room acoustics across recordings.

• Weak priors on the number of participants and interac-
tion structure so that, ideally, a single diarization set-up
works fine for different scenarios.

We have developed a diarization and linking method that
is able to both uniquely identify the speakers across the data
set and find the segments of each recording where each speaker
is speaking. This task could be otherwise addressed by diariz-
ing the concatenation of all recordings, but the computational
cost is prohibitive given current capabilities. We opt instead for
a two-stage approach, involving intra-session speaker diariza-
tion, followed by speaker linking across sessions. This system
is described more in-depth in [20].

3.1. Speaker diarization

A standard speaker diarization system obtains within-recording
speaker clusters using agglomerative clustering at the acous-
tic observation level. The speaker clusters are given a set of
start and end times and a unique speaker identifier within each
recording. This stage benefits from a reference model fitted to
the recording conditions so that fine differences between speak-
ers are accurately detected. It also deals with a tractable num-
ber of speakers. We use the Information Bottleneck diarization
system [21] obtaining state-of-the-art performance on meeting
scenarios with small computational load. This system uses
information theoretic principles to find speaker clusters that
are maximally informative w.r.t. a set of relevance variables,
namely Gaussian mixture posterior probabilities, while keeping
the cluster representation as compact as possible.

3.2. Speaker linking

A second agglomerative clustering algorithm takes as input the
speaker clusters generated by the speaker diarization system,
and structures the speaker space of the whole data set. The re-
sulting speaker clusters are then given a unique speaker identi-
fier across the data set. Speaker clusters are given a compact
and robust representation obtained via Joint Factor Analysis

(JFA) [22, 23]. JFA models the speaker and channel variabilities
around a reference model, i.e. the Universal Background Model
(UBM), obtaining speaker factor posterior distributions that are
assumed to be speaker-dependent multivariate Gaussian. These
objects are then linked across all recordings in the whole data
set. Such speaker factor representation has been shown to be
robust to across-recording variation in speaker recognition ap-
plications. The hyper-parameters of the JFA model are trained
on around 50 hours of the Augmented Multiparty Interaction
(AMI) meeting corpus [7] involving 130 speakers.

The clustering step takes advantage of the Gaussian prop-
erties of the objects to be clustered. The Ward algorithm [24]
seeks to minimize the increase of the total within cluster vari-
ance after merging two clusters while the Lance-Williams re-
cursion [25] enables an efficient implementation.

Amongst the similarity measures we explored, includ-
ing the cosine distance of mean vectors and the symmetrized
Kullback-Leibler divergence, the Hotelling t-square statistic
stood out as being the most stable and performing. This mea-
sure is the multivariate version of the two-way Student-t statis-
tic used for testing the hypothesis that the means of two Gaus-
sian samples are different. Under the assumption that both
Gaussian distributions share the same covariance matrix, this
measure has the form of the Euclidean distance between spheri-
fied Gaussian distributions, therefore matching the assumptions
of the Lance-Williams recursion.

It is expected that speaker clusters naturally arise during
the agglomerative clustering process. In this work, we assume
that speaker clusters can be simply found by thresholding the
distance values in the clustering dendrogram.

Given that no labeled data is available for the Klewel and
TED data sets, we evaluated the speaker diarization and linking
system on a subset of the AMI corpus. These data involve meet-
ings with 4 participants recorded using far-field microphones.

Table 1 shows the results of these experiments for two sub-
sets involving low and high channel variability, LCV and HCV
entries. For both sets the linking approach reduces the within-
recording Diarization Error Rate (DER), a gain coming from
further clustering speakers within the same recording.

Regarding the across-recording DER, measuring the perfor-
mance of both diarization and linking stages together, similar or
even lower error rates are obtained, whereas the complexity of
the task has enormously increased. These numbers show that
the linking stage is properly detecting speaker entities in the
data set. Nonetheless, the absolute performance is dependent
on the initial speaker diarization performance. The number of
speakers estimated for the whole data set is close to the correct
one for the low channel variability data set whereas it is signifi-
cantly higher for the high channel variability data set.

System Data set #Spk wr/ar DER(%)
Dia LCV — 24.5/
Dia+Link LCV 58 21.7/23.6
Dia HCV — 27.6/
Dia+Link HCV 86 26.8/28.0

Table 1: Speaker diarization results on the LCV and HCV data
sets involving 56 speakers and 8 and 24 channels respectively.
Columns 3 and 4 show the detected number of speakers and the
within-recording/across-recording DER.
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4. Indexing for recommendation
One of the main uses of audio features extracted from multime-
dia events is in information retrieval (IR) applications. These
features can be complemented by features extracted from lec-
ture or meeting metadata, such as title and speaker(s). In the
inEvent project, we have specified two types of lecture rec-
ommendation tasks, and focused initially on the first one [26].
In the personalized recommendation task we aim to predict
whether lectures will be interesting or not for the users [27],
given their previous binary ratings, or more simply to predict
the N most interesting ones (top-N task) [28]. In the generic
recommendation task, the users’ history of ratings is not avail-
able, and the goal is to predict the most similar items to a given
one (non-personalized top-N recommendation). The latter task
also amounts to building similarity links between hyper-events,
based on all their facets.

The focus on this task was also influenced by the availabil-
ity of an online repository of audiovisual recordings, the TED
lectures [2], made available under a Creative Commons license.
This makes possible audio, video and text processing (as in Sec-
tion 2 above), along with testing recommendations against pref-
erences expressed by users. We have recently made available
the TED metadata and user profiles with ratings and comments
as a public set for lecture recommendation benchmarking4.

4.1. Recommending multimedia objects

The audio features and the metadata are used within three types
of methods for personalized recommendation: (i) content-based
(CB) methods using vector space similarities; (ii) collaborative
filtering (CF) methods using ratings; and (iii) combined meth-
ods [26]. When using a vector space model for textual fea-
tures, each TED talk dj can be represented as a feature vec-
tor dj = (w1j , w2j , . . . , wij , . . .), where each position i cor-
responds to a word of the vocabulary, extracted from the tex-
tual attributes, including e.g. the title, speaker name, descrip-
tion, or transcript. The weights wij can be computed using var-
ious models, e.g. Boolean or TF-IDF coefficients. The talks’
feature vectors can then be linked by defining a similarity mea-
sure, e.g. cosine similarity. We also investigated more sophis-
ticated approaches, namely semantic vector spaces using LSI,
LDA, Random Projections [29] and Explicit Semantic Analysis
(ESA) [30].

4.2. Experiments: features and scores

Using cross-validation, we ranked the features (including meta-
data and audio-based ones) with respect to relevance to the
personalized recommendation task with CB models. We used
ground truth feature values from TED for oracle performance.
Figure 1 displays the ranking of features and their combinations
(see caption for acronyms), ordered by their overall relevance
across several content-based models, i.e. indicating which fea-
tures perform well over all methods. Alternatively, the optimal
features found specifically for each method are listed in Table 2.

The results show that the human-made description of talks
(DE), the title (TI), and their combinations with other features
(TIDE, TIDE.RTT, and TIDE.TESP.RTT) are the most useful fea-
tures for CB personalized recommendations. Knowledge of the
speaker (SP) is useful too. The lowest performing features were
the name of the TED event (TE) and the related themes assigned
by TED experts (RTH), which presumably lack specificity. The

4https://www.idiap.ch/dataset/ted

Figure 1: Ranking of features based on the decreasing aver-
age of f-measure (F@5) over all content-based recommenda-
tion methods. The atomic features are: title (TI), description
(DE), related tags (RTA), related themes (RTH), transcript (TRA),
speaker (SP) and TED event (TE). The combined features com-
posed by two atomic ones are: related tags and themes (RTT), ti-
tle and description (TIDE), TED event and speaker (TESP). The
remaining features are combinations of the previously defined
features separated by ‘.’ symbol.

transcript (TRA) is ranked lower than average, potentially due
to the noise introduced by its large vocabulary.

In terms of the best scores, all the semantic-based CB meth-
ods except LDA outperform significantly the TF-IDF baseline
(t-statistic, p < 0.05): 11% improvement for LSI, 7.6% for RP
and up to 64% by ESA (best method). The scores obtained ap-
pear to be low, however they are in line with previous works on
top-N recommendation task (e.g. [28, 31]).

We then compared recommendation methods in a setting
where users’ ratings were available and hence CF methods
could be used. The CF methods outperformed the CB ones,
and a combined method using a neighborhood model, user/item
biases and TF-IDF similarity achieved reasonable performance
compared to pure CF by utilizing only the popularity bias.

The content of the TED talks as described by the meta-
data is important for personalized recommendations as was
demonstrated in two different settings. Another promising type
of information are user-generated comments or reviews as we
discuss in [32]. TED data contains valuable ground-truth to
evaluate quantitatively multimedia recommendations (generic
and personalized) and, given that they have the same structure
with hyper-events, the methods are also applicable to the in-
Event project. In the future, we will work on improving hybrid
recommender systems, especially by exploiting the rich multi-
modal content of the TED dataset. More advanced learning

Method Optimal Features Performance (%)
P@5 R@5 F@5

LDA Title, desc., TED event, 1.63 1.96 1.78
speaker (TIDE.TESP)

TF-IDF Title (TI) 1.70 2.00 1.83
RP Description (DE) 1.83 2.25 2.01
LSI Title (TI) 1.86 2.27 2.04
ESA Title, description (TIDE) 2.79 3.46 3.08

Table 2: Optimal features for content-based methods found us-
ing 5-fold cross-validation on the training set. Scores in bold
are significantly higher than TF-IDF ones (t-test, p < 0.05).
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models such as matrix factorization could improve the fusion
of CB and CF information. We will also assess the variation of
performance when automatic processing is used for extracting
all features: e.g. ASR, speaker detection, or summarization.

5. Portal
The results of analyzing, indexing and linking hyper-events are
only relevant to end-users when they are presented in an online
portal offering efficient access to the event recordings.

While researchers are aware of some of the requirements
of such a portal, we have also conducted, within inEvent, a
survey with about 40 participants selected from relevant profes-
sional categories (e.g., conference organizers). The results shed
light on the importance of having an online portal for manag-
ing, sharing, and replaying recorded events. The inEvent portal
should enable contextual user interactions; provide easy means
to navigate within and across hyper-events; and offer search and
recommendation services to help users find their needle in a
haystack. While the inEvent portal is currently under develop-
ment, its main intended features are discussed hereafter.

5.1. Visibility and impact of hyper-events

A common goal for conference and meeting organizers is to
have their multimedia content ubiquitously accessible in high
quality, so as to have a high impact on the community and max-
imize their return on investment. Thus, it is important to en-
sure widespread and persistent access to event recordings, so
that previous participants peruse the repository, and new ones
join at any time. For maximal visibility, hyper-events should be
uniquely addressable, crawlable by search engines, and acces-
sible to third-party services for interaction, event dissemination
and advertisement. Statistical graphs showing how the number
of views per hyper-event evolves over time (with peak dates)
serve as important impact measures.

While some public events aim at reaching the widest audi-
ence possible, some others such as internal enterprise meetings
should have limited access. In these cases, we should ensure
that hyper-events with restricted access can still be accessible
by local search engine, though not available on the Web.

The role of social media features in spreading information
and turning users from passive consumers to interactive content
producers is crucial. Features such as commenting, sharing, rat-
ing, embedding videos, and tagging aim at engaging the user
community and enriching hyper-events with contextual interac-
tions. This is invaluable in increasing the accuracy of linking
and recommendation using collaborative filtering approaches.

5.2. Efficient search and navigation

An important challenge to the inEvent portal is to offer a user-
friendly and efficient way to navigate across hyper-events and
within a single event in order to find segments of interest. Here,
features extracted from hyper-events, along with metadata and
various similarity links are crucial. Visual graphs where hyper-
events are taken as nodes and the various links between them
as edges are currently being explored for efficient navigation
across recommended hyper-events. For instance, when a user
brings a specific hyper-event in focus, it is displayed at the cen-
ter of the graph along with its segments. Other related events
and event segments are displayed around the central event help-
ing end-users discover other potentially interesting events and
watch them with a single click. Zoomed word clouds and/or
slides appear when a user hovers the mouse over a specific

Figure 2: Visual interface for navigating hyper-events.

event, giving the user an overview of event content and help-
ing him/her decide what to watch. (See Figure 2.)

With respect to navigating and searching within a single
hyper-event, as several state-of-the-art lecture browsers do, the
inEvent portal will respond to search requests with rich con-
tent, e.g. by highlighting the requested keywords in the tran-
script, slides, and media segments. Additional visual cues will
emphasize the participants who uttered the keywords.

Finally, ensuring a satisfactory user experience requires a
cross-browser and cross-platform multimodal player, which can
render videos in different quality formats based on the available
bandwidth and the target device. In the case where a hyper-
event contains more than one video (e.g. the speaker and the
projection screen), synchronized display should be provided.

6. Conclusions
A system for indexing multimedia lecture and meeting record-
ings was proposed that exploits the notion of “hyper-events” as
a means to represent the multi-faceted structure of events ac-
companied by rich multimedia recordings and related metadata.
The resulting model can integrate audio and video features, as
well as social features to perform search along different axes,
as well as providing generic or personalized recommendations
based on the similarity of hyper-events, including their viewing
profiles. The core of the model is an indexing mechanism based
on automatically extracted audio features5 such as speech-to-
text outputs, together with speaker diarization and linking la-
bels, that allows searching and recommendation within a new
type of multimedia archive. The resulting system has been eval-
uated on several datasets – from TED, Klewel, and the AMI
corpus – providing a promising proof of concept for the in-
Event approach.
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“Overview of the IWSLT 2012 evaluation campaign,” in Proc.
International Workshop on Spoken Language Translation, Hong
Kong, Dec. 2012.

[9] E. Hasler, P. Bell, A. Ghoshal, B. Haddow, P. Koehn, F. McInnes,
S. Renals, and P. Swietojanski, “The UEDIN systems for the
IWSLT 2012 evaluation,” in Proc. International Workshop on
Spoken Language Translation, Hong Kong, Dec. 2012.

[10] P. Bell, P. Swietojanski, and S. Renals, “Multi-level adaptive net-
works in tandem and hybrid ASR systems,” in Proc. ICASSP, Van-
couver, Canada, May 2013.

[11] P. Bell, M. Gales, P. Lanchantin, X. Liu, Y. Long, S. Renals,
P. Swietojanski, and P. Woodland, “Transcription of multi-genre
media archives using out-of-domain data,” in Proc. IEEE Work-
shop on Spoken Language Technology, Miama, Florida, USA,
Dec. 2012.

[12] A. Stan, P. Bell, and S. King, “A grapheme-based method for auto-
matic alignment of speech and text data,” in Proc. IEEE Workshop
on Spoken Language Technology, Miama, Florida, USA, Dec.
2012.

[13] M. Gales, “Maximum likelihood linear transforms for HMM-
based speech recognition,” Computer Speech and Language,
vol. 12, no. 75-98, 1998.

[14] T. Hain, L. Burget, J. Dines, P. Garner, F. Grezl, A. Hannani,
M. Huijbregts, M. Karafiat, M. Lincoln, and V. Wan, “Transcrib-
ing meetings with the AMIDA systems,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 20, no. 2, pp. 486–
498, 2012.

[15] H. Yamamoto, Y. Wu, C. Huang, X. Lu, P. Dixon, S. Matsuda,
C. Hori, and H. Kashioka, “The NICT ASR system for IWSLT
2012,” in Proc. International Workshop on Spoken Language
Translation, Hong Kong, Dec. 2012.

[16] P. Bell, H. Yamamoto, P. Swietojanski, Y. Wu, F. McInnes,
C. Hori, and S. Renals, “A lecture transcription system combin-
ing neural network acoustic and language models,” in Proc. Inter-
speech, Lyon, France, Aug. 2013.

[17] I. Bulyko, M. Ostendorf, M. Siu, T. Ng, A. Stolcke, and O. Cetin,
“Web resources for language modeling in conversational speech
recognition,” ACM Transactions on Speech and Language Pro-
cessing, vol. 5, 2007.

[18] H. Yamazaki, K. Iwano, K. Shinoda, S. Furui, and H. Yokota,
“Dynamic language model adaptation using presentation slides
for lecture speech recognition,” in Interspeech, 2007, pp. 2349–
2352.

[19] P. Maergner, A. Waibel, and I. Lane, “Unsupervised vocabulary
selection for real-time speech recognition of lectures,” in Proc.
ICASSP, 2012, pp. 4417–4420.

[20] M. Ferras and H. Bourlard, “Speaker Diarization and Linking of
Large Corpora,” in IEEE Spoken Language Technology Workshop,
2012.

[21] D. Vijayasenan, F. Valente, and H. Bourlard, “Information The-
oretic Approach to Speaker Diarization of Meeting Data,” IEEE
Trans. on Audio, Speech and Language Processing, vol. 17, no. 7,
pp. 1382–1393, 2009.

[22] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice model-
ing with sparse training data,” IEEE Trans. on Speech and Audio
Processing, vol. 13, no. 3, pp. 345–354, 2005.

[23] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A
study of inter-speaker variability in speaker verification,” IEEE
Trans. on Audio, Speech and Language Processing, vol. 15, no. 4,
pp. 1435–1447, 2008.

[24] J. H. Ward, “Hierarchical Grouping to Optimize an Objective
Function,” American Statistical Association, vol. 58, no. 301, pp.
236–244, 1963.

[25] G. N. Lance and W. T. Williams, “A General Theory of Classi-
ficatory Sorting Strategies. 1. Hierarchical Systems,” Computer
Journal, vol. 9, pp. 373–380, 1967.

[26] N. Pappas and A. Popescu-Belis, “Combining content with user
preferences for TED lecture recommendation,” in 11th Int. Work-
shop on Content Based Multimedia Indexing, Veszprém, Hungary,
2013.

[27] G. Shani and A. Gunawardana, “Evaluating recommendation sys-
tems,” in Recommender Systems Handbook, F. Ricci, L. Rokach,
B. Shapira, and P. B. Kantor, Eds. Springer, 2011.

[28] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recom-
mender algorithms on top-n recommendation tasks,” in Proceed-
ings of the fourth ACM conference on Recommender Systems, ser.
RecSys ’10, Barcelona, Spain, 2010.

[29] E. Bingham and H. Mannila, “Random projection in dimension-
ality reduction: Applications to image and text data,” in in Knowl-
edge Discovery and Data Mining. ACM Press, 2001, pp. 245–
250.

[30] E. Gabrilovich and S. Markovitch, “Computing semantic related-
ness using Wikipedia-based explicit semantic analysis,” in Pro-
ceedings of the 20th International Joint Conference on Artificial
Intelligence, ser. IJCAI’07, Hyderabad, India, 2007.

[31] R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, and
Q. Yang, “One-class collaborative filtering,” in 8th Int. Conf. on
Data Mining, Pisa, Italy, 2008, pp. 502–511.

[32] N. Pappas and A. Popescu-Belis, “Sentiment analysis of user
comments for one-class collaborative filtering over TED talks,”
in Proceedings of the 36th ACM SIGIR Conference on Research
and Development in Information Retrieval, Short Papers, Dublin,
Ireland, 2013.

8

Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013.



Audio Concept Ranking for Video Event Detection on User-Generated Content

Benjamin Elizalde1, Mirco Ravanelli2, Gerald Friedland1

1International Computer Science Institute, 1947 Center Street,
Berkeley, CA 94704, USA

2Fondazione Bruno Kessler, via Sommarive 18, 38123 Trento, Italy

benmael@icsi.berkeley.edu, mravanelli@fbk.eu, fractor@icsi.berkeley.edu

Abstract
Video event detection on user-generated content (UGC)

aims to find videos that show an observable event such as a wed-
ding ceremony or birthday party rather than an object, such as
a wedding dress, or an audio concept, such as music, speech or
clapping. Different events are better described by different con-
cepts. Therefore, proper audio concept classification enhances
the search for acoustic cues in this challenge. However, audio
concepts for training are typically chosen and annotated by hu-
mans and are not necessarily relevant to a specific event or the
distinguishing factor for a particular event. A typical ad-hoc
annotation process ignores the complex characteristics of UGC
audio, such as concept ambiguities, overlap, and duration. This
paper presents a methodology to rank audio concepts based on
relevance to the events and contribution to the ability to dis-
criminate. A ranking measure guides an automatic selection of
concepts in order to improve audio concept classification with
the goal to improve video event detection. The ranking aids to
determine and select the most relevant concepts for each event,
to discard meaningless concepts, and to combine ambiguous
sounds to enhance a concept, thereby suggesting a focus for an-
notation and a better understanding of the UGC audio. Experi-
ments show an improvement of the audio concepts mean classi-
fication accuracy per frame as well as a better-defined diagonal
in the confusion matrix and a higher relevance score. In terms
of accuracy, the selection of top 40 audio concepts using our
methodology outperforms the highest-accuracy-based selection
by a relative 17.56% and a frame-frequency-based selection by
5.74%. In terms of relevance to the events, the ranking-based
selection provided the highest score.
Index Terms: event detection, audio concept, user generated
content, acoustic video processing.

1. Introduction
Video event detection aims to identify videos with a semanti-
cally defined event, such as a marriage proposal. This task is im-
plicitly multimodal because events are characterized by audio-
visual cues. Multimedia detection has been explored by com-
puter vision using different features and techniques. However,
audio has been under-explored, and state-of-the-art audio-based
techniques do not yet provide significant assistance to its video
counterpart. Audio, however, can sometimes be more descrip-
tive than video, especially when it comes to the descriptiveness
of an event. For instance, the audio cue can quickly allow one
to determine whether or not a marriage proposal was success-
ful. Thus, there is great importance in exploring techniques to
improve the use of audio for video event detection.

There have been several approaches to audio-based video
event detection for UGC data. Approaches in general employ
only low-level features [1] [2]. However, there are also higher-
level approaches that employ audio concepts for video event
detection, motivated by the idea that different events are better
described by different concepts. There are techniques that au-
tomatically derive audio concepts. An example is a system [3]
which extracts audio units automatically with a diarization sys-
tem to create an audio concept vocabulary. A similar example
is a system in [4] that defines an automatic audio concept vo-
cabulary with a Random Forest (RF) algorithm. However, these
abstract representations may or may not map to a specific hu-
manly understandable sound, such as clapping or the buzzing of
a power tool. An example of an approach with annotated audio
concepts for video event detection is [5] [6]. Whether these con-
cepts are abstract or not, they define an acoustic fingerprint that
distinguishes an event from their cohorts. The relation of con-
cepts and events can be exemplified with a language analogy as
stated in [3] where concepts can be seen as words and events as
ideas. The paper shows that events are defined by different dis-
tributions of concepts. Therefore, improving the classification
performance of concepts enhances the detection performance
of events. Following this research line, the paper [7] aims to
improve audio concept classification on UGC.

Nowadays UGC videos can provide massive amounts of
training data, because the videos are widely available. Ad-hoc
annotations of audio concepts for video event detection on UGC
videos present three main issues. One is to ignore the intrinsic
characteristics of UGC, where a concept could be in the pres-
ence of background noise, be overlapped with one or more con-
cepts, have a short duration, be unintelligible for the annotator
and have acoustic ambiguities with other concepts. The second
is that audio concepts for training are typically chosen and an-
notated by humans and are not necessarily relevant to a specific
event or the distinguishing factor for a particular event. The last
issue lies in the performance of the audio concept classification
by the technology employed. Adding audio concept annotations
alone do not help as much as in other tasks such as speech detec-
tion, where in general the more annotated speech the better the
detection performance. Take for instance a set of audio concepts
that can be classified with high accuracies; if the concepts are
not relevant to the events, they will be of little help to discrimi-
nate between events. On the other hand, let’s assume we have a
relevant and unique set of an event’s audio concepts, which are
not classified with reliable accuracies, then the concepts would
be of little help to show evidence of the event detection. There-
fore, the need to define a selection procedure that addresses the
issues is presented in order to maximize the usage of current au-
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Table 1: There are audio concepts annotations of at least 10
videos from each event.

Code Event
E001 Attempting a board trick
E002 Feeding an animal
E003 Landing a fish
E004 Wedding ceremony
E005 Working on a woodworking project
E006 Birthday party
E007 Changing a vehicle tire
E008 Flashmob gathering
E009 Getting a vehicle unstuck
E010 Grooming an animal
E011 Making a sandwich
E012 Parade
E013 Parkour
E014 Repairing an appliance
E015 Working on a sewing project

dio concept annotations and understand the UGC audio better.

This paper presents a methodology to rank audio concepts
based on relevance to the events and contribution to the ability
to discriminate. The ranking guides an automatic or user-based
selection of concepts in order to improve audio concept classifi-
cation for video event detection. The ranking aids to determine
and select the most relevant concepts for each event, discard
meaningless concepts, combine ambiguous sounds to enhance
a concept, thereby suggesting a focus for annotations. The pa-
per also provides an analysis on the UGC audio concept anno-
tations.

The content of the paper is structured as follows. Sec-
tion 2 presents the UGC video and the audio concept annota-
tions for the experiments. Section 3 details the ranking method-
ology. Section 4 describes the audio concept classification sys-
tem and the experiments. Section 5 continues with the results
and expands the understanding of the UGC audio characteris-
tics. Lastly, Section 6 states the conclusion and future work.

2. UGC Video and Annotations Sets
The video set used for the audio concept annotations is the NIST
TRECVID MED 2012, which contains UGC videos. The 2012
corpus consists of 150,000 videos of about three minutes each.
The audio from the videos contains environmental acoustics,
overlapped sounds, and unintelligible audio among other char-
acteristics. The annotations are based on the Event Kits subset.
Table 1 contains a summary of the events.

The annotation set from SRI-Sarnoff consists of manually
labeled sounds of 291 videos. The videos belong to the 15
events of the MED 2012 Event Kits dataset for a total of 11.6
hours. In total there are 28 audio concepts shown in Table 2,
which attempt to describe distinctively the events.

The annotation set from CMU [8] consists of manually la-
beled environmental acoustics of 216 videos taken from MED
2012, totaling 5.6 hours There are at least 10 annotated videos
for each of the 15 events from MED 2012. The result is a set
of 42 audio concepts shown in Table 3. The main goal of the
annotations was to create labels for audio segments that exist
solely in the audio domain.

Table 2: List of 28 audio concepts annotated by SRI-Sarnoff in
alphabetical order.

1 audio of wedding vows 15 instructional speech
2 bagpipes 16 landing after a jump
3 blowing out candles 17 laughing

on a cake
4 board hitting surface 18 marching band
5 cheering 19 metallic

clanking noises
6 childrens voices 20 music
7 clapping 21 noise of passing cars
8 clinking 22 power tool whine
9 conversational speech 23 rolling
10 crowd noise 24 sewing machine

sound
11 dancing singing 25 singing

in unison in a group
12 drums 26 someone

giving a speech
13 group dancing 27 word how spoken
14 group walking 28 word tire spoken

3. Ranking Methodology
The ranking methodology is an iterative process that is divided
in four steps. The first step is to calculate the relevance of the
audio concepts based on how rare or common the concepts are
to a specific event and to the rest of the events. The second step
is to run our Audio Concept Classification system and measure
the classification performance for each concept. The third step
is to calculate the ranking of the audio concepts by considering
the results from step one and two for each concept. Finally the
fourth step consists of deciding whether a concept should be
merged with another or discarded. The process iterates until the
desired final quantity of concepts is reached.

3.1. Step 1: Compute relevance

The relevance of a concept to an event is expressed by the well
known algorithm of Term Frequency - Inverse Document Fre-
quency (TF-IDF) [9]. The raw frequency is the number of times
a termt occurs in a specific document d. To prevent a bias
with unbalanced documents, the raw frequency is divided by
the maximum raw frequency of any term in the document. The
TF is defined by the equation 1.

TF (t, d) =
f(t, d)

max{f(w, d) : w ∈ d} (1)

The IDF tells you whether a word is common or rare across
the documents. It is the result of taking the logarithm from the
division of the total number of documents by the number of
documents containing the term. If the term is not in the corpus,
the division will be zero, thus we add 1. The IDF can be defined
by the equation 2.

IDF (c,D) = log
|D|

1 + |{d ∈ D : c ∈ D}| (2)

A high TF-IDF score is reached by a high term frequency
in the given document and a low document frequency of the
term in the whole collection of documents; the scores therefore
tend to filter out common terms. In our methodology a term
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Table 3: List of 42 audio concepts annotated by CMU in alpha-
betical order.

1 anim bird 15 engine light 29 rustle
2 anim cat 16 engine quiet 30 scratch
3 anim goat 17 hammer 31 scream
4 anim horse 18 human noise 32 singing
5 applause 19 knock 33 speech
6 bang 20 laugh 34 speech

not english
7 beep 21 micro blow 35 squeak
8 cheer 22 mumble 36 thud
9 child 23 music-sing 37 tone
10 clap 24 music 38 washboard
11 clatter 25 phone 39 water
12 click 26 power tool 40 whistle
13 crowd 27 processed 41 white

noise
14 engine 28 radio 42 wind

heavy

corresponds to a frame from an audio concept and a video event
category corresponds to a document.

3.2. Step 2: Measure performance

The classification performance (CP) of the technology em-
ployed should be considered to let the system decide which con-
cepts are more meaningful and distinguishable, along with the
limitations of using a determined audio concepts set. In this pa-
per a raw classification accuracy per frame metric is included in
the ranking equation 3, but it could be substituted by any other
metric that evaluates the concept CP. In this step the confusion
matrix for the list of concepts is also computed in order to deter-
mine the confusability of each concept in respect to the others.

3.3. Step 3: Compute ranking

The ranking represents the relevance and classification perfor-
mance for each audio concept. A higher Rank score means more
relevance to the events and it can be represented by equation 3.
The ranking is a single score for each audio concept that con-
sists of multiplying the TF, times the IDF, times the CP across
the events.

Rank(c,D) = (TF (c, d) · IDF (c,D) · CP (c)) (3)

3.4. Step 4: Merge or discard

Once the ranking scores are computed for each audio concept
comes the decision as to whether to merge or discard the low-
est ranked concept. The lowest ranked concept C-low would
be merged with the corresponding most confusable concept C-
conf according to the confusion matrix. The cohort concepts are
merged because C-low has low relevance and is not discriminat-
ing and distinguishable enough. The concept with higher rele-
vance and accuracy that absorbed C-low will provide the name
to the new resulting concept C-merged and will keep its corre-
sponding annotation data. The audio classification system is run
again and if the classification accuracy of C-merged increases,
then it remains as it is. The ranking process continues the next
iteration removing C-low from the list, but keeping its annota-
tion data. In case the accuracy of the C-merged did not increase,

then C-low is not merged and instead is discarded from the list
along with its annotation data. Once again the process contin-
ues with its next iteration until the desired number of concepts
is reached.

4. Experimental Setup
This section describes the classification system and details the
most relevant experiments.

4.1. Audio Concept Classification System

The audio concept classification system is based on a Neural
Network approach because it has demonstrated high perfor-
mance on a similar task where it discriminates well between
different sounds called phonemes [10] [11]. The system em-
ploys the Parallel Neural Network Trainer TNet [12] technol-
ogy from Brno University of Technology. The Neural Net-
work (NN) architecture is basic and is the first step to move on
to Deep Learning, it consists of two hidden layers with 1,000
neurons each and sigmoid activation functions. The extracted
acoustic features are the typical Mel-Frequency Cepstral Coef-
ficients (MFCCs) C0-C12, with energy included, for a total of
13 dimensions. Each feature frame is computed using a 25 ms
hamming window, with 10 ms frame shifts. The neural net-
work was fed, after a mean and variance normalization step, by
the specified features using a context window of nine consec-
utive frames. The output layer, whose softmax-based neurons
dimensionality is equal to the number of audio concepts to clas-
sify. More specifically, for the training phase a stochastic gra-
dient descent optimizing cross-entropy loss function was used.
The learning rate was updated by the “newbob” algorithm: It
is kept fixed at LR=0.002 as long as the single epoch incre-
ment in cross-validation frame accuracy is higher than 0.5%.
For the subsequent epochs, the learning rate is being halved un-
til the cross-validation increment of the accuracy is inferior to
the stopping threshold 0.1%. The NN weights and biases are
randomly initialized and updates were performed per blocks of
1024 frames.

4.2. Experiments

The objective of the experiments consists in selecting the top
40 audio concepts that provide the best trade-off between clas-
sification performance and relevance to the events. The reason
for choosing 40 is that out of the 70, this is the largest number
of concepts that our system was able to classify with more than
one percent of accuracy. The first experiment consists of using
a concept set from a selection based on highest-accuracy. The
70 concepts are fed into the audio concept classification system
and then sorted to select the top 40 with highest classification
accuracy. The reason for this selection is because intuitively it
will lead to a high overall concepts accuracy. The second exper-
iment uses a set based on a high frame-frequency selection. The
70 concepts annotations are analyzed and then the concepts are
sorted based on the quantity of frames. The selection is moti-
vated because concepts with more frames will most likely have
longer durations or be more common, which makes them easier
for the system to classify them, and more important they will
have more training data available. Lastly the third experiment
employs a selection based on the ranking presented in this pa-
per.

The annotations add up to 17.2 hours and are separated into
training and test. The training set contains 90% of the anno-
tations for a total of 15.48 hours. The test set consists on the
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Figure 1: The confusion matrix based on the top 40 highest-
accuracy set, shows dark regions in the center of the diagonal.

other 10% for a total of 1.72 hours. The classification accu-
racy per frame is evaluated by comparing the label from the
frame’s highest posterior against its corresponding label from
the ground truth.

In order to provide a baseline for the three experiments
against using the total number of concepts, the audio concept
classification system is trained with the 70 concepts. The over-
all mean classification accuracy per frame is 11.5 % with a ran-
dom guess of 1.42%.

5. Results and Analysis
This section presents the results from the experiments and ex-
pands the understanding of the UGC audio characteristics de-
rived from our experiments and an analysis of both concept an-
notation sets.

5.1. Results

The classification performance of the three experiments is
shown in the second column of Table 4. The first experiment
with a highest-accuracy-based selection has an overall mean ac-
curacy per frame of 20.38%, while the second experiment with
a frame-frequency-based selection has 18.33%. The third ex-
periment using the ranking-based set shows 21.55%. The se-
lection of the top 40 audio concepts using our methodology
outperforms the highest-accuracy-based selection by a relative
17.56% and the frame-frequency-based by a relative 5.74%.

The level of relevance to the events of the three sets of au-
dio concepts is shown in the third column of Table 4. The score
for each set is the normalized log TF-IDF, which consisted of
three steps: First, the TF-IDF scores for the 40 concepts are
computed as in steps one and two from Section 3. Second, the
log of the TF-IDF score is computed. Finally, on the third step,
a normalization is applied to the three scores, where the high-
est possible value of the three sets equals to one, and the other
two are proportional. The lower the value, the lower the overall
relevance of the set to the 15 events. The log and the normaliza-
tion steps are meant to provide a more human understandable
comparison. The ranking-based selection provided the highest
relevance score for the 15 events, with an improvement of 17%
in respect to the highest-accuracy set and 10% in respect to the

Figure 2: The confusion matrix based on the top 40 frame-
frequency set, shows dark regions on the up-left part of the di-
agonal.

frame-frequency set.
The confusion matrix is a table that allows the visualization

of the accuracy performance of the system, in other words, it
shows the confusability of each concept in respect to the oth-
ers. Each column of the matrix represents the instances of the
predicted concept, while each row represents the instances of
the actual concept. A better defined diagonal means less ambi-
guities and higher accuracy, hence a more distinguishable and
distinctive set of concepts.

The confusion matrix of the highest-accuracy set experi-
ment is shown in Figure 1, the frame-frequency-based matrix is
in Figure 2 and the one from the ranking-based set is in Figure 3.

In terms of usage of the annotated data, the 70 audio con-
cepts comprehend about 683 minutes. The frame-frequency-
based selection used 664 minutes, while the highest-accuracy
selection uses 577 minutes and the ranking-based used 668 min-
utes. Our approach uses slightly more minutes or frames than
the highest-accuracy set, which means that most of the informa-
tion of the annotations is been used.

The results confirm that our methodology provided the best
overall classification accuracy, the least concepts confusability
and the best relevance of the audio concepts to the 15 events.

5.2. Analysis of the audio concepts

This section intends to aid the understanding of the UGC au-
dio. The following includes an analysis of the annotation sets
regarding concept overlap and duration. In addition, there is an
analysis of the concepts merging and discarding step from our
methodology to explain concept ambiguity.

The video events are described by a set of different sounds
that occur throughout the recording therefore making it possible
that one or more concepts occur at the same time, resulting in
an overlap. The annotations has 38% of audio overlapping with
one or more concept. The most common types of overlap are
music and other audio concepts except speech 35% of the time,
speech and other concepts except music 13% and speech and
music 4%. The rest of the overlap types complete the total with
48%. The situation of having three or more annotated overlaps
is rare and it accounts for less than 3% of the audio. It is impor-
tant to mention that there could be other concepts that overlap
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Figure 3: The confusion matrix based on the top 40 ranked set,
shows a better defined diagonal than the other two sets.

Table 4: The ranking-based selection shows the best overall
mean accuracy and the highest relevance for the top 40 audio
concepts.

Selection Mean TF-IDF
based on accuracy score
Highest-accuracy 20.38 % 0.83
Frame-frequency 18.33 % 0.90
Ranking 21.55 % 1

and are not annotated.
The nature of the concepts in the events and their duration

is diverse. The annotations show that the average duration of
the trials or segments is about one second. For speech trials,
38% lasts less or equal than one second and 30% lasts less or
equal than two seconds, but more than one second. Examples
of audio concepts with long duration are music with trials of
up to 380 seconds or crowd noise of up to 260 seconds. Ex-
amples of short duration concepts are beep with trials as short
as 0.8 seconds or clinking as short as 0.5 seconds. In [8] indi-
cated that for the CMU annotations, shorter trial durations have
lower accuracies, and longer duration trials have better accura-
cies, which was confirmed in this research with the inclusion of
the SRI-Sarnoff annotations. For example, music was detected
with about 90% accuracy and crowd noise with 40%, while beep
and clinking resulted in less than 2% accuracy.

Discarding concepts alone intuitively suggests an improve-
ment in accuracy. Depending on the selection process, different
audio concepts will be discarded, thus affecting the overall clas-
sification in different ways. Our iterative procedure does not
discard concepts for the sake of them, instead it could merge
audio concepts, resulting in a more analytical usage of the an-
notated audio. Experiments one and two discarded the lowest
30 concepts according to their selection type. The iterative pro-
cedure from the third experiment had 30 iterations, discarded 16
concepts and merged 14. Examples of concepts discarded are:
blowing out candles on a cake (SRI), clinking (SRI), dancing
singing in unison in a group (SRI).

Both of the annotation sets have unique characteristics, fo-
cus and annotators. Hence, even though some of the concepts
have the same or similar logical name there is no reason to as-

sume that they should be considered as the same concept. In our
methodology, merging redundant concepts from different anno-
tation sets could sometimes make sense to the user such as cheer
(CMU) and cheering (SRI) or laugh (CMU) and laughing (SRI).
Nevertheless, there are other situations where is not as logical
to merge sounds. Audio concepts sometimes overlap and one
of them may have more “prominent” acoustic characteristics
than others such as volume, pitch, duration, etc. Take for in-
stance, the concepts group dancing (SRI) and music (SRI). The
first concept is overwhelmed by music (sometimes added by
the user), which has higher prominence, thus significantly de-
creasing the classification accuracy of the concept. The overlap
information can be extracted from the annotations, but not the
prominence level of the concepts involved. More complicated
is when merged sounds do not have a logical semantic relation,
but they could make sense from the audio concept classification
system perspective. Examples are squeak (CMU) and white
noise, which are broadband sounds, or thud (CMU) and click
(CMU), which are impulsive sounds, or animal cat (CMU) and
scream (CMU), which have similar pitch. As part of the evo-
lution of our work we would like to include user-intervention
as prior information to figure out its impact on the results of the
merging process. We understand that technology and events can
change and whenever this happens the iterative ranking process
could be re-applied using the original set of annotations.

6. Conclusions
The research shows that the ranking methodology aids the se-
lection of audio concepts with the best trade-off between rele-
vance to the event and classification accuracy. The methodol-
ogy discards less relevant and less accurately detected concepts
and merges ambiguous sounds to enhance a concept. More im-
portant is that the ranking serves to maximize the usage of cur-
rent sound concepts annotations. The improvement in classifi-
cation accuracy improves the classification of concepts which
provide a more reliable evidence for video event detection.
The selection of top 40 audio concepts using our methodol-
ogy outperforms a highest-accuracy-based selection by a rel-
ative 17.56% and a frame-frequency-based selection by 5.74%.
In terms of relevance to the events, the rank-based selection
provided the highest relevance score, with 17% more than the
highest-accuracy-based selection and 10% more than the frame-
frequency-based selection. Furthermore, the ranking suggests
the audio concepts that can be enhance by more annotations
and the concepts that are less relevant to the technology. Fu-
ture work involves using the classification posteriors output for
video event detection. The output may be used for audio seg-
mentation or as a semantic feature, both options can feed a video
event detection system.
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Abstract
The amount of multimedia content is increasing day by day, and
there is a need to have automatic retrieval systems with high ac-
curacy. In addition, there is a demand for event detectors that
go beyond the simple finding of objects but rather detect more
abstract concepts, such as “woodworking” or a “board trick.”
This article presents a novelty approach for event classifica-
tion that enables searching by audio concepts from the analy-
sis of the audio track. This approach deals with the acoustic
concepts recognition (ACR) creating a trained segmentation in-
stead a fixed segmentation as segmental-GMM approach with
broad concepts. Proposed approach has been evaluated on NIST
2011 TRECVID MED development set, which consists of user-
generated videos from the Internet, and has shown a EER of
40%.
Index Terms: Multimedia event detection(MED), acoustic con-
cept recognition, segmental-GMM

1. Introduction
In recent years, there has been a growing demand for high-
accuracy multimedia retrieval systems due to the popularity of
the video-sharing websites. For a multimedia retrieval task,
video features can determine the general content of a video.
However, the audio track of the video can also be critical. Con-
sider the case of a tennis match video where a special event, like
a new point, may occur. Audio analysis provide a complemen-
tary information to detect this specific event (detecting applause
or cheering) that would be significantly more difficult to de-
tect with image/video analysis. The Text Retrieval Conferences
Video Retrieval Evaluation (TRECVID) addresses the problem
of Multimedia Event Detection (MED) requiring a system that
can search user-submitted quality videos for specific events [1].

Different applications for acoustic processing on multime-
dia videos have recently been described in the literature. These
applications have been used as acoustic concept detectors in dif-
ferent scenarios. In [2] and [3], authors developed an SVM-
based system and an HMM-based system, respectively, to clas-
sify different acoustic sounds (e.g., steps, door slams, or paper
noise) in the meeting room environment. Both approaches use
the CHIL-2007 database in which the acoustic concepts are iso-
lated and recorded in a controlled environment [4].In the mul-
timedia content analysis domain, most of the studies are con-
centrated on finding small events or objects rather than entire
concepts. Very good summaries are provided by [5] and [6].
However, spoken concepts approaches are commonly used to
detect multimedia events like [7] and [8].

Audio concept extraction approaches explored under dif-
ferent multimedia retrieval and content analysis projects can
be grouped into two categories: (1) unsupervised and (2) su-
pervised approaches from the perspective of modeling acous-

tic concepts. In the first group, one popular unsupervised ap-
proach is the Bag-of-Audio-Words (BoAW) method. In this ap-
proach, all frame-level features are clustered via vector quanti-
zation (VQ), and then VQ indices are used as features within a
classifier to model audio content ([9, 10]). Other unsupervised
approaches are focused on segmenting the audio track, and clus-
tering the segments to form atomic sound units and then word-
like units [11, 12], or modeling the segments with i-vectors [13]
or GMM super-vectors [14] which are methods borrowed from
speaker identification. In the second group of approaches, audio
concept/event models are trained using annotated data [15, 16].
For example, in [15], fixed-duration segments are represented
with segmental-GMM vectors where each element in the vector
is a GMM score calculated from a pretrained GMM that corre-
sponds to an annotated concept label. In [16], authors model
acoustic concepts by training SVMs on 10sec audio segments
which are annotated with generic concept labels (e.g., indoor
vs. outdoor), and they use detected acoustic concept labels as
features for multimedia event detection task. Some systems em-
ploy a combination of different approaches like in [17] where
authors combine automatic speech recognition with broad-class
acoustic concepts. Although the first group of approaches has
the advantage of not requiring labeled acoustic event/concept
data, these approaches do not present semantic labels to allow
semantic searches. This is an important aspect for tasks such
as multimedia event detection when the number of examples
for multimedia event types becomes quite small. Therefore su-
pervised acoustic concept detectors will be useful to tackle this
problem.

This paper presents a specific study with two approaches
to model five broad acoustic concepts as a MED features:
segmental-GMM vectors [15] as a baseline, and a set of fea-
tures based on Acoustic Concepts Recognition with HMMs.
The broad acoustic concepts were chosen to describe sounds
of different nature (people sounds, machine noises ...) and be
able to model general concepts to provide a tool for retrieval in-
formation with no prior knowledge of specific acoustic events.
The first part of this paper shows the classification accuracy
over the isolated broad concepts. Secondly, an experiment with
two extra concepts (music and speech) indicates the difficulty
to provide the segmentation of a user video in general concepts.
Finally, we employ an HMM-based acoustic concept recogni-
tion (ACR) system to segment the audio signal. The segmen-
tal information is used as features in SVM-based classification
for multimedia event detection (MED) task. This approach is
different from the previously mentioned supervised techniques
[15, 16] in several ways. First, we do not use any fixed segmen-
tation, but instead use recognition to extract acoustic concept
segments dynamically. The second difference is that the models
are not trained with specific acoustic concepts that may produce
a system very constrained for a specific task.
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Abbr. Full Name # Train # Test
E001 Attempting a board trick 91 32
E002 Feeding an animal 81 30
E003 Landing a fish 69 26
E004 Wedding ceremony 66 25
E005 Woodworking project 77 25

Table 1: Video event class abbreviations (Abbr.) and full names
along with the number of positive samples appearing in the
training and test sets

The remainder of this paper is organized as follows: the
TRECVid2011 dataset and the acoustic concepts annotations
are described next. Section 3 deals with the audio features
and the acoustic concepts classification and recognition (seg-
mentation and classification). The baseline of MED task using
segmental-GMM vectors and the ACR system are provided in
Section 4. Finally, conclusions will be presented in Section 5.

2. Data set and Annotations
2.1. TRECVid 2011

The Text Retrieval Conferences Video Retrieval Evaluation
(TRECVID) [1] focuses on the problem of Multimedia Event
Detection (MED) in website quality videos for hard-to-detect
events (e.g., Landing a fish). The evaluation dataset consists of
non-professional videos collected from the internet with high
variability and short duration (a couple of minutes). Fifteen dif-
ferent video event categories can be found in the database with
only five of those categories available for testing purposes in
this study.

To develop and evaluate our proposed approach, we use
three sets of data: first set (train-1) is for training the acous-
tic concept models, second set (train-2) is for training the MED
classifiers after extracting acoustic concept indexes on this data
and using them as MED features, and the third set (test) is for
testing the system. These sets are the same used in [15] and [9]
to be able to provide fair comparison to previously published
works. There is a total of 2640 videos in the test set and 7881
in the training set. Table 1 shows, for each of the five video
events, the numbers of positive samples in the test and training
sets. Note that the categories grouped several videos. For exam-
ple “feeding an animal” includes animals from different species
and , therefore, different animal sounds.

2.2. Acoustic Concepts Annotations

Because the ultimate goal of the system is to perform detec-
tion of multimedia events on the videos using the recognition of
acoustic concepts, it has been created an initial set of labels of
acoustic concepts to be useful in discriminating the five video

Broad Acoustic Concepts Abbr.
1. Crowds and audience (CA)
2. Animal sounds (AN)
3. Repetitive sounds (RS)
4. Machine noise (MN)
5. Environmental sound (ES)
6. Music (MU)
7. Speech (SP)

Table 2: Broad acoustic concepts and abbreviations

event classes presented in Table 1 while also being clear and
understandable for the annotators.

The acoustic concepts are divided in five broad classes as
Table 2 shows. These broad classes have been extended with
Speech and Music classes because most of the videos contain
speech or music as the predominant audio. In fact, some of
the five acoustic concepts are overlapped with speech or mu-
sic barely audible in the background. However, those segments
were annotated as that acoustic concept. The following section
presents the results on the classification, and recognition of the
broad classes, showing how difficult is to create a well-trained
model for these acoustic concepts due to the high variance of
the audio.

3. Acoustic Concepts Recognition
To model the acoustic concepts, we used a HMM/GMM-based
system. As it was described on the last section, to train and
test these models, a subset of the National Institute of Standards
and Technology (NIST) is provided for the TRECVID evalua-
tion 2011. This set is composed of 1536 videos (47 hours ap-
proximately) averaging 1.8 minutes per file. This section is or-
ganized follows: we describe the front-end audio features used
in this approach and the acoustic concepts to train the models.
Also, experiments of classification and recognition are reported
to show how difficult is the final goal of this task.

3.1. Front-End Audio Features

This section is a summary of the front-end audio feature extrac-
tion method used in [18]. We extract 16 MFCCs (including C0)
computed in 25ms frame size with a 10ms frame step and their
∆ and ∆∆. Due to the high variability of every acoustic con-
cept, the fact that the segments are overlapped with speech and
music, and the different devices used to record the video, a nor-
malization of these features is needed. Trying to generalize the
features, a cepstral mean normalization is computed over the
whole video and the mean and standard deviation are computed
over 1-second windows with an overlap of 0.75 seconds. Thus,
the system uses 96 features (48 for the mean and 48 for the stan-
dard deviation of the MFCC + ∆ + ∆∆ features) every 0.25
second.

3.2. Classification System

This experiment shows how difficult the task is. The goal of
this experiment is the classification of a set of cut segments in
one of the broad classes. The segments are overlapped with
speech and music in the background in some cases. However,
the classification is done with the five broad classes (without
speech and music models) keeping the seven broad classes (with
speech and music models) for the recognition task. The seg-
ments are extracted from the video database generating 13520
segments of different durations. Each concept is model as one
state HMM/GMM with 256 Gaussians. Table 3 shows the re-
sults using the same subset of data to train and test. As it can
be seen, the task is very difficult due to the high within-class
variability of each concept. The system classified 71.1% of the
segments correctly.

To test the system, a 4-fold cross-validation was performed
using 3 folds to train the models and 1 fold to test. Table 4
shows the confusion matrix and how the classification rate is
reduced compared with Table 3, classifying a 45.9% of the seg-
ments correctly. It can be seen that the Animal Noise and the
Environmental Sounds are the concepts with a higher error rate
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CA AN RS MN ES
CA 0.77 0.04 0.04 0.06 0.09
AN 0.08 0.80 0.04 0.02 0.06
RS 0.08 0.04 0.75 0.05 0.08
MN 0.11 0.04 0.09 0.61 0.16
ES 0.12 0.09 0.08 0.07 0.63

Table 3: Confusion Matrix using the same set for train and test

CA AN RS MN ES
CA 0.61 0.03 0.06 0.12 0.18
AN 0.18 0.12 0.20 0.19 0.31
RS 0.11 0.05 0.45 0.18 0.21
MN 0.17 0.02 0.16 0.40 0.25
ES 0.24 0.07 0.15 0.21 0.33

Table 4: Four Folds Cross-Validation Confusion Matrix

because both classes do not have enough data to train the mod-
els.

3.3. Recognition System

In the MED task, a recognition system is needed to be able to
detect and classify the acoustic concepts related with the video.
Due to the fact that most of the acoustic concepts are overlapped
with speech and music, two extra models are needed to identify
the segments in which there is not an acoustic concept. Also,
these models can be useful to describe the video in the MED
task. Using the same models trained for the classification task,
a segmentation is executed over the whole video where the cut-
segments were extracted for the classification system in previ-
ous subsection.

In this experiment, every concept (speech and music in-
cluded) is modeled by a HMM/GMM of one state. The main
difference is that a segmentation is produced when there are
transitions between the models in the Viterbi algorithm. Table
5 shows the recognition result per concept independently of the
segment duration. As it can be seen, Crowds and Repetitive
Sounds have the better results in comparison with the Animal
Noise or Environmental Sound because Crowd and Repetitive
sounds were trained with more data than Animal Noise or En-
vironmental Sound. The following sections show how the mul-
timedia events related with the acoustic concepts Animal Noise
or Environmental Sound have a poor detection rate because the
models are not well-trained.

4. Acoustic concepts as features for MED
4.1. Methods

The purpose of the acoustic concepts recognition is to enable
a video to be modeled by the acoustic concepts present in the
video. For example, the ability to identify certain properties of

CA AN RS MN ES SP MU
CA 0.41 0.03 0.03 0.04 0.04 0.20 0.23
AN 0.11 0.01 0.01 0.05 0.07 0.52 0.20
RS 0.07 0.02 0.35 0.09 0.09 0.16 0.20
MN 0.14 0.10 0.10 0.26 0.16 0.07 0.15
ES 0.23 0.02 0.07 0.05 0.11 0.12 0.13

Table 5: Segmentation Confusion Matrix

the audio component that correlate strongly with crowd sounds
and little with environmental sounds such as water might in-
dicate the video takes place in a setting with large number of
people present away from water and is therefore more likely to
belong to certain video events (i.e. parade) than others (i.e. fish-
ing). This section shows two different approaches using acous-
tic concepts to detect the multimedia event.

The first one is described in [15] and it is known as
Segmental-GMM. Training the GMM for the seven selected
acoustic concepts, a score vector is generated on fixed-length
segments with each element in the vector corresponding to a
posterior score for a GMM. As mentioned, we refer to these
score vectors as Segmental-GMM feature vectors. In our exper-
iments the segmental GMM vectors are 7-dimensional.

The second approach is known as Acoustic Concept
Recognition (ACR) in which each concept is modeled as a
HMM/GMM of one state. The main difference with the
Segmental-GMM approach is that the segments are not fixed-
length any more, and the segmentation is based on the tran-
sitions between the HMM models following the Viterbi algo-
rithm. The score vector is the accumulated likelihood for each
model. Therefore, a video is represented by a 7xK dimensional
matrix with each column corresponding a different length seg-
ments.

In order to perform classification on the multimedia event
level, we need to have features that are constant length inde-
pendent of the video length. These constant-length features can
then be used with the SVM classifier. The original video is cur-
rently represented by a 7xK matrix and is therefore not fixed-
length. In this work, we represent a video with what we refer to
as a co-occurrence matrix in which each element represents the
probability that a pair of acoustic concepts occur in the video.
This process is described in [15].

We performed a verification, also referred to as one-
against-all, experiment for each of the five video event classes.
For each video event, a given file is labeled as in-class or out-of-
class. For example, for E004 we would perform the binary clas-
sification into Wedding ceremony and non-Wedding ceremony.
We chose to perform classifications using support vector ma-
chines (SVMs) with a linear kernel. SVMs are commonly used
for similar classification experiments due their simplicity and
ability to model nonlinear decision boundaries using what is re-
ferred to as the ‘kernel trick.’

4.2. Results

To measure the system performance results we use Detection
Error Tradeoff (DET) curves, which are commonly used to
show the tradeoff between the false alarm errors and missed
detections. We generated the DET-curves in this paper with
plotting software available from the NIST website [19]. From
these curves, we also extracted the equal error rate (EER) as the
the point where the probability of false alarm (pFA) is equal to
the probability of a miss (pMiss). Since TRECVid MED 2011
simulates a retrieval task from wild videos in the internet, the
assumption is that high miss rates can be tolerated in favor of
low false alarm probabilities. Therefore, we use a benchmark
to compares the number of misses at a given false alarm rate
of 6%. The percentage of misses at a given false alarm rate is
computed in a similar fashion to EER.

Figure 1 shows the DET curves for every acoustic event.
The blue curves represents the performance of the Segmental-
GMM approach, and the red curve represents the performance
of the ACR approach. As it can be seen, the systems per-
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Figure 1: DET curves of Segmental-GMM approach versus ACR approach. The marks for EER and the benchmark for 6% of pFA are
on the same curves

formance varies across video events. Wedding ceremony and
Woodworking project show the best results while Feeding an
animal and Landing a fish show the worst results. These be-
haviors are consistent with the previous results in section 3.
It can be seen that the concepts Animal sounds and Environ-
mental sound have the biggest error rate, and those concepts
are more related with Feeding an animal and Landing a fish
videos respectively. On the other hand, the concepts Crowds
and audience and Repetitive sounds have the best results, and
they are more related with Wedding ceremony and Woodwork-
ing project events respectively. Also, Feeding an animal and
Landing a fish videos contain short bursts of sounds overlap-
ping with a widely varying background noise, which make the
detection much more difficult.

Table 6 shows the EER and the benchmark given a false
alarm rate of 6% for both approaches. The EER is better us-
ing Segmental-GMM for almost all the events except for the
event Wedding ceremony. However, the benchmark is better us-
ing ACR with the exception of E002 event where the model is
poor trained and E005 where the difference between Segmental-
GMM and ACR is not significant as can be seen in Figure 1.

5. Conclusions
This paper shows a comparative study between different ap-
proaches to detect multimedia events using a set of videos
provided in TRECVid 2011 evaluation. These approaches are
based on the analysis of the audio of the videos, and they help to
improve the detection accuracy of video analysis systems. The
proposed approaches create features based on the likelihood of
acoustic concepts that can happen in the multimedia event.

The first set of experiments shows the accuracy to clas-
sify and recognize the acoustic concepts. The videos of the

Segm-GMM ACR
EER BM-6% EER BM-6%

E001 0.343 0.906 0.406 0.843
E002 0.500 0.933 0.533 1.000
E003 0.384 0.923 0.461 0.846
E004 0.360 0.800 0.280 0.800
E005 0.320 0.640 0.360 0.680
Mean 0.381 0.840 0.408 0.833

Table 6: EER and Benchmark of 6% of pFA for segmental-
GMM and ACR approaches

TRECVid 2011 are downloaded from different sources in in-
ternet, so the audio of these videos has a lot of variability. The
acoustic features that compensate the variability of the audio are
the mean and the variance of MFCCs. However, training and
testing over the same set of data provide a mean error rate of
30% as it was showed in Table 3. The concepts Animal Sounds
and Environmental Sound have the highest error rate for all the
systems and, therefore, the events related with these concepts
(as Feeding an animal and Landing a fish) have the highest de-
tection error rates for all the event detector approaches.

We create a baseline based on the approach proposed in
[15]. This baseline is known as Segmental-GMM and it cre-
ates a feature vector with the likelihood of the acoustic concepts
from a GMM model for every acoustic concept extracted every
five seconds. The novelty proposed in this paper is to create
an HMM-GMM model for every acoustic concept to be able to
get a segmentation based on the transitions between the models.
This solution is know as ACR and it shows a little improvement
over the Segmental-GMM as a retrieval approach.

18

Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013.



6. Acknowledgments
We would like to thank Stephanie Pancoast for her help with the
annotations and baselines.

This work has been funded by the Spanish Government
and the European Union (FEDER) under the project TIN2011-
28169-C05-02 when the authors were at SRI International.

This work was supported by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Inte-
rior National Business Center contract number D11PC0067.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes non withstanding any copy-
right annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoI/NBC, or the U.S.
Government.

7. References
[1] T. multimedia event detection 2011 evaluation,

“http://www.nist.gov/itl/iad/mig/med11.cmf.”

[2] A. Temko and C. Nadeu, “Acoustic event detection in meeting-
room environments,” Pattern Recognition Letters, vol. 30, no. 14,
pp. 1281–1288, 2009.

[3] C. Zieger, “An hmm based system for acoustic event detection,”
in Multimodal Technologies for Perception of Humans, 2008.

[4] Mostefa, Moreau, and Choukri, “The chil audiovisual corpus for
lecture and meeting analysis inside smart rooms,” in Evaluation
and Language Distribution Agency, 2008.

[5] M. Lew, N. Sebe, C. Djeraba, and R. Jain, “Content-based multi-
media information retrieval: State of the art and challenges,” ACM
Transactions on Multimedia, 2006.

[6] C. Snoek and M. Worring, “Concept-based video retrieval,” Foun-
dations and Trends in Information Retrieval, 2007.

[7] S. Tsakalidis, X. Zhuang, R. Hsiao, S. Wu, P. Natarajan, and
R. Prasad, “Robust event detection from spoken content in con-
sumer domain videos,” in Interspeech 2012, 2012.

[8] Q. Jin, P. Schulam, S. Rawat, S. Burger, D. Ding, and F. Metze,
“Event-based video retrieval using audio,” in Interspeech 2012,
2012.

[9] S. Pancoast and M. Akbacak, “Bag-of-audio-words approach for
multimedia event classification,” in Interspeech2012, 2012.

[10] L. Li, “A novel violent videos classification scheme based on the
bag of audio words features,” in International Journal of Compu-
tational Intelligence, 2012.

[11] B. Byun, S. Kim, I.and Siniscalchi, and L. C.H., “Consumer-
level multimedia event detection through unsupervised audio sig-
nal modeling,” in Interspeech 2012, 2012.

[12] S. Chaudhuri, R. Singh, and R. Raj, “Exploiting temporal se-
quence structure for semantic analysis of multimedia,” in Inter-
speech 2012, 2012.

[13] X. Zhuang, S. Tsakalidis, S. Wu, P. Natarajan, and R. Prasad,
“Compact audio representation for event detection in consumer
media,” in Interspeech 2012, 2012.

[14] R. Mertens, H. Lei, L. Gottlieb, G. Friedland, and D. A., “Acoustic
super models for large scale video event detection,” in Proceed-
ings of the 2011 joint ACM workshop on Modeling and represent-
ing events. ACM, 2011.

[15] S. Pancoast, M. Akbacak, and M. Sanchez, “Supervised acoustic
concept extraction for multimedia event detection,” in ACM Mul-
timedia Workshop, 2012.

[16] Y. Jiang, X. Zeng, G. Ye, and S. Bhattacharya, “Columbia-
ucf trecvid2010 multimedia event detection: Combining multiple
modalities, contextual concepts, and temporal matching,” in NIST
TRECVID 2010, 2010.

[17] J. Van Hout, M. Akbacak, D. Castan, E. Yeh, and M. Sanchez,
“Extracting spoken and acoustic concepts for multimedia event
detection,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2013, 2013.

[18] D. Castan, C. Vaquero, A. Ortega, and E. Lleida, “Hierarchical
audio segmentation with hmm and factor analysis in broadcast
news domain,” in Interspeech2011, 2011.

[19] N. DETware V.2., “http://www.itl.nist.gov/iad/mig/tools/.”

19

Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013.



Broadcast News Segmentation with Factor Analysis System

Diego Castan, Alfonso Ortega, Antonio Miguel and Eduardo Lleida

University of Zaragoza, Spain
[dcastan,ortega,amiguel,lleida]@unizar.es

Abstract
This paper studies a novel audio segmentation-by-classification
approach based on Factor Analysis (FA) with a channel com-
pensation matrix for each class and scoring the fixed-length seg-
ments as the log-likelihood ratio between class/no-class. The
system described here is designed to segment and classify the
audio files coming from broadcast programs into five different
classes: speech (SP), speech with noise (SN), speech with mu-
sic (SM), music (MU) or others (OT). This task was proposed
in the Albayzin 2010 evaluation campaign. The article presents
a final system with no special features and no hierarchical struc-
ture. Finally, the system is compared with the winning system
of the evaluation (the system use specific features with hierar-
chical structure) achieving a significant error reduction in SP
and SN. These classes represent 3/4 of the total amount of the
data. Therefore, the FA segmentation system gets a reduction
in the average segmentation error rate that is able to be used in
a generic task.1

Index Terms: Audio Segmentation, Factor Analysis, Broadcast
News (BN), Albayzin-2010 Evaluation

1. Introduction
Due to the increase in audio or audiovisual content, it becomes
necessary to use automatic tools for different tasks such as anal-
ysis, indexation, search and retrieval. Given an audio document,
the first step is audio segmentation producing a delineation of
a continuous audio stream into acoustically homogeneous re-
gions. When the audio segmentation is followed by a classifica-
tion system the result is a system that is able to divide an audio
file into different predefined classes chosen for a specific task.

Broadcast news (BN) domain is one of the most popular
multimedia repositories because it has rich audio types and sev-
eral approaches have been proposed in this scenario. For ex-
ample, in the task of automatic transcriptions of BN [1] the
data contain clean speech, telephone speech, music segments
and speech overlapped with music and noise so the segmenta-
tion generates a boundary for every speaker change and envi-
ronment/channel condition change with no explicit cues. In [2]
segmentation is based on five different classes: silence, music,
background sound, pure speech, and non-pure speech. The so-
lution is based on SVM combination. In [3] the audio stream
from BN domain is segmented into 5 different types including
speech, commercials, environmental sound, physical violence
and silence. [4] presents a review of different solutions and
the acoustic features used in each one of them and also a new
algorithm for computing various time-domain and frequency-
domain features, for speech and music signals separately, and
estimating the optimal speech/music thresholds.

1This work has been funded by the Spanish Government and the
European Union (FEDER) under the project TIN2011-28169-C05-02

The different segmentation approaches in BN differ in ei-
ther the feature extraction methods or the classifier. The fea-
tures can be distinguished in frame-based and segment-based
features. The frame-based features usually describe the sig-
nal within a short time period (10-30 ms), where the process
is considered stationary. MFCCs or PLPs are commonly used
as frame-based features like in [5] where these features are
classified with an autoassociative neural network. In [6] the
authors propose two pitch-density-based features and relative
tonal power density to classify on BN. For segment-based fea-
ture extraction, a longer segment is taken into consideration.
The length of the segment may be fixed (usually between 0.5
and 5 seconds) or variable. In [7] a content based speech dis-
crimination algorithm is designed to exploit long-term informa-
tion inherent in modulation spectrum.

Audio segmentation systems perform the segmentation in
two different ways. The first one is based on detecting the
boundaries and then classifying each delimited segment. We re-
fer to them as segmentation-and-classification approaches. For
example, in [8], an approach using a temporally weighted fuzzy
C-means algorithm has been proposed. The second segmen-
tation way is known as segmentation-by-classification and it
consists of classifying consecutive fixed-length audio segments.
The segmentation is produced directly by the classifier as a se-
quence of labels. This sequence is usually smoothed to improve
the segmentation. An example of this procedure can be seen in
[9] where the author combines different features with a GMM
and a maximum entropy classifiers. The final sequence-level
were smoothed with a HMM.

The different strategies outlined in the preceding para-
graphs have their advantages and disadvantages described by
Huang and Hansen in [10]. The most common solution to avoid
the shortcomings and enjoy the benefits of each strategy is to
create hierarchical systems with multiple steps where each level
is designed with specific features and segmentation systems for
each class. As a result, the system becomes very specific for a
database and may produce segmentation errors in different do-
mains. Recently, an audio segmentation task in BN domain was
proposed in [11] in the context of the Albayzin-2010 evaluation
campaign. Almost all the participants of the evaluation used hi-
erarchical systems, including the winning system [12] based on
a hierarchical architecture that used different sets of features for
every level.

In this paper, we proposes a whole FA segmentation system
with no-hierarchical structure where the within-class variability
is compensated with a different channel matrix for each class.
The remainder of the paper is organized as follows: database
and metric of Albayzin 2010 evaluation is presented in Sec-
tion 2. Section 3 shows the factor analysis theoretical approach
based on FA. Segmentation results are presented in Section 4.
Finally, the conclusions are presented in Section 5.
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2. Albayzin 2010 audio segmentation
evaluation

The Albayzin evaluation campaign is an internationally open
set of evaluations organized by the Spanish Network of Speech
Technologies (RTTH) every 2 years. A completed description
of the Albayzin 2010 evaluation can be found in [13] which de-
scribes the participant’s approaches and the results of the sys-
tems . We summarize the database description and the metric of
the evaluation in the next subsections.

2.1. Database

The database consists of a Catalan BN database from the pub-
lic TV news channel that was recorded by the TALP Research
Center from the UPC. It includes approximately 87 hours of an-
notated audio divided in 24 files of 4 hours long. A set of five
different audio classes were defined for the evaluation with the
following distribution: Clean speech: 37%; Music: 5%; Speech
over music: 15%; Speech over noise: 40%; Others: 3%. The
class “Others” is not evaluated in the final test. The database for
the evaluation was split into 2 parts: for training/development
(2/3 of the total amount of data), and testing (the remaining 1/3).

2.2. Metric

The metric is defined as a relative error averaged over all acous-
tic classes (ACs):

Error = averagei
dur(missi) + dur(fai)

dur(refi)
,

where dur(missi) is the total duration of all deletion errors
(misses) for the ith AC, dur(fai) is the total duration of all inser-
tion errors (false alarms) for the ith AC, and dur(refi) is the to-
tal duration of all the ith AC instances according to the reference
file. The incorrectly classified audio segment (a substitution) is
computed both as a deletion error for one AC and an insertion
error for another. A forgiveness collar of 1 sec (both + and -)
is not scored around each reference boundary. This accounts
for both the inconsistent human annotation and the uncertainty
about when an AC begins/ends.

3. FA-Based audio segmentation
This study proposes a framework for automatic audio
segmentation-by-classification system. The system deals with
the problem of assigning a class label to each fixed-length clips
using Factor Analysis (FA) models. The FA approach has
been successfully used in speaker recognition [14] [15] [16],
speaker verification [17], speaker segmentation [18] and lan-
guage recognition [19]. The variability of the same class seg-
ments is known as within-class variability. The goal of these
systems is the compensation of the within-class variability to
reduce the mismatch between training and test. Fig. 1 illus-
trates the proposed framework where each block is described
in the next subsections. We will discuss the feature extraction,
the statistic extraction and the within-class variability compen-
sation using FA.

3.1. Acoustic Feature Extraction and Statistics

Mel-frequency cepstral coefficients (MFCCs) [20] are used in
most speech recognition tasks because the mel-scale filter bank
is an approximation to human auditory system response. There-
fore they work well in audio segmention task too. Typically,

Generic Audio Signal

Feature Extraction

(15MFCC+C0+D+DD)

Zero and First-order

Statistics

Music (MU)

Speech&Music (SM)

Speech&Noise (SN)

Speech (SP)

Others (OT)

Audio Classification Smoothing by

Viterbi

Audio Segments with Labels

OT SM SP MU

Figure 1: Block Diagram of Factor Analysis Segmentation-by-
Classification System for Broadcast News Classes

MFCC features are computed at each short speech segment
(e.g., 10 ms) together with their derivatives to capture the
short-term speech dynamics. On this framework we extract 16
MFCCs (including C0) computed in 25 ms frame size with a 10
ms frame step, their first and second order derivatives.

The audio features are packed in clips of different lengths
with 0.1 and 0.5 second clip-steps. The fixed-length clips
are mapped to sufficient statistics by using a Universal Back-
ground Model (UBM) which is a class-independent GMM with
C Gaussians trained with the EM-algorithm [21] on the audio
feature vectors of the training data.

3.2. Theoretical Background

Data from a particular class are modeled by a GMM defined
by means m1, m2, ..., mC , weights w1, w2, ..., wC and covari-
ances Σ1, Σ2, ..., ΣC where C is the number of Gaussians. We
can concatenate all GMM means to one mean supervector m of
CF × 1 dimensions where F is the feature vector size:

m = [mT
1 , mT

2 , ..., mT
C ]T . (1)

The Factor Analysis model is the adaptation of the UBM
model where the supervector of means is not fixed and it can
vary from segment to segment to account for differences in
the channel. These GMMs have segment and class depen-
dent component means but fixed component weights and covari-
ances chosen to be equal to the UBM weights and covariances.
Specifically, we use a Factor Analysis model for the mean of
kth component of the GMM for segment s:

ms
k = t

c(s)
k + Ukxs (2)

where c(s) denotes the class of segment s and t
c(s)
k is the

channel-independent-class-location vector obtained by using a
single iteration of relevance-MAP adaptation from the UBM
[22]. Uk is the factor loading matrix and xs is a vector of L
segment-dependent channel factors generated by a normal dis-
tribution (N(0, I)). We stack component-dependent vectors
into supervectors ms and tc(s) and we stack the component-
dependent Uk matrices into a single tall matrix U , so that equa-
tion can be expressed more compactly as:

ms = tc(s) + Uxs (3)

where U is known as the channel matrix and it represents the
within-class variability. Note that, following the terminology
in the literature, we use the terms channel matrix and channel
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factors to describe the elements related with the within-class
variability even if that variability is not produced by different
channels (also can be produced by different speakers or differ-
ent content). The columns of the U matrix are the basis span-
ning the subspace of the channel and the channel factors are the
coordinates defining the position of the channel-dependent su-
pervector in the subspace. The channel factors dimension (L)
is smaller than CF so U matrix has low rank (CF × L dimen-
sions). Depending on the application, the value of L is between
50 and 200 and CF can be 98304 if we have 2048 Gaussians
and 48-dim feature vector (with the MFCC-UBM). The estima-
tion of these parametres can be understood following [16].

3.3. Class/No-Class U Channel Matrices System

Most of the approaches based on FA for language recognition
are implemented with a single U channel matrix because the
nature of the within-class variability is the same for all the lan-
guages as it can be seen in [23] [24] [25] [16]. Therefore, in
[26] a segmentation system was proposed with five channel-
independent-class-location vectors (one vector per class) and
a single compensation channel matrix U for all the classes.
The paper compares the FA system with the winnner of the
Albayzin-2010 evaluation and the conclusion was that the com-
pensation matrix had a bad behavior for the Music class due
to the different nature of the rest of the classes. However, the
paper [27] shows a clear advantage when the classes are homo-
geneous (like SN and SP). In this scenario the channel matrix
models the compensation between different speakers and differ-
ent words leaving the background sound as useful information
for the classification improving the segmentation.

A number of studies have focused on features to describe
the distribution of sounds to be able to distinguish between
speech, music or noise. Most of these approaches use a hier-
archical structure where each level is specialized on the detec-
tion of an specific class with specific features for that class. The
main goal of this work is the compensation of all the classes
with no-specific features for each class even if the nature of the
classes is not the same. We propose a ten channel-independent-
class-location vectors (a class and no-class vectors for each
class) and five channel matrix representing the within-class vari-
ability of each class/no-class with no hierarchical structure. Let

T =[tmu, tnomu, tot, tnoot,

tsm, tnosm, tsn, tnosn, tsp, tnosp] (4)

Ξ = [Umu−nomu, Uot−noot,

Usm−nosm, Usn−nosn, Usp−nosp] (5)

where T represents the locations of classes and no-classes
in the GMM space and Ξ the channel matrices. Our metamodel
for class-segment-dependent GMM is parametrized by (T, Ξ)
which describe the prior distributions of the parameters m.

This approach will be compared with the classic formula-
tion with a single U channel matrix on Section 4 for the clas-
sification over the oracle segments and the final segmentation
system.

3.4. Scoring

There are different scoring methods used in the state-of-the-art
of speaker and language recognition. In the proposed experi-

ments in Section 4 we use the integration trough the channel
factors distributions. This score is a marginalization using a
point estimation of the class ms, and integrate only over the
channel factors, when the statistics are centered around the point
estimation ms. The log-likelihood is defined by the equation
(19) in [16] and can be understood following the Section V in
the same article.

In [28], [16] and [29] the score employed to detect the
speaker is the log-likelihood ratio(LLR). For a test clip χ and
class c, the LLR compares the hypothesis that the clip χ belongs
to the class c against the hypothesis that the clip χ does not be-
long to the class c. This score is shown in Formula 6 where
the numerator is the likelihood of the test clip calculated with
the class model and the denominator is the likelihood of the test
clip calculated with UBM model. Note that the UBM model
is employed as a general model to describe the not belonging
hypothesis. That makes sense for speaker identification task
where the hypothesized speaker represents a very small amount
into the UBM. However, our problem has only four classes and,
therefore, the class is highly represented by the UBM and may
corrupt the LLR score.

LLRclass = log
P (χ/class)

P (χ/UBM)
(6)

We propose a LLR scoring where the denominator is the
likelihood of the test clip calculated with the no-class model.
The compensated log-likelihood ratio (CLLR) is computed for
each class/no-class as:

CLLRclass = log
P (χ/class)

P (χ/noclass)
(7)

CLLR is more discriminative than LLR for a segmentation task
because the hypothesized class is not presented in the denomi-
nator and, also, because the no-class model is channel compen-
sated as the class model.

4. Experimental results
In a segmentation-by-classification system, the errors can be
produced in two ways: first, a classification error due to a bad
labeled frame, and a segmentation error due to a temporal mis-
match between the oracle boundaries and the hypothesis bound-
aries. This Section shows the experiments for the evaluation
data described in Section 2.1 divided into two sets. In the first
set, the segments are given by the ground truth and the systems
decide the class of each segment with no segmentation error to
evaluate the classification accuracy of the systems. The second
set of experiments shows the segmentation and the classification
error and it proposes a final segmentation-by-classification sys-
tem based on FA that improve the result of the winning system
in the Albayzin evaluation.

4.1. Classification Experiments with Oracle Segmentation

The classification is done over the segments extracted with the
ground truth to evaluate the classification accuracy over the
whole segment. Most of the segments are between 5 and 20
seconds long.

We propose two sets of systems based on GMM and HMM-
GMM as a baseline. Table 1 shows the results for these sys-
tems. In the first part of the table, we have tried with different
number of Gaussians. The classification is based on the high-
est accumulated likelihood over the whole segment. Increasing
the number of Gaussians improves the final result. The highest
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Table 1: Classification Baseline Experiments: error per class
and total error for GMM-HMM systems over the test files with
perfect segmentation in %

GMM MU SP SM SN TOTAL
32G 9.66 49.36 37.59 48.11 36.18
64G 10.68 45.74 36.68 45.44 34.63
128G 9.81 41.79 32.02 40.75 31.09
256G 10.43 37.61 31.85 37.67 29.39
512G 9.51 35.95 29.38 35.99 27.71
1024G 9.39 34.91 27.03 34.35 26.42
2048G 9.61 33.39 38.01 34.01 26.25

HMM-LeftToRight MU SP SM SN TOTAL
1 ST - 2048G 9.61 33.39 28.01 34.01 26.25
2 ST - 1024G 9.48 42.75 27.45 41.26 30.24
4 ST - 512G 10.11 27.91 27.17 29.87 23.77
8 ST - 256G 8.37 31.64 26.42 32.1 24.63
16 ST - 128G 8.84 26.92 32.28 32.12 25.04
32 ST - 64G 11.33 29.81 26.64 32.48 25.07

number of Gaussians is 2048 because, although the final results
is the best one, the MU and SM classes begin to get worse re-
sults. The next experiment of the baseline system uses 2048
Gaussians distributed in different nodes in a HMM. The second
part of the Table 1 shows the results for left-to-right topologies
of HMMs. These topologies increase the activity duration of
each model [30], avoiding wrong transitions inside the segment
and improving the results. The best baseline system (23.77% of
total error) is performed using five left-to-right HMMs with four
emitting states and 512 Gaussians per state where each HMM
corresponds to one acoustic class.

To evaluate the strengths and weaknesses of a FA system,
we assess different configurations described in Section 3. The
UBM employed to compute the statistics has a fixed amount
of 2048 Gaussians to be able to compare the results of the FA
systems with the GMM/HMM baseline. We compute the result
over the test set using the integration trough the channel factors
distributions scoring. The experiments are calculated with a
single channel matrix to compensate all the classes and different
channel matrices for each class/no-class using different number
of channel factors (50, 100, 150, 200 and 250).

Table 2: FA systems with a single U for all the classes and
U matrix for every class/no-class over the test set with perfect
segmentation in %

Single U MU SP SM SN TOTAL
50 chnf 10.20 15.98 24.21 21.41 17.95

100 chnf 9.16 16.06 20.28 20.06 16.39
150 chnf 9.42 15.52 18.04 18.90 15.47
200 chnf 9.08 15.72 17.38 19.17 15.34
250 chnf 8.52 16.70 16.06 19.42 15.17

U per class MU SP SM SN TOTAL
50 chnf 9.65 19.13 24.10 23.31 19.05

100 chnf 8.54 16.22 22.12 20.18 16.77
150 chnf 9.65 16.63 18.31 19.49 16.02
200 chnf 9.20 17.22 17.73 19.60 15.94
250 chnf 9.69 17.46 17.12 19.82 16.02

Comparing the Table 1 and the Table 2, it can be seen
a significant improvement using FA as a classification system
against GMM/HMMs. Using the best HMM configuration (left-
to-right HMM with four states and 256 Gaussians in each state)
as a reference, the worst FA system improves the total result in
4.72% (with a U matrix per class and 50 channel factors) and in

8.6% comparing with the best FA configuration (with a single
U matrix and 250 channel factors).

4.2. Segmentation-by-Classification Experiments

In the last subsection, each segment was labeled with the best
decision coming from the accumulated log likelihood or ac-
cumulated log likelihood ratio of the models. In this subsec-
tion, the segments are delimited with the transitions between
the scores and the errors might be due to a temporal mismatch
or a bad label assignment.

Table 3: Segmentation Baseline Experiments: error per class
and total error for HMM systems over the test files in %

HMM-LeftToRight MU SP SM SN TOTAL
1 ST - 2048G 35.53 59.22 65.07 58.60 54.6

2 ST -1024 29.96 59.26 54.79 56.82 50.21
4 ST - 512 26.04 49.8 45.98 50.27 43.02

8 ST - 256G 24.35 49.3 41.66 50.19 41.37
16 ST -128G 17.82 40.24 36.02 43.06 34.28
32 ST - 64G 17.39 39.53 33.95 41.56 33.31

As we did in the last subsection, GMM/HMM systems are
used as the baseline. Because the segments are delimited by
the scoring transitions, the scores need to be smooth using low
pass filters or HMM. Table 3 shows different HMM topolo-
gies and configurations. Again, the left-to-right topology im-
proves the result because these systems smooth the transitions
between classes. The best baseline system for segmentation-
by-classification (33.31% of total error) has 32 states with 64
Gaussians each state and has a left-to-right topology.

Table 4: FA segmentation-by-classification systems with a sin-
gle U for all the classes and U matrix for every class/no-class in
%

Win-3.0 step-0.5 100chnf
MU SP SM SN TOTAL

Single U 40.38 76.91 60.52 64.31 60.53
U per class 33.35 45.62 36.2 47.44 40.65

As a preliminary experiment, the first FA segmentation-by-
classification system computes the statistics over a 3 second
windows with 0.5 second window-steps and 100 channel fac-
tors. An increment of the channel factors or a reduction of the
window-step increase the memory and the time to train the mod-
els exponentially. Experiments with a single channel matrix for
all the classes and a channel matrix for each class are presented
in Table 4. There is a significant improvement in the majority
classes using a channel matrix for each class because the CLLR
removes the information of the target class in the denominator
as we pointed in Section 3.4. The bigger is the class in the data,
more significant is the reduction of the error comparing with a
single channel matrix for all the classes. Accordingly, the total
error is reduced about 20%.

Once determined that the best configuration is the FA sys-
tem with a channel matrix for each class, the window-step can
be modified to get more resolution (0.1 second window-step)
and the CLLR can be smoothed to avoid an over segmentation.
In the experiments, a zero-phase average filter is computed to
smooth the CLLR of each class and avoid a sudden change in
the segment labels. Figure 2 shows the filtered-ratio scores for
each class over a chunk of a test file. The ground truth is plotted
in the same figure and it is represented with a square wave of
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Figure 2: Scores and the ground truth of each class over a chunk of a test file

amplitude 2. The color of each score class and the correspond-
ing ground truth is the same. The figure clearly shows that the
ratio of the winning class is bigger than zero and corresponds
with the ground truth class.

Due to the metric, the smallest classes have to be detected
with the same accuracy as the largest classes as can be seen
in section 2.2. To increase the detection of the smallest class
(MU) we optimize the prior probabilities in a Viterbi algorithm
checking the total result over the train files. Table 5 shows the
total error over the train files. The first row shows the total
error when all the classes have the same priority and it can be
seen that the smallest error is obtained when MU and SN/SP
have 28% and 16% of priority respectively decreasing the false
alarms of the SN/SP over MU class. These priors are employed
in the Viterbi over the test files and the results are shown in
Table 6.

We compare the error of the system proposed in this work
with the winning system of the Albayzin-2010 evaluation [12]
where 15 MFCCs, the frame energy, and the derivatives are
extracted. In addition, the spectral entropy and the Chroma
coefficients are calculated. The mean and variance of these
features are computed over 1 second interval creating a 122
dimension feature vectors. The segmentation approach cho-
sen is HMM-based. The acoustic modeling is performed us-
ing five HMMs with three emitting states and 256 Gaussians
per state. Each HMM corresponds to one acoustic class. A
hierarchical organization of binary HMM detectors is used.
First, audio is segmented into Music/non-Music portions. Sec-
ond, the non-Music portions are further segmented into Speech-
over-music/non-Speech-over-music portions. Finally, the non-
Speech-over-music portions are segmented into Speech/Speech
over noise.

Table 6 is divided in two parts: the first part shows the
error for each class and the average error for the winning
herarchical-HMM system of the evaluation (HMM-Winn). The

Table 5: Results over the train files to select the priors for each
class in %

Prior of each class AVG Error
MU OT SM SN SP over the train files
0.20 0.20 0.20 0.20 0.20 15.95%
0.22 0.20 0.20 0.19 0.19 14.52%
0.24 0.20 0.20 0.18 0.18 13.75%
0.26 0.20 0.20 0.17 0.17 13.39%
0.28 0.20 0.20 0.16 0.16 13.23%
0.30 0.20 0.20 0.15 0.15 13.25%

last column shows the NIST metric used in the NIST RT Di-
arization evaluations [31] to compare the systems with a well-
known metric. To be able to compute the NIST error with the
herarchical-HMM system, we replicate the winning system ac-
cording to [12] (HMM-Rep). The second part of the table shows
FA segmentation-by-classification system (FA-Segm) after the
Viterbi smoothing with the priors of the Table 5. The last row
of the table shows the same FA system with a slight modifi-
cation introducing OT segments between SN and SP to model
the silence of the anchor before the coverage to avoid the false
alarms. The hierarchical-HMM systems detects better the MU
and SM segments than the FA systems due to the Chroma coef-
ficients in the features. However, SN and SP classes are much
better detected with the FA system decreasing the error of the
classes in 2% and 9% respectively. These classes represent
more that 3/4 of the total amount of the data, therefore the clas-
sification of the total time is also increased substantially. The
FA systems reduces the average error in a 2% with the Albayzin
metric and almost 3% with the NIST metric.

Table 6: Error per class and total error for Albayzin evaluation
winning system and Factor Analysis Segmentation system over
the test files in %

Error for each class
MU SM SN SP TOTAL NIST

HMM-Winn 19.2 25.0 37.2 39.5 30.2 -
HMM-Rep 16.3 24.0 38.8 40.8 30.0 19.3
FA-Segm 21.7 27.6 35.4 30.5 28.8 16.9

FA-Segm OT 21.7 27.6 34.0 29.5 28.2 17.5

5. Conclusion
This paper describes a new segmentation-by-classification sys-
tem based on Factor Analysis approach. The system has been
applied for the segmentation of BN. The task consists of the
segmentation of audio files and further classification into 5 dif-
ferent classes as proposed in the Albayzin 2010 evaluation. The
solution we propose here compensates the within-class variabil-
ity creating a channel matrix for each class and scoring the seg-
ments as the ratio between class/no-class. This approach has
been compared with HMM-GMM baseline systems and with
the winning system of the evaluation showing a significant im-
provement in both cases even if the best results in the evaluation
were obtained by an HMM/GMM based hierarchical system
that made use of MFCC along with Chroma features. Exper-
imental results show that the FA approach allows a significant
reduction in the classification of SP and SN and thus a reduction
in the average segmentation error rate.
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Abstract
This paper describes some recent results of our collaborative
work on developing a speech recognition system for the auto-
matic transcription or media archives from the British Broad-
casting Corporation (BBC). The material includes a wide di-
versity of shows with their associated metadata. The latter are
highly diverse in terms of completeness, reliability and accu-
racy. First, we investigate how to improve lightly supervised
acoustic training, when timestamp information is inaccurate and
when speech deviates significantly from the transcription, and
how to perform evaluations when no reference transcripts are
available. An automatic timestamp correction method as well
as a word and segment level combination approaches between
the lightly supervised transcripts and the original programme
scripts are presented which yield improved metadata. Exper-
imental results show that systems trained using the improved
metadata consistently outperform those trained with only the
original lightly supervised decoding hypotheses. Secondly, we
show that the recognition task may benefit from systems trained
on a combination of in-domain and out-of-domain data. Work-
ing with tandem HMMs, we describe Multi-level Adaptive Net-
works, a novel technique for incorporating information from
out-of domain posterior features using deep neural network. We
show that it provides a substantial reduction in WER over other
systems including a PLP-based baseline, in-domain tandem fea-
tures, and the best out-of-domain tandem features.
Index Terms: lightly supervised training, cross-domain adap-
tation, tandem, speech recognition, confidence scores, media
archives

1. Introduction
The British Broadcasting Corporation (BBC) has a stated aim
to open its broadcast archive to the public by 2022. Automatic
transcription, metadata extraction and indexing of such mate-
rial would give access to a large amount of content, indexing
historic content, and enabling search based on transcriptions,
speaker identity and other extracted metadata. However, tech-
nologies for this particular task are still underdeveloped. In the
scope of the Natural Speech Technology EPSRC project and in
collaboration with BBC Research and Development, we have
begun to investigate the automatic transcription of broadcast
material across different genres, using sparse or non-existent
associated metadata and text resources.

This research was supported by EPSRC Programme Grant
EP/I031022/1 (Natural Speech Technology). Thanks to Andrew Mc-
Parland, Yves Raimond and Sam Davies of BBC R&D

Automatic transcription of arbitrary, multi-genre media
content is a challenging task since the material to recognise
may include broadcasts in diverse environments and drama with
highly-emotional speech, overlaid background music or sound
effects. Recent work on this task has for instance included au-
tomatic transcription of podcasts and other web audio [1] auto-
matic transcription of Youtube [2, 3], the MediaEval rich speech
retrieval evaluation which used blip.tv semi-professional user
created content [4], and the automatic tagging of a large radio
archive [5]. On the other hand, in order to train models for
such large vocabulary continuous speech recognition systems,
text resources and other metadata are highly desirable to pro-
vide in-domain training data. The problem is that the nature of
these metadata may vary considerably over archive material in
terms of completeness, reliability and precision. This partly re-
flects the large epoch (decades) that the data covers. A range
of techniques have been proposed for this purpose such as the
lightly supervised training approach [6], based on a biased lan-
guage model (LM) decoding, and several methods have since
been proposed along this line to improve upon this approach
[7, 8, 9, 10].

In recent work described in [11, 12] which will be reviewed
in this paper, we focused on two aspects related to the build-
ing of systems for automatic transcription of multi-genre me-
dia archives: lightly supervised training and evaluation using
out-of-domain data. We recently proposed in [12] an approach
in which phone level mismatch information is used to identify
reliable regions where segment-level transcription combination
can be used. Schemes for combining the imperfect original tran-
scriptions with the confusion networks (CN) generated during
the biased LM decoding can then be applied to leverage differ-
ences in the characteristics of the two forms of transcriptions.
An evaluation technique based on ranking systems using im-
perfect reference transcripts was used to evaluate system per-
formance. Secondly, in [11], we focused on the development
of methods which can effectively combine in-domain and out-
of-domain training data, using neural networks in the tandem
framework [13] whereby context-dependent hidden Markov
models (HMMs) with Gaussian mixture model (GMM) output
distributions are trained on standard acoustic features concate-
nated with features derived from neural networks. A novel tech-
nique for posterior feature combination in a cross-domain set-
ting and referred to as Multi-Level Adaptive Networks (MLAN)
was then proposed. This technique has been investigated using a
multi-genre broadcast corpus built from the data provided by the
BBC, in terms of cross-domain speech recognition using differ-
ent acoustic training data sources across different target genres.
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The new technique was evaluated in terms of a discriminatively-
trained speaker-adaptive speech recognition system, comparing
in-domain and out-of-domain posterior features with the fea-
tures obtained using MLAN.

The rest of the paper is organised as follows. In Section
2 the available BBC datasets are presented. Section 3 presents
lightly supervised approaches for the correction of timestamp
positions and the proposed transcription combination schemes.
Finally, Section 4 presents the multi-level adaptive network
scheme for the transcription of multi-genre data followed by
conclusions in Section 5.

2. Description of the BBC datasets
The stated aim of the BBC to open its broadcast archive to the
public by 2022 will give access to a very large amount of data:
potentially 400,000 television programmes, over 700,000 hours
of video and 300,000 hours of audio. A large amount of meta-
data associated to these data will be available from the Infax
cataloguing system which allows to access tags manually at-
tributed to programmes in varying levels of detail (more than
600,000 items) some of which are already publicly available. In
the scope of our collaboration with BBC research and develop-
ment started in 2011, six different sets of shows with their as-
sociated metadata have been provided for the investigation and
the development of methods and systems for automatic tran-
scription of broadcast material across the full range of genres.

2.1. Diverse shows/genres

The six sets contain speech that is mostly British English with
a range of regional accents and audio contents covering a broad
range of genres, environments and speaking styles that we de-
scribe below.

Radio4-1day: contains 36 talk-radio programmes broadcast on
the same radio channel (BBC Radio 4) over 24 hours in Febru-
ary 2009. The duration of programmes range from 2 minutes
for weather report to 3 hours for morning news/current affair
programmes to give a total duration of 18 hours. The audio
material covers different genres: news, weather reports, book
readings, documentaries, panel games and debates.

Archives: contains 136 radio and TV programmes some of
which are publicly available on the BBC archives website
(http://www.bbc.co.uk/archive). It includes 399 episodes rep-
resenting 271 hours of raw audio data with 146 hours of active
speech. Episodes were recorded from 1970 to 2003. As for
the Radio4-1day dataset, audio material covers a broad range of
genres, environments and speaking styles.

Desert Island Discs: is a radio programme broadcast on BBC
Radio 4. Each week, a guest is asked to choose eight pieces of
music, a book and a luxury item that they would take if they
were to be castaway on a desert island, whilst discussing their
lives. It includes only two speakers in each show, the presenter
and the guest, and small portions of music. This set includes
180 episodes representing 108 hours of raw data with 88 hours
of active speech.

Reith Lectures: are a series of annual radio lectures on sig-
nificant contemporary issues, delivered by leading figures from
their relevant fields. The set includes 155 episodes, covering the
years from 1976 to 2010. Each lecturer had 3-6 episodes pre-
sented at different times. Each episode is composed of several
regions: the lecture region given by the lecturer, a non-lecture
region which contains the introduction to the lecture by a pre-

senter and since 1988, a question and answer session after the
main lecture. The duration of each episode ranges from 18-35
minutes, to give a total audio duration of 72 hours from which
71.3 hours of lecture region data were extracted.

TV-drama: includes 14 episodes of a science fiction TV-drama
series broadcast in 2010. Episode durations range from 40-75
minutes, to give a total duration of 11 hours.

TV-1week: includes 169 unique shows and 333 episodes broad-
cast on 4 BBC TV channels during the week of May 5th, 2008
through May 11th, 2008 representing 236 hours of raw audio
data. The duration of the programmes ranges from 3 minutes to
4 hours. A list of genres covered by the programmes was pro-
vided with up to 85 different categories, although programmes
typically get assigned to more than one genre. This categorisa-
tion includes drama series, soap operas, different types of docu-
mentaries, live sports, broadcast news, quiz shows or animation
programmes.

The available audio material contained in these sets covers dif-
ferent genres and a broad range of environment and speaking
style. For purposes of analysis, we divided the data into three
categories by broad genre:

studio: in which speech is controlled, recorded in studio con-
ditions or news reports, sometimes including telephone speech
from reporters or contributors;

location: which includes material produced on “location”
including for instance parliamentary proceedings;

drama: TV drama series, containing dramatic, fast emotional
speech, and high background noise levels, making ASR partic-
ularly challenging.

2.2. Available metadata

Metadata associated to the dataset presented in the last section
varies over time, shows and media type. These can be more or
less complete, accurate and reliable. In the following we first
classify the metadata into three types. We then introduce the
issues related to each type of metadata.

type1: transcriptions are produced manually and timestamps
are provided (quantised to 1s) as well as speaker names and ad-
ditional metadata such as indications of music or sound effects.
This type of metadata is available for Radio4-1day, Desert Is-
land Discs and the Archives dataset.

type2: transcriptions are not verbatim, timestamps are not
provided and a number of errors which depend on the degree to
which the speaker deviated from the original script. This type of
metadata is typical of the Reith Lectures dataset in which scripts
were used by lecturers from which they were free to deviate.

type3: transcriptions are derived from subtitles for hearing
impaired, timestamps are provided as well as and other meta-
data such as an indication of music and sound effects, or indi-
cations of the way the text has been pronounced. Most of the
shows include several speakers. Speaker identities are indicated
by the use of several different text “colours” (which are used for
subtitle display) . Timestamps were found to be unreliable due
to time-lags that occur in subtitles, presumably arising from the
re-speaking process for subtitle creation. This type of metadata
is the one used for the TV-drama and TV-1week datasets.

These different types of metadata can be characterised in
terms of completeness, accuracy and reliability. The metadata
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can be more or less complete: the transcription can cover all the
episode, or just a part of it, the timestamp information can also
be available or not (e.g type2). The available metadata also
varies over shows: some include speaker ID, sound event indi-
cations, title of music, programme genre. In terms of accuracy,
transcriptions may include annotation of disfluencies and quan-
tisation of the timestamps also may vary over shows (e.g 1ms
for type3 to 1s for type1). Finally, the reliability varies over
the different types of metadata: type1 include manual tran-
scriptions and are considered to be more reliable even though
they might include some variations depending on the transcriber
and some episodes transcribed according to type3 were found
to have time-lag. Finally the reliability of type2 metadata
varies over episodes depending on speakers who can deviate
differently from scripts.

3. Lightly Supervised Approaches
Most of the issues related to metadata described in the last sec-
tion may be solved by lightly supervised approaches. In conven-
tional lightly supervised training [6], a biased language model
(LM) trained on the transcriptions (closed-captions) is used to
recognise the training audio data. The recognition hypotheses
are then compared to the close-captions and matching segments
are filtered to be used in re-estimation of the acoustic model pa-
rameters. The entire process is carried out iteratively, until the
amount of training data obtained converges. This kind of ap-
proach can first be used for the correction of timestamps when
these are unreliable, imprecise or simply non-existent such as
type2 metadata. It then can be used when transcriptions are
unreliable in order to select data for the training of acoustical
models. We first describe our method for timestamp correc-
tion before presenting our approach for non-reliable transcrip-
tion based on combined transcriptions. We finally investigate
an evaluation technique based on ranking systems using imper-
fect reference transcription when no reference transcription is
available.

3.1. Timestamp correction

Timestamps can be inaccurate due to quantisation effects
(type1), unreliable due to time-lags that can occurs in sub-
titles (type3) or simply nonexistent (type2). They can how-
ever be corrected using a lightly supervised approach in the fol-
lowing way [14], which will also be used in section 3.2. Each
show is first segmented and segments are clustered according
to speakers using the CU RT-04 diarisation system [15]. Each
speech segment is decoded using a two-pass1 (P1-P2) recog-
nition framework [16, 17] including speaker adaptation, with
the decoding employing a biased language model (LM). This
biased LM is initially trained on the original transcription (de-
noted as origTrans in the following) and then interpolated with
a generic language model, with a 0.9/0.1 interpolation weight
ratio. This results in an interpolated LM biased to the origi-
nal in-domain transcripts. The vocabulary is chosen to ensure
coverage of words from the original transcripts. The decoder
output is then compared with the raw transcription to identify
matching sequences. Non-matching word sequences from the
raw transcription are force-aligned to the remaining speech seg-
ments. Finally, once realigned, the position of timestamps can
be corrected.

1the output lattices generated in the second pass (P2 stage) when
generating the 1-best hypotheses are used to generate confidence scores
for both automatic transcriptions and the original transcriptions in sec-
tion 3.2.

3.2. Combined transcriptions
There are two main issues with the conventional lightly super-
vised approaches related to type2 metadata. As the original
imperfect transcriptions deviate more from the correct ones, the
constraints provided by the biased LM are increasingly less ap-
propriate. This leads to a greater mismatch between the original
transcriptions and the biased LM decoding hypotheses, which
results in a reduction in the amount of usable training data af-
ter filtering is applied. Moreover, information pertaining to the
mismatch between the original transcriptions and the automatic
decoding outputs is normally measured at the sentence or word
level. As acoustic models used in current systems are normally
constructed at the phone level, the use of phone level mismatch
information is preferable [9]. In [12], we proposed a method for
the selection of training data using unreliable transcriptions. In
this method, phone level mismatch information is used to iden-
tify reliable regions where segment-level transcription combi-
nation can be used. Schemes for combining the imperfect origi-
nal transcriptions with the confusion networks (CN), generated
during the biased LM decoding, can then be applied to leverage
the different characteristics of the two forms of transcriptions.

3.2.1. Segment-level combination

Mismatch information at phone level is useful in order to de-
rive combined transcriptions for the selection of training data.
In order to exploit this information when the original and au-
tomatically decoded transcriptions disagree significantly, seg-
ment level phone difference rate2 (PDR) is used to select the
segments in the original transcriptions (origTrans) that can be
combined with the automatically derived hypotheses (aHyp)
outputs. To do so, (i) origTrans is first mapped into each of
the aHyp segments using standard dynamic programming align-
ment, unmapped words being discarded. (ii) The mapped tran-
scriptions are then force-aligned to obtain the phone sequences
from which (iii) the PDR between the two force-aligned phone
sequences can be calculated, if both exist. Finally, (iv) segment
selection can be performed by selecting segments from orig-
Trans which have a PDR values less than a threshold optimised
on a held-out dataset. The remaining segments are then filled in
to yield the transcriptions for the full training data set.

3.2.2. Word-level combination

When the mismatch between the original transcripts and the 1-
best biased LM decoding hypotheses is large, the amount of
training data is reduced dramatically. In this case, the hypothe-
ses can be combined with the original transcripts by consider-
ing word level consensus networks [18], in order to limit this
reduction. However, the assumption that the imperfect tran-
scription is always present in the biased LM CN network can be
too strong in cases like type2 transcriptions in which lectur-
ers may deviate significantly from their initial script. To handle
this issue, a modified word level CN based transcription com-
bination scheme can be used: if the word given by the original
transcription is not found in the lattice, the word with the high-
est confidence score in the biased LM lattice is selected. To do
so, (i) origTrans is first mapped into each of the aHyp segments
as was carried out for the segment-level combination. (ii) Us-
ing the lattices generated in Section 3.1 to obtain the aHyp seg-
ments, the lattice arc posterior ratio (LAPR) presented in [19] is
calculated as the confidence score (CS) for each word in aHyp.
(iii) A “virtual” confidence score (because they are not confi-

2the traditional segment-level phone error rate is calculated but this
is a PDR as there are no accurate transcriptions
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dence scores in the usual sense) based on hard assignment is
associated with each word in the mapped origTrans. If there
are alternative word candidates in the lattices which agree with
the word in origTrans, a score larger than the maximum value
of LAPR is assigned as the confidence score (1.2), otherwise,
the confidence score is set to 0.0. Finally, (iv) after confidence
scores have been assigned to all words in both aHyp and in orig-
Trans, ROVER [20] is used, taking the confidence scores into
account, to do the transcript combination, yielding the final set
of “best” word sequences for each segment.

3.3. Evaluation considering relative measures
Most lightly supervised training research has been focused on
improving only the quality of the training transcriptions, assum-
ing that the correct transcriptions are available for test data used
in performance evaluation. However, for many practical ap-
plications accurate transcriptions that cover many diverse tar-
get domains can be impractical to manually derive for both the
training and test data. Hence, alternative testing strategies that
do not explicitly require correct test data transcriptions are pre-
ferred [21]. Here, we investigated the reliability of a perfor-
mance rank ordering, given by the origTrans as an approximate
reference transcription. Should such a rank ordering be con-
sistent with that generated by the gold standard reference on
the hand labelled data, it was then hoped that origTrans could
be used for other larger sized test sets that don’t have accurate
transcripts

3.4. Experiments and results
To validate our proposed approach, experiments were run on
the Reith Lectures dataset for which metadata are of type2
as lecturers deviated more or less from their original prepared
scripts during their speech. For the experiments, data were di-
vided into a training set of 68 hours, a test set of 2.5 hours and
two episodes of 0.8 hours of gold standard transcripts. A first
comparison between origTrans and aHyp transcriptions carried
out at the episode level, according to the word difference rate
(WDR3) in the lecture regions, showed that difference rates vary
strongly between speakers. The effectiveness of the segment
and word level combination approaches was then validated on
the gold standard transcrips, both word-level and best segment-
level combined transcriptions achieving similar significant re-
ductions in phone error rate (PER) and word error rate (WER)
over the performance of the origTrans and aHyp transcriptions
indicating that more accurate transcriptions could be obtained
from the transcriptions combination. Given these preliminary
results, we then investigated how real speech transcription sys-
tems are affected by training acoustic models using the com-
bined training data transcriptions. Results obtained from the
real transcription systems and detailed in [12] showed that both
of the combination approaches investigated provide more ac-
curate transcriptions than the original lightly supervised tran-
scriptions, resulting in improved ML and MPE models. For
MPE models, a reduction of 0.6% absolute and 1.1% abso-
lute of WDR is obtained when using segment and word level
combined transcriptions respectively, instead of aHyp (17.4%
WDR), when added to a multi-genre broadcast dataset with ac-
curate transcriptions. We also showed that rank ordering of the
WER and WDR pairs derived from origTrans and from the gold
standard transcript was consistent, allowing to use the origTrans
as reference for other larger sized test sets that don’t have accu-
rate transcripts.

3The WDR is calculated in the same manner as the traditional word
error rate, but this is a WDR as there are no accurate transcriptions

4. Multi-genre transcription using
out-of-domain data

We now move our focus to a second aspect of the development
of systems for the automatic transcription of media Archives
which aim to effectively combine in-domain and out-of-domain
training data. State-of-the-art transcription systems built for
domains such as conversational telephone speech (CTS), and
North American broadcast news (BN) perform with low accu-
racy on multi-genre data such as the BBC ones described in sec-
tion 2. This is mostly due to the high mismatch in environment,
speaking style, speaker and accent. Unsurprisingly, in-domain
HMM-GMM systems trained on these data outperform these
out-of-domain (OOD) systems, despite the fact that there is an
order of magnitude less in-domain training data. For the pur-
pose of the transcription of BBC archives, we then focused on
the development of methods which can effectively combine in-
domain and OOD training data using neural networks. Intensive
research has been carried out recently on deep neural networks
(DNNs) with promising results [22, 23]. We have used DNNs
with generative pre-training to obtain posterior features used in
the tandem framework [13] which is attractive for cross-domain
modelling, since it allows independent adaptation of the GMM
and DNN parameters. We recently proposed in [11] a novel
technique called Multi-Level Adaptive Networks (MLAN) for
posterior feature combination in a cross-domain setting. This
technique, which will be presented below, has been investigated
on a subset of the BBC dataset presented in section 2 in terms of
cross-domain speech recognition using different acoustic train-
ing data sources across different target genres. It has then been
evaluated in terms of a discriminatively-trained speaker adap-
tive speech recognition system, by comparing in-domain and
out-of-domain (OOD) posterior features obtained using the pro-
posed method.

4.1. Multi-Level Adaptive Networks

In our proposed method, DNNs are trained to model frame
posterior probabilities over monophones. The structure of the
DNNs is fixed following analysis of the frame error rate on
held-out validation data and monophone log-posterior probabil-
ities output from the nets are decorrelated using a single PCA
transform with dimensionality reduced to 30 [13] to obtain the
posterior features. These are then concatenated with the origi-
nal acoustic features. Using initial OOD DNN adapted to a new
domain, can be viewed as imposing a form of regularisation on
the resulting net. However we observed small benefits when us-
ing deep architectures and fairly large quantities of in-domain
data. We therefore proposed an alternative adaptation proce-
dure called Multi-level Adaptive Networks (MLAN). In the first
level of this MLAN scheme, networks trained on OOD acous-
tic data are used to process in-domain acoustic data to gener-
ate posterior features, which are concatenated with the original
in-domain acoustic features as in the tandem framework. We
would expect the OOD posterior features to enhance the dis-
criminative abilities of the simple in-domain acoustic features.
In the second level, additional DNNs are trained, using the first
level tandem features as input, to minimise an in-domain objec-
tive function of log-posterior phone probabilities. The outputs
from these DNNs are then used to generate the final tandem fea-
tures for HMM training. Finally, by expanding the input tandem
feature vector used at the second level, output from multiple net-
works, trained on different domains, may be included with no
modification to the architecture. The main motivation for the
MLAN scheme is that the new DNNs, trained discriminatively,
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1-pass (unadapted) 2-pass (adapted)
Feature set Studio Location Drama All Studio Location Drama All

PLP 12.0 25.9 58.8 32.7 11.5 23.6 58.9 31.8
BBC tandem 11.7 23.3 54.9 30.4 11.3 22.3 54.4 29.8
AMI tandem 11.3 22.6 55.0 30.1 11.1 21.5 54.2 29.4

AMI+CTS MLAN 10.2 20.9 50.5 27.6 9.8 20.0 50.2 27.1

Table 1: Final MPE system results (WER%) on the 2.3h test set using PLP, tandem and MLAN features.

are able to learn which elements of the OOD posterior features
are useful for discrimination in the new domain; whilst the di-
rect inclusion of in-domain acoustic features in the input means
that the resulting frame error rates ought never to be worse than
DNNs trained purely in-domain. The additional generative pre-
training carried out ensures that the new DNN does not over-fit
to the in-domain data. More details (e.g DNN structure) and
explanation of the method can be found in [11].

4.2. Experiments
Experiments were conducted on the Radio4-1day and the TV-
drama dataset divided into the three categories by broad genres
defined in Section 2.1 (studio, location, drama). Tran-
scriptions were found to be reliable but timestamps were cor-
rected according to the procedure detailed in Section 3.1, giving
a total of 23 hours of transcribed and aligned speech in total.
The data were divided at the show level into a training set of
20.7 hours and a test set of 2.3 hours, each containing roughly
the same balance across genres. For the out-of-domain data,
two diverse sets were used. The first one included 277 hours of
US-English conversational telephone speech (CTS) taken from
the switchboard I, switchboard II and CallHome corpora. The
second set consisted of Recordings from the Augmented Multi-
Party Interaction (AMI) corpus. Concerning the system archi-
tectures, development experiments were performed using a sim-
ple one-pass system and the final evaluation system was trained
using MPE discriminative training [24] and had a two-pass de-
coding architecture.

4.2.1. Development experiments

Recognition of the test set was first performed using two OOD
acoustic models trained on PLP features from the AMI and CTS
training set. The results demonstrate the large acoustic mis-
match between these domains and the BBC domain. The per-
formance of tandem features was then investigated by compar-
ing models trained purely on the BBC training set with models
trained on tandem features obtained using OOD nets. It was
found that OOD tandem features from AMI and CTS improved
performance for all genres (with the overall WER initial value
equal to 39.4% reduced by 5.6% absolute and 3.9% absolute
using AMI and CTS features respectively) compared to simple
PLP features supporting earlier work suggesting that posterior
features are portable across domains. With respect to the broad
genres, it was found that CTS and AMI OOD posteriors are both
better for Studio speech by comparison with the BBC tandem
results, AMI is best for Location speech and equally matched
with in(domain features for Drama speech, which is the genre
most mismatched to the OOD acoustic models. Performance of
the MLAN was then investigated and showed substantial addi-
tional gains over standard tandem features, for both domains.
The CTS posteriors which were worst-matched to the BBC do-
main, gain the most benefit from MLAN with a 3.6% absolute
WER reduction overall (initial value 35.5%). The combination
of both OOD posterior features with MLAN reduces WER still
further, suggesting the second-level DNN is successfully able

to exploit complementary information between AMI and CTS.

4.2.2. Final system evaluation
For the final system evaluation, the best-performing in-domain
and out-of-domain tandem features, and the best MLAN fea-
tures, were selected for use in training a more competitive final
system. Table 1 shows the final system results on the test set
with and without speaker adaptation. The HMMs were trained
with MPE only on the BBC training set using STC-projected
PLP features and the relevant posterior features. All the new
features outperformed the baseline PLP features in both the un-
adapted and speaker adapted MPE systems. This supports the
preliminary results from the development system and indicates
that the posterior features can bring complementary informa-
tion to the PLP features even when the HMMs are trained using
MPE. Moreover, the overall improvement over the baseline PLP
features, in both the unadapted speaker-adapted systems was
dramatic, with absolute WER reductions of 5.1% and 4.7% re-
spectively. Table 1 shows that speaker adaptation is effective in
reducing the WER for all three posterior feature sets, compared
with the baseline PLP features which only offers gains for the
Location and Studio subsets, although for these two subsets, the
gains from adaptation are larger than for the posterior features.
It was then hypothesised that the posterior features are better
able to capture speaker-invariant information in these subsets,
whilst in the noisy drama subset, are able to model speaker-
dependent structures more effectively than PLPs.

5. Conclusions and Future work
We presented our joint work on the development of a speech
recognition system for multi-genre media archives from the
BBC using limited text resources. We first described the differ-
ent BBC datasets which were provided with their diverse audio
content and metadata.We then focused on improving the tran-
scription quality of acoustic model training data for the BBC
archive task. Combination at both the word and segment level-
level of the original transcriptions, with the lightly supervised
transcription generated by recognising the audio using a biased
language model has been presented. This provides more ac-
curate transcriptions than the original lightly supervised tran-
scriptions, resulting in improved models. We then presented the
MLAN method for recognition of multi-genre media archives
with neural network posterior features, successfully using out-
of-domain data to improve performance. Results consistently
show that our Multi-Level Adaptive Networks scheme results
in substantial gains over over other systems including a PLP-
based baseline, in-domain tandem features and the best out-of-
domain tandem features. Future work will investigate further
transcription combination approaches and testing schemes with
imperfect transcription references. We also plan to investigate
the MLAN technique in an HMM-GMM system that also incor-
porates speaker-adaptive training and fMPE transforms and to
adapt the method for use in a hybrid DNN system. Finally the
proposed approaches will be conducted on larger datasets such
as Archives and TV-1week.
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Abstract
In this paper we investigate the exploitation of loosely tran-
scribed audio data, in the form of captions for weather forecast
recordings, in order to adapt acoustic models for automatically
transcribing these kinds of forecasts. We focus on dealing with
inaccurate time stamps in the captions and the fact that they
often deviate from the exact spoken word sequence in the fore-
casts. Furthermore, different adaptation algorithms are com-
pared when incrementally increasing the amount of adaptation
material, for example, by recording new forecasts on a daily
basis.
Index Terms: speech recognition, acoustic model adaptation,
slightly supervised training, loose transcripts, adaptation meth-
ods

1. Introduction
Within the European Union’s 7th Framework Programme’s
project (Bridges Across the Language Divide) (EU-BRIDGE) 1

several tasks on automatic speech recognition are defined over
different data sets. The active domains are TED talks2, a col-
lection of public talks covering a variety of topics, academic
lectures and weather bulletins. For the TED task large collec-
tions of training data are readily available which are the basis
for the IWSLT ASR evaluation track [1]. The mismatch be-
tween training and testing data pertains to speaker and domain
yet style is relatively consistent. The approximate transcripts of
the talks are very close to verbatim. For lectures there is com-
paratively little training data available. Thus, general models
are adapted on small data sets that often do not even have tran-
scripts. Unsupervised adaptation must account for mismatches
in speaker, domain and style. The weather bulletin data on the
other hand is a new and still very small data set that has weak
references in the form of captions. Again, general models must
be adapted in a supervised/semi-supervised manner to account
for mismatches in style, domain and speakers.

This paper investigates different approaches for acoustic
model adaptation on weather forecasts when captions are avail-
able. Of special interest is the question of how to deal with
imperfect transcripts and unlabeled non-speech audio as inves-
tigated by [2]. Similar to [3] we investigate the possible im-
provements of a system by unsupervised acoustic model train-
ing depending on the amount of training data and the reliability
of transcripts. Similar to [4, 5], we made use of word level con-
fidence scores. However, we did not exclude data from training

1http://www.eu-bridge.eu
2http://www.ted.com

based on the word posteriors of the transcription, as we have too
little training data available as that we could afford to lose some
of it. Our training conditions can be compared to [6] where
new data for retraining comes from the same speaker, channel
and related conversation topics. Following the implications of
[7] we add low confidence score data to the training, but un-
like in other work we apply word-based weighting in order to
compensate for errors, as it was done by [8] for acoustic model
adaptation. The assumption is that erroneous data is helpful to
improve system generalization. Unlike other work, e.g. [9], we
did not use a lattice-based approach. Furthermore we study the
choice of a good adaptation method with increasing adaption
set sizes. We assume that sufficient amounts of training data
are available in order to transition from transform based tech-
niques, such as maximum likelihood linear regression and its
feature space constrained version [10], to maximum likelihood
[11] or maximum a posteriori parameter re-estimation [12].

2. The BBC Weather Data
The BBC weather data consists of audio recordings of British
weather forecasts and manually generated captions. There are
two different kinds of forecasts: general bulletins and regional
forecasts. The captions for the general bulletins are prerecorded
and therefore more accurate than the live captions for the re-
gional weather forecasts.

The data used consists of audio of forecasts recorded be-
tween 2008 and 2012 with roughly 50 different speakers. This
information is only an estimate since the tagging of speaker
names is partly imprecise and inconsistent, and the airing date
of the shows is not always given.

Although the speakers are well trained there are some hes-
itations, grammar errors or lengthy formulations in the record-
ings which are corrected in the captions (some examples are
shown in Table 1). The captions therefore can only be regarded
as loose transcripts.

Capt. We had some more typical summer weather
Verb. We had some more of this typical summer weather
Capt. Downpours across England and Wales
Verb. Downpours whistling across England and Wales

Table 1: Two examples for differences between captions (Capt.)
and the verbatim word sequences (Verb.). Words omitted in the
caption are bold-faced.

Captions are only provided for the forecast itself with time
markers relative to the beginning of the forecast but without ab-
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solute positions in the recording. Also, the recordings often
contain untranscribed parts at the beginning—such as trailers
and introductions by different speakers—and advertisements at
the end. The length of the untranscribed parts in the audio dif-
fers, so it is not possible to simply cut it off at a specific time,
in order to just obtain the portion of the data that is actually
captioned.

For the test corpus described in Section 5 careful transcrip-
tions were available in addition to the captions also covering
only the forecast itself, leaving out introduction and trailers. To
determine the general degree of faithfulness of the captions as a
(training) reference we computed the word error rate (WER) be-
tween the verbatim references and the captions. Table 2 shows
the result of this on the test data. It can be seen that the captions
and the verbatim transcriptions are rather close, indicating that
the speakers are indeed well trained.

Case Sensitive Case Insensitive
WER 7.4% 5%
# words in reference 12007 12007
Total # errors 890 600
# Substitutions 434 144
# Insertions 21 21
# Deletions 435 435

Table 2: WER between the captions and the verbatim tran-
scripts of the test set, and statistics on the types of errors.

The captions’ data format contains timestamps that indicate
when individual captions are displayed, however these need not
exactly correspond to when the respective words were spoken,
because captions have to adhere to further constraints in addi-
tion to when they were spoken. E.g., they have to adhere to
a certain letter rate in order to be readable, have to maintain a
certain distance from scene changes and may not span several
scenes. The timing information is therefore too inaccurate to be
taken as timestamps in the audio.

3. Preprocessing: Finding Suitable Start
and End Times

Due to the inaccuracy of the timing information we need to
align the captions to the audio to be able to use them as loose
transcripts. A naı̈ve Viterbi alignment of the concatenated cap-
tions to the corresponding audio file leads to suboptimal results
due to the large untranscribed parts in the audio.

To make sure that we use only audio that is properly tran-
scribed we decode the audio data, align the resulting hypotheses
to the captions and search for the first and last matching trigram.
The start time of the first word of the first trigram is used as the
start time of the loose transcript and the end time of last the
word of the last trigram as end time. The words preceding the
first trigram and following the last trigram are deleted from the
transcript. This leads to some data loss but the start and end
times can be iteratively refined by repeating the decoding and
cutting after the model was adapted on the data obtained in the
previous iteration.

Even after one iteration of model re-estimation the amount
of data that is lost due to the cut-off is rather small. We tested
the approach on a subset of 16 hours of audio data (parts 1-4
of the final database as described in Section 4). The acoustic
model as well as the language model of the system used for
decoding were trained on British general broadcast data. The

baseline system is described in more detail in Section 5. On the
test set described in Section 5 this system’s WER was 31.9%.
The baseline system was adapted on the raw recordings and then
achieved a WER of 23.2%. This adapted system in turn was
used to refine the start and end times of the audio it was adapted
on. After cutting, the amount of audio data was reduced by ap-
proximately 37% but the text of the original captions only by
around 6%. When applying this method to the final database,
the reduction of audio data decreased to 35.1% and the percent-
age of removed words in the reference to 4.9%. So the cut off
audio data consists of a small part of transcribed data plus a very
large part of unwanted data.

The different results for the subset and the final database
result from the small amount of data in total and from the fact
that the length of introductions and trailers differs significantly.
Although this heuristic for finding usable start and end times is
rather simple, it is convenient for the given task, as only 4.9%
of words in the reference were lost.

4. Experimental Set-Up and Data
All experiments were performed with the Janus Recognition
Toolkit (JRTk) developed at Karlsruhe Institute of Technology
and Carnegie Mellon University [13].

The training of our Hidden Markov Model (HMM) based
acoustic model tries to maximize the likelihood of the model
on the training data. In Viterbi training only the most probable
HMM state sequence is computed and used for re-estimating
the HMM’s parameters. In Expectation Maximization (EM)
training all possible alignments are taken into consideration for
model estimation. Both training techniques work iteratively and
require an initial set of model weights which are improved over
several iterations of model re-estimation. Adaptation can be
done by performing one iteration of model parameter estima-
tion on new adaptation data using an existing set of models that
was trained on different, out-of-domain data. As an alternative
maximum-a-posteriori (MAP) estimation using the models of
an existing speech recognizer as seed models for the ML esti-
mation of the model parameters was investigated—again on the
adaptation data. Various weighting factors τ to control the in-
fluence of the seed model were evaluated. We denote the MAP
weights as (Weight of the seed model ·100 |Weight of the adap-
tation data ·100).

From past experience these approaches are known to out-
perform maximum likelihood linear regression (MLLR) adapta-
tion of acoustic models when the training data exceeds roughly
1.5hrs. The amount of available adaptation data suggested
MLLR adaptation to be inferior, thus it was omitted.

Since the captions are not verbatim transcripts we expected
the Viterbi as well as the EM training to suffer from transcrip-
tion errors. The EM algorithm should not be affected as badly
as the Viterbi approach, since all possible HMM state sequences
are considered and not only the most likely one. To over-
come the problem of transcription errors we tried altering the
transcripts by introducing successions of filler states between
words, that are intended to be aligned to feature vectors from
words missing from the transcript. As a final alternative we
tested two kinds of unsupervised adaptation on transcripts of
the adaptation data that are in fact hypotheses produced by the
unadapted speech recognition system. The statistics accumu-
lated in training over these transcripts are either weighted by
the confidence value of the respective hypothesis word or the
weights are set to 1.0 for all words.

We split up the data and adapted the general system de-
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scribed in Section 5 with the different algorithms on different
growing subsets of the database. Periodically new packages of
data were made available. Our final database consists of the 6
parts described in Table 3.

Part
Number

# files Comment Duration / hours
(net duration)

1 50 bulletins part 1 3.87 (2.43)
2 50 bulletins part 2 4.04 (2.48)
3 50 bulletins part 3 3.89 (2.44)
4 51 bulletins part 4 3.88 (2.49)
5 103 bulletins part 5 7.46 (4.86)
6 54 regional forecasts 1.07 (1.00)
Σ 24.21 (15.7)

Table 3: Overview of the parts the final database consists of.
The size of the general bulletins files varies between 180 and
410 seconds.

Part 6 (regional forecasts with live captions) contains cap-
tions considered to be less verbatim even than the material in
the rest of the database. These captions are produced on the fly
during live airings and the results depend on the ability of the
captioner to keep up with the speaking rate of the presenter.

Since not all parts of the data were available when the ex-
periments began, we tested the general viability of some adap-
tation approaches only on initially available subsets of the final
training data. We tested only the most promising techniques on
the larger databases.

5. Results
For all tests a semi-continuous system was used as baseline sys-
tem to be adapted on the given adaptation data.

As front-end we used mel-frequency cepstral coefficients
(MFCC) with 13 cepstral coefficients. The mean and variance
of the cepstral coefficients were normalized on a per-utterance
basis. 15 adjacent frames were combined into one single fea-
ture vector. The resulting feature vectors were then reduced to
42 dimensions using linear discriminant analysis (LDA).

The acoustic model is a context dependent quinphone sys-
tem with three states per phoneme, and a left-to-right topology
without skip states. It uses 24,000 distributions over 8,000 code-
books. The model was trained using incremental splitting of
Gaussians (MAS) training, followed by semi-tied covariance
(STC) [14] training using one global transformation matrix, and
one iteration of Viterbi training. The acoustic models have up to
128 mixture components per model and a total of 591k Gaus-
sian components. All models use vocal tract length normaliza-
tion (VTLN)[15].

The system was trained on about 200 hours of carefully
transcriped British general Broadcast data.

A baseline 4gram case sensitive language model with modi-
fied Kneser-Ney smoothing was built for 36 sources with a total
word count of 2,935.6 million and a lexicon size of 128k words.
This was done using the SRI Language Modeling Toolkit [16].
The language models built from the text sources were interpo-
lated using interpolation weights estimated on a tuning set re-
sulting in a language model with 59, 293k 2grams, 153, 979k
3grams and 344, 073k 4grams. For decoding, a pronunciation
dictionary was used containing 142k entries.

A second, smaller 4-gram language model was trained on
the references of the acoustic model training data containing

61, 738 words increasing the lexicon size to 129k words. This
was interpolated with the baseline language module to produce
an adapted language model. Adding pronunciations and vari-
ants for the new words in the lexicon to the pronunciation dic-
tionary increased its size to 144k entries.

5.1. Test Set

The test set contains 54 minutes of general weather bulletins,
the captions for which were manually corrected to be verbatim
transcripts. Correct start and end times were also manually de-
termined.

5.2. First Adaptation Tests

First adaptation tests were done on a subset of the final database
originally containing 16 hours of audio data and 10.6 hours after
recalculation of start and end times as described in Section 3. Of
all 6 parts of the final database the first tests were only done on
the first 4. Table 4 shows a comparison of the results of the
adaptations via one iteration of the Viterbi or the EM algorithm,
and the Viterbi-based MAP estimation. Viterbi re-estimation
using the original start and end times was used as an additional
baseline.

To limit time and memory consumption a segmentation of
the audio files using a partial Viterbi-Alignment was performed
instead of aligning over whole audio files.

System WER
Baseline 31.9%
Viterbi 1 iteration 20.9%
Viterbi 2 iterations 26.5%
EM 1 iteration 21.5%
EM 2 iterations 32.1%
MAP 20/80 20.7%
MAP 40/60 20.5%
MAP 60/40 21.0%
MAP 80/20 21.6%

Table 4: First adaptation results on a subset of the final
database.

It can be seen that the EM re-estimation achieves worse re-
sults than the Viterbi re-estimation. These results however are
not comparable since our EM training fails for a considerable
amount of the training data (approximately 31%). This may be
due to the implementation being optimized under the assump-
tion of accurate transcripts and although a pruning technique is
applied the EM training exceeds the memory limit for long ut-
terances. Tuning the pruning parameter of the EM algorithm
might alleviate this problem.

After two iterations of Viterbi re-estimation the systems
performance degrades since the adaptation over-fits to the adap-
tation data.

5.3. Results on the Iteratively Growing Database

Viterbi estimation and Viterbi MAP estimation were tested
in multiple configurations trained on different parts of the
database. Results are shown in Table 5 and Figure 1.

It can be seen that Viterbi MAP adaptation outperforms the
Viterbi ML re-estimation for all sizes of the database but the
difference in performance decreases the larger the amount of
training data is. Figure 2 shows the corresponding results of the
tests using the adapted language model. Here the difference in
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database parts Viterbi WER MAP 20/80 MAP 40/60 MAP 60/40 MAP 80/20
1 26.1% 25.1% 23.4% 22.9% 24.0%

1+2 23.4% 23.4% 22.6% 22.0% 22.8%
1-3 21.9% 21.6% 21.2% 21.5% 22.0%
1-4 20.8% 20.3% 20.6% 20.7% 21.6%
1-5 20.4% 20.1% 20.3% 20.6% 21.3%
1-6 20.1% 19.8% 20.0% 20.5% 21.3%

only 6 50.9% 33.7% 31.4% 30.7% 31.0%

Table 5: WERs of adapted systems for different numbers of parts of the final database. The best performance for each size of the
database is bold.

1 1+2 1−3 1−4 1−5 1−6

20

21

22

23

24

25

26

Parts of the final database

W
E

R
 / 

%

 

 

Viterbi
MAP 20/80
MAP 40/60
MAP 60/40
MAP 80/20

Figure 1: Word Error rates for different adaptation methods on
the test set, plotted over increasing amounts of available adap-
tation data .

performance for larger amounts of training data is significantly
higher and the performance of the Viterbi ML re-estimation
seems to stagnate. Using the adapted language model with the
unadapted acoustic model, the resulting WER is 21.5%.
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Figure 2: Word Error rates for different adaptation methods on
the test set, plotted over increasing amounts of available adap-
tation data with adapted language model.

We took part in an internal EU-BRIDGE evaluation cam-
paign on the Weather Bulletin Task using the presented Viterbi
MAP re-estimation method. The initial system training men-
tioned in Section 5 was redone with the adaptation data also
being used during the basic system training. Instead of MFCC
features we used deep bottle neck features (DBNFs) [17] which
have been shown to significantly outperform MFCC features.

We also performed fMLLR and MLLR adaptation in a second
decoding pass. This resulted in a single 2nd pass system with
a WER of 12.4%. Adapting this system, which already saw the
Weather Bulletin data during traing, still resulted in a reduced
WER of 12.0% for the Viterbi ML re-estimation and 11.9% for
the MAP re-estimation.

5.4. Comparison to Unsupervised Training

Table 6 compares the best results from using the captions as
training transcriptions with training in an unsupervised man-
ner. One can see that the unsupervised training performs sig-
nificantly worse. This suggests that the quality of the training
references, while not verbatim grade, is still good enough and
that they are much more informative than recognition hypothe-
ses. However, when time is not an issue repetitive unsuper-
vised adaptation may yield similar results. The Viterbi ML re-
estimation using the original start and end times mentioned in
Section 3 was redone using the final database, improving the
performance from 23.2% to 21.8%.

system WER
Unadapted system 31,9%

Viterbi on original start and end times 21.8%
Viterbi on modified start and end times 20.1%

MAP 20/80 on modified start and end times 19.8%
Unsupervised 28.4%

Unsupervised weighted 27.9%

Table 6: WER of the best adapted system to baseline experi-
ments. Unsupervised adaptations are Viterbi ML re-estimations
on the hypotheses from the decoding with the baseline system.
In weighted unsupervised training the confidence of a word is
used as a weight for the training patterns during the accumula-
tion of the sufficient statistics during training.

6. Conclusion
We investigated methods for using captions as loose transcripts
for adapting acoustic models for automatic speech recognition
to weather forecast audio data. Considerable gains can be made
by determining the correct start and end times of the captions.
This is necessary since the original time segments of the cap-
tions only match imprecisely to the corresponding parts in the
audio. It turned out that similar to supervised adaptation meth-
ods Viterbi ML estimation is outperformed by MAP estimation
but for increasing amounts of adaptation material results con-
verge. By using an adapted language model the effect of con-
vergence is decreased.
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We showed that the proposed method leads to a WER that
is 8.1% abs. lower than when using unsupervised adaptation
methods, letting the WER drop from 27.9% to 19.8%. Refin-
ing start and end times for incomplete transcriptions by a sim-
ple heuristic that searches for matching trigrams of words in
the alignment of hypotheses from the decoded audio files to the
transcriptions improves the WER by 1.7% abs.

Using the proposed method in combination with language
model adaptation and deep BNF features led to a WER of 11.9%
in the EU-BRIDGE evaluation campaign on the Weather Bul-
letin task.

At a level of 5% WER divergence of the available tran-
scripts from verbatim references supervised training is still
much more effective than replacing the reference with automat-
ically generated transcripts. A major drawback of the proposed
method is the need to decode all of the adaptation material. De-
pending on the task this might not be feasible due to the time
intensity of the approach.

If the divergence is higher, the investigation of the appropri-
ate adaption method would have to be redone and data selection
methods might become necessary.
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Abstract
Heterogeneous knowledge sources that model speech only

at certain time frames are difficult to incorporate into speech
recognition, given standard multimodal fusion techniques. In
this work, we present a new framework for the integration of
this sporadic knowledge into standard HMM-based ASR. In a
first step, each knowledge source is mapped onto a logarithmic
score by using a sigmoid transfer function. Theses scores are
then combined with the standard acoustic models by weighted
linear combination. Speech recognition experiments with broad
phonetic knowledge sources on a broadcast news transcription
task show improved recognition results, given knowledge that
provides complementary information for the ASR system.
Index Terms: multimodal fusion, landmark-driven ASR, event-
based speech recognition

1. Introduction
Multimedia data in the form of broadcasts, podcasts as well
as audio-visual content present difficult challenges for state-of-
the art hidden Markov model (HMM) based automatic speech
recognition (ASR), since ASR systems are still sensitive to-
wards unseen speaking styles and changes in acoustic condi-
tions. To improve acoustic modeling of HMM-based ASR,
many studies advocate the incorporation of complementary
knowledge sources into standard ASR to achieve improved
recognition accuracy or robustness. Examples of such com-
plementary knowledge sources are phonetic models, that aim at
exploiting different features and modeling techniques motivated
by phonological studies, to build reliable and sometimes highly
specialized detectors for phonetic classes [1, 2, 3, 4]. Another
example is audio-visual ASR, where, if available, the visual
modality is added to the existing acoustic information, to ben-
efit from the fact that acoustically similar speech classes might
correspond to very different visual counterparts (visemes), that
are reliable to detect [5]. While it has often been argued that
it is desirable for each knowledge source to rely on individ-
ual features and modeling techniques, the common architecture
of state-of-the-art ASR has become a bottleneck for seamlessly
integrating heterogeneous knowledge into speech recognition.
Consequently, external knowledge sources often rely on rather
homogeneous standard modeling techniques, like frame-based
Gaussian mixture models, that are integrated with conventional
feature or decision fusion techniques inside the given architec-
ture of HMM-based ASR.

In this paper, we present a new framework for integrating
heterogeneous sporadic knowledge sources into HMM-based
ASR, with the term sporadic referring to the fact that each
knowledge is only defined at certain time frames, often referred
to as events (e.g., [1, 6]) or landmarks (e.g., [7, 8]). Indeed,

many acoustic or visual cues for phonetic events or visemes are
naturally modeled as a sequence of discrete events, rather than
continous values, which makes their integration into ASR very
difficult, given common multimodal fusion techniques. In our
framework, integration of theses knowledge sources into stan-
dard HMM-based ASR is performed in two steps: First, we
map each knowledge source onto a logarithmic score, using a
sigmoid transfer function. This allows the integration of knowl-
edge sources of different scaling, that appear asynchronously
and do model arbitrary phonemic classes. In a second step,
the obtained scores are combined with the acoustic scores of
standard HMM-based ASR using weighted linear combination.
These modified acoustic scores are integrated into the Viterbi
decoding of the first pass of a large vocabulary ASR system.

In audio-visual ASR, continuous visual knowledge is of-
ten integrated into ASR via feature-fusion, i.e., concatenating
audio and visual features to train refined acoustic models [9].
This approach is also used for the integration of a burst onset
landmark detector in [2]. Decision fusion at the frame level us-
ing GMMs and HMMs by weighted linear combination of log-
likelihood scores is used for integration of phonetic information
in [10] and for visual information in [11]. Phonetic knowledge
is also integrated into ASR during the rescoring step of multi-
pass ASR [3, 7]. Landmark-based phonetic models have been
used inside alternative probabilistic ASR frameworks [12] and
in [1] statistical-post processing of sporadic phonetic landmarks
resulted in improved detection accuracy.

In the following section we will present our framework in
detail, before presenting speech recognition experiments using
broad phonetic knowledge sources. The paper will conclude
with an outlook on future work.

2. Integration of sporadic knowledge into
ASR

Given a speech utterance with t frames, we consider a sporadic
knowledge source k to be a function xk(t), with xk(t) being de-
fined only for nk frames Txk = {t1, . . . , tnk}. Each source is
the result of an external system specialized in detecting a given
set of phonemes Sk, which is a subset of the complete set of
phonemes (including non-speech symbols)P , with Sk ⊂ P . To
integrate this knowledge into triphone-based ASR systems, the
phonemes in Sk have to be mapped to the corresponding states
Ik, which is equally a subset of the complete search space I
(see Figure 2). While the range of xk(t) is arbitrary for each
source k, for example one source could provide a probability
from 0 to 1, while another source might correspond to a score in
the range from−∞ to +∞ or−∞ to 0, we assume a clear cor-
relation between xk(t) and Sk. Assuming positive correlation,
low values for xk(t) are supposed to signal poor confidence in
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the presence of Sk at t, while high values have a very low error
rate, with a more or less sharp transition in-between.

To illustrate such external knowledge sources, we use the
example of integrating phonetic landmark detectors into HMM-
based ASR. Landmark detection usually consists of two steps
(see for example [13]). First, the system detects potential lo-
cations for speech events (landmarks), before acoustic cues in
vicinity of these landmarks are evaluated to estimate the proba-
bility of one or several phonetic classes for each landmark. For
example, vowels can be detected by local maxima in the first
formant frequency and evaluation of additional features around
this landmark can specify the type of vowel. An additional de-
tector might provide landmarks signaling the presence of plo-
sives, by detecting abrupt changes in the signal and studying
several cues, like voice onset time or energy of the burst around
this point (see for example [14]). It is obvious, while the detec-
tion of vowels and plosives can be highly specialized for each
phonetic class, both classes are only defined at very specific
locations Txk . Furthermore the landmarks for vowels and plo-
sives will be attached with a confidence estimate xk(t) that can-
not be compared with each other, since each class uses different
classification algorithms and features.

With x(t) not being defined for most t, sporadic knowledge
can avoid to model parts of speech with high uncertainty about
the acoustic content, which is a major advantage compared to
HMM-based acoustic modeling. While heterogeneity, i.e., the
fact that the ranges of each xk(t) are very different from each
other, could be overcome by normalization, the sporadic nature
of knowledge sources makes common fusion at the feature or
decision level not feasible any more, since k knowledge sources
cannot be mapped onto a k-dimensional vector at each frame t
(see Figure 3).

In the following, we present a general framework for the in-
tegration of k knowledge sources into the Viterbi decoding of a
HMM-based ASR system. Given k sources xk(t), two steps are
necessary from raw knowledge to knowledge-driven ASR. First,
we map each source xk onto a log-likelihood score log sk, given
a sigmoid transfer function, which parameters are estimated us-
ing cross-entropy as the objective function. In the second step,
these knowledge sources are integrated into the ASR system us-
ing a weighted linear combination of the obtained scores log sk
and the acoustic scores of the ASR system.

2.1. Weighted linear combination of k knowledge sources

Given k knowledge sources, our goal is to modify the acoustic
score s(i, t) for state i ∈ I at frame t according to weighted lin-
ear combination of the log-likelihoods of k knowledge sources
log sk(i, t) and the unweighted log-likelihood of the acoustic
model log sasr(i, t), given the weights wk:

log s(i, t) = log sasr(i, t) +
X
k

wk log sk(i, t) (1)

With log sk(i, t) ≥ 0 and wk ≥ 0, each source k enhances
states i ∈ Ik that are associated with the phonemes in set Sk
(see Figure 2). Evidently, log sk(i, t) = 0 for all states i /∈ Ik
and for all frames t for which the source k is not defined with
t /∈ Txk . All states i ∈ Ik share the same likelihood-score
log sk(i, t), to which we will refer to as log sk(t).

The next section describes how to map xk(t) onto log sk(t)
for each source, before we discuss determining wk.

log sk(t)

xk(t)

xk

t

log sk

t

Figure 1: Mapping a sporadic knowledge source xk(t) onto
log sk(t).

2.2. Mapping of detection functions onto knowledge scores

Intuitively, log sk(t) should maximize the scores added to the
correct path, i.e., the scores added to frames t where the correct
phoneme actually is a member of Sk, but minimize the error
it will introduce into the system by enhancing the wrong path.
Therefore, our mapping function should result in log sk(t) = 0
for low values of xk(t), but grow according to the confidence
that higher values of xk will correctly indicate Sk. This desired
behavior can be obtained by a sigmoid function with:

log sk (t) =
γk

1 + exp (−αk · xk (t) + βk)
, ∀t ∈ Txk (2)

αk determines the steepness of the slope of the sigmoid, βk
shifts the sigmoid to its optimal working point and γk is a scal-
ing factor. For example, if a knowledge source k provides a very
reliable knowledge above a certain score βk, γk will be a high
value reflecting the confidence in the correctness of log sk(t)
and a high αk changes the transfer function from a smooth tran-
sition to a step-function-like behavior. Equation 2 maps noisy,
unreliable values onto values very close to zero and rounding
those values to a limited precision results in log sk(t) = 0.
Since log sk(t) = 0 for all t /∈ Txk , log sk(t) is effectively a
sparse vector and we refer to its non-zero frames as Tsk .

To find the optimal αk, βk and γk, we maximize the cross-
entropy cce(t) between log sk(t) and the correct solution yk(t)
at each frame:

cce (t) = yk(t)
log pk(t)

Nk,1
+ (1− yk(t)) log (1− pk(t))

Nk,0
(3)

yk(t) is a binary vector with yk(t) = 1 if Sk is correct at frame t
and yk(t) = 0 if not. yk(t) is derived from the forced alignment
of the correct utterance using our baseline ASR system. pk(t)
reflects the probability that knowledge source k is present at
frame t. Since some knowledge sources might have a skewed
distribution, we normalize pk(t) by the number of frames Nk,1

that are in Txk for which yk(t) = 1 and respectively Nk,0 for
which yk(t) = 0.

38

Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013.



log s(i, t) = log sasr(i, t) +
∑

k wk log sk(i, t)

i

t

Figure 2: Integration of knowledge into the speech decoding.
Arrows correspond to the transition probabilities, while the
nodes represent the acoustic scores log s(i, t). The modified
computation of log s(i, t) is displayed for one node highlighted
in grey.

Given the log-likelihood scores of two complementary
classes sk and sk, we use the softmax function to estimate pk(t)
according to:

pk (t) =
exp (log sk (t))

exp (log sk (t)) + exp (log sk (t))
(4)

As a consequence of the facts that all knowledge sources might
model only a subset of P and sporadic knowledge results in
asynchronous landmarks, there is no score log sk(t) estimating
the absence of knowledge source k at frame t. Consequently,
this anti-score log sk(t) always equals 0:

log sk(t) = 0, ∀t (5)

The final optimization problem consists in finding the parame-
ters αk, βk and γk that maximize cce(t) for all frames of the
training data:

Fce,k(αk, βk, γk;xk, yk) =
X

t∈Txk

cce(t) (6)

2.3. Estimation of the combination weights

While the optimized knowledge sources log sk(t) might
achieve low error rates according to Equation 6, it has yet to
be determined if this source represents complementary knowl-
edge to the acoustic models of the ASR system. Therefore, we
use discriminative training to determine the weight wk for each
source k, that adjusts the contribution of source k to the overall
acoustic score according to Equation 1.

Estimating the weights wk of a linear combination of log-
likelihoods is a well studied problem and several discrimination
criteria have been proposed in the literature [15, 11, 10]. In this
paper we use the frame-based maximum mutual information
(MMI) between correct alignment and n competing hypothesis
according to:

cmmi(t) = log s(u(t), t))− log
X
n

exp (log s (ûn(t))) (7)

u(t) is the state sequence obtained by force aligning the cor-
rect solution of an utterance, while ûn(t) corresponds to the

alignment of the n-th hypothesis contained in the n-best out-
put of the ASR system. By maximizing the MMI, the correct
hypothesis will become more likely, while at the same time the
competing hypothesis that do not correspond to the correct path
at frame t will become less likely. In this work, we use only the
best hypothesis as a competing alternative to the correct path,
so that n = 1, which turns the MMI criterion into corrective
training (see [15]). The optimization problem consists then in
finding the weights wk that maximize cmmi(t) over all frames
in T =

T
k Tsk :

Fmmi(w;u, û, log s) =
X
t∈T

cmmi(t) (8)

3. Experiments
The corpus used in the experiments corresponds to radio broad-
cast news in the French language from the ESTER2 campaign
[16]. The ESTER2 dataset contains broadcast shows with
speech in studio environments (RFI), but also difficult tasks
like debates (Inter) or speech with strong accents (radio TVME
and radio Africa 1). Since we need the correct hypothesis to
generate the correct state sequences u(t) and the aligned n-
best recognition hypothesis ûn(t), we discard every sentence
containing out-of-vocabulary words during training and testing.
During testing, this allows us to assure that finding the correct
path by modifying the acoustic scores during the decoding is not
prevented by missing vocabulary. Additionally, we discard all
telephone speech from the dataset. The estimation of the param-
eters αk, βk, γk andwk are conducted on the ESTER2 develop-
ment set, using only broadcasts shorter than 20 minutes, while
final speech recognition experiments are conducted on the full
ESTER2 test set. The speech recognizer used in this paper is a
two-pass system, trained on the ESTER1 and ESTER2 training
data. The first pass uses word-internal triphones with 32 Gaus-
sians per state and a trigram language model. The second pass
relies on 4-grams and cross-word triphone models. In this pa-
per, we integrate knowledge only in the first pass of our ASR
system to generate improved word graphs for rescoring.

3.1. Phonetic knowledge sources and baseline ASR system

In the experiments, we use broad phonetic classes (BPCs) as
knowledge sources, obtained from the Gaussian mixture mod-
els of a Mel-frequency cepstral coefficients based monophone
GMM classifier. We derive 6 detection functions xk(t) for the
BPCs vowels, nasals, approximants, fricatives, plosives and a
non-speech class. Each BPC at frame t is first scored with the
maximum score among all phonemes of this BPC, before we
perform normalization at each frame t by taking the logarithmic
sum of exponentials for each source k to obtain 6 continuous de-
tection functions. After smoothing we convert these 6 functions
into k = 6 sporadic knowledge sources xk(t) by simple pick-
ing the local maxima for each detection function (see Figure 3).
Since the monophone models were trained on the same training
data like our acoustic models, it is unlikely that they actually
will provide complementary information to the ASR system. To
experiment with more informative knowledge sources, we addi-
tionally create oracle knowledge by adding a bias to the correct
BPC at each frame t before performing normalization. We refer
to this knowledge sources as BPC-oracle-bias, with bias be-
ing the scalar added to the correct BPC. While this knowledge
does not represent homogeneous knowledge in the sense that
it incorporates different modeling and training frameworks, we
discuss the influence of multiplicative and additive scaling of
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knowledge WER [dev] WER [test]
baseline 28.0 31.8
BPC-0 28.0 31.8

BPC-oracle-2 27.7 31.6
BPC-oracle-3 27.4 31.3
BPC-oracle-4 26.8 31.0

Table 1: Word error rates of 4 different broad phonetic knowl-
edge sources and the baseline ASR system on the ESTER2 de-
velopment and test set.

each xk(t) in section 3.5.

3.2. Optimization

Given k knowledge sources xk(t), we have to optimize two ob-
jective functions to obtain the parameters αk, βk and γk for
each knowledge source individually and the weights wk jointly.
We use L-BFGS-B minimization implemented in pythons scipy
library for both objective functions, with the constraints αk > 0
and γk ≥ 0 for Equation 6 and wk ≥ 0 for Equation 8. The
gradients of the objective functions are in both cases calculated
using the symbolic differentiation implemented in the Theano
package [17].

For both objective functions, we could achieve fast conver-
gence by carefully choosing initial values for both optimization
problems. The scaling factor αk should be proportional to the
variance of xk(t), while the median of xk(t) is a good starting
point for βk. For Equation 8, we started with the same valuewk

for all knowledge sources k, by choosing the uniform weight
which maximized Equation 8. This lead to Equation 6 need-
ing about 20 iterations to converge, while Equation 8 converged
already after very few iterations. Though we maximized the
weights wk globally, instead of using gradient descent, we did
not observe problems concerning convergence or overfitting.

3.3. Speech Recognition Experiments

After optimizing the mapping from xk(t) to log sk(t) for all
sources k and estimating the weights wk on the development
set, speech recognition experiments were performed for BPC-0,
BPC-oracle-2, BPC-oracle-3 and BPC-oracle-4. Table 1 shows
the word-error-rates (WER) on the ESTER2 development and
test-set along with the WER of the baseline. As expected, BPC-
0 did not provide any new information for the ASR system and
obtained wk = 0 for all BPCs except for the non-speech class.
Consequently this led to no improvement in WER. For the or-
acle BPCs, the WER decreases with increasing the bias of the
knowledge source. For all cases, the improvement on the devel-
opment set is higher than on the test set, as often observed in
discriminative training.

3.4. Evaluation of knowledge sources

Table 2 displays two criteria evaluating the quality of xk(t) and
log sk(t) for the BPCs of three different experiments. AUC
(area under the curve) is a performance measurement derived
from the ROC curve (receiver operator characteristic) and equal
to the probability that a classifier will rank a randomly selected
true BPC higher than a randomly selected false BPC. We use
the AUC to give an indication of the quality of the raw knowl-
edge source xk(t). Additionally, for every knowledge source k,
we calculate a misclassification cost (MI), related to the mutual
information criterion MMI in Equation 7, by calculating the av-
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Figure 3: Spectrogram of the French word Bonjour, uttered at
the beginning of a broadcast show, followed by six sporadic
broad phonetic knowledge sources xk(t) (BPC-oracle2) includ-
ing non-speech (##) and the obtained log likelihoods log sk(t)
at the bottom. All xk(t) are normalized, so that 0 represents the
maximum value. The correct sequence of BPCs is marked in
grey.

erage score added at each frame Tsk , with weighting every cor-
rect frame by 1 and every incorrect frame by−1. This results in
a negative value if a knowledge source introduces more errors
into the decoding than it enhances the correct path.

MI(k, T ) = 1

|T |
X
t∈T

(2yk(t)− 1) log sk(t) (9)

|T | corresponds to the cardinality of the frames T used to cal-
culate MI(k, T ). Both measures are shown on all available
frames Txk for AUC and Tsk for MI . Additionally, they are
calculated only on those frames T ∗k where the correct BPC of
the true alignment u(t) differs from the BPC in ûn(t).

Since the acoustic score of the standard ASR system is not
modified (see Equation 1), we expect an improvement of the
WER only if a knowledge source is able to correctly enhance
most of the frames that are not already correctly aligned in the
best recognition hypothesis. Indeed, it can be seen that BPC-
0, while performing relatively well on all frames T , has a be-
low random AUC, with AUC < 0.5, for all BPCs except si-
lence for T ∗. For those BPCs MI is negative, which means
these knowledge sources make it less likely for the decoder to
find the correct path at frames T ∗. Consequently, discrimina-
tive training resulted in wk = 0 for all BPCs except silence, to
prevent the ASR system from degrading. In general, evaluating
the errors of a knowledge source without taking the output of
the speech recognizer into account might be misleading. Only
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BPCs T ## vow nas plo fri app

AUC Tk 0.84 0.90 0.95 0.93 0.96 0.83
BPC T ∗k 0.41 0.43 0.37 0.35 0.34 0.46

0 MI Tk 0.9 0.6 2.1 1.7 2.5 0.8
T ∗k 0 -0.1 -0.5 -0.5 -0.8 -0.1

BPC AUC Tk 0.94 0.96 0.98 0.98 0.99 0.93
oracle T ∗k 0.67 0.63 0.59 0.61 0.53 0.70

2 MI Tk 1.9 1.0 3.3 3.0 3.1 1.9
T ∗k 0.7 0.4 0.5 0.6 -0.2 0.6

BPC AUC Tk 0.98 0.99 0.99 0.99 0.99 0.98
oracle T ∗k 0.87 0.81 0.80 0.83 0.73 0.88

4 MI Tk 3.0 1.7 4.6 4.2 3.6 3.2
T ∗k 1.9 1.3 2.1 2.1 0.8 2.0

Table 2: AUC for xk(t) and MI for log sk(t) given differ-
ent knowledge sources and their broad phonetic classes silence
and non-speech (##), vowels, nasals, plosives, fricatives and ap-
proximants. Tk corresponds either to Txk for AUC or Tsk for
MI .

when knowledge sources xk(t) achieve above random AUC
on T ∗, MI tends to turn positive and the source contributes
to improving the WER, as it is the case for BPC-oracle-2 and
BPC-oracle-4.

3.5. Heterogeneous knowledge

The previous broad phonetic knowledge sources were obtained
using homogeneous monophone GMM classifier and thus did
not represent a collection of heterogeneous knowledge sources.
Assuming heterogeneous knowledge will change xk(t) into
x′k(t) by multiplicative and additive scaling with x′k(t) =
akxk(t) + bk, it is evident that given our proposed sigmoid
transfer function, this scaling can be reversed by estimating
the corresponding αk and βk. To avoid the problem of find-
ing an individual initialization for αk and βk to optimize ob-
jective function 6 for each knowledge source, we recommend
to perform a simple normalization, for example mean and vari-
ance normalization for each knowledge source xk(t). All of
our experiments showed, that given proper initialization for αk

and βk, log sk(t) and consequently MI(k, T ) was similar for
different multiplicative and additive scaling factors.

One advantage of our presented framework is the fact that
it is able to deal with selected knowledge sources, that may not
cover the complete set of phonemes P . This allows to design
individual detectors for each phonemic group Sk, without forc-
ing to model the whole set P . Table 3 shows the same speech
recognition experiments as in section 3.3, but with the reduced
set of BPCs vowels, nasals and plosives. It can be seen that the
WER increases compared to using the complete range of BPCs
and the overall impact of the provided knowledge sources is
reduced. This is expected, since the broader the external knowl-
edge sources become, the less impact they will have onto the
speech decoding, even if a knowledge source inserts only few
errors into the decoding.

4. Future Work
Our presented framework showed promising results given dif-
ferent kinds of broad phonetic knowledge sources. Before con-
cluding the paper we want to point out several directions for
future research.

Knowledge sources: Our experiments showed, while the
integration of rather broad speech landmarks into HMM-based
ASR improves the recognition, these landmarks need to be ac-

knowledge WER [dev] WER [test]
baseline 28.0 31.8

BPC-oracle-2 (vow-nas-pl) 27.6 31.8
BPC-oracle-3 (vow-nas-pl) 27.5 31.7
BPC-oracle-4 (vow-nas-pl) 27.3 31.5

Table 3: Word error rates of 3 different broad phonetic knowl-
edge sources, using only the BPCs vowels, nasals and plosives
each time.

curate to be effective. Obviously, efforts have to be made to
research on existing and new knowledge sources that provide
sufficiently accurate landmarks. Furthermore, it is desirable to
experiment with additional feature systems like distinctive fea-
tures, or visual features like visemes.

Objective functions: While the sigmoid transfer function
in connection with the cross-entropy criterion in Equation 6, as
well as the MMI criterion for discriminative training provided
good results, one might consider additional transfer functions
and training criteria.

State dependent weights and context dependency: One
disadvantage of the presented approach is the fact, that it does
not include state or phoneme-dependent weights wi,k for Equa-
tion 1. Enhancing states that are not in Ik for a knowledge
source k might help to reduce the error introduced into the de-
coding, since this might take into account common phonetic
confusions, like it is the case for vowels and approximants.
Additionally, the speech recognition system could be modified
to accommodate for a weight wasr that scales log sasr(i, t) in
Equation 1 to improve the discriminative training criterion.

Given phonetic landmarks, as employed in this paper, the
probability of a speech class Sk at t depends on the context, i.e.,
its preceding and subsequent landmarks. To address this context
dependency, landmarks xk(t) could be rescored by additional
models, that are trained on landmark sequences, like it has been
proposed in [1].

Integration into multi-pass ASR: In the current imple-
mentation we only implemented knowledge-driven ASR in the
first pass of our speech recognizer. To fully benefit from hetero-
geneous knowledge sources, integration into rescoring steps of
multi-pass ASR systems is desirable.

5. Conclusions
The presented framework focused on the integration of het-
erogeneous and sporadic knowledge sources into HMM-based
ASR. It allows the use of individual training and detection algo-
rithms for each knowledge source, that can be developed inde-
pendently from each other. Furthermore, it accounts for event
or landmark based models of speech and does not require the
re-training of existing acoustic models. We used a transfer func-
tion to map each knowledge source onto a logarithmic score, be-
fore the obtained values were combined with the acoustic scores
by weighted linear combination.

While the knowledge sources that improved the WER in
this paper corresponded to oracle knowledge, we conclude from
our experiments that landmarks which achieve an above ran-
dom detection performance on frames where the ASR-system
aligns the wrong path are likely to improve the recognition per-
formance of HMM-based ASR systems.
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Abstract
The REPERE Challenge aims to support research on people

recognition in multimodal conditions. Following a 2012 dry-
run [1], the first official evaluation of systems has been con-
ducted at the beginning of 2013. To both help system devel-
opment and assess the technology progress a specific corpus is
developed. It current totals at 30 hours of video with multi-
modal annotations. The systems have to answer the following
questions: Who is speaking? Who is present in the video? What
names are cited? What names are displayed? The challenge is
to combine the various informations coming from the speech
and the images.
Index Terms: REPERE, multimodality, evaluation, fusion, per-
son recognition

1. Introduction
Finding people on video is a major issue when various informa-
tions come from television and from the Internet. The challenge
is to understand how to use the information about people that
comes from the speech and the image and combine them so as
to determine who is speaking and who is present in the video.

Some evaluation campaigns [2] or [3] worked on people
multimodal recognition on English databases.

Started in 2011, the REPERE Challenge aims to support
the development of automatic systems for people recognition
in a multimodal context. Funded by the French research agency
(ANR) and the French defense procurement agency (DGA), this
project has started in March 2011 and ends in March 2014.

To assess the systems’ progress, the first of two interna-
tional campaigns has been organized at the beginning of 2013
by the Evaluation and Language resources Distribution Agency
(ELDA) and the Laboratoire national de métrologie et d’essais
(LNE). The second official campaign is open to external consor-
tia who want to participate in this challenge and will take place
at the beginning of 2014.

People who are interested in the REPERE Challenge and
decide to participate to the second official campaign will have
access to the REPERE Corpus and to the metrics tools.

This paper presents the protocol used to estimate the sys-
tems progress and the results of the evaluation. Section 2 de-
scribes the different tasks that form the REPERE Challenge.
Section 4 presents the data used to assess the systems. Sec-
tion 3 is dedicated to the metrics description. Section 5 presents
an overview of the evaluation results. Section 6, concludes this
paper.

2. Questions and tasks
2.1. Main tasks

The first tasks in the REPERE Challenge is the identify every
person who is visible and/or is speaking in the video. The goal

is to combine the idiosyncratic information that comes from the
speech and the video frames to answer those questions. These
tasks are conducted in supervised (a-priori models of voice and
face allowed) and unsupervised modes (a-priori models of voice
and face not allowed).

The secondary tasks are to determine the people who are
cited in the video. The people can be cited in speech. For ex-
ample, a speaker can mention another person or he can name
his interlocutor. In addition, the names of the people may be
displayed on the video frames as show in Figure 2. Those two
tasks are conducted in unsupervised mode.

2.2. Sub-tasks

Answering the four previous questions requires to combine
multiple technologies. The following sub-tasks which may be
useful are assessed in the REPERE Challenge:

• Speaker diarization

• Speech transcription

• Head detection and segmentation

• Overlaid words text detection and segmentation

• Optical Character Recognition (OCR)

During the 2013 REPERE Evaluation campaign, only the
Speaker diarization and Speech transcription tasks had system
outputs submitted.

3. Metrics
3.1. EGER

The main evaluation metric is the Estimated Global Error Rate
(EGER). This metric is based on a comparison between the per-
son names in the references and in the system outputs. EGER
is a solution to take in account the fact that the systems have
found the correct number of people.

For each annotated frame, i, the list of the names of speak-
ing and/or visible persons is built for the reference on one side
and for the hypothesis on the other side. Both lists are com-
pared by associating the names one-on-one, each name being
associated at most once.

An association between two identical names is considered
correct. An association between persons with two different
names is a confusion noted Ci. Each person with no associa-
tion in the hypothesis is a false alarm FAi, and in the reference
a miss, Mi.

An uniform cost of 1 is associated to every error type.
Among all possible association sets the one with the lowest cost
is selected. Adding up all these costs gives us the total error
count, which is divided by the number of expected names (i.e.
sum of the size of the reference lists) to get the error rate.
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For N annotated frames, EGER is defined as :

EGER =

∑i=N
i=0 Ci + FAi +Mi∑i=N

i=0 Pi

(1)

where Pi is the number of named people in the i frame.
This metric, with adapted list building methodologies, is

used for three tasks:

• Who is speaking or is present in the video frame ?

• Who is speaking ?

• Who is present in the video frame ?

We also created two variants of the metric. One variant
takes the persons the annotators (and systems) were not capable
of naming into account. The other builds the lists per-show in-
stead of per keyframe, measuring the capability of the systems
as input to a full-show search task.

3.2. SER : What names are cited?

The expected answer to the what names are cited? question
takes the form of a list of temporal segments to which an iden-
tity is associated. Obviously, anonymous identities do not exist
in that task. We decided to use the Slot Error Rate as a metric.
The list reference temporal segments to find is built from the au-
dio and the annotated transcriptions through a forced alignment
procedure. The hypothesis and reference intervals lists are then
compared, and an error enumeration is built:

• I: For every interval of the hypothesis without an inter-
section with the reference we count an Insertion error,
with a cost of 1

• D: For every interval of the reference without an inter-
section with the hypothesis we count an Deletion error,
with a cost of 1

• T: For an (hypothesis, reference) interval pair in intersec-
tion where the identity is different we count a Type error,
with a cost of 0.5

• F: For an (hypothesis, reference) interval pair in inter-
section where the frontiers are different by more than
500ms, we count a Frontier error, with a cost of 0.5

Note that a pair can end up counting as both a type and a frontier
error. The SER is them computed by cumulating the error costs
and dividing by the number of intervals in the reference. In
other words, noting R the number of intervals in the reference:

SER =
I +D + 0.5× (T + F )

R

3.3. DER

The speaker segmentation task requires to extract the speech
from the recordings and split it into speaker-attributed seg-
ments. Some segments have overlapping speech and must be
associated to all pertinent speakers. The naming of the speakers
does not need to be related to their real name, abstract labels are
plenty. Two conditions are evaluated: one where each show
is considered independant, and one called cross show where
speakers coming back from one show to another should be la-
belled identically.

The standard metric for the task is the Diarization Error
Rate (DER). The metric counts the time in error and divides it
by the total reference speech time. The time in error is divided
in three categories:

• False alarm, where the hypothesis puts a speaker but no-
body actually talks

• Miss, where the reference indicates the presence of a
speaker but not the hypothesis

• Confusion, where reference and hypothesis disagree on
who the speaker is

The speaker labels being abstract, establishing the confusion
time requires some effort. It is done through a mapping, where
speakers in the reference are associated 1:1 with the hypothesis
speakers. Some may remain unassociated. Among all possible
mappings the one that gives the best (smallest) DER is the one
chosen for the evaluation. A 250ms tolerance on the reference
speaker segment boundaries is taken into account to reduce the
impact of the intrinsic ambiguousness of their setup.

3.4. WER : Speech transcription

For the speech transcription task, the systems have to transcribe
every word spoken in a show. Segments where speech from
multiple people overlap are ignored in the evaluation. The usual
ASR metric, the Word Error Rate, is similar to the OCR one: a
levenshtein distance between the words of the reference and the
hypothesis. A normalisation process is used:

• Punctuation removal and downcasing.

• Substitution of dashes by spaces.

• Separation of the words at the apostrophe (l’autre be-
comes l’ autre) except for a small number of exceptions
(aujourd’hui).

Homophones are handled on a case-by-case basism through
normalization tables and by putting alternatives directly in the
reference in some cases.

4. The REPERE Corpus
4.1. Sources

The January 2013 corpus represented 24 hours of training data,
3 hours of development data and 3 hours of evaluation data and
is described in Table 1.

The videos are selected from two French TV channels,
BFM TV and LCP, for which ELDA has obtained distribution
agreements. The shows are varied:

Top Questions is extracts from parliamentary “Questions
to the government” sessions, featuring essentially prepared
speech.

Ca vous regarde, Pile et Face and Entre les lignes are vari-
ants of the debate setup with a mix of prepared and spontaneous
but relatively policed speech.

LCP Info and BFM Story are modern format information
shows, with a small number of studio presenters, lots of on-
scene presenters, interviews with complex and dynamic picture
composition.

Culture et vous, previously named Planète Showbiz, is a
celebrity news show with a voice over, lots of unnamed known
people shown and essentially spontaneous speech.

These video were selected to showcase a variety of situation
in both the audio and video domains. A first criteria has been
to reach a fair share between prepared and spontaneous speech.
A second one was to ensure a variety of filming conditions (lu-
minosity, head size, camera angles...). For instance, the sizes of
the heads the annotators would spontaneously segment varied
from 146 pixels2 to 96,720 pixels2 for an image resolution of
720x576. Some example frames are given Figure 1.
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Show Train Dev Test
BFM Story 7:57:49 1:00:50 0:59:48
Culture et Vous 2:09:28 0:15:00 0:15:03
Ça vous regarde 2:00:05 0:15:39 0:15:01
Entre les lignes 1:59:43 0:15:00 0:15:02
Pile et Face 2:01:26 0:15:04 0:15:01
LCP Info 4:07:09 0:30:08 0:29:56
Top Questions 3:57:41 0:30:02 0:27:01
Total 24:13:23 3:01:46 2:56:55

Table 1: TV shows currently present in the corpus

Figure 1: Some example frames from the video corpus

4.2. Annotations

Two kinds of annotations are produced in the REPERE corpus
: audio annotation with rich speech transcription and video an-
notation with head and embedded text annotation.

4.2.1. Speech annotations

Speech annotation are produced in trs format using the Tran-
scriber software [4]. The annotation guidelines are the ones
created in the ESTER2 [5] project for rich speech transcription.
The following elements are annotated :

• Speaker turn segmentation.

• Speaker naming.

• Rich speech transcription tasks gather segmentation,
transcription and discourse annotation (hesitations, dis-
fluences...)

• The annotation of named-entities of type "person" in the
speech transcription with a normalized label for each
identity.

4.2.2. Visual annotations

In complement to the audio annotation, the video annotation
has necessitated the creation of specific annotation guidelines1.
The VIPER-GT video annotation tool has been selected for its
ability to segment objects with complex shapes and to enable
specific annotation schemes. The video annotations consist in
the six following tasks:

• Head segmentation: all the heads that have an area larger
than 1000 pixels2 are isolated. Heads are delimited by

1Guidelines are available for participants on the REPERE website.
They will be distributed with the REPERE corpus at the end of the
project.

polygons that best fit the outlines. Figure 2 is an exam-
ple of head segmentation. It is worth noting that it is
head segmentation and not face segmentation. Sideways
poses are annotated too.

• Head description: each segmented head may have phys-
ical attributes (glasses, headdress, moustache, beard,
piercing or other). The head orientation is also indicated:
face, sideways, back. The orientation choice is based on
the visible eyes count. Finally, the fact that some objects
hide a part of the segmented head is indicated, specifying
the object’s type.

• People identification: The name of the people is indi-
cated. Only well-known people and the people named
in the video are annotated. Unknown people have are
identified with a unique numerical ID.

• Embedded text segmentation and transcription: the tran-
scription of the segmented text is a direct transcript of
what appears in the video. All characters are repro-
duced with preservation of capital letters, word wrap,
line break, etc. Targeted texts are segmented with rectan-
gles that fit best the outlines (see figure 2). Also whether
a text is part of an identification cartouche is also anno-
tated.

• Named-entities (type "person") annotation in transcripts
of embedded texts

• The annotation of appearance and disappearance times-
tamps: the aim is to identify the segments where the an-
notated object (head or text) is present.

Figure 2: Segmentation example

4.2.3. Global annotations

Beyond the parallel annotation of audio and visual content, the
corpus creation pays special attention to the multimodal anno-
tation consistency. A people names database ensures the coher-
ence of given names in audio and visual annotations. Moreover,
unknown people IDs are harmonized when the same person ap-
pears both in audio and video annotations.

In addition two per-person annotation are provided for both
video and audio: the gender of the person, and its role in the
show under a 5-class taxonomy.

4.3. First evaluation corpus

Table 2 summaries the annotations done on the 30 hours of cor-
pus created for that run, and the number of persons that can be
found through audio or visual clues.
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Train Dev Test

Visual Heads seen 13188 1534 2081
Words seen 120384 14811 15844

Speech Segments 12833 1602 1514
Words 275276 34662 36489

Persons

Seen known 725 146 141
Speaking known 556 122 126
To find 811 172 162
Seen unknown 1907 238 160
Speaking unknown 1108 163 179
Names on screen 729 138 160
Names cited 870 190 161
Name appears 504 83 83

Clues Name cited 544 116 101
modalities Never named 178 39 36

Not speaking 255 50 36
Not seen 86 26 21
Speaking and seen 470 96 105

Table 2: Some number about the REPERE first evaluation cor-
pus

We can see that in the test corpus 51% of the people to find
have their name appearing on screen and 62% are introduced in
the speech. In practice the OCR is much more reliable than the
speech recognition for proper names, making these 51% is pri-
mary information source for the global system. Interestingly,
22% of the persons are never named, limiting the reachable
level for unsupervised systems.

A number of persons appear only in one modality. In the
test 22% are only visible, which is a little lower than in the rest
of the corpus, and 13% are only heard.

5. Evaluation results
5.1. Participants

Three consortium participated to the evaluations. SODA is
a combination of the LIUM (Computer technology lab of the
Université du Maine, France) and the Idiap Research Institute.
QCOMPERE is made of the LIMSI (Computer technology lab
for mechanics and engineering sciences), the INRIA research
centre Grenoble (Rhône-Alpes, France), the LIG (Computer
technology lab of Grenoble, France), YACAST, Vocapia Re-
search, the GREYC (Research group for computer science, im-
age, automatic and instrumentation of Caen, France) and the
Karlsruhe Institute of Technology. Finally the PERCOL consor-
tium is composed of the Laboratoire d’Informatique Fondamen-
tale de Marseille (LIF), the Université d’Avignon et des Pays de
Vaucluse (UAPV), the Laboratoire d’Informatique Fondamen-
tale de Lille (LIFL) and France Télécom.

5.2. Main supervised task results

The main supervised task is to find who is present and who
talks in the videos by any (automatic) means necessary. The
anonymized primary results for each consortium are presented
in table 3 using the three EGER variants of section 3.1.

We can see that the results are quite close, with around a
third of the identities incorrect. Evaluating the task as finding
who is present in a given show degrades the results a little but
not by much, with interestingly a different loss for different sys-
tems.

Declining per media the results for the speaker identifica-

Partner Main EGER With unnamed Full-show
A 32.9 43.0 34.7
B 27.9 38.0 32.8
C 29.6 37.5 35.0

Table 3: Main supervised task results

tion task are presented in table 4.

Partner Main EGER With unnamed Full-show
A 22.8 23.1 25.5
B 17.6 18.0 21.7
C 17.7 18.5 21.1

Table 4: Speaker identification task results

Unsuprisingly, the results are much better for the speech
side of the multimedia problem. Not only speech technologies
are more mature but the task is much simpler, speech overlap
being rare compared to the presence of multiple persons in the
same image. That particularly shows in the results taking into
account the unnamed people: it’s much easier to detect whether
someone is present in the speech and cluster his interventions
than detecting persons in the image and clustering their appari-
tions.

This is confirmed by the person presence in the picture re-
sults presented in table 5.

Partner Main EGER With unnamed Full-show
A 41.5 54.2 42.0
B 36.7 50.0 41.5
C 39.8 48.2 45.9

Table 5: Visible person identification task results

The results are as expected much worse than on the audio
side, with the unnamed persons being particularly problematic.
Image processing is the achille’s heel of these integrated sys-
tems.

5.3. Main unsupervised task results

The unsupervised variant of the main task still requires the sys-
tem to identify the persons speaking and present on the screen,
but precludes the use of a-priori trained biometric models. The
names are to be found in the signal, either pronounced or written
on the screen. The results are presented in table 6.

Partner Main EGER With unnamed Full-show
A 39.5 48.2 36.1
B 37.2 45.2 43.2
C 44.2 49.9 50.8

Table 6: Main unsupervised task results

The loss due to the lack of pre-trained biometric models is
around 10% absolute, which isn’t bad. Especially since 22% of
the persons are never named, putting a hard limit to the mini-
mum possible error rate.

We decline the results per media in tables 7 for the speakers
and 8 for the persons present on screen.

The system behaviour is similar than for the supervised
task, with a higher loss in the speech case showing that acoustic
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Partner Main EGER With unnamed Full-show
A 31.8 32.0 25.5
B 26.3 26.9 36.6
C 40.1 42.8 44.1

Table 7: Unsupervised speaker identification task results

Partner Main EGER With unnamed Full-show
A 46.1 57.3 44.4
B 46.4 55.5 48.3
C 47.8 53.9 56.1

Table 8: Unsupervised visible person identification task results

biometric models are currently more efficient than visual bio-
metric models.

5.4. Monomodal task results

The two monomodal tasks aim at measuring the quality of bio-
metric models by asking of the participant to only use them for
the identification and avoiding any fusion process. Hence the
name monomodal, since only the speech signal modality (with-
out ASR) is used for speaker identification, and only the images
(without OCR information) is used for visible person recogni-
tion. The results are given in tables 9 for speaker identification
and 10 for visible person identification.

Partner Main EGER With unnamed Full-show
A 48.3 48.3 54.0
B 44.2 45.2 43.5
C 37.3 37.2 41.0

Table 9: Monomodal speaker identification task results

Partner Main EGER With unnamed Full-show
B 62.2 62.6 65.9

Table 10: Monomodal visible person identification task results

The speaker identification results go from a 36% to a 49%
error rate, which shows a good use of what models were pre-
trained. The visible person identification is worse as expected.

5.5. Speaker diarization

The speaker diarization task consists in detecting the speech
segments in the audio and associating them abstract speaker la-
bels, where the same label is used for multiple interventions of
the same speaker. Two conditions were evaluated, one where
labels are local to an individual show, and the cross-show one
where the same label must be used for a speaker recurring in
multiple shows. The results are given table 11.

Partner DER-ind DER-cross
A 13.70 33.09
B 13.35 16.05
C 11.10 14.20

Table 11: Speaker diarization task results

We can see that the individual show results are quite good,
and at the state of the art for this kind of data. Interestingly,

with one exception the cross-show results are very close to the
individual-show ones. Since not taking the cross-show condi-
tion into account would have given error rates in the 60+% the
problem really had to be tackled, and it has been done rather
succesfully. These good results have made the cross-show di-
arization in combination with the OCR of names (not evaluated
this year) the backbone of the information fusion efforts of the
participants.

5.6. Speech transcription

The speech transcription performance is roughly state-of-the-
art, as shown in table 12.

Partner WER
A 28.03
B 16.43
C 15.18

Table 12: Speech transcription task results

The participants did not consider the speech transcription
as a reliable primary information source, given how easy it is
for an ASR system to make errors on proper nouns. They seem
to plan to work on it more for the next evaluation.

The per-show results, table 13, confirm our expectations on
the relative shows difficulties.

A B C
Culture et Vous 54.53 34.56 37.87
Ça vous regarde 36.10 21.75 21.14
Entre les lignes 27.83 17.77 14.92

LCP Info 20.76 11.26 10.10
BFM Story 26.69 15.11 13.03
Pile et Face 27.81 16.27 14.34

Top Question 18.33 10.22 9.26

Table 13: Per-show speech transcription task results

6. Conclusions and Perspectives
The REPERE project focuses on identifying speakers and visi-
ble persons in multimodal conditions.

Specific metrics has been implemented. Evaluation tools
are made available to interested persons to participate in the next
evaluation.

30 hours of data have been created for that evaluation. The
annotations are rich and useful for both training systems and
evaluating their results. The corpus will double in size for the
second evaluation, with the amount put aside for the test still to
be decided.

The first evaluation has shown that reasonably good results
are possible but a large margin of progress exists, especially on
the image side. The influence of the types of programs will be
discussed soon.

The sub-tasks will be redefined for the next campaign to
better meet the developers needs of modular analysis (specially
for video treatment)
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Abstract

We describe QCompere consortium submissions to the
REPERE 2013 evaluation campaign. The REPERE challenge
aims at gathering four communities (face recognition, speaker
identification, optical character recognition and named entity
detection) towards the same goal: multimodal person recogni-
tion in TV broadcast. First, four mono-modal components are
introduced (one for each foregoing community) constituting the
elementary building blocks of our various submissions. Then,
depending on the target modality (speaker or face recognition)
and on the task (supervised or unsupervised recognition), four
different fusion techniques are introduced: they can be sum-
marized as propagation-, classifier-, rule- or graph-based ap-
proaches. Finally, their performance is evaluated on REPERE
2013 test set and their advantages and limitations are discussed.
Index Terms: speaker identification, face recognition, named
entity detection, video optical character recognition, multi-
modal fusion

1. Introduction
The REPERE challenge1 aims at gathering four communi-
ties (face recognition, speaker identification, optical character
recognition and named entity detection) towards the same goal:
multimodal person recognition in TV broadcast. It takes the
form of an annual evaluation campaign and debriefing work-
shop. In this paper we describe the submissions of the QCom-
pere consortium to the 2013 REPERE evaluation campaign [1]

Given TV broadcast videos such as news or talk-shows, the
main objective of the REPERE challenge is to answer two ques-
tions: who speaks when? and who appears when?. We dis-
tinguish two subtasks: either supervised (when prior identity
models are allowed) or unsupervised recognition (when prior
models are forbidden and person names must be automatically
extracted from the test videos themselves). Speaker and face
recognition both rely on a priori models of each person to be
recognized: they fall in the supervised recognition category.
Our mono-modal (audio or visual) person recognition modules

This work was partly realized as part of the Quaero Program and the
QCompere project, respectively funded by OSEO (French State agency
for innovation) and ANR (French national research agency). Corre-
sponding author: bredin@limsi.fr

1http://www.defi-repere.fr

are introduced in Section 2. However, other sources of informa-
tion are available in TV broadcast and can be used to achieve
unsupervised person recognition; such as named entities de-
tected in automatic speech transcription, and block titles usually
written on screen to introduce reporters and interviewees. Our
efforts in this direction are described in Section 3.

The main contributions of the QCompere consortium lie in
the way these modules are combined into a multimodal person
identification framework. In Section 4, we propose a classifier-
based late fusion approach and another one modeling person
recognition as a shortest path problem in a multimodal proba-
bility graph. QCompere runs submitted to the 2013 campaign
are evaluated and compared in Section 5. Finally, Section 6
concludes the paper.

2. Supervised Person Recognition
In this section, we only describe the mono-modal supervised
person recognition approaches (speaker and face).

2.1. Speaker Recognition

Speaker diarization (SD) is the process of partitioning the au-
dio stream into homogeneous clusters without prior knowledge
of the speaker voices and serves as a pre-processing step for
the speaker identification module. Two SD systems were devel-
oped, respectively by LIMSI and KIT.

LIMSI’s SD system relies on two steps: agglomerative clus-
tering based on the BIC criterion to provide pure clusters fol-
lowed by a second clustering stage using cross-likelihood ratio
(CLR) as distance between the clusters [2]. Additionally, since
the corpus contains several shows for each recorded program,
the same identifier has to be associated to a given speaker across
all the shows. Following previous experiments on cross-show
speaker diarization, a first, local clustering stage is followed by
a CLR clustering across all the shows; this hybrid approach was
found to provide a good performance while being computation-
ally acceptable for a corpus lasting a few hours [3].

KIT’s SD system contains the following components. Au-
dio segmentation first discriminates speech from non-speech
segments. It is implemented using a HMM segmenter with 4
GMMs for speech, silence, noise and music. Speaker turn de-
tection [4] is then applied on the segments longer than 5s. A
first-pass BIC clustering groups the segments from the same
speaker together. Viterbi re-segmentation refines the segment
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boundaries. The speaker models are trained on the clustering
results. The features are 20-dimensional MFCC plus their first
derivatives. Feature warping is applied to compensate channel
effects. GMMs with 64 Gaussians are used to model the speak-
ers. A second-pass BIC clustering and Viterbi re-segmentation
further refines the segment boundaries and clustering results.
Finally, the post processing merges the adjacent segments from
the same speakers which are separated by the silence shorter
than 0.5s.

Unsupervised speaker diarization is followed by a cluster-
wise speaker identification. We implemented two systems [5].
Our baseline system follows the standard Gaussian Mixture
Model-Universal Background Model (GMM-UBM) paradigm,
and the GSV-SVM system uses the super-vector made of the
concatenation of the UBM-adapted GMM means to train one
Support Vector Machine classifier per speaker. For both sys-
tems, each cluster is scored against all gender-matching speaker
models, and the best scoring model is chosen if its score is
higher than the decision threshold. Three data sources were
used for training models for 648 speakers in our experiments:
the REPERE training set, the ETAPE training and develop-
ment data2 and additional French politicians data extracted from
French radios.

2.2. Face Recognition

The supervised face recognition process is divided into face de-
tection and tracking stage, and the recognition stage.

Face tracking is performed using particle filtering ap-
proach [6], initialized from face detections. The first frame of
each shot, and every subsequent fifth frame is scanned and face
tracks are initialized from frontal, half-profile and full-profile
face detections. Tracking is performed in an online fashion,
i.e., using the state of the previous frame to infer the location
and head pose of the faces in the current frame.

The face recognition uses a frontal face descriptor. First a
detector locates nine landmarks on the face, around the eyes,
the nose and the mouth. We use a tree-structured constella-
tion model [7] that computes Histogram of Gradient (HoG) fea-
tures [8] for detection of these facial landmarks. Once the land-
marks are detected, faces are aligned using an affine transfor-
mation, and a second HoG descriptor is computed around each
of the nine facial landmarks. The descriptor quantizes local im-
age gradients into 10 orientation bins, and computes a gradi-
ent orientation histogram for each cell in a 7 × 7 spatial grid
over image region around the landmark. The final descriptor
concatenates the local gradient orientation histograms to form a
9× 10× 7× 7 = 4410 dimensional feature vector per face (9
landmarks× 10 orientation bins× a grid of 7× 7 spatial bins).
For each track, we compute a mean HoG descriptor from all
the frontal face detections found along the track. A database is
automatically generated using a training set of annotated faces
for learning the face recognition models. A Support Vector Ma-
chine (SVM) classifier is trained for each person, using one-
versus-rest approach.

For the test set, we score the mean descriptor of each track
using the learned models. The best scoring model is chosen
and the face is tagged with the corresponding name, provided
its score is higher than the decision threshold. The initial face
recognition stage is followed by an unsupervised face cluster-
ing stage that is used to extend the labels to faces not named
in the previous step. For each track, the mean HoG descriptor

2http://www.afcp-parole.org/etape.html

is projected on to a 200 dimensional descriptor using Logis-
tic Discriminant Metric Learning approach (LDML) [9]. The
learned face metric is used in a nearest neighbor classifier to as-
sign names to tracks that were unlabeled so far; but only if the
ratio of distances to the first and the second neighbor is suffi-
ciently small.

3. Person Name Detection
Speaker and face recognition both rely on a priori models of
each person to be recognized: they fall in the ”supervised recog-
nition” category. However, other sources of information are
available in TV broadcast and can be used to achieve unsuper-
vised person recognition.

3.1. Written Name Detection

In order to detect the names written on the screen used to intro-
duce a person, a detection and transcription system is needed.
For this task we used LOOV [10] (LIG Overlaid OCR in Video).
This system has been previously evaluated on another broadcast
news corpus with low-resolution videos. We obtained a charac-
ter error rate (CER) of 4.6% for any type of text and of 2.6% for
names written on the screen to introduce a person.
From the transcriptions, we use a simple technique for detect-
ing the spatial positions of title blocks. This technique compares
each transcript with a list of famous names (list extracted from
Wikipedia, 175k names). Whenever a transcription corresponds
to a famous name, its spatial position is added to a list. The re-
peating positions in this list provide the spatial positions of title
blocks used to introduce a person. However, the detected text
boxes do not always contain a name. A simple filtering based on
some linguistic rules allows to filter false positives. Transcrip-
tion errors are corrected using our Wikipedia list when the edit
distance is small. The use of LOOV pipelined with our written
names detection technique provides an F1-measure of 97.5%
(see Table 1). The few remaining errors are due to transcription
or filtering errors.

3.2. Spoken Name Detection

The aim of this task is to detect all person names spoken dur-
ing a TV program and link each instance of a spoken name to
the identity of a real person in terms of a normalized identifier
(in the form Firstname LASTNAME). In the first step, the
acoustic data is processed by a Speech-To-Text (STT) module.
Second, the transcripts produced by the STT module are pro-
cessed by a Named Entity Recognizer (NER) to detect person
names. Note that the name in its spoken form may include only
part of the name (first, middle or last name, eg. “Hollande” in-
stead of “François Hollande”), an acronym or even a nickname.
From these incomplete forms, the correct full name has to be
guessed. This necessitates a post-processing step applied to the
output of the ASR-NER modules. 6427, 1555 and 1947 spoken
names were present in the training set, the development set and
the test set, respectively.

A state-of-the-art off-the-shelf STT system for French [11]
was used to transcribe the audio data. No task-specific adapta-

Modalities Precision Recall F1-measure
written names 99.4% 95.7% 97.5%

Table 1: Quality of written names extraction for names written
in title blocks
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Post-processing dev test
None 61.1 60.0
Approach A 51.9 53.4
Approach B 49.3 52.2

Table 2: Spoken name detection performance in terms of SER
(%).

tion was made for the REPERE evaluation (i.e., the REPERE
training dataset was not used to adapt the acoustic models or
the language models). The system obtained a word error rate
of 16.43% (on around 36k words) during the first evaluation
campaign of the REPERE challenge. In the NER module, two
independent CRF models were trained on data annotated for the
Quaero project: (1) a model to detect the mention of person with
at least a first or a last name, and (2) a model to detect the dif-
ferent part of a person mention (e.g. first name or last name).
These models use the same features as in [12]. In the final post-
processing module to complete or correct the output of NER,
two distinct approaches were studied.

Approach A used information from the NER output itself.
Each name N in the output corresponding to one audio docu-
ment (or TV show) was first checked if it is full (i.e. in the form
Firstname LASTNAME). If not, N was searched inside the
output. If N was found as part of another name M which itself
is full, as its first, middle or last name, then each instance of N
was replaced by M. For example, if the NER output contained
both MONTEBOURG and Arnaud MONTEBOURG, then each in-
stance of the former was replaced by the latter. After this step,
all remaining names which were still not full were searched in
the Wikipedia. If a corresponding full name is found, it was
used to replace the original name. All names remaining which
were not full were discarded.

Approach B used information from the groundtruth train-
ing data. A Lookup Table (LUT) is created where each row
contained (1) a name as it appears in the groundtruth training
data, and (2) the corresponding name as it appears in the output
of the ASR-NER system. When evaluating on dev or test, the
LUT was used to translate each NER output to its correspond-
ing correct form. Note that this method works only if the name
occurred in the training data.

The task was evaluated by using the Slot Error Rate (SER)
defined as: SER = [I+D+0.5× (T+F)]/R where I is the In-
sertion error, D the Deletion error, T the Type error (i.e. a name
was detected at the correct position but not the right name), F the
Frontier error (i.e. the correct name was detected but not at the
right time point) and R is the number of reference intervals. Ta-
ble 2 shows the results obtained by the two approaches in terms
of the SER. In the table, “None” refers to the case where the
output of ASR-NER was directly used for evaluation. Note that
the post-processing steps reduced the SER by about 10% abso-
lute and 16.7% relative. Also, Approach B performed about 1%
absolute better than A. This shows the role of training data in
the performance of the system. It was also found that (1) com-
bining A and B did not improve the scores more than B alone,
and (2) about 70% of the deletion errors were a result of the
ASR module.

4. Multimodal Fusion
In this section, we describe the runs submitted to the main mul-
timodal tasks (supervised and unsupervised)

4.1. Propagation-based fusion

Unsupervised speakers recognition: This method is based
on our previous work [13] (method M3). Speaker diariza-
tion and overlaid names recognition are run independently from
each other. Speaker diarization is tuned to achieve the best di-
arization performance (i.e. minimize the diarization error rate,
DER). The mapping between written names and speaker clus-
ters is based on the following observations:

• when only one name is written on screen, any co-
occurring speech turn is very likely (95% precision ac-
cording to the train set) to be uttered by this person;

• the speaker diarization system can produce over-
segmented speaker clusters, i.e. split speech turns from
one speaker into two or more clusters.

Therefore, this method proceeds in two steps. First, speech
turns with exactly one co-occurring name are tagged. Then,
each remaining unnamed speech turn is tagged cluster-wise
using an approach similar to the classical Term-Frequency
Inverse Document Frequency (TF-IDF). We made two slight
updates to this method: we reduce the temporal scope of
each written names to the more co-occurring speech turn, this
can correct the time offset between audio and written names
segmentation. We also add the information of pronounced
names: we name each remaining unnamed speech turn with
closest pronounced names; this increases the number of speech
turns named by our method.

Unsupervised faces recognition: As already stated, when
one or more names are written on the screen, there is a very
high probability that the name of one of the appearing face cor-
responds to the name written on screen. Therefore we use the
information provided by written names during the face cluster-
ing process.

Before clustering, we associate each written name n to the
co-occurring face. At this stage, a face can have several names if
several names are written on the screen at the same time. Then,
regular agglomerative clustering (based on face similarity) is
performed with the constraint that merging two clusters s with-
out at least one name n in common is forbidden.
For example, two clusters s1 and s2 can be merged into a new
one snew in the following case (the list of associated names is
shown between brackets):

• s1(∅) ∪ s2(∅)⇒ snew(∅)
• s1(n1) ∪ s2(∅)⇒ snew(n1)

• s1(n1, n2) ∪ s2(∅)⇒ snew(n1, n2)

• s1(n1, n2) ∪ s2(n1)⇒ snew(n1)

Below are examples where the two clusters cannot be merged:

• s1(n1) ∪ s2(n2)⇒ Forbidden

• s1(n1, n3) ∪ s2(n2)⇒ Forbidden

The clustering is stopped according to the optimal threshold
on the training set (minimizing the EGER, see Section 5.1).

4.2. Classifier-based Fusion

Speaker identification: Once all monomodal components have
been run on a video, their outputs can be combined to improve
the overall person recognition performance. Figure 1 draws up
their list, along with two slightly modified versions of OCR: ex-
tended to the whole speech turns (OCR+) or speaker diarization
clusters (OCR∗).
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Figure 1: Several annotation timelines

Since each modality relies on its own temporal segmenta-
tion, the first step consists in aligning the various timelines onto
the finest common segmentation. The final decision is taken
at this segmentation granularity. For each resulting segment S,
a list of possible identities is built based on the output of all
modalities. For each hypothesis identity P , a set of features is
extracted:

• Does the name of P appear in OCR? in OCR+? in OCR∗?

• Duration of appearance of names in OCR+, in OCR∗ and
their ratio.

• Speaker recognition scores for identity P provided by
GSV-SVM SID and their difference to best competing
scores.

• Is P the name proposed by the unsupervised speaker
recognition system?

• Is P the most likely identity according to GSV-SVM
SID?

• Has P’s name been pronounced by the previous or the
next speaker.

Based on these features, we trained a Multilayer Perceptron
classifiers using Weka3 to answer the following question: “is
P speaking for the duration of S?” Since these features can be
either boolean or (unbounded) float, several classifiers insensi-
tive to numerical types were used. The identity with the highest
score is selected for the speaker identification task.

4.3. Rules-based Fusion

Supervised face recognition:
Several sources of information are exploited for multimodal

and supervised face identification. They are combined using a
set of simple rules, ordered by priority:

1. mono-modal face recognition for anchor persons;

2. names written on the screen;

3. unsupervised face recognition;

4. mono-modal face recognition for non-anchor persons;

5. multi-modal speaker recognition.

4.4. Graph-based Fusion

Alongside classifier-based approaches, the QCompere consor-
tium also submitted a few contrastive runs based on a graphical
representation of the person identification problem. For each
video, a multimodal probability graph is built as illustrated in
Figure 2. Each person utterance (e.g. a speech turn, a face track

3http://www.cs.waikato.ac.nz/ml/weka

WRITTEN

NAMES

SPEECH

TURNS

ID1 ID2

time

ID1 ID2 ID2

IDENTITIES

1 2 3 4 5

Figure 2: Multimodal probability graph for unsupervised
speaker recognition, and two maximum probability paths.

or a written name) is added as a vertex to this graph. For each
target of supervised recognition systems (speaker identification
or face recognition) and for each name found by name detection
systems (written or spoken name detection), an identity vertex
is added containing the normalized identifier of the person (e.g.
Nicolas SARKOZY or Francois HOLLANDE).

Two vertices i and j are connected by an edge weighted by
the probability pij that they correspond to the same person. This
probability is obtained differently depending on the vertices it
connects:

Intra-modal edges connect vertices of the same modality
(speech turns-to-speech turns, or face tracks-to-face tracks).
Probabilities are derived from the similarity scores d (BIC cri-
terion for speech turns, learned metric for face tracks) using
Bayes’ theorem: p (H | d) = 1/(1+r) with r = p(d|H)

p(d|H)
p(H)
p(H)

where H is the hypothesis that connected vertices are from
the same person, and p(d|H)

p(d|H)
and p(H)

p(H)
are estimated using the

annotated training set.

Cross-modal edges connect co-occurring vertices with two
different modalities (e.g. a speech turn and a co-occurring
written name) with a fixed probability estimated using the
training set. For instance, two co-occurring speech turn and
written name have more than 97% chance to correspond to the
same person.

Identity edges connect detected names (written or spoken) to
the corresponding identity with probability p = 1. They also
connect speech turns and face tracks to target models (from su-
pervised recognition system) with a probability derived from
the identification scores.

Finally, person identification is achieved by looking for the
maximum probability path between every speech turn (or face
track) and all available identities. The probability of the path is
simply defined as the product of the probability of its edges. It
is straightforward to show that this maximum probability path
problem can be modeled as a shortest path problem in the dual
graph where edges are weighted by − log pij instead of pij . In
Figure 2, speech turn #2 (resp. # 5) is given the identity ID1
(resp. ID2).

The same framework can be used for speaker or face recog-
nition; and for both supervised and unsupervised recognition.
However, for the latter, one must remove identity edges coming
from mono-modal speaker identification and face recognition
system introduced in Section 2. Furthermore, one does not have
to use all available edges to achieve the best performance. We
only report on the best combination in Section 5.

The supervised run contains speech turn-to-identity (s-to-
i), speech turn-to-written name (s-to-w) and w-to-i edges for
speaker recognition, augmented with speech turn-to-face tracks
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A B

G
F E D

C

TRAINING SET
24 hours DEVELOPMENT

3 hours

TEST
3 hours

A: BFM Story
B: LCP Info
C: Top Questions
D: Ça Vous Regarde
E: Planète Showbiz
F: Entre Les Lignes
G: Pile Et Face

Figure 3: Training, development and test sets each contain 7
different types of shows (A to G).

(s-to-f) and f-to-w edges for face recognition. The unsupervised
run contains s-to-w, h-to-w, w-to-i, s-to-h and h-to-h edges for
both speaker and face recognition.

5. REPERE Evaluation Campaign 2013
5.1. Corpora & Metrics

Figure 3 provides a graphical overview of the REPERE video
corpus 2013 [14] (training, development and test sets). Over-
all, it contains 188 videos (30 hours) recorded from 7 different
shows broadcast by the French TV channels BFM TV and LCP.

While the audio annotation is dense (who speaks when?),
the visual annotation (whose head appears when?) is only
provided from one video frame every 10 seconds on average.
[14] provides a more detailed description of the corpus and the
associated annotation process.

Though the whole test set is processed, evaluation is only
performed on the annotated frames F . For each frame f , let us
denote #total(f) the number of persons in the reference. The
hypothesis proposed by an automatic system can make three
types of errors: false alarms (#fa) when it contains more per-
sons than there actually are in the reference; missed detections
(#miss) when it contains less persons than there actually are in
the reference; confusions (#conf) when the detected identity is
wrong. For evaluation purposes, and because unknown peo-
ple cannot – by definition – be recognized in any way, they are
excluded from the scoring. The Estimated Global Error Rate
(EGER) is defined by:

EGER =

∑

f∈F
#conf(f) + #fa(f) + #miss(f)

∑

f∈F
#total(f)

5.2. Experimental protocol

For our experiments, the training set was split in two balanced
subsets train A and train B. Target models (for speaker identi-
fication and face recognition of Section 2) are obtained using
train A. train B is used to train classifiers and graph probabili-
ties introduced in Section 4. The development set allows to tune
various fusion parameters, and the final evaluation is done on
the test set.

5.3. Supervised Recognition

Table 3 summarizes the performance achieved by our sub-
missions to the supervised recognition task. Looking at the
monomodal tasks, the speaker recognition system performs sig-
nificantly better than the face recognition system (44.2% vs.
61.1% in EGER), probably due to more important variability
factors in the image: face size, orientation, exposition, etc. The

classifier-based fusion is very effective and reduces the speaker
EGER to 17.8%, a 60% relative reduction compared to the
mono-modal performance. The improvement brought by the
rule-based fusion for faces is also important with a 39% relative
reduction of errors, from 61.1% to 37.3%. The graph-based fu-
sion is less effective but still reduces the EGER by about 20%
relative compared to the mono-modal systems.

Approach EGER (%)

sp
ea

ke
r mono-modal speaker recognition 44.2

classifier-based fusion 17.8
graph-based fusion 35.3

he
ad

mono-modal face recognition 61.1
rule-based fusion 37.3
graph-based fusion 48.1

Table 3: Performance of the QCompere submissions to the su-
pervised person recognition tasks.

5.4. Unsupervised Recognition

The performance achieved by our submissions to the unsuper-
vised recognition tasks are presented in Table 4; they are of
course worse than the performance of a supervised multi-modal
fusion, roughly 8.8% absolute above them. But they are also
significantly better than the mono-modal identification scores,
with 26.2% EGER for speakers and 46.2% for heads; this had
already been shown for speakers after the REPERE dry-run
evaluation [13]. Interestingly, the performance of unsupervised
graph-based fusion for speakers and faces is almost similar to
the performance observed for the supervised case (38.1% vs.
35.3% for speakers and 50.3% vs. 48.1% for faces), showing
that there is room for improvement for this approach with a bet-
ter integration of the person identification scores.

Approach EGER (%)

sp
k. propagation-based fusion 26.2

graph-based fusion 38.1

he
ad propagation-based fusion 46.2

graph-based fusion 50.3

Table 4: Performance of the QCompere submissions to the un-
supervised person recognition tasks.

6. Conclusion and Future Work
In this paper, we described, evaluated and discussed QCom-
pere consortium submissions to the REPERE 2013 evaluation
campaign. As expected, we showed that speaker identification
and face recognition can be greatly improved when combined
with name detection through video optical character recogni-
tion and automatic speech transcription available in TV broad-
cast. Moreover, it should be highlighted that the unsupervised
person recognition approaches that we proposed perform much
better than state-of-the-art supervised mono-modal ones (for
both speaker and face identification). However, results show a
strong performance discrepancy in favor of speaker recognition
for all three participating consortia [1] as well as for QCompere
various approaches. Therefore, for next year evaluation (sched-
uled in January 2014), a strong effort should be focused on face
recognition.
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Abstract

The goal of the PERCOL project is to participate to the
REPERE multimodal challenge by building a consortium com-
bining different scientific fields (audio, text and video) in or-
der to perform person recognition in video documents. The two
main scientific issues addressed by the challenge are firstly mul-
timodal fusion algorithms for automatic person recognition in
video broadcast ; and secondly the improvement of information
extraction from speech and images thanks to a combine decod-
ing using both modalities to reduce decoding ambiguities. This
paper describes the system PERCOLI that participated to the
REPERE 2013 challenge and presents the results obtained on
the main person recognition tasks.
Index Terms : multimodal fusion, person identification, video
processing.

1. Introduction
The Repere challenge consists in identifying persons in

video shows using cues from spoken content (speaker identity
and words), and video content (faces and overlaid text) [1]. Sys-
tems participating in the challenge must generate a list of seg-
ments with person names according to the presence of said per-
sons in the visual and audio modalities, using both biometric
models and context analysis. The challenge provides a set of
videos manually annotated with speaker segmentation, speech
transcription, overlaid text transcription and face outline. All
image-related annotations are sampled every 10 seconds on so-
called key-frames.

Most visual indexing methods are based on face detection
and recognition. Those methods require large databases of fa-
cial models trained to recognize each person who could appear
in a video. However, the variability of face appearance in TV
content (pose, facial expressions, lighting, occlusions) makes
identification using facial models very unreliable. In addition,
maintaining up-to-date large dictionaries of face models is pro-
hibitively expensive. In this paper, we are interested in methods
for naming faces in TV content with no face models.

Such person identification methods are often performed in
two steps : (1) names are extracted from a range of sources and
(2) an association strategy assigns each detected name to a per-
son. In the first step, the identities can be extracted from speech
(using Automatic Speech Recognition [2, 3]), image (with Opti-
cal Character Recognition [4] on overlaid text) and text content
(such as scripts and subtitles [5]). In the second step, the ex-
tracted identities are propagated via clustering methods [4, 6].
This step is the focus of our paper. Figure 1 illustrates that pro-

cess on a video from the REPERE 1 corpus [7].
We propose to directly associate OCR and speech detected

names with current faces and speakers, and then propagate that
information within and cross modalities with face and speaker
similarities and talking face detection. This paper is organized
as follows : Section 2 describes related work ; Section 5 de-
scribes person name acquisition from OCR and ASR output ;
Section 6 similarity measures for speaker and face clustering ;
Section 7 presents our identity propagation method based on
direct and indirect association. Finally, Section 8 presents the
REPERE corpus, results of experiments and a discussion.

… passons la parole à Madame Valérie Pécresse, 
ministre du budget et des comptes publics.

Mesdames, messieurs ...

FIGURE 1 – The REPERE corpus. The identity appears in mul-
tiple sources.

2. Related work
Several studies have addressed the problem of association-

propagation strategies for face identification. Name-it [8] pro-
posed to find face-name associations by maximizing the co-
occurrence between similar faces and names extracted from
OCR output. [9] proposed to name faces in images using a
graphical model for face clustering. Nodes represent detected
faces and edges are weighted by SIFT-based similarity. Then,
for each name detected in OCR, greedy search is applied to
find the sub-graph that maximizes face similarities within the
set of faces associated to the name. However, this approach can-
not identify faces if no name is detected in the image. In [10],
authors proposed to identify faces in TRECVID news videos
using training data obtained automatically from Google im-
age search. Names were extracted from both OCR and ASR
output. In [5], authors proposed to align detected faces with
names from the script and used rules based on lip activity and
gender detection to resolve ambiguities. In [6], names are ex-
tracted from movie scripts and subtitles and associated to faces

1. Reconnaissance de PERsonnes dans des Emissions Audiovi-
suelles : www.defi-repere.fr
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according to lip activity. Identities are then propagated using
face-level and clothes-level similarities. Although preliminary
results are promising, face and clothes variability (pose, expres-
sion, color. . .) hamper the robustness of the similarity measure.
In this case, audio information can be used in addition to vi-
sual cues to associate names to faces through speaker identity.
In fact, in TV content speaker diarization appears to be more ro-
bust than face clustering [11]. [2, 3] proposed to extract names
using ASR output and associated them to speakers using lexical
rules on speaker clusters. In [4], names are extracted from OCR
output and propagated to speaker clusters in order to maximize
co-occurrence.

3. System architecture
The general architecture of the PERCOLI system is dis-

played in figure 2. The goal of this system is to predict, for each
video frame, who is talking (SPEAKER hypotheses) and who
appears on the screen (FACE hypotheses).

There are three main steps in the system :
1. Person name hypotheses generation : this step is in

charge of producing all the person name identities that
can be associated with a voice or a face in a given time
window in a video .

2. Multimodal speaker identification : this process gives
an identity, when possible, to each speaker segment pro-
duced during the speaker diarization process thanks to
the person name identities given by the previous step.

3. Multimodal face identification : this second multi-
modal fusion process gives an identity, when possible,
to each face segment produced by the face tracking pro-
cess thanks to person name identities, face similarity, and
speaker hypothesis provided by the previous step.

  

Head

Video

Image Speech

Face Similarity

Propagation Speaker clustering

Person name hypotheses generation

Prior 
knowledge

Propagation

Prior 
knowledge

Speaker
Who is talking ?

Who is visible ?

FIGURE 2 – General architecture of the Percoli system

The Person name hypotheses generation process is dis-
played in figure 3. There are three sources of person name
identities : person names written in a text box, called Over-
lay Person Name hypotheses, and obtained through an Opti-
cal Character Recognition (OCR) process ; person names oc-
curring in the speech channel, called Utterred Person Name hy-
potheses, and extracted from the Automatic Speech Recognition
(ASR) of speech segments ; speaker recognition hypotheses ob-
tained thanks to a priori speaker models corresponding to the
main presenters, journalists and politicians likely to occur in

the news. For the first two sources of identities, an entity link-
ing process is needed in order to obtain a full identity from the
occurrences of names detected in either text or speech.

  

         

Overlay Person Name detection

Text box detection

Optical Character Recognition 
JÈRÔME CAHUZAO
Député PS du Lot-et-Garonne

JÈRÔME CAHUZAO

Speech Transcription
.. quand le président Sarkozy a 
annoncé le remaniement ..

Uttered Person Name detection
Sarkozy

NICOLAS_SARKOZYJEROME_CAHUZAC

Speaker segmentation

Speaker clustering

Speaker Recognition

a ab b

Video

Image Speech

Person name hypotheses generation

Entity Linking Entity Linking

Written Spoken Speaker

FRANCOIS_HOLLANDE 

FIGURE 3 – Person name hypotheses generation according to
three modalities : text in overlay text box ; speech ; speaker

4. Prior knowledge

Our system relies on three knowledge sources for perform-
ing identification : person name databases, speaker models and
show-specific knowledge. From these sources, speaker models
are the only biometric source of identity which is not allowed
in unsupervised REPERE tasks.

4.1. Person name linking

Person name linking consists in linking name hypotheses
manipulated in the system with a large database, in order to (1)
discard unlikely names, and (2) account for meta-data such as
the gender or spoken language of a person. In particular, we
are interested at determining names which are likely to appear
in the show being processed. This likelihood is estimated from
entity linking and the aired date of the show. Entity linking
is performed in two steps : clustering of person name variants
and matching with database entries. The first step is achieve by
collecting newswire articles around the dates of the broadcast
shows, detecting names with a Named Entity Tagger [12] and
clustering mentions. We applied this process to a large corpus of
newswire spreading from 2004 to 2012. About 9.2M NEs were
automatically detected. After the clustering and filtering process
we obtained 117K clusters containing 162K mentions of person
names. The second step consists in linking each cluster with
a unique identifier. We used for this purpose the ALEDA entity
database [13], which is a structured version of Wikipedia (about
225K person entities). From this database, heuristics are used to
extract biographical elements such as gender, spoken language,
topic, and whether the person is alive. When processing name
hypotheses, they are linked to the mention which corresponds
to the most frequent person cluster.
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4.2. Speaker models

The speaker identification system is a standard GMM/UBM
system (512 gaussians). We have collected audio for 345 speak-
ers, mainly on journalists and politicians, from REPERE train-
ing data and various BN sources. Speakers with less than 30
seconds of speech are discarded. The generated models cover
30% of the training data speakers, 50% of the development data
speakers and 54% of the test data speakers. Post-campaign eval-
uation has shown that the system has robustness issues because
speakers with moderate quantity of training data are three times
more likely to be incorrect on the test set than they are on the
development set.

4.3. Show-specific constraints

The idea is to build models of who is likely to appear in re-
curring TV shows, and take advantage of show structure in or-
der to capture names that would otherwise be difficult to detect.
In particular, our system relies on two sources of information :
lists of per-show presenters, journalists, columnists, commenta-
tors, and the setting of a show as its type (talk-show on a fixed
stage, news with field reports), the number of invited speakers.
In addition, for specific stage shows, an online component uses
the order in which guests are presented to determine their loca-
tion on stage and deduce probable coocurrence on a give camera
angle.

5. Name detection
In addition to prior knowledge sources, person names are

extracted from overlaid texts by using optical character recogni-
tion and from spoken content thanks to automatic speech recog-
nition.

5.1. Optical Character Recognition

The Overlay Person Name (OPN) recognition process is
made of 3 steps in our approach : text box detection ; Optical
Character Recognition producing a confusion network of char-
acters ; person name recognition in the character hypotheses.

Text box detection is achieved with a convolutional neural
net approach described in [14], then OCR is performed with
Tesseract 2, a standard open-source OCR system. Frame-to-
frame tracked text boxes lead to different OCR hypotheses be-
cause of background changes and animations. The consecutive
transcripts are merged in a Confusion Network (CN) in order
to compute the most maximum posterior probability character
sequence on the whole track. A few heuristics are used to locate
actual person names in text boxes that contain other information
(occupation, etc) and hypothesized names are filtered accord-
ing to their Levenstein distance, computed efficiently with finite
state transducers, to the large list of person names described in
Section 4. If linking the name to the database fails, we back off
to a web search and filter names returning less than 400 hits.

5.2. Automatic Speech Recognition

Automatic transcription of all speech content is not ade-
quate for finding person names because word error rate can be
relatively high (near 30% in our system) and names tend to
be out-of-vocabulary and therefore never hypothesised by the
system. Our name spotting component searches for names in
phoneme confusion networks generated by a first pass of ASR.

2. https ://code.google.com/p/tesseract-ocr/

Given a list of potential person names likely to appear in the
processed show, the system ranks them according to the average
phonetic posterior after alignment of the phonetic transcription
of the name (with a cutoff on the Levenstein distance). Name
spotting and ASR 1-best are hybridized in order to retrieve first
names which are easier for ASR.

6. Speaker and Face Diarization
The task of diarization aims at determining for each pair of

(visual or acoustic) frames whether it contains the same person.
This task is often referred to as clustering.

6.1. Speaker diarization

The diarization system used in this work is the one pre-
sented in [15]. It is a sequential processing using firstly
Bayesian Information Criterion and then Cross-likelihood Cri-
terion, with special attention paid for overlapped speech. Over-
lapped speech segments are first detected and discarded from
the clustering process, and then reassigned to the 2 nearest
speakers, in terms of temporal distance between speech seg-
ments. Processing overlapped speech is particularly interesting
for shows including debates.

6.2. Face diarization

Faces are detected using OpenCV’s cascade classifier [16]
for frontal and profile faces. The resulting detections are tracked
until shot boundaries using bounding box overlap. Then, the up-
per body is detected using a background subtraction algorithm
based on Grabcut [17], initialized with detected face. The back-
ground subtraction algorithm yields a very accurate silhouette
of the person, even in presence of a dynamic background. Each
extracted person is then modelled using a space-time color his-
togram [18]. This model stores color along with geometric and
time information. It allows to retain the aspect of the person as it
moves throughout the shot. A similarity matrix is built between
person tracks using a combination of Bhattacharyya coefficient
and Mahalanobis distance [18]. In the PERCOLI system, the
similarity matrix is directly used in the face identification pro-
cess as described in section 7.2 without requiring a specific clus-
tering process.

7. Multimodal Fusion
As mentioned in section 3, our system identifies speaker

identities in a first step and identifies face identities in a second
step. Both identification steps are achieved thanks to a multi-
modal fusion system composed of two modules :

– Local identities propagation
– Show-specific post-processing

The following subsections describe the nature of local identities
that are propagated for both steps, along with the generic prop-
agation approach and the specific post-processing stage. Note
that the different strategies have been designed in order to mini-
mize the EGER metric (defined in section 8) for which all types
of errors are equally weighted. In particular, substitutions and
omissions having the same cost, we have chosen to try to give
an identity to every detected speaker or face.

7.1. Multimodal speaker identification

Local identities for speaker identification are OPN hypoth-
esis and scored speaker recognition (SR) hypothesis. The score
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of an SR hypothesis is obtained thanks to a re-ranking pro-
cess applied on the speaker recognition n-best list provided by
speaker models. Re-ranking is based on the acoustical score and
the presence of the speaker name in overlaid text as described in
details in [19]. UPNs extracted from the spoken content are used
in the post-processing and validation steps, along with show-
specific a priori knowledge.

The core identity propagation method consists in attribut-
ing local identities to speakers in the following way :

1. direct identification : SR hypothesis are attributed to their
corresponding speaker turns if their score is above a
given threshold ; then for each local OPN hypothesis, the
speaker turn which has the maximum duration overlap
with the OPN span is given the identity carried by the
OPN hypothesis ;

2. indirect identification : each unidentified speaker turn is
given the identity of its speaker cluster, i.e. the OPN hy-
pothesis which has the maximum duration overlap with
the whole cluster or the SR which has the maximal score
over the whole cluster if there is no such OPN hypothesis
along the cluster.

The first post-processing step applies on speaker turns
that have not been identified in the previous propagation
step. It consists in using specific knowledge about the shows
to identify speakers that cannot be identified by the core
propagation step. It is applied for the unsupervised system
where some speaker turns can remain unnamed after the
propagation step. It is particularly designed for the identi-
fication of voice-overs for shows that contain reports com-
mented by journalists (LCP CaVousRegarde, LCP LCPInfos,
BFMTV BFMStory, BFMTV PlaneteShowbiz). The identity of
such journalists is usually not displayed in the overlaid text and
can only be retrieved from the spoken content. To this purpose,
we use a predefined list of potential journalists for each type of
show, and perform a specific name spotting in the audio content
leading to a set of specific UPN hypotheses. A show can po-
tentially contain several voice-over reports and we make the as-
sumption the voice-over journalists are introduced before their
report. Hence, after each specific UPN hypothesis, we attribute
the corresponding identity to every unidentified speaker turn un-
til the next specific UPN hypothesis.

Finaly a global validation step is performed for two partic-
ular shows for which the number of speakers is known in ad-
vance. It is the case of debate shows that only contain on-stage
debates without any additional reports (LCP PileEtFace with
only three speaker and LCP EntreLesLignes with five speak-
ers). If the overall number of speaker identity hypotheses is
above the a priori number of speakers N , the N most frequent
hypotheses are kepts and the others are simply replaced by the
most frequent hypothesis.

7.2. Multimodal face identification

Local identities for face identification are OPN hypothe-
sis and speaker identities output by the previous multimodal
speaker identification stage. UPNs extracted from the spoken
content are used in the post-processing step, along with show-
specific a priori knowledge.

The core identity propagation method is also the succes-
sion of a direct and an indirect identification steps. The di-
rect face identification step follows the assumption that most
OPNs occur while the corresponding face appears on the screen.
Statistics on the REPERE corpus corroborate this idea, show-
ing that 98.5% of the annotated frames containing an OPN also

contain the corresponding face. Consequently in unambiguous
shots where only one face is detected, we locally propagate the
OPN to the face track. Then, for ambiguous shots where mul-
tiple faces could be identified by an OPN, we make a global
decision using bipartite matching. For a given OPN, potential
face sets are formed by gathering all face tracks that do not co-
occur in the same shot. Then, that name is associated to the
purest cluster containing all shots it occurs in.

The indirect face identification approach implemented in
the PERCOLI system includes Face → Face propagation
and cross-modal Speaker → Face propagation. First, the
Face → Face propagation corresponds to the ”similarity
based” approach described in [20]. It is based on the principle
that directly-named faces are very reliable, and can be consid-
ered as models in an open-set face identification paradigm. Let
ĝn be the set of faces directly associated to name n, for each
face f with no direct naming, a distance D is defined between
this face and ĝn. The name n̂(f) given to face f is the name for
which the distance is minimal, if the distance < θ1.

n̂(f) =

{
argminn∈N D(ĝn, f) if D(ĝn, f) < θ1
∅ otherwise

with D(g, f) = 1
|g|
∑

fi∈g d(f, fi) being computed on the
basis of the similarity matrix described in section 6.2. Note that
for the moment, it has been applied only for shows from LCP
channel (except LCP TopQuestions) because similarity matrix
were not reliable enough for the other shows that have a much
more complex video editing policy.

The second aspect of our indirect face identification ap-
proach consists in attributing an identity to the remaining face
tracks from the speaker modality. The identity of the speaker
which has the maximal temporal overlap with the face track is
given to the track. Note that if the system had to be designed
in order to optimize identity precision, this Speaker → Face
propagation should be refined and conditioned for instance to
the response of a talking face detector.

The post-processing module relies on a priori knowledge
of the shows, regarding their structure and their staging. If the
structure of reports is difficult to model, studio set parts of a
show usually follow a regular staging process. In order to ex-
ploit this specific knowledge, a set of rules has been manually
designed for 4 different shows.
BFMTV PLANETESHOWBIZ is dedicated to show business
news : the show starts with an introduction by two anchor jour-
nalists in studio followed by several voice-over reports

→if one of the anchors is speaking and two faces are de-
tected, then the second face is given the identity of the second
anchor.

LCP LCPINFO is a classical Brodcast News show with an
alternation of reports introduced by an anchor speaker (identi-
fied as the first OPN hypothesis), and studio interviews between
the anchor and the principal guest (identified as the most fre-
quent OPN hypothesis). The staging of this show implies that
during the interviews, the anchor and the guest can appear si-
multaneously on screen with smaller face sizes.

→if the principal guest is identified by the identity prop-
agation step and has a small size, a second face track corre-
sponding to the anchor is systematically added.

LCP PILEETFACE is a debate between two politicians,
their names are detected as being the two most frequent OPN
hypotheses along the show. They appear on screen whether
alone or together with a smaller head size.
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→if one politician face track is identified by the identity
propagation step and has a small size, a second face track cor-
responding to the second guest is systematically added.

LCP ENTRELESLIGNES is a debate between four journal-
ists which are sitting two by two on both sides of a square ta-
ble. Their names are detected as being the four most frequent
OPN hypotheses along the show. A specific spotting of these
four names in the audio content of the very beginning of the
show (when they are presented by the debate animator), allows
to infer their position around the table. Actually they are always
presented in the same order, and it is possible to infer who is
sitting next to who and who is facing who.

→if one guest face track is identified by the identity prop-
agation step and has a small size, a second face track corre-
sponding to his neighbour is systematically added.

These rules are very specific but can cover a large propor-
tion of shots in a studio show which follows a regular and struc-
tured staging.

8. Evaluation

Metric EGER Pre. Rec. F-m
Modality speak. head s+h speaker+head
Sup. local 24.4 53.5 40.2 75.4 62.7 68.5
+ post-proc 24.5 50.4 38.6 75.7 64.6 69.7
Unsup. local 36.3 58.8 48.5 81.6 51.9 63.4
+ post-proc 34.1 55.4 45.7 67.5 57.6 62.2

FIGURE 4 – Global results in terms of EGER and F-measure
for the two fusion strategies (local fusion and local fusion +
post-processing) for the supervised and unsupervised tasks. The
post-processed systems correspond to REPERE submissions.

EGER local + post-proc
BFMTV BFMStory 46.0 43.9
BFMTV CultureEtVous 93.5 81.5
LCP CaVousRegarde 65.8 67.5
LCP EntreLesLignes 61.6 57.1
LCP LCPInfo 51.5 48.0
LCP PileEtFace 51.5 38.0
LCP TopQuestions 64.8 69.3
All 58.8 55.4

FIGURE 5 – Impact of the fusion strategy on each show, for the
head modality (unsupervised mode).

The results presented in this section have been obtained on
the 2013 REPERE test corpus during the challenge. The output
of the automatic systems participating to the challenge is a list,
for each video file, of temporal segments representing the iden-
tities of detected persons in the video with the corresponding
modality, such as :

s1 227.6 240.1 speaker Valerie_PECRESSE
s1 237.9 256 head Nicolas_SARKOZY
s1 249.2 252.7 speaker Nicolas_SARKOZY
s1 282.2 284.1 head Valerie_PECRESSE

The first field is the show id, then the time window, the
modality (head, speaker) and the name in a normalized form
(first name/last name). The 2013 REPERE test corpus contains
2 hours of video from 2 TV channels and 7 different shows.
The evaluation was performed on 1187 manually annotated key-
frames containing 1165 speaker identities and 1386 face identi-
ties. The official scoring metric of the REPERE challenge is an

PRIMARY Supervised Unsupervised
Origin %Test %Corr. %Test %Corr.
Direct OCR 12.7 98.5 12.7 98.5
Face similarity 20.8 84.3 20.8 84.3
Speaker →Face 49.7 67.8 49.7 59.1
Post-processing 16.6 86.0 16.6 84.0
Total 100.0 77.3 100.0 72.7

FIGURE 6 – Origin of face identities in the primary system out-
put for LCP (except LCP TopQuestions).

error metric called Estimated Global Error Rate (EGER). This
metric compares the list of person names produced by the au-
tomatic systems on the key-frames with the reference list. One
or several modalities can be considered in the scoring. EGER
computes the error rate by adding three kinds of errors : confu-
sion, false alarm and missed detection. The cost of each error is
set to 1 and the following score is computed :

EGER(m) =
Conf(m) + FA(m) + Miss(m)

# of person name in modality m

In the official results, the main results are given for the
head+speaker modality. The performance of the PERCOLI sys-
tem presented in this paper are displayed in table 4 in term of
EGER and F-score. We present two variants : one only with
only local propagation, and the submitted output with the post-
processing presented in section 7. Compared to other partic-
ipants, a stratified shuffling test [21] shows that our super-
vised system is significantly worse than the best participant
(∆ = 5.1, p = 0.026), and that our unsupervised submission is
not significantly different from the best submission (∆ = 3.4,
p = 0.433). In addition, Table 5 shows the impact of post-
processing on each show. Clearly, the strategy only pays off for
a few shows which have a stable structure. Figure 6 shows the
origin of face naming decisions in the system for the subset of
shows we were able to process with face similarity matrix. OCR
direct naming and Face similarity-based naming are very accu-
rate but only cover a third of the faces that we were able to iden-
tify. Naming from the co-occurent speaker is not very precise,
but enables to name a large set of faces, for which no other infor-
mation is available. Finally, the show specific post-processing is
fairly accurate for these shows.

9. Conclusions
This paper presents the PERCOL system for the first phase

of the REPERE challenge. The system is focused on the unsu-
pervised task which precludes the use of prior biometric mod-
els. Person identification is achieved by (1) detecting names in
overlaid text and speech, (2) linking those name hypotheses to
large databases of known people, (3) propagating them to de-
tected speakers and faces through clustering and show-specific
heuristics. In addition the variant of the system for supervised
identification uses speaker models as another source of identity.
In particular, propagation is achieved first on speakers, and then
on faces, because of the confidence we have in those two modal-
ities. In the official evaluation, this approach performed on par
with the best system on the main unsupervised task and not sig-
nificantly worse than the second best system on the main super-
vised task. Future work includes taking advantage of training
data to learn how to merge identity hypotheses from the various
components of the system, as well as inserting face identifica-
tion in the pipeline.
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Abstract
In this paper, we present a French named entity recognition
(NER) system that was first developed as part of our partici-
pation in the ETAPE 2012 evaluation campaign and then ex-
tended to cover more entity types. The ETAPE 2012 evalua-
tion campaign considers an hierarchical and compositional tax-
onomy that makes the NER task more complex. We present
a multi-level methodology based on conditional random fields
(CRFs). With respect to existing systems, our methodology al-
lows a fine-grained annotation. Experiments were conducted
using the manually annotated training and evaluation corpora
provided by the organizers of the campaign. The obtained re-
sults are presented and discussed.
Index Terms: Named Entity Recognition, Structured Named
Entities, CRF model.

1. Introduction
Named Entities (NEs) are defined as autonomous mono-
referential linguistic expressions. They cover traditionally the
names of all the person, organization and location. There are
two most widespread approaches for the Named Entity Recog-
nition (NER): symbolic approaches which rely on hand-coded
grammar and gazetteers, and learning-based approaches which
require large quantities of manually-annotated corpus [1].

NER from speech is mainly performed by transcribing
speech and then applying NER approaches to transcripts. NER
systems are adapted to fit in with the characteristics of automatic
speech transcripts such as speech disfluencies, automatic speech
recognition errors and out-of-vocabulary (OOV) problems. To
that is added the problem of lack of some important NER fea-
tures such as capitalization and punctuation. In order to improve
speech NER, previous work has included restoring punctuation
and capitalization in transcripts [2], using the Part-of-speech
(POS) tags as features [3], incorporating indicative OOV words
and ASR confidence features [4, 5, 6]. The ESTER 2 evaluation
campaign [7, 8] has shown that the symbolic systems produce
best results on manual transcripts whereas the learning-based
systems show best results on automatic transcripts [9, 3].

NER systems require manually transcribed and annotated
data, whether for performance evaluation or learning an annota-
tion model. The adopted annotation schema has a direct impact
on NER performance. For example, flat and relatively small
entity types and granularity can achieve good results. The prob-
lem becomes more complex by using a fine-grained hierarchical
taxonomy. As in [3], we propose a CRF-based approach that
integrates the POS tags as features. However, the fundamen-
tal difference in our approach is that the adopted taxonomy is

hierarchical and compositional.
In this paper, we present a French NER system that was first

developed as part of our participation in the ETAPE 2012 eval-
uation campaign and then extended to cover more entity types.
We propose a multi-level methodology which allows NER an-
notation following a fine-grained taxonomy. Three levels of an-
notation are defined : the first level consists of annotating the
main categories, the second level has to do with the annota-
tion of components and the last level deals with the problem of
nested named entities.

This paper is organized as follows: Section 2 briefly
presents the ETAPE evaluation campaign. Section 3 describes
the Quaero extended taxonomy adopted in this campaign. Sec-
tion 4 presents the corpora and the metrics used for evaluation.
Section 5 presents the method used. Section 6 reports exper-
imental results, while Section 7 concludes and presents future
work.

2. The ETAPE evaluation campaign
The ETAPE evaluation campaign aimed to measure the perfor-
mance of speech technologies for the French language [10].
Three main tasks were considered in this campaign: segmen-
tation, transcription and information extraction. The evaluation
concerned a variety of TV materials with various level of spon-
taneous speech and overlapping speech from multiple speakers.
We are interested in the information extraction task that con-
sists of detecting and categorizing all direct mentions of named
entities following the Quaero named entity taxonomy.

3. Quaero named entity taxonomy
The Quaero annotation schema [11, 12] adopts a fine-grained
hierarchical taxonomy. Named entity tagset is composed of 7
main categories and 32 sub-categories:

• person: invidual person (pers.ind), collectivity of per-
sons (pers.coll),

• location: administrative location (loc.adm.town,
loc.adm.reg, loc.adm.nat, loc.adm.sup), physical
location (loc.phys.geo, loc.phys.hydro, loc.phys.astro),

• organization: services (org.ent), administra-
tion (org.adm),

• function: individual function (func.ind), collectivity of
functions (func.coll),

• human production: manufactury object (prod.object),
art products (prod.art), media products (prod.media), fi-
nancial products (prod.fin), software (prod.soft), award
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(prod.award), transportation route (prod.serv), doctrine
(prod.doctr), law (prod.rule),

• time: absolute date (time.date.abs), date relative to the
discourse (time.date.rel), absolute hour (time.hour.abs),
hour relative to the discourse (time.hour.rel),

• amount

Entity tags are organized in a structured way so that
a named entity can include another one. For example,
in the named entity ”<func.ind>Minister of
<org.adm>Education</org.adm></func.ind>”,
the func.ind type includes the org.adm type.

In addition, the elements inside the named entities are
categorized using components. A named entity includes
at least one component. For example, a street name
can be composed of a kind and a name : <loc.oro>
<kind> rue </kind> de <name> Vaugirard </name>
</loc.oro> (<loc.oro><kind> street </kind> of
<name> Vaugirard </name> </loc.oro>). There are
two kinds of components:

• Transverse components that can fit each type of entity:
name, kind, qualifier, demonym, val, unit, object, range-
mark,

• Specific components which are only used for a re-
duced set of components: pers.ind (name.last, name.first,
name.middle, title), loc.add.phys (address.number, po-
box, zip-code, other-address-component), and time.date
(week, day, month, year, century, millenium, reference-
era, time-modifier)

In cases of metonymy, the named entity is double anno-
tated with the type to which the entity intrinsically belongs and
with the type to which the entity belongs according to the con-
text. For example, the named entity ”Roland Garros” is
annotated as loc.fac and pers.ind in the sentence ”We are in
Roland Garros”

4. Corpora and metrics description
We first present the corpora used in this work, then we present
the different metrics used for evaluation.

4.1. Corpora

To carry out the experiments, we used the ETAPE and ESTER 2
data which have been made available to the participants in the
ETAPE evaluation campaign. The ETAPE corpus consists of
42.5 hours of data recorded from different French speaking ra-
dio and TV stations which are BFM TV, La Chaı̂ne Parlemen-
taire and TV8. The ESTER 2 corpus comprises about 100 hours
of radio broadcast from various French speaking radios which
are France Inter, Radio France International, France Culture,
Radio Classique, Africa number one, Radio Congo and Radio
Television du Maroc. These corpora have been manually tran-
scribed and annotated following the Quaero named entity tax-
onomy.

The ETAPE and ESTER data jointly are divided into three
parts. The first part (1,761,677 words) is used to train various
CRF models. The second part (108,340 words) is used as devel-
opment corpus to experiment with and adjust some parameters.
The remaining (106,803 words) is used in the final evaluation.

4.2. Evaluation metrics

The evaluation of the NER performance is performed using the
SER and the F-measure.

The SER [13] (cf. equation 1) combines different types of
error: insertions (I), deletions (D) and substitutions (errors both
in span and in type (SST ), errors in span (SS), errors in type
(ST )). The corresponding equation is given by:

SER =
D + I + SST + 0.5× (SS + ST )

# of entities in the reference
(1)

The F-measure (cf. equation 4) combines precision and re-
call. Precision (cf. equation 3) represents the percentage of
annotated entities that are correct. Recall (cf. equation 2) repre-
sents the percentage of correct entities that are annotated. The
corresponding equations are given by:

Recall =
# of correct annotated entities

# of annotated entities in the reference
(2)

Precision =
# of correct annotated entities

# of annotated entities in the hypothesis
(3)

F−measure =
2×Recall × Precision

Recall + Precision
(4)

5. Method used

Figure 1: Architecture of the NER system

Several machine learning methods have been used for an-
notating named entities in text. Annotation is considered as se-
quence labeling task. Each word in the sequence is labeled with
its appropriate tag. Tags include the category of the named en-
tity and the location of the word within the named entities (BIO
annotation). The first word in a named entity is tagged with
”entity-tag-B”, and further named entity words are tagged with
”entity-tag-I”. Words outside named entities are tagged with
”O” (Other). Several studies [14] have shown that discriminant
methods like Maximum Entropy Markov Model (MEMM) [15]
or CRF [16] overcome the difficulties encountered in genera-
tive methods like Hidden Markov Model (HMM) [17]. Dis-
criminative models allow to relax the independence assump-
tions needed by generative models and to include much more
features in the model. The machine learning method employed
in this work is CRF which is a discriminative undirected graph-
ical model.

Named entities in the training data are organized in a
structured way as shown in section 3. Named entities contain
nested tagging of other named entities and components.
Therefore, words constituting the named entities can belong at
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the same time to one or more categories. This is a problem for
the preparation of the training data for classification because
each word must be assigned to just one category. Here is an
example of a sentence in training corpus:

Vous êtes <func.ind> <kind> directeur
</kind> de l’ <org.ent> école nationale d’
assurance </org.ent> </func.ind>
(You are the <func.ind> <kind> director
</kind> of the<org.ent> national insurance
school </org.ent> </func.ind>)

In order to handle structured tagging, we defined three lev-
els of annotation. The first level consists of annotating the 32
categories in a flat way. The second level has to do with the an-
notation of components. The last level allows overlapping an-
notation when a category includes another category. We trained
a CRF model for each level of annotation. Figure 1 shows the
architecture of the NER system.

We used the open source implementation of CRF CRF++
toolkit1 to implement the different models.

5.1. Entity detection

The first CRF model aims to annotate a text with the 32
categories. To achieve this, we presented the training data in
a flat way by separating nested annotations and eliminating
component tags. Here is how the sample sentence given in
section 5 is presented in training corpus:

Vous êtes <func.ind> directeur de l’
</func.ind> <org.ent> école nationale d’
assurance </org.ent>
(You are the <func.ind> director of the
</func.ind> <org.ent> national insurance
school </org.ent>)

We then encoded the obtained corpus in BIO notation (Be-
gin, Inside, Outside) and train the CRF model. Two types of
features are used to predict if a word is part of a named entity
or not:

• Contextual information: we took a context window of
[−2,+2] and consider unigram, bigram and trigram
combinations.

• Semantic and syntactic information: we used the French
POS tagger LIA Tagg2 to assign a POS tag to each
word. LIA Tagg is a free tool based on HMM. The POS
tags are enriched with four semantic labels for proper
names: person, organization, location and product. We
augmented the lexicon of LIA Tagg with 111,600 new
named entities extracted form the Web (30,300 persons,
18,700 organizations et 62,600 locations). This allows a
first lexicon-based level of annotation.

Figure 2 shows an example of the CRF training corpus.

5.2. Component detection

The second CRF model is applied on the output of the first CRF
model. Here, the goal is to predict a component label to each

1http://crf.sourceforge.net
2http://lia.univ-avignon.fr/fileadmin/documents/Users/Intranet/chercheurs/bechet/download fred.html

Figure 2: Example of the CRF training corpus for entity
annotation

Vous PPERP O
êtes VEP O
directeur NMS func.ind-b
de DETFS func.ind-i
l’ DETFS func.ind-i
école NFS org.ent-b
nationale AFS org.ent-i
d’ PREPADE org.ent-i
assurance NFS org.ent-i

Figure 3: Example of the CRF training corpus for component
annotation

Vous O O
êtes O O
directeur func.ind-b kind-b
de func.ind-i O
l’ func.ind-i O
école org.ent-b O
nationale org.ent-i O
d’ org.ent-i O
assurance org.ent-i O

word of a text. Two kinds of features are used to train the CRF
model:

• Contextual information: we took a context window of
[−2,+2].

• Semantic information: we used the first CRF model to
assign a named entity tag to each word of a text.

Figure 3 shows an example of the CRF training corpus.

5.3. Entity imbrication

The third CRF model is applied on the output of the second
CRF model in order to deal with the problem of nested named
entities. In fact, named entities are annotated in a flat way in
the second level. Therefore, we need to change the boundaries
of certain named entities in order to overlap other ones. For
example, in the sentence given in section 5.1, we need to move
the closing tag of the function entity to overlap the organization
entity. We used two types of features to train the CRF model in
order to learn the imbrication rules:

• Contextual information: we took a context window of
[−2,+2].

• Semantic information: we used the first and the second
CRF models to assign a named entity and a component
tag to each word of a text.

Figure 4 shows an example of the CRF training corpus.
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Figure 4: Example of the CRF training corpus for entity
imbrication

Vous O O O
êtes O O O
directeur func.ind-b kind-b func.ind-b
de func.ind-i O func.ind-i
l’ func.ind-i O func.ind-i
école org.ent-b O func.ind-i
nationale org.ent-i O func.ind-i
d’ org.ent-i O func.ind-i
assurance org.ent-i O func.ind-i

Table 1: Global NER results for the 32 categories computed
on the manually-transcribed test corpus and ASR output. (F:
F-measure, P: precision, R: recall)

Manual ASR output ASR output
transcriptions (WER=23) (WER=30)
F (R/P) (%) F (R/P) (%) F (R/P) (%)

S1 71.1 (62.5/18.7) 52.3 (43.7/65.1) 55.4 (46/69.6)
LL 68 (64.5/71.7) 49.9 (44.7/56.3) 53.1 (46.59/61.91)
S2 66.4 (65.7/67.3) 40 (33.8/49.1) 41.4 (34.3/52.1)
S3 66.2 (65.6/77) 43.4 (41/46.1) 46.2 (44/48.6)
S4 66.2 (64.4/68.1) 43.7 (37.6/52.2) 48.8 (41.2/59.8)
S5 46.1 (67/61.4) 41.5 (40.7/42.4) 45 (43.3/46.8)
S6 55.5 (61/50.8) 23 (21.6/24.5) 27.7 (26.6/28.8)
S7 34.8 (28.3/45.1) 6.1 (19.1/9.2) 7.8 (23/11.6)

6. Results
We used the ETAPE test corpus to evaluate the performance of
our system. This corpus contains 5,705 named entity occur-
rences and 7,174 component occurrences.

The NER system we used to participate in the ETAPE 2012
evaluation campaign annotates only the categories without com-
ponents. It uses the first and the third CRF models. Table 1
shows the results obtained by our system, named LL, and the
results of other participating NER systems for the 32 categories
without components. The evaluation is performed on the man-
ual transcriptions and ASR output with different Word Error
Rate (WER). The ASR output is obtained from different ASR
systems. The proposed approach achieves the second best F-
measure on manual and automatic transcriptions for the 32 cat-
egories. Obviously, the F-measure decreases when dealing with
automatic transcriptions. The NER features used for the well-
written text appear insufficient to deal with noisy text and new
specific ASR features are needed to be added.

After the ETAPE evaluation campaign, we extended our
NER system to annotate also the components using the second
CRF model. The system shows 37.5 % of SER on the manually-
transcribed test corpus and 62.2 % of SER on the ASR output
(WER=23). Table 2 shows the NER results by category. The re-
sults show good performance for some standard categories such
as pers.ind and loc.nat, and poorer performances for others such
as loc.fac and prod.object. These are characterized by a poor
recall. This is mainly due to a low frequency in the training cor-
pus. In addition, we observe some categorization errors particu-
larly for the entities with metonymic sense (Paris as a town or as
an organization) and between certain sub-categories of location
and product. There is also some annotation ambiguity problems

Table 2: NER results by category and component computed on
the manually-transcribed test corpus and ASR output. (F: F-
measure, P: precision, R: recall).

Manual ASR output Entities in
transcriptions (WER=23) reference

F (%) F (%)
amount 65.5 49.6 705
pers.ind 84.8 54.7 1,398
pers.coll 49.7 40.3 177
pers.other 0 0 1
time.date.abs 42.8 33 192
time.date.rel 74.7 65.5 348
time.hour.abs 58.1 32.8 46
time.hour.rel 74.2 62 84
loc.oro 0 50 2
loc.fac 13.7 11.3 81
loc.add.phys 0 0 4
loc.add.elec 83.3 46.15 18
loc.adm.town 71.4 44.5 279
loc.adm.reg 56.5 51.8 47
loc.adm.nat 86.9 77.9 276
loc.adm.sup 76.4 53.3 33
loc.phys.geo 23.5 0 30
loc.phys.hydro 0 0 5
loc.phys.astro 0 0 0
prod.object 6.2 0 58
prod.art 16.4 0 87
prod.media 68.1 56.8 164
prod.fin 19.6 11.6 84
prod.soft 0 0 0
prod.award 44.4 37.5 13
prod.serv 0 0 0
prod.doctr 0 33.3 3
prod.rule 54.5 0 5
prod.other 0 0 7
prod.unk 0 0 2
func.ind 59.8 51.6 383
func.coll 47.6 30.8 243
org.ent 45.7 38.3 307
org.adm 54.9 45.9 286
kind 50.4 42.3 1,163
extractor 40 33.3 4
qualifier 31.7 28.2 250
title 38.1 31.5 75
val 85 70.1 808
unit 87.6 75.4 463
object 61.7 49 225
range-mark 77 59.3 71
day 85.7 71.8 36
week 84.9 77.7 39
month 69 59.8 74
year 88.8 72.4 95
century 100 80 3
reference-era 25 33.3 2
time-modifier 64.3 57.2 337
award-cat 0 0 2
demonym 57.9 49 206
name 68.1 57.3 1,593
name.last 82.9 41.2 928
name.first 86.4 53.5 1,032
name.nickname 30.6 28.2 71
all 69.7 52.5 12,879
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which concerns particularly some named entities composed of
common nouns such as for pers.coll (e.g. classes populaires
(working classes)), func.coll (e.g. sentinelles citoyennes (sen-
tinel citizens)) and prod.art (e.g. devons-nous payer 100 % des
tudes des futurs traders ? (should we pay 100 % of the studies
of future traders)).

7. Conclusions
In this paper, we have presented a French NER system using
CRF. We have proposed a multi-level method that annotates
named entities following a fine-grained hierarchical taxonomy.
The evaluation has shown good results on manual and automatic
transcriptions. Future work will concentrate on improving the
annotation of some categories and components that shows a
weak performance. This is due to their limited appearance in
the training corpus. We also intend to explore new features
gathered from the ASR process to improve NER in automatic
transcriptions.
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Abstract
In this paper, we present the results obtained by a state-of-
the-art system for Speaker Role Recognition (SRR) on the
TV broadcast documents issued from the REPERE Multimedia
Challenge. This SRR system is based on the assumption that
cues about speaker roles may be extracted from a set of 36 low
level features issued from the outputs of a Speaker Diarization
process. Starting from manually annotated speaker segments,
we first evaluate the performance of the SRR system, formerly
evaluated on Broadcast radio recordings, on this heterogeneous
set of TV shows. Consequently, we propose a new classification
strategy, by observing how building show-dependent models
improves SRR. The system is then applied on some speaker seg-
mentation outputs issued from an automatic system, enabling
us to investigate the influence of the errors introduced by this
front-end process on Role Recognition. In these different con-
texts, the system is able to correctly classify 86.9% of speaker
roles while being applied on manual speaker segmentations and
74.5% on automatic Speaker Diarization outputs.
Index Terms: speaker role recognition, speech processing,
content-based indexing of audiovisual documents.

1. Introduction
Maintaining efficient means of access to the information held
in the huge mass of audiovisual documents broadcast everyday
by TV and radio channels is very challenging. The increasing
number of projects and evaluation campaigns puts to the fore
the important work currently achieved in order to propose au-
tomatic methods dedicated to information extraction, content-
based indexing and structuring in audiovisual documents.

The REPERE Multimedia Challenge [1] (2010-2014) is
dedicated to the specific task of person identification in TV pro-
grams. It provides a framework (corpora and evaluation pro-
tocols) to support research on this topic in multimodal condi-
tions. The work presented in this paper is part of the PERCOL
project which is one of the three consortia chosen to participate
at this challenge. In the context of the first official phase of
the REPERE campaign, the scientific partners involved in PER-
COL have proposed several systems dedicated to speaker iden-
tities through the recognition of pronounced names and speaker
identification in speech, person name detection in overlaid texts
and face recognition in video.

We are interested in bringing information relative to speaker
roles in a speaker identification perspective. In well structured
documents, as in broadcast news programs, several studies have
already taken advantage of the links between speaker roles (like
anchor, journalist, guest or interview participant) and content
structure. Role information has previously been used in [2] to
summarize broadcast news documents, for topic indexing [3]
and for story segmentation, relying either on the detection of
the anchorman [4] or journalists [5].

This paper is dedicated to the application of a state-of-the-
art speaker role recognition system on the document set of the
REPERE challenge since there are several potential benefits in
using information brought by speaker roles in a speaker identi-
fication perspective. For example, a TV show presenter is ex-
pected to introduce his guests and chroniclers by citing their
names. Speaker roles may as well bring confidence in the out-
puts of a speaker recognition process.

The paper is structured as follows. In section 2 we present
a brief description of related works on speaker role recognition.
The document set as well as both the Speaker Diarization and
Speaker Role Recognition systems used in this study are pre-
sented in sections 3 and 4 respectively. Section 5 is dedicated
to the experiments carried out. Finally, we conclude this paper
with some perspectives.

2. Related Works

First contributions to SRR [6, 7] are methods based on the out-
puts of Automatic Speech Recognition (ASR). A second cat-
egory of approaches concern works based on Social Network
Analysis and Social Affiliation Network applied on Speaker Di-
arization [8, 9]. In this second case, prior knowledge about the
structure of the show is taken into account to determine rele-
vant roles. These methods are mainly based on three classic
roles: anchorman, journalist, other (or guest). The number of
roles could be greater, but on very specific corpora (bulletins
from a same news program). A more detailed survey of the
state-of-the-art concerning these methods can be found in [10].
More recent contributions tend to benefit from speech transcrip-
tions as well as from the temporal organization of speaker turns.
In [11], authors integrate information relative to speaking style
and a priori information about turn-taking patterns of conver-
sations in a Dynamic Bayesian Network (DBN). The method
in [12] assumes that cues about speaker roles are available in the
way speakers formulate their questions. In [13] both structural
and lexical features are used together. The approach proposed
in [14] classifies speaker segments among the three classical
roles. A first step based on the temporal distribution of speech
segments and on the average Bayesian Information Criterion
realizes the detection of anchorman. A second step, based on
textual information achieves the classification of journalist and
other. In [15] the authors investigate the links between speech
spontaneity markers and speaker roles. The work of [16] is
based on prosodic and temporal features calculated for every
speaker segment obtained from a Speaker Diarization. The de-
cision step is achieved using Conditional Random Fields (CRF).
Because of the important diversity among these contributions
(methods, features, language, corpus and metrics), these results
are difficult to compare together.
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3. Corpus
At each step of the REPERE challenge, a set of TV broad-
cast documents and its annotations is delivered to the partici-
pants. The training set of the first phase has been annotated
with speaker roles. We present in details this corpus as well as
its features from a speaker role recognition point of view.

3.1. REPERE Broadcast TV document set

This data set is composed of 135 documents corresponding to
several recordings of 7 different TV programs taken from two
different TV channels. It corresponds to an overall speech dura-
tion of 24 hours distributed among these different programs as
reported in Table 1. This set can be divided into three categories
of programs :

• Broadcast News (13.8h) with BFMStory, Showbiz and
LCPInfo. Documents belonging to this category count
for more than the half of the entire data set duration. The
program Showbiz is slightly different from the other ones
and is a People News and gossip program.

• Debates (6.6h) : among this set, EntreLesLignes is dedi-
cated to journalistic questions, while ÇaVousRegarde fo-
cuses on society questions. PileEtFace is a head-to-head
political debate.

• The last category (3.6h) is for TopQuestions. These doc-
uments are recordings of the parliamentary sessions
of the French National Assembly.

nb. of doc. speech
Name shows type duration

BFMStory 14 News 7.9h
Showbiz 66 News 1.9h
LCPInfo 15 News 4h

ÇaVousRegarde 6 Debate 2.2h
EntreLesLignes 7 Debate 2.2h

PileEtFace 9 Debate 2.2h
TopQuestion 18 Nat. Ass. 3.6h

135 24h

Table 1: The REPERE data set and its speech distribution
among various programs

3.2. Role definitions

Manual speaker segmentation has been enriched with annota-
tions relative to speaker roles. Five types of roles have been
consensually defined by the REPERE participants:

• type R1 is for the anchorman persons, presenters and
TV newscasters. Only one R1-type person is typically
expected in each program, except for Showbiz where the
shows are presented by 2 anchormen. As presented in
table 2, R1 is the only role present in all the programs.

• type R2 is for journalists and chroniclers. According to
the chosen definition, these speakers must appear physi-
cally on the television studio set. We can see in tables 2
and 3 that these speakers are present in only three types
of programs.

R1 R2 R3 R4 R5 spk #
BFMStory 6.2 4.8 16.5 19.4 53.1 273

Showbiz 21.7 0 12.6 0 65.7 563
LCPInfo 5.5 2.2 19 5.8 67.5 274

ÇaVousRegarde 11.5 0 7.7 50 30.8 52
EntreLesLignes 20 80 0 0 0 35

PileEtFace 34.6 0 0 65.4 0 26
TopQuestions 12.9 0 0 0 87.1 140

overall (%) 14.2 3.5 12.6 8.2 61.5
overall (# spk) 194 47 172 112 838 1363

Table 2: speaker role proportion for every type of program and
total number of speakers

R1 R2 R3 R4 R5
BFMStory 25.1 14.2 11 38.7 11

Showbiz 14 0 52.1 0 33.9
LCPInfo 27.2 3.8 20 27.8 21.2

ÇaVousRegarde 29 0 3.3 63 4.7
EntreLesLignes 25.8 74.2 0 0 0

PileEtFace 21.8 0 0 78.2 0
TopQuestions 3.9 0 0 0 96.1

overall (%) 21.6 12.1 11.3 30.4 24.6
oveall (h) 5.17 2.91 2.72 7.28 5.90

Table 3: speech proportion in percent of the speech duration per
program depending on speaker roles

• type R3 is for journalists who are not present on the tele-
vision studio set and for voice-over journalists during re-
ports. This role occurs in the News programs and in the
reports of ÇaVousRegarde (cf. Table 2).

• type R4 stands in a large manner for the guests and the
experts present in the shows, and more precisely to any
person that is not working for the TV show. These speak-
ers may be on the television studio set, or on live by tele-
phone. As shown in Table 3, this is the most important
role in terms of speech duration.

• type R5 contains all remaining speakers. It gathers
anonymous persons, sound-bites and archives taken from
press conference, spectators asking questions during a
show, person interviewed during a report and politicians
talking during a session at the National Assembly. This
large category gathers 838 speakers but does not stand
for the larger proportion of speech duration.

Speaker role distribution in terms of speaker numbers and
speech duration is significantly different over the programs of
the data set as depicted in Tables 2 and 3. For instance BFM-
Story and LCPInfo are the only programs that contain five roles.
On the contrary EntreLesLignes, PileEtFace and TopQuestions
contain only two roles with an important disproportion in terms
of speaker numbers and speech duration.

4. Speaker Role Recognition Architecture
The Speaker Role Recognition system used in this study has
been previously presented in [10]. This systems has reached the
good score of 92% of roles correctly attributed to the speakers
of the broadcast radio programs composing the EPAC project
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corpus. It is initially dedicated to the recognition of 5 roles (an-
chorman, punctual and recurrent journalists, and punctual and
recurrent others). The terms punctual and recurrent character-
ize speakers activity in one given document. It has been adapted
for the need of this study to the role categories presented above.
We first briefly present the speaker diarization system used in
this work and then depict the classification procedure applied to
the SRR system.

4.1. Speaker Diarization

The diarization system used in this work is the one presented
in [17]. It is a sequential processing using firstly Bayesian In-
formation Criterion and then Cross-likelihood Criterion, with
special attention paid for overlapped speech for TV-debates,
where the amount of overlapped speech is significant. For these
shows, overlapped speech segments are first detected and dis-
carded from the clustering process, and then reassigned to the 2
nearest speakers, in terms of temporal distance between speech
segments. For news shows, overlapped speech is considered
negligible, and this process is not applied.

4.2. Speaker Role Recognition system

This system relies on the assumption that cues about speaker
roles can be extracted from a set of 36 low-level features (14
temporal features, 10 acoustic and 12 prosodic ones) com-
puted from speech signal and from the temporal organization of
speech turns available from a speaker diarization process. These
features are used in a second time to model speaker roles using
a supervised classification approach.

In [10] we put to the fore the efficiency of a hierarchical
classification process where each classification step is reduced
to a two-class problem. At each step, the redundancy or correla-
tion of features for a given problem is reduced using a Principal
Component Analysis and a discriminant model is learnt using
a Linear SVM classifier. In this current study, the successive
steps of the classification are adapted to the current problem.
As presented in figure 1 a first step concerns the classification
of the role R1. Then the classified speakers found as ”not R1”
are directed to a second classification step that considers R2 and
R3 roles versus R4 and R5. Finally the last classification steps
are done in parallel and separate R2 from R3 and R4 from R5.

5. Experiments
This classification is achieved at the scale of a speaker cluster
and we assume that one speaker in one document has exactly
one role. In order to deal with the quite limited number of sam-
ples in the corpus, the classification process is done in a leave-
one-out fashion. Therefore, one document is used for test while
the other documents are used to learn models.

predicted
C1 ¬ C1

ref. C1 TP FN
¬ C1 FP TN

Table 4: confusion matrix

Performance is reported in terms of Correct Classification
Rate CCR defined according to the confusion matrix in Table 4:

CCR =
TP + TN

TP + TN + FP + FN
(1)

audio signal

Speaker Diarization

feature extraction

PCA

R1 vs. ¬ R1

SVM

R2&R3 vs. R4&R5

¬ R1

R2 vs. R3 R4 vs. R5

PCA SVM

R2 & R3

PCA SVM PCA SVM

R4 & R5

R2 R3 R4 R5R1

SRR

Figure 1: the speaker role recognition architecture

Recall and Precision measures defined respectively as follows
are also reported :

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

in which TP , FP , and FN stand for true positive, false posi-
tive and false negative respectively.

5.1. Baseline-SRR using show-independent role models

This first experiment is done with manual speaker and role an-
notations, by applying a leave-one-out over the 135 documents
of the data set independently of the type of program. Thus,
while one document is processed for recognition, the 134 other
documents are used for training.

The overall Correct Classification Rate (CCR) (cf. Table 5)
is equal to 73.14% of speaker roles and 66.1% of the pro-
cessed speech duration. A maximum 81.4% CCR is reached
on the documents belonging to the program TopQuestions. The
worst CCR value has been obtained on the programs Entre-
LesLignes. Globally, best performance has been reached on
broadcast News programs. Role recognition seems less efficient
on the debate programs where precision and recall values are
particularly low for the role R1. In the one hand, we can assume
that debate presenters and News broadcasters do not share simi-
lar temporal, prosodic and acoustic characteristics. On the other
hand, R1 speakers in news programs are more numerous than
R1 in debates. This may have led to R1 models more adapted
for news programs. We have also observed that all R1 speakers
in Showbiz have been attributed to the role R5. This confusion
may be caused by overlapping music during speech interven-
tions of R1 speakers in Showbiz which makes them more simi-
lar to R5 speakers. Finally this baseline system presents several
major issues. First, this system allows confusion between role
types that do not exist in test document. For instance, while
processing recognition on a TopQuestions document, recogni-
tion may conduct to attribute speakers to the roles R2, R3 or
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R1 R2 R3 R4 R5
CCR Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

BFMStory 78.4 71.4 58.8 54.5 46.1 65.6 46.6 81.2 73.6 82.1 95.1
Showbiz 73.7 0 0 0 0 92.3 67.6 0 0 71.8 99.2
LCPInfo 77 80 33.3 0 0 71.4 19.2 60.9 87.5 79.5 98.9

ÇaVousRegarde 48.1 30 50 0 0 40 50 75 23 50 87.5
EntreLesLignes 25.7 28.5 57.1 100 17.8 0 0 0 0 0 0

PileEtFace 34.6 60 33.3 0 0 0 0 85.7 41.1 0 0
TopQuestions 81.4 100 66.7 0 0 0 0 0 0 94.4 83.6

overall (%) 73.14 60 18.6 52.4 23.4 62.8 47 69.9 58 75.8 95.9

Table 5: SRR performance in terms of Correct Classification Rate, Precision and Recall for every role and program type using the
baseline architecture on manual speaker and role references

R1 R2 R3 R4 R5
CCR Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

BFMStory 83.5 100 58.8 80 61.5 76.5 57.8 80.8 79.2 85 97.9
Showbiz 90.4 81.6 76.2 X X 97.1 94.4 X X 91.8 94.3
LCPInfo 87.2 92.3 80 0 0 76 73.1 91.7 68.8 89.9 96.2

ÇaVousRegarde 48.1 0 0 X X 0 0 58.1 69.2 33.3 43.8
EntreLesLignes 85.7 66.7 57.1 89.7 92.9 X X X X X X

PileEtFace 65.4 50 44.4 X X X X 72.2 76.64 X X
TopQuestions 97.8 94.1 88.9 X X X X X X 98.4 99.2

overall (%) 86.9 82.7 71.6 85 72.3 85.6 76.2 74.3 75 89.7 95.1

Table 6: SRR performance in terms of Correct Classification Rate, Precision and Recall for every role and program type using a
program dependent architecture on manual speaker and role references

R4 even if TopQuestions does not contain these roles. A second
issue lays in the difference observed among speakers belong-
ing to a given role type. For instance, we have observed low
performance in R1 role recognition. There also exists an impor-
tant confusion between R2 and R4 because these speakers seem
to share similar characteristics. Finally, the size and the vari-
ety of speakers held in the R5 role may tend to unbalance the
classification process. To overcome these limitations, we have
first used program names as complementary features in the clas-
sification methods. Better performances have been reached in
a second experiment, presented above, where role models are
learnt depending on the type of programs.

5.2. SRR using show-dependent role models

In this experiment, the leave-one-out process is limited to the
documents corresponding to one given program. For instance,
to recognize speaker roles in TopQuestions we only use the 18
documents available. This configuration reduces the amount of
data used to model speaker roles. Compared to the previous ex-
periment, one benefit provided by this program-dependent ap-
proach is to make impossible several role confusions since the
classifier will only learn SVM models for roles that really occur
in these programs.

Overall CCR reaches 86.9% of speakers as reported in Ta-
ble 6. This corresponds to 83% of the duration correctly la-
belled. Performance has been globally improved for every show
except for ÇaVousRegarde. In the latter, CCR value remains
unchanged compared to the one reached in the previous ex-
periment and all R1 and R3 speakers have been attributed to
the roles R4 and R5. Globally we observe that in debate pro-
grams, the confusion between R1 speakers and the other roles

remains important. This puts to the fore a possible lack of
efficiency of the actual low level features used for these doc-
uments. Another explanation may stand in the fact that the
speaker and role annotations provided for these programs do not
correspond to entire shows. In the next experiment, we apply
this program-dependent strategy to automatic speaker segmen-
tations provided by the speaker diarization system described in
section 4.

5.3. SRR using show-dependent role models on Speaker Di-
arization outputs

Performance of the automatic Speaker Diarization system is re-
ported in terms of Diarization Error Rate (DER). The overall
performance on the corpus is equal to 12.1%, including over-
lapped speech in the evaluation. In Table 8 we observe that DER
values depend on the type of programs. Showbiz presents the
most important error rate value. This is mainly due to the high
level of background music and noise, which gives a high miss
detection rate, and also makes the clustering process more dif-
ficult for the detected speech. EntreLesLignes also presents an
important DER value. This program contains several sequences
of overlapping speech between chroniclers of the show.

To produce a ground truth for the evaluation of speaker role
on the automatic speaker clusters, we first produce an align-
ment between the manual speaker segments and the outputs of
the automatic speaker diarization system. Using the toolbox
provided by NIST during a previous evaluation campaign we
apply the Hungarian algorithm in order to associate automatic
clusters with reference speakers. Then using these associations,
we project the manual annotations for speaker roles over the
automatic speaker clusters.
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R1 R2 R3 R4 R5
CCR Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

BFMStory 69.3 54.5 70.6 62.5 38.5 50.9 67.4 77.4 46.1 80.4 86
Showbiz 80.1 61.1 81.5 X X 92.1 87.9 X X 89.4 72.8
LCPInfo 76.5 52.2 80 0 0 55.4 76.6 80 25 92.1 84.8

ÇaVousRegarde 44.2 0 0 X X 0 0 51.6 60.9 31.3 50
EntreLesLignes 79.4 50 42.9 85.7 88.9 X X X X X X

PileEtFace 52 28.6 22.2 X X X X 61.1 68.8 X X
TopQuestions 83.8 83.8 41.7 55.6 X X X X X 92.9 88.1

overall (%) 74.5 53.9 65.9 78.4 64.4 66.5 76.9 65.4 49.5 86.7 83

Table 7: SRR performance in terms of Correct Classification Rate, Precision and Recall for every role and program type using a
program dependent architecture on automatic speaker diarization outputs

sources DER
BFMStory 12.6

Showbiz 34.4
LCPInfo 8.9

ÇaVousRegarde 12.2
EntreLesLignes 17.0

PileEtFace 10.5
TopQuestions 4.0

total 12.1

Table 8: Diarization Error Rate for each program type

One consequence of the automatic process is that several
speakers of the reference do not match an ”automatic” speaker.
These differences are reported in Table 9 and 10. We can see
that among the 1363 speakers, only 885 are associated with a
corresponding cluster. This loss is directly related to the DER
since most of these lost speakers are from the Showbiz pro-
gram. Considering the speech duration lost during this process,
we have evaluated (cf Table 10) that it represents only 6.25%
(1.5h) of the initial document set. The impact of the process
is as well important on the speakers belonging to the class R1.
Their overall speech duration in the outputs of the automatic
clustering is equal to 4.29h instead of 5.17h in the reference
data.

R1 R2 R3 R4 R5 # spk
BFMStory 7.6 5.8 19.1 23.1 44.4 225

Showbiz 26.9 0 32.8 0 40.3 201
LCPInfo 6.8 2.3 21.3 7.2 62.4 221

ÇaVousRegarde 14 0 9.3 53.5 23.2 43
EntreLesLignes 20.6 79.4 0 0 0 34

PileEtFace 36 0 0 64 0 25
TopQuestions 13.2 0 0 0 86.8 136

overall (%) 14.2 5.1 18.1 12.1 50.5
overall (number) 126 45 160 107 447 885

Table 9: Speaker role in the diarization outputs in terms of
speaker population

Speaker Role Recognition is then performed and an overall
CCR equal to 74.5% is reached (cf Table 7). In term of speech
duratio, it corresponds to 89% of the processed speech (22.5h)
and 84.5% of the entire data set (24h). Program ranking in

R1 R2 R3 R4 R5 dur.
BFMStory 20.1 15 12.2 41 11.7 7.27

Showbiz 14.6 0 66.2 0 19.2 1.51
LCPInfo 24.9 3.7 19.9 29.7 21.8 3.77

ÇaVousRegarde 27.9 0 3.4 64.9 3.8 2.08
EntreLesLignes 26.6 73.4 0 0 0 2.14

PileEtFace 19 0 0 81 0 2.1
TopQuestions 3.3 0 0 0 96.7 3.62

overall (%) 19.1 12.4 12 31.8 24.6
overall (h) 4.29 2.8 2.71 7.15 5.54 22.5

Table 10: Speaker role in the diarization outputs in terms of
speech duration

terms of CCR is the same as the one observed on the manual
segmentations. The best classification rate has been obtained on
TopQuestions with 83.8% of speaker roles correctly attributed.

6. Conclusion
In this paper we have presented an experimental study dedicated
to the application of a state-of-the-art Speaker Role Recognition
system on the audiovisual document set provided in the context
of the Multimedia Challenge REPERE. We first have carried
out a baseline experiment by modelling speaker roles indepen-
dently from the TV program processed. This system has been
able to correctly attribute 73.14% of speaker roles, by using
manual speaker segmentation. We have then proposed to build
program dependent models of speaker roles. This second sys-
tem has reported a correct classification rate of 86.9% on the
same conditions. A third experiment has consisted in applying
program-dependent models on the outputs of a speaker diariza-
tion system with a DER equal to 12.1%. On this difficult docu-
ment set, our system has been able to correctly recognize 74.5%
of speaker roles. In the context of the PERCOL project involved
in the REPERE Challenge, our future work will be directed on
the use of speaker role information in combination with speaker
recognition system. We will as well investigate relations ex-
isting between speaker roles and the presence of person names
pronounced in speech data in combination with systems like
those presented in [18].
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Abstract
Speaker attribution is the task of annotating a spoken audio
archive based on speaker identities. This can be achieved
using speaker diarization and speaker linking. In our previ-
ous work, we proposed an efficient attribution system, using
complete-linkage clustering, for conducting attribution of large
sets of two-speaker telephone data. In this paper, we build
on our proposed approach to achieve a robust system, appli-
cable to multiple recording domains. To do this, we first extend
the diarization module of our system to accommodate multi-
speaker (>2) recordings. We achieve this through using a ro-
bust cross-likelihood ratio (CLR) threshold stopping criterion
for clustering, as opposed to the original stopping criterion of
two speakers used for telephone data. We evaluate this base-
line diarization module across a dataset of Australian broadcast
news recordings, showing a significant lack of diarization accu-
racy without previous knowledge of the true number of speak-
ers within a recording. We thus propose applying an additional
pass of complete-linkage clustering to the diarization module,
demonstrating an absolute improvement of 20% in diarization
error rate (DER). We then evaluate our proposed multi-domain
attribution system across the broadcast news data, demonstrat-
ing achievable attribution error rates (AER) as low as 17%.
Index Terms: speaker attribution, diarization, linking, com-
plete linkage, broadcast news.

1. Introduction
The recent developments in speaker modeling and recognition
techniques, such as joint factor analysis (JFA) modeling [1] and
i-vector speaker modeling [2], have brought about great im-
provements to the field of speaker diarization [3, 4, 5]. This
has motivated the proposal of speaker attribution as a recent
field of research [4, 5, 6, 7, 8, 9]. Speaker attribution is the
process of automatically annotating a typically large archive of
spoken recordings based on the unique speaker identities that
are present within the analysed archive of recordings, without
any prior knowledge of the present speaker identities. This an-
notation can then be employed to search and index the record-
ing archive based on speaker identity. A typical speaker attri-
bution system can be divided into the two independent modules
of speaker diarization and speaker linking [4, 5, 9]. In such a
system, the set of recordings are first processed using speaker
diarization to ideally extract a set of speaker-homogeneous seg-
ments from within each recording [10, 11]. These segments are
then passed to the speaker linking module of the attribution sys-
tem, where they are linked to identify segments belonging to the
same speaker identities across multiple recordings [6, 8].

One of the main challenges with speaker attribution is
the problem of session variation between the analysed set of
recordings. Session variability can degrade the performance of
speaker linking when attempting to cluster inter-session seg-

ments belonging to the same identity. In our previous work,
we demonstrated the erroneous effects of inter-session variabil-
ity on the tasks of speaker linking and attribution, and proposed
the use of JFA modeling to overcome this issue [7]. JFA and
i-vector modeling have since been the only speaker modeling
techniques employed for conducting attribution [4, 5, 6, 9].

As speaker attribution is often employed to process large
sets of data [4, 5, 6], it is of great importance to carry out
this process in an efficient manner. The most obvious area
for gaining efficiency is the clustering module of attribution.
In diarization, clustering is typically based on a computation-
ally expensive, agglomerative merging and retraining scheme
[10, 11, 12, 13]. This may not pose a problem to diarization effi-
ciency when processing short recordings, however this is highly
inefficient for conducting speaker linking in large datasets. For
this reason, van Leeuwen proposed an agglomerative cluster-
ing approach, without retraining, for speaker linking [6]. We
then proposed a complete-linkage approach to clustering, for
both diarization and speaker linking using JFA modeling and
cross-likelihood ratio (CLR) scoring, and demonstrated that
our complete-linkage clustering approach is more efficient and
more accurate than traditional agglomerative clustering with re-
training and the method proposed by van Leeuwen [7, 5, 8].

State-of-the-art attribution technology has largely dealt
with two-speaker telephone recordings [4, 7, 5, 8], with recent
work conducted by Ferras and Bourlard on attribution of meet-
ing room data with poor results [9]. In this paper we extend
our previously proposed telephone data attribution system [5],
to a robust attribution method applicable to multiple recording
domains. To do this, we collected a set of real, and publically
available, Australian broadcast news recordings, with the topic
of the recordings centered around related events to ensure multi-
ple occurrences of identities across recordings. We then carried
out a manual annotation of this dataset to obtain the ground-
truth diarization labels for evaluation purposes.

As a common assumption in speaker diarization of tele-
phone recordings [4, 5, 3], our previously proposed diariza-
tion module employed a stopping criterion of two speakers for
the clustering process. We thus need to modify our diariza-
tion module to accommodate recordings with an arbitrary num-
ber of unique speaker identities. To do this we propose a CLR
threshold stopping criterion for speaker clustering in our base-
line diarization module. We justify our choice of this threshold
value based on the computation of the CLR metric. We then
evaluate this baseline diarization module across the broadcast
news data and propose an additional pass of the clustering stage
to improve the baseline system. We demonstrate an absolute
improvement of 20% in DER over the baseline performance
through the application of this additional pass of the cluster-
ing stage. We then evaluate our proposed speaker attribution
system across the broadcast data to reveal an achievable AER
of 17%, given an ideal speaker diarization module.
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2. Speaker modeling and clustering
To carry out robust and efficient speaker attribution of inter-
session spoken recordings, we draw from our previous work and
employ a JFA speaker modeling approach with session com-
pensation [14, 15]. We compare the modeled speaker segments
using the pairwise CLR metric [10]. The pairwise CLR scores
are then used to conduct a single stage complete-linkage clus-
tering of the speaker segments without retraining. [5, 8]. This
section provides the theory behind JFA speaker modeling, pair-
wise CLR scoring and complete-linkage clustering.

2.1. JFA speaker modeling

We perform JFA modeling with session compensation us-
ing a combined gender universal background model (UBM)
[14, 15]. To do this, we introduce a constrained offset of
the speaker-dependent, session-independent, Gaussian mixture
model (GMM) mean supervector, m,

mi(s) = m + Vy(s) + Dz(s) + Uxi(s), (1)

where m is the speaker- and session-independent GMM-UBM
mean supervector of dimension CL×1, with C being the num-
ber of mixture components used in the GMM-UBM and L the
dimension of the features. xi(s) is a low-dimensional represen-
tation of variability in session i, and U is a low-rank transforma-
tion matrix from the session subspace to the GMM-UBM mean
supervector space. y(s) is the speaker factors, representing the
speaker in a specified subspace with a standard normal distri-
bution [15]. V is a low-rank transformation matrix from the
speaker subspace to the GMM-UBM mean supervector space.
Dz(s) is the residual variability not captured by the speaker sub-
space, where z(s) is a vector of hidden variables with a standard
Gaussian distribution, N(z|0, I). D is the diagonal relevance
maximum a posteriori (MAP) loading matrix [16].

To conduct JFA modeling it is necessary to estimate the
speaker independent hyperparameters U, V, D, m and Σ. In our
work, we employ the coupled expectation-maximization (EM)
algorithm hyperparameter training proposed by Vogt et al. [15].

2.2. CLR model comparison

After JFA modeling of the initial speaker segments, a robust
metric is required to perform a pairwise comparison of the
speaker models prior to clustering. We use the CLR metric as
it has been shown to be a robust measure of pairwise similarity
between models adapted using a UBM [10]. To do this, given
two speaker segments i and j, and their corresponding feature
vectors xi and xj , respectively, the CLR score aij is computed
as,

aij =
1

Ki
log

p(xi|Mj)

p(xi|MB)
+

1

Kj
log

p(xj |Mi)

p(xj |MB)
, (2)

where, Ki and Kj represent the number of observations in xi
and xj , respectively. Mi and Mj are the adapted models, and
p(x|M) is the likelihood of x, given model M , with MB rep-
resenting the GMM-UBM.

We then use the work by Glembek et al. [17], to accom-
modate CLR scoring into the JFA framework, calculating the
likelihood function of model M , given data x, using,

logp(x|M) = Z∗Σ−1F +
1

2
Z∗NΣ−1Z , (3)

where, Σ is a CP × CP diagonal covariance matrix contain-
ing c, GMM components’ diagonal covariance matrices, Σc

of dimension P × P . N is a CP × CP dimensional diago-
nal matrix consisting of each component’s zeroth order Baum-
Welch statistics, and F is aCP×1 dimensional vector achieved
by concatenating the first order Baum-Welch statistics of each
component. In our work, F was centralised on the GMM-UBM
(MB) mean mixture components.

2.3. Complete-linkage clustering

In our previous work we have demonstrated the efficiency and
robustness of complete-linkage clustering [5], and have shown
that this clustering method outperforms the traditional agglom-
erative cluster merging and retraining approach that is exten-
sively used in speaker diarization [11, 18, 12, 13], as well as the
alternative technique proposed by van Leeuwen [6], for carry-
ing out agglomerative speaker clustering without retraining.

Complete-linkage clustering is a form of hierarchical clus-
tering, in which the pairwise distance between clusters is em-
ployed to construct a clustering tree that represents the relation-
ship between all speakers/clusters. The obtained tree can then
be employed to merge clusters based on the complete-linkage
criterion, and the final clustering outcome is then acquired us-
ing a distance threshold or the desired number of clusters [19].

In complete-linkage clustering models are initially merged
based on a highest similarity, or lowest distance, score. As this
clustering technique does not conduct retraining after each clus-
ter merge, the pairwise scores between clusters are updated after
a merge to indicate the distance between their most dissimilar
elements. This approach thus takes into account the best worst-
case scenario scores and assesses the relationship between all
elements within two compared clusters, allowing for a more ro-
bust clustering decision.

To carry out complete-linkage clustering we first obtain the
upper-triangular matrix A, known as the attribution matrix [5],
containing the pairwise CLR scores aij between all compared
speaker models. As complete-linkage clustering is designed to
compare distance values, as with our previous work [7, 5], from
A we first compute an upper-triangular matrix L, containing the
corresponding pairwise distance scores lij , computed from the
aij CLR scores using,

lij =

{
e(−aij), (i 6= j),
0, (i = j).

(4)

We then perform complete-linkage clustering using the dis-
tance attribution matrix L, in the following manner:

1. Initialize C=N clusters, assigning segment i to Ci.

2. Find the minimum distance score, lij and its correspond-
ing clusters Ci and Cj .

3. Merge segments i and j by merging Ci and Cj into
Ci′ = {Ci, Cj}, and removing rows and columns i and
j from L.

4. Obtain the new (N − 1)×(N − 1) matrix L, by com-
puting the distance between newly formed cluster and
remaining clusters using the complete-linkage rule:

li′r = max(lir, ljr) (5)

5. If the stopping criterion is satisfied stop clustering, else
repeat from step 2.
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3. The SAIVT-BNEWS dataset
As speaker attribution is a recent area of research, there is a
lack of availability of suitable datasets for evaluating proposed
speaker attribution technology. A suitable evaluation corpus is
one that provides reference diarization labels for each record-
ing in the dataset, with multiple occurrences of speaker identi-
ties across recordings. In addition, a speaker identity key is re-
quired to ensure that each speaker, within each recording, can be
mapped to a unique identity across the entire set of recordings.
For this reason, in our previous work [7, 5, 8], we employed
the National Institute of Standards and Technology (NIST) SRE
2008 summed channel telephone conversation test corpus [20].
This telephone corpus provides a range of inter-session data and
allows for the convenience of employing a two-speaker stop-
ping threshold for the diarization of each recording [3, 4, 5].

In this work, we collected a set of publically available Aus-
tralian broadcast news recordings from a media website provid-
ing up to 100 broadcast news videos per day. We used this data
to create a suitable attribution evaluation dataset, referred to as
the SAIVT-BNEWS corpus. We did this to allow for free access
to the data by other researchers active in the field of speaker at-
tribution. We first collected a subset of the broadcast news data.
This subset contained 55 broadcast news videos, centered on the
same news topic and its related events. We selected the videos
in this manner to ensure that the dataset contains multiple oc-
currences of unique speaker identities across recordings. We
then extracted the audio, from the broadcast news videos, and
manually produced reference diarization labels for each record-
ing. To then identify the unique speaker identities across the set
of recordings, we utilised the information in the video to label
speakers across the recordings, allowing for the evaluation of
speaker attribution across this subset of 55 recordings.

The 55 recordings collected range from 47 seconds to 5
minutes and 47 seconds in length. Each recording contains a
different number of unique speaker identities, ranging from 1
speaker to a maximum of 9 speakers per analysed recording.
As the recordings are from the broadcast news domain, a wide
range of channel variations are observed both within and be-
tween recordings. Using reference diarization labels, a total of
175 initial speaker homogeneous segments are obtained, which
can be linked to a total of 92 unique speaker identities across the
entire dataset, consisting of 64 male and 28 female speakers.

A large variety of speakers are present in this dataset, such
as reporters, politicians, children, elderly people and more. The
presence of music in some videos and overlapping speech from
different speakers provides an excellent corpus for evaluating
the performance of attribution technology, as well as the possi-
bility of addressing other new challenges. To obtain the SAIVT-
BNEWS dataset, and its corresponding reference labels, the last
author of this paper may be contacted by email.

4. Evaluation and results
In our previous work, we proposed a full speaker attribution
system for conducting robust and efficient attribution of large
datasets containing two-speaker telephone conversation record-
ings [7, 5, 8]. In this section we propose and evaluate a robust
and efficient attribution approach that is applicable to multiple
recording domains, with an arbitrary number of speakers within
each recording. We begin by employing our telephone-data at-
tribution system [5], and modify the diarization module of this
system to accommodate recordings with any number of speak-
ers, rather than only two speakers assumed for telephone con-

versations. We evaluate this baseline diarization approach on
the SAIVT-BNEWS dataset (detailed in Section 3) to measure
the performance of our previously proposed telephone-data di-
arization scheme, and reveal its robustness on a significantly
different audio domain. We then analyse the shortcomings of
our baseline diarization system and propose a simple modifica-
tion to significantly improve the performance of this module.

After speaker diarization of the data, speaker linking is re-
quired to complete the task of speaker attribution. In this sec-
tion, we propose employing our telephone-data speaker linking
module [5, 8], to complete our multi-domain attribution sys-
tem. We then evaluate our proposed attribution approach across
the broadcast news dataset to demonstrate our system’s perfor-
mance across this corpus.

We evaluate the speaker diarization systems using the stan-
dard diarization error rate (DER) metric, as defined by NIST
[20]. To evaluate our proposed speaker attribution system, we
employ our previously proposed attribution error rate (AER)
metric [5, 8]. In the studies conducted by van Leeuwen [6],
and Vaquero et al. [4], cluster purity and coverage are used
for evaluating speaker linking and attribution. We previously
employed these measures to evaluate our system [7], however
it is necessary to employ an error metric that reflects diariza-
tion errors, as well as the speaker linking errors. We believe
the AER is a more appropriate metric for evaluating the task
of attribution. The AER can be described as an extension to
the standard DER measure, from a single recording, to a collec-
tion of recordings. The AER thus represents the percentage of
time that a speaker identity is misattributed within recordings,
as well as across recordings. To compute the AER it is nec-
essary to first concatenate the reference diarization labels into
a single label file and to then ensure that each unique speaker
identity is labeled using a unique label across the entire con-
catenated reference label file. This can be referred to as the
attribution reference label. The same process is then required
to generate the attribution system label file, but this time based
on the system’s decision of the diarization output and the linked
speaker identities. The two label files can then be compared us-
ing the NIST DER metric [20], however as this measured error
is now representative of the DER per recording, as well as the
speaker errors across recordings, we refer to it as the AER.

For JFA modeling the speaker and session subspaces were
obtained using a coupled EM algorithm, with a 50-dimensional
session and 200-dimensional speaker subspace [15]. The fea-
tures we employed for speaker modeling were 13 MFCCs with
0th order coefficient, deltas and feature warping [21], extracted
using a 20 bin Mel-filterbank, 32 ms Hamming window and
a 10 ms window shift. For the segmentation stages of our di-
arization module, as will be detailed in this section, we use 20
MFCCs with 0th order coefficient, no deltas or feature warp-
ing, extracted in a similar manner. It is important to note that
for JFA modeling of speaker segments, in both the diarization
and speaker linking modules, we employ a previously trained
combined gender GMM-UBM, consisting of 512 mixture com-
ponents, trained using telephone speech data, as detailed in our
previous work [7]. This means that our modeling approach is
expected to perform better when dealing with telephone domain
data. This work thus reveals the robustness of our attribution
approach with respect to processing of multi-domain data.

4.1. Speaker diarization

As our baseline diarization system, we employ our previously
proposed telephone-data speaker diarization module [5]. This
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system was designed to perform robust and efficient diariza-
tion of two-speaker telephone conversation recordings. In this
system, we followed the common practice of telephone-data di-
arization [4, 3], and employed our prior knowledge of the num-
ber of speakers within each recording as the stopping criterion
to the clustering stage of our diarization module. We now re-
quire a method of dealing with an arbitrary number of speak-
ers. Recall from Section 2.3, complete-linkage clustering can
be carried out using the desired number of output clusters, or
a distance threshold, as the stopping criterion to the cluster-
ing process. As we have no prior knowledge of the number
of speakers within each recording, we propose using a suitable
CLR threshold as the stopping criterion to the clustering phase
of diarization. We thus go back to the CLR computation in (2),

aij =

δi︷ ︸︸ ︷
1

Ki
log

p(xi|Mj)

p(xi|MB)
+

δj︷ ︸︸ ︷
1

Kj
log

p(xj |Mi)

p(xj |MB)
, (6)

where (6) displays two splits of the CLR measure, δi and δj .
δi represents likelihood that the data for speaker i is produced
by the competing speaker model Mj , compared to the likeli-
hood of this data being produced by the general speaker pop-
ulation (GMM-UBM). δj is the same measure, but for speaker
j. From (6), aij will be negative if the general speaker popu-
lation better models a speaker than its competing model, and a
positive aij signifies that the speaker data in i and j are more
similar to each other compared to the general speaker popula-
tion. If ideal models are used, we would not expect δi and δj
to have opposite signs and high absolute values, as it does not
make sense for speaker i to be very similar to j but for j to be
very different to speaker i. For these reasons, aij = 0 would
serve as a suitable theoretical CLR threshold. We thus employ
aij ≤ 0 as the stopping criterion to the clustering stage of our
diarization module to deal with an arbitrary number of speakers.

4.1.1. Baseline diarization system

We previously proposed a speaker diarization method using
complete-linkage clustering for conducting efficient diarization
within our proposed speaker attribution system [5] In this di-
arization system, we employ the hybrid voice activity detection
(VAD) and the ergodic hidden Markov model (HMM) Viterbi
resegmentation approach presented in [11]. We first use Viterbi
segmentation to achieve an initial segmentation of the record-
ings, and then carry out modeling and clustering of these seg-
ments to complete the diarization process. We then apply a final
Viterbi segmentation of the output speaker/clusters to refine the
segment boundaries. In this work, we employ this system as
our baseline diarization module and apply the CLR threshold
stopping criterion, discussed in Section 4.1.

Our baseline system consists of the following stages:

1. Linear segmentation of the audio into 4 second segments
and 3 iterations of Viterbi using 32 component GMMs to
model each segment.

2. VAD to remove non-speech regions, followed by JFA
modeling with session compensation.

3. Clustering of the speaker segment models using
complete-linkage clustering until the CLR stopping
threshold of aij ≤ 0.

4. 3 iterations of Viterbi using 32 component GMMs to
model final speaker/cluster, and a single Gaussian to
model non-speech regions.

Table 1: DER of baseline and proposed diarization systems.

Diarization system DER
Baseline 33.1%

Baseline + (1 iteration CLC) 13.3%
Baseline + (2 iterations CLC) 16.7%

4.1.2. Proposed diarization system and results

We evaluated our baseline diarization approach on the Aus-
tralian broadcast news data, detailed in Section 3. The result
of this evaluation can be seen in Table 1. It can be seen that
our baseline diarization module is highly erroneous. We thus
investigated the output of the baseline system to understand the
underlying cause of the high DER obtained across the broad-
cast data. Through this investigation we found that our baseline
system was under-clustering the speaker segments provided by
the initial Viterbi segmentation and VAD stages. This may be
addressed by knowing the desired number of output speakers,
or by applying a different CLR stopping threshold (than 0) to
the clustering process for each recording. However, this would
mean having to abandon the convenience of employing a robust
and theoretically ideal CLR threshold for any given recording.
As our previous work on attribution [5], and particularly linking
[8], had suggested that a CLR threshold value of 0 would serve
as a robust stopping criterion, we concluded that the system was
failing to robustly cluster speaker models as the initial segmen-
tation did not provide sufficient data for modeled segments.

To overcome this, we propose using an additional pass of
the complete-linkage clustering stage followed by Viterbi re-
finement. For convenience, we call the combination of these
stages (steps 3 and 4 from Section 4.1) CLC, for complete-
linkage clustering. We thus utilise the full baseline system to
conduct a reliable initial segmentation of the recording, pro-
ducing larger speaker homogeneous segments of data. We then
apply a single iteration of CLC to the output of the baseline sys-
tem. From Table 1 it can be seen that an absolute improvement
of almost 20% is observed with respect to the DER measure.

This motivated our evaluation of another diarization system
using the baseline system plus two additional passes of CLC.
This system displayed a higher error rate than our proposed sys-
tem using only one additional iteration of CLC. After observing
the results, we found that a second additional iteration of CLC
did not over-cluster the results, but it was rather the extra Viterbi
refinement iterations that led to a higher DER measure, which
reinforces our choice of the CLR stopping criterion of aij ≤ 0.
We thus propose employing our (baseline + CLC) diarization
module for conducting robust speaker attribution.

4.2. Speaker attribution

In this section we employ our diarization system proposed in
Section 4.1. As our previously proposed speaker linking sys-
tem using complete-linkage clustering [5, 8], can be applied to
this task without further modifications, we employ this linking
module together with our proposed diarization method to carry
out speaker attribution of the broadcast news data.

To conduct attribution, our proposed linking system obtains
an initial set of (ideally) speaker homogeneous segments from
the output of the diarization module across the collection of
recordings. Each segment represents a unique speaker identity
within its associated recording. These segments are then mod-
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eled using JFA with session compensation, compared using the
CLR metric and clustered using complete-linkage clustering.

We carried out the speaker attribution of the SAIVT-
BNEWS data using our proposed multi-domain attribution sys-
tem, which we will refer to as the D-L system, for diariza-
tion and linking. For evaluation purposes, we also carried out
speaker attribution using reference diarization labels (DER =
0%) to initialise the speaker segment models in the linking
phase of attribution. We did this for evaluation purposes and to
reveal the potential of our attribution approach, should an ideal
diarization module is used. To distinguish this system from our
attribution approach, we will refer to this system as the REF-L
system, for reference diarization and linking.

Figure 1 displays the AER of each system at all possible
CLR threshold values. The horizontal axis has been reversed
to display, from left to right, the clustering of the initial speak-
ers/clusters into a single cluster. The oracle AER point of each
system, obtained at its corresponding CLR threshold, has been
marked on both the D-L and REF-L plots. It can be seen that as
more speakers are correctly clustered a low AER region appears
in the performance plot of each system. A lower valley, with re-
spect to the vertical axis, indicates a higher accuracy associated
with the analysed attribution system. In addition, the robustness
of the systems is directly proportional to the width of the low
AER region, and inversely proportional to the absolute value of
the slope to the right of the oracle AER point, as marked on each
plot. This slope is formed as each attribution system achieves its
oracle AER point and then begins to attribute incorrect speaker
identities to the already obtained clusters, creating a rise in the
AER measure until all speakers are merged into a single cluster
and maximum AER of the system achieved.

Table 2 displays the details associated with the oracle AER
point of the two attribution systems. For reference, 92 unique
speakers are present in the dataset, as detailed in Section 3. It
can be seen that, as expected, the REF-L performs better than
the D-L attribution system. This is also the case in Figure 1,
which demonstrates that the REF-L system consistently per-
forms better than the D-L attribution system. In addition, the
CLR thresholds at which the oracle AER points of the two sys-
tems are achieved are both close to 0, thus further reinforcing
the robustness of this CLR threshold as a stopping criterion to
the task of clustering.

From Figure 1 and Table 2, it can be seen that the differ-
ence in the oracle AER of the two systems is almost equal to
the DER displayed by our diarization module (Section 4.1). As
the AER metric measures both the DER and the linking errors,
and the fact that this difference in the oracle AER points of the
two systems is almost equal to our achieved DER across the
data, and as both systems achieve the same number of unique
speaker identities across the dataset, it can be concluded that our
linking module has been robust enough to deal with the erro-
neous diarization output. This suggests that any improvements
to the DER achieved by our proposed diarization approach will
directly apply to the AER obtained by our D-L system, poten-
tially achieving a minimum AER of 17%, as obtained by our
REF-L attribution system.

5. Discussion
Compared to our previous work on attribution of two speaker
telephone-data [7, 5, 8], our multi-domain speaker attribu-
tion system proposed in this paper demonstrates similar results
across the Australian broadcast news dataset. This is while
our system remains largely unchanged, with the exception of

Figure 1: AER versus CLR for REF-L and D-L attribution.

Table 2: Oracle attribution using REF-L and D-L systems.

Attribution
system AER Obtained

speakers CLR

REF-L 17.0% 77 0.03

D-L 32.6% 77 0.05

the modification applied to the diarization module (Section 4.1)
to accommodate an arbitrary number of speakers. Most im-
portantly, as discussed in Section 4 and detailed in our pre-
vious work [7], our proposed multi-domain system employs
a 512 component combined gender GMM-UBM, trained on
telephone-data, for JFA modeling. This is indicative of the ro-
bustness of our attribution approach and suggests that our sys-
tem may be improved even further through utilising a GMM-
UBM trained on data from a broadcast news domain.

6. Conclusion
In this paper we proposed a robust and efficient speaker attri-
bution approach, applicable to multiple audio domains, with
the ability to conduct automatic diarization and attribution of
multiple recordings, each containing speech from an arbitrary
number of speakers. We did this by extending our previously
proposed telephone-data speaker attribution approach. In this
work, we proposed using a theoretically suitable CLR stopping
threshold for complete-linkage clustering in diarization and
linking. We demonstrated that, even in diarization where small
segments are required to be clustered, this stopping threshold
can be employed as a robust stopping criterion. Our work in this
paper, and previous studies, suggests that this stopping thresh-
old is robust across different audio domains when employed in
the same manner as our multi-domain attribution approach. Fi-
nally, we demonstrated achievable AERs as low as 17%, across
the broadcast news data, using our attribution system.
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mouchel, “Support vector machines versus fast scoring in the low-
dimensional total variability space for speaker verification,” in IN-
TERSPEECH, 2009, pp. 1559–1562.

[3] P. Kenny, D. Reynolds, and F. Castaldo, “Diarization of telephone
conversations using factor analysis,” Selected Topics in Signal
Processing, IEEE Journal of, vol. 4, no. 6, pp. 1059 –1070, 2010.

[4] C. Vaquero, A. Ortega, and E. Lleida, “Partitioning of two-speaker
conversation datasets,” in Interspeech 2011, August 28-31 2011,
pp. 385–388.

[5] H. Ghaemmaghami, D. Dean, R. Vogt, and S. Sridharan, “Speaker
attribution of multiple telephone conversations using a complete-
linkage clustering approach,” in Acoustics, Speech and Signal
Processing (ICASSP), 2012 IEEE International Conference on,
march 2012, pp. 4185 –4188.

[6] D. A. V. Leeuwen, “Speaker linking in large data sets,” in
Odyssey2010, the Speaker Language and Recognition Workshop,
Brno, Czech Republic, June 2010, pp. 202–208.

[7] H. Ghaemmaghami, D. Dean, R. Vogt, and S. Sridharan,
“Extending the task of diarization to speaker attribution,”
in Interspeech2011, Florence, Italy, August 2011. [Online].
Available: http://eprints.qut.edu.au/43351/

[8] H. Ghaemmaghami, D. Dean, and S. Sridharan, “Speaker link-
ing using complete-linkage clustering,” in to be presented in Aus-
tralian International Conference on Speech Science and Technol-
ogy (SST2012), 2012.

[9] M. Ferras and H. Bourlard, “Speaker diarization and linking of
large corpora,” in Spoken Language Technology Workshop (SLT),
2012 IEEE, Dec., pp. 280–285.

[10] C. Barras, X. Zhu, S. Meignier, and J.-L. Gauvain, “Multistage
speaker diarization of broadcast news,” Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, vol. 14, no. 5, pp. 1505
–1512, 2006.

[11] C. Wooters and M. Huijbregts, “The ICSI RT07s speaker diariza-
tion system,” in Multimodal Technologies for Perception of Hu-
mans. Springer Berlin / Heidelberg, 2008.

[12] J. Ajmera and C. Wooters, “A robust speaker clustering algo-
rithm,” in Automatic Speech Recognition and Understanding,
2003. ASRU ’03. 2003 IEEE Workshop on, nov.-3 dec. 2003, pp.
411 – 416.

[13] S. Tranter and D. Reynolds, “An overview of automatic speaker
diarization systems,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 14, no. 5, pp. 1557 –1565, 2006.

[14] P. Kenny. ”Joint factor analysis of speaker and session
variability: Theory and algorithms”. [Online]. Available:
http://www.crim.ca/perso/patrick.kenny/

[15] R. Vogt, B. Baker, and S. Sridharan, “Factor analysis subspace
estimation for speaker verification with short utterances,” in In-
terspeech 2008, 2008, pp. 853–856.

[16] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verifi-
cation using adapted Gaussian mixture models,” in Digital Signal
Processing, 2000, p. 2000.

[17] O. Glembek, L. Burget, N. Dehak, N. Brummer, and P. Kenny,
“Comparison of scoring methods used in speaker recognition with
joint factor analysis,” Acoustics, Speech, and Signal Processing,
IEEE International Conference on, vol. 0, pp. 4057–4060, 2009.

[18] X. Anguera, S. Bozonnet, N. W. D. Evans, C. Fredouille, G. Fried-
land, and O. Vinyals, “Speaker diarization: A review of recent
research,” IEEE Transactions on Audio, Speech & Language Pro-
cessing, pp. 356–370, 2012.

[19] A. Jain, A. Topchy, M. Law, and J. Buhmann, “Landscape of clus-
tering algorithms,” in Pattern Recognition, 2004. ICPR 2004. Pro-
ceedings of the 17th International Conference on, vol. 1, 2004, pp.
260 – 263 Vol.1.

[20] (2007) The NIST rich transcription website.
http://www.nist.gov/speech/tests/rt/.

[21] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker
verification,” in A Speaker Odyssey, The Speaker Recognition
Workshop, June 18-22 2001, pp. 213–218.

77

Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013.



Semi-Supervised and Unsupervised Data Extraction Targeting Speakers:
From Speaker Roles to Fame?
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Abstract
Speaker identification is based on classification methods

and acoustic models. Acoustic models are learned from audio
data related to the speakers to be modeled. However, record-
ing and annotating such data is time-consuming and labor-
intensive. In this paper we propose to use data available on
video-sharing websites like YouTube and Dailymotion to learn
speaker-specific acoustic models. This process raises two ques-
tions: on the one hand, which are the speakers that can be iden-
tified through this kind of knowledge and, in the other hand,
how to extract these data from such a noisy corpus that is the
Web. Two approaches are considered in order to extract and
to annotate the data: the first is semi-supervised and requires
a human annotator to control the process, the second is totally
unsupervised. Speakers models created from the proposed ap-
proaches were experimented on the REPERE 2012 TV shows
test corpus. The identification results have been analyzed in
terms of speaker roles and fame, which is a subjective concept
introduced to estimate the ease to model speakers.
Index Terms: speaker identification, JFA, semi- and unsuper-
vised speaker modeling, speaker roles, fame

1. Introduction
REPERE is a French evaluation campaign in the field of mul-
timedia people in television documents. The main purpose of
this challenge is to answer the questions “who is speaking ?”
and “who is seen ?” at any time of the videos. The targets are
both television professionals and guests, which can refer either
to experts in a specific field, or to politicians, or celebrities. This
paper is only concerned in the “who is speaking?” question. In
this context, the identification task aims to determine the iden-
tity of the speakers, at any time.

The system presented in this paper is a two-levels architec-
ture that uses both speaker diarization and speaker identification
to process the shows. The speaker diarization level aims to par-
tition the input audio stream into homogeneous segments, and
group these segments according to the identity of the speakers.
The purpose of the speaker identification level is to annotate the
segments with the true identity of the speakers. However, avail-
able data in the training corpus are insufficient to learn specific
and robust speaker models for each of the persons appearing
in the videos: the coverage in the training corpus, in terms of
number of speakers, is too low.

A solution to address the problem of insufficient coverage is
to enhance the training corpus with data matching persons who
are not already present. Nevertheless, the creation of such anno-
tated corpora is time-consuming and labor-intensive. With the
advent of video-sharing websites on the Internet, like YouTube
and Dailymotion, it is now possible to collect innumerable data

on speakers. The downside is that such data are noisy and
poorly annotated, only the title and the description of the videos
help to determine the topic: find satisfactory video content is not
easy because either no information have been provided, or in-
formation are untrue, inaccurate or incomplete. In addition, the
available videos are often of different qualities: some of them
are professional videos while the others look like homemade
movies shared by amateurs. Also, different recording situations
(indoor or outdoor, with one person or with a group, . . . ) make
data mining challenging: it is easier to exploit data from a politi-
cian show where a single man appears on the screen than data
from a show where many speakers are interacting.

The use of Internet to build up corpora has lately been
the subject of many research, especially in the field of speaker
identification. In the video field, various works attempted to
associate names to faces for a special type of web pictures.
[1, 2, 3, 4, 5] focused on the face-name association in news pho-
tographs. [1] and [6] applied a face detector on the pictures and
a named entity detector on the captions, then tried to find associ-
ations between detected names and faces. In the audio field, the
main method focuses on learn a consistent association of speech
and face from videos [7]. All the proposed approaches were fo-
cused on unsupervised methods applied to the identification of
celebrities.

In this paper, two methods are proposed (semi-supervised
and unsupervised) to build up specific speaker models from data
from video-sharing websites and thus, to get round teh lack of
data. The videos are retrieved using a list of speakers that may
appear in the TV news. The semi-supervised approach needs
a human annotator in order to control the automatic extraction
of the data that are supposed match the targeted speaker. Thus,
human interventions are greatly minimized. The unsupervised
approach allows to automatically extract the data correspond-
ing to the targeted speaker without any control from the hu-
man annotator. These methods are evaluated with the TV shows
that compose the test corpus of the French evaluation campaign
REPERE 2012. The evaluation focuses on the quality of the
speaker models extracted from the data obtained through the
semi- and unsupervised approaches. In addition, an analysis
based on the subjective concept of people fame was conducted
to understand relationship between speaker roles and identifica-
tion results.

In the next section, we briefly describe the initial training
and test corpora. Then, we present the semi- and unsupervised
approaches used to model speakers using non-annotated data in
section 3. The implementation of the two-levels architecture is
described in section 4, and evaluation metrics as well as exper-
iments results are given in section 5. In the section 6, the aim
is to answer to the question: what is the nature of modeled peo-
ple? by an analysis of the speaker role and fame. This section

78

Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013.



is followed by some conclusions.

2. Corpus
This work in speaker identification was conducted as part of the
REPERE 2012 evaluation campaign [8]. As such, experiments
were performed on the test corpus of this evaluation campaign,
composed of 3 hours of data. This data are drawn from 28 TV
shows, recorded from French TV channels: BFM and LCP. The
corpus is balanced between prepared speech, with 7 broadcast
news from French radio stations, and spontaneous speech, with
21 political discussions or street interviews. Only a part of the
recordings are annotated, giving a total duration of 3 hours.

The purpose of this work is to identify people who fre-
quently appear in the news, so a list of 580 people was manually
built with either people appearing in the media, or people likely
to be present in the news, people who might appear. This list
contains anchors, journalists, celebrities such as ministers, ac-
tors, singers, etc. 152 people from this list can be modeled using
the training corpus. The training corpus is composed of every
annotated data distributed during the French ESTER-2, ETAPE
and REPERE evaluation campaigns. Among the 152 extracted
models, 30.1% match people present in the test corpus.

Despite the amount of annotated data used as training cor-
pus, 428 people from the list can not be modeled. External
data is needed. Thus we propose to use data available on
video-sharing websites like YouTube and Dailymotion to learn
speaker-specific acoustic models.

3. Data extraction and speaker modeling
Video-sharing websites provides access to a considerable
amount of data. However, data mining is challenging because
of various factors: the quality of the media, the recording sit-
uation (indoor/outdoor, single speaker/group of speakers, etc.),
the quality of annotations (inaccurate, incomplete or nonexis-
tent). Building up a corpus is performed in two steps: data
extraction then data annotation. The extraction is performed by
retrieving videos on the video-sharing websites according to a
request. The process is as follows:

1. Request: the request is composed of the name of the
speaker to be modeled

2. Filter: all the videos in which the title do not include the
name of the speaker to be modeled are put aside

3. Download: the first twenty videos are downloaded

Two different approaches are presented to annotate these
data in terms of speaker identity, in order to learn speaker-
specific acoustic models. The unsupervised method automati-
cally takes the decisions. The semi-supervised method involves
a human annotator to help the choices made by the system.

3.1. Unsupervised

The unsupervised approach aims for automatically select the
segments that match the targeted speaker without any control
from the human annotator. The main difficulty is to automat-
ically detect if the person talking is the one sought. We made
the assumption that the targeted speaker participate in each of
the video extracted from the video-sharing websites. Indeed,
this assumption has been validated on a portion of the training
corpus listening to selected segments (the segments of less than
300 frames were not taken into account in this corpus).
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Figure 1: The audio cross-show speaker diarization architecture
used to identify the cross-show speakers among the collection
of videos.

Based on this assumption, an audio cross-show speaker di-
arization system is used to detect the speakers appearing across
the multiple videos of the collection [9, 10, 11]. As illustrated in
Figure 1, the cross-show diarization system first processes each
video individually, by using a single-show speaker diarization
system based on a Bayesian Information Criterion (BIC) seg-
mentation followed by a clustering expressed as an Integer Lin-
ear Programming (ILP) problem. Then, the system attempts to
identify speakers reappearing in several videos within the col-
lection, by performing an overall ILP clustering [11].

After this cross-show diarization process, only the main
cluster is considered. A filtering step is then performed to stop
the process if not enough data are available to create the speaker
model: if the speaker associated to the main cluster is appear-
ing at least in three videos, and if the length of it interventions
is longer than 2 minutes, then the acoustic model is created.

3.2. Semi-supervised

The aim of the semi-supervised method is to annotate the data
extracted from the video-sharing websites while minimizing
human efforts. We assume that the speaker to be modeled is
present in each of the video collected, and that this speaker is
the one who talk the most. An audio single-show speaker di-
arization system, as described in section 4.1, is run on each of
the video. In order to correct the resulting clustering, that may
not be perfect, a human annotator has to verify and invalidate
the erroneous clusters. The purpose is to obtain the maximum
number of segments that represent the targeted speaker, while
maximizing the purity of the data by putting aside erroneous
clusters. To minimize the human annotator effort, a validation
of the audio segmentation according to the corresponding image
is proposed: we have considered that the person appearing on
the image is the one who is speaking because in the REPERE
training corpus, the targeted speaker appears in about 80% of
cases. The full process of the semi-supervised is as follow:

1. An audio speaker diarization system is run on each
video,

2. Only the main cluster is considered (making the assump-
tion that the main cluster match to the targeted speaker),

3. The images in the middle of each of the segment from
the main cluster are extracted,

4. Human annotator verifies the speaker clustering by in-
validating segments (so the picture) that do not contain
the targeted speaker.
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Figure 2: The application that help the annotator to invalidate
audio segments according to the person appearing on the image.

An application has been developed to help the human anno-
tator, by clicking on the images provided, to invalidate the seg-
ments that do not show the targeted speaker (Figure 2). More
than 1900 hours of videos have been downloaded, and it took
224 hours to process the annotation. Finally, 480 hours of data
have been annotated with the speaker identities. The ratio be-
tween the duration of the data to be annotated and the duration
of the annotation itself is about 0.11. In [12], the manual anno-
tation of a 2h08 corpus lasted 1h17, the ratio was about 0.60.
Although it is less accurate, the duration of the annotation pro-
cess, with the semi-supervised method is 6 times faster than a
fully manual annotation.

4. Architecture of the identification system
In this paper we present a two-levels architecture that combines
a speaker diarization system with a speaker identification sys-
tem. The speaker diarization task aims to answer the question
“who spoke, when ?”, by partitioning an input audio stream into
segments, and by clustering those segments according to the
identity of the speakers. Experiments were carried out using
the LIUM SpkDiarization toolkit1. The speaker identification
system consist in identifying each of the clusters with the real
name of the speaker. This system is based on Joint Factor Anal-
ysis (JFA).

4.1. Speaker Diarization

The speaker diarization system is composed of an acoustic
Bayesian Information Criterion (BIC) segmentation followed
by a BIC hierarchical clustering using BIC both as similarity
measure between speakers and as stop criterion for the merg-
ing process. Each speaker is modeled by a Gaussian distri-
bution with a full covariance matrix. A Viterbi decoding is
used to adjust the segment boundaries using Gaussian Mix-
ture Models (GMMs) with 8 diagonal components, trained by
Expectation-Maximization (EM) algorithm on the data of each
speaker. Segmentation, clustering and decoding are performed
using 12 MFCC+E, computed with a 10ms frame rate. Music
and jingle regions are removed using Viterbi decoding with 8
one-state HMMs: 1 music model, 1 jingles model , 2 silence
models (wide/narrow band), 1 narrow band speech model, and
3 wide band speech models (clean/over noise/over music). Each
state is represented by a 64 diagonal GMM.

1http://www-lium.univ-lemans.fr/en/content/
liumspkdiarization

In the previous steps, features were used unnormalized (to
preserve information on the background environment). At this
point, each speaker is not necessarily represented by a single
cluster. The contribution of the background environment is re-
moved through a feature normalization and the system then per-
forms an ILP clustering dealing with i-vectors speaker models
[13].

In order to identify the cross-show speakers in the unsu-
pervised method, a final ILP clustering is performed from the
concatenation of the single-show diarization outputs [11].

4.2. Speaker Identification

The speaker identification system aims to identify the real name
of speaker for each cluster given by the speaker diarization sys-
tem. The speaker identification system is based on the Joint
Factor Analysis (JFA) framework [14, 15]. The purpose of JFA
is to decompose the speaker-specific model into three differ-
ent components: a speaker-session-independent component, a
speaker-dependent component and a session-dependent compo-
nent (each recording corresponding to one of these session). A
supervector is defined as the concatenation of the GMM means
components. Let D be the dimension of the feature space, the
dimension of a supervector mean is M.D, where M is the num-
ber of components in the GMM. For a speaker s belonging in
session h, the factor analysis model can be formulated as:

m(h,s) = m + Dys + Ux(h,s), (1)

where m(h,s) is the session-speaker dependent supervector
mean, D is M.D×M.D diagonal matrix, ys the speaker vector
(a M.D vector), U is the session variability matrix of low rank
R (a M.D ×R matrix), and x(h,s) are the channel factors, a R
vector. All parameters of the JFA model are estimated by us-
ing the Maximum Likelihood criterion and the EM algorithm.
Several sessions corresponding to each speaker have to be used
for an accurate estimation of JFA parameters. 60-dimensional
acoustic features were computed, with a 10ms frame rate. The
features are composed of 19 MFCCs + log energy, and aug-
mented by their first and second-order derivatives. The GMM-
UBM is a gender- and channel-independent GMM composed of
1024 Gaussians. The dimension of R is 40.

5. Experiments
Experiments were performed on the test corpus of the REPERE
2012 evaluation campaign. This corpus is composed of 3 hours
of data, drawn from 28 TV shows, recorded from French TV
channels: BFM and LCP. The corpus is balanced between pre-
pared speech, with 7 broadcast news from French radio stations,
and spontaneous speech, with 21 political discussions or street
interviews. Only a part of the recordings are annotated, giving
a total duration of 3 hours.

5.1. Evaluation metrics

The Diarization Error Rate (DER) is the metric used to measure
performance in the speaker diarization task. DER was intro-
duced by the NIST as the fraction of speaking time which is not
attributed to the correct speaker using the best match between
references and hypothesis speaker labels.

The evaluation metric chosen to measure identification per-
formance is the official REPERE Estimated Global Error Rate
(EGER). This metric is defined as follow:
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Supervised Supervised + Supervised + Semi-supervised Unsupervised
Semi-supervised Unsupervised

BFMStory 58.2% 55.8% 56.5% 90.3% 89.1%
CultureEtVous 56.1% 53.7% 53.7% 100.0% 100.0%
CaVousRegarde 62.4% 56.4% 56.4% 90.1% 90.1%
EntreLesLignes 13.5% 13.5% 13.5% 40.8% 63.5%
LCPInfo 52.7% 50.5% 51.1% 65.6% 89.1%
PileEtFace 51.2% 22.3% 42.1% 45.8% 66.1%
TopQuestions 35.3% 35.3% 35.2% 41.3% 53.2%
# of speaker models 152 410 397 377 343
% useful in the test corpus 30.1% 40.4% 39.7% 28.7% 23.9%
REPERE 46.5% 41.9% 44.2% 67.7% 77.2%

Table 1: EGER on the REPERE 2012 test corpus with the semi- and unsupervised methods, combined or not with the speaker models
from the training corpus (supervised method). The number of speaker models extracted, as well as the coverage (% of speaker models
really matching a speaker in the test corpus), are also presented.

EGER =
#fa+#miss+#conf

#total
(2)

where #total is the number of person utterances to be detected,
#conf the number of utterances wrongly identified, #miss
the number of missed utterances and #fa the number of false
alarms. Both DER and EGER are computed using the scor-
ing tool developed by the LNE2 as part of the ETAPE and the
REPERE campaigns.

5.2. Speaker diarization results

Single-show Diarization Error Rates obtained on the REPERE
2012 test corpus are reported in Table 2. DER of each show
was computed from the output of the first level of the archi-
tecture presented in Paragraph 4. The variability of the results
directly depends on the type of video processed. The DER is
approximately 7% on broadcast news videos (BFM story, LCP
Info), 11% to 16% on political discussions videos, and 28%
on people/entertainment videos (Culture Et Vous). This system
obtained the best results during the ETAPE 2012 and REPERE
2013 evaluation campaigns [16].

%Miss %F.A. %Sub. %DER
BFMStory 0.48 1.45 5.91 7.86
CultureEtVous 4.21 2.99 21.74 28.95
CaVousRegarde 2.02 0.10 12.78 14.91
EntreLesLignes 0.00 0.46 11.23 11.70
LCPInfo 0.42 0.95 5.97 7.35
PileEtFace 0.04 0.39 16.27 16.71
TopQuestions 1.34 3.04 10.60 14.99
REPERE 0.95 1.41 9.92 12.30

Table 2: Single-show DER on the REPERE 2012 test corpus.

5.3. Speaker identification results

Estimated Global Error Rates obtained on the REPERE 2012
test corpus are presented in Table 1. The “supervised” col-
umn shows the results obtained with the 152 speaker models
extracted from the training corpus. Other columns present re-
sults obtained with the semi- and unsupervised methods, com-
bined or not with the speaker models from the training corpus.
EGER of the semi- and unsupervised methods, when combined
with speaker models from the supervised method, are 41.9%
and 44.2%, respectively.

EGER obtained with both method is improved because
of the increase of speaker models. The supervised+semi-
supervised method gives the best results. The resulting speaker

2The French National Laboratory of Metrology and Testing

models are more robust because of the verification made by the
human annotator. The unsupervised method (without the su-
pervised data) gives a coverage of 23.9% (343 speaker models
were automatically extracted), and a EGER of 77.2 %.

6. Speaker roles influence
Two methods were proposed (semi-supervised and unsuper-
vised) to increase the number of speaker models, or improve
the existing models. This section present an analysis which fo-
cuses on the relationship between the speakers models and the
role of the speakers.

6.1. Roles description

Five roles are described in the REPERE evaluation campaign
which are commonly used in the literature [17, 18]. In this anal-
ysis, R4 and R5 have been merge because of their similarity.

• R1: The anchors. These speakers are characterized by
their presence throughout the show, without discontinu-
ity.

• R2: The journalists. They are TV professionals appear-
ing one time or more during the show.

• R3: The reporters. Similar to the role R2, they are cor-
respondents covering events outside the set of the show.

• R4+R5: The guests (R4). They are invited to interact
with the actualities. They were asked for their knowl-
edge or their fame to discuss under the guidance of the
anchor. They are neither part of the organization com-
mittee, nor the leaders of debates. They can be present
in different TV shows, especially during a highly publi-
cized event. R5 role refers to everyone else that could
appear, like interviewed people in a report.

6.2. Results and comments

Table 3 shows the EGER and the coverage (% of speaker mod-
els really matching a speaker in the test corpus) of each of the
roles (R1, R2, R3 and R4+R5), for each of the systems that
have been presented in paragraph 5.3. The column “Reference”
only shows the role distribution of the manually built list of 580
speakers used to collect the videos from the video-sharing web-
sites. For example, this list contains 90.9% of anchors (i.e. R1
role) who are present in the test corpus.

Regarding the supervised system, a EGER of 8.6% and
12.2% were obtained for the R1 and the R2 roles, respectively.
These low error rates are essentially due to the presence of the
R1 and R2 speakers both in the training and test corpora of
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Reference Supervised Supervised + Supervised + Semi-supervised Unsupervised
Semi-supervised Unsupervised

R1 (90.9%) 8.6% (81.8%) 9.5% (81.8%) 9.0% (81.8%) 83.8% (18.1%) 100.0% (0.0%)
R2 (85.7%) 12.2% (85.7%) 12.2% (85.7%) 12.2% (85.7%) 43.2% (42.8%) 65.6% (28.5%)
R3 (50.0%) 43.4% (50.0%) 43.4% (50.0%) 43.4% (50.0%) 100.0% (0.0%) 100.0% (0.0%)
R4+R5 (35.9%) 64.7% (20.1%) 57.5% (32.4%) 61.1% (30.2%) 63.0% (31.5%) 70.7% (28.0%)
# of speaker models 512 152 410 397 377 343

Table 3: EGER comparison between the roles (R1, R2, R3 and R4+R5) and the speaker models of each system in the REPERE 2012
test corpus. Values in parentheses indicate the number of speakers with the corresponding role divided by the number of speaker models
in each system.

the REPERE campaign. R3 and R4+R5 EGER are 43.4% and
64.7%, respectively. These rates are consistent with the fre-
quency of appearance of the corresponding speakers. Less the
speaker takes part in the training corpus, more it is difficult to
detect him in the test corpus. 81.8% of R1 speaker of the test
corpus have a model (85.7% for R2 speaker). It is particularly
true for the R4+R5 speakers, corresponding to the guests in a
broad sense, 20.1% of those speakers have a model.

Supervised+semi-supervised and supervised+unsupervised
methods allow to better detect the R4+R5 role. Compared
to the supervised method, the EGER of the supervised+semi-
supervised decrease from 64.7% to 57.5% (-7.2% absolute),
and the EGER of the supervised+unsupervised decrease from
64.7% to 61.1% (-3.6% absolute). The difference between the
two methods is explained by the fact that the Supervised+semi-
supervised method have more data to learn models. Indeed,
the models coming from the Supervised method is learned with
more data. Moreover, 14 new speakers models are added.

We introduce the subjective notion of fame of a speaker. A
speaker has a significant fame if his presence on TV is going
to beyond the scope of a channel. The celebrities, politicians
or artists are easily recognizable by their large representation in
various shows: their interviews are widely diffused. Thus, they
have a wide fame. On the other hand, people like TV profes-
sionals, only appearing in the TV channel they work for, have a
limited fame. It is easy to find data on video-sharing websites
for famous people; it is difficult for not famous ones.

Thus, in the list of 580 speakers we have build, 9.1% 3 of
R1 role misses in order to obtain all the anchors, 14.3% of R2
role for the journalists, 50% of R3 role for reporters and 64.1%
of R4+R5 roles for the guests. Experiments show that the unsu-
pervised method does not help to identify a single anchor, and
the semi-supervised method has only found 18.1% of them. The
half of the speakers list of 580 speakers is labelled as R3 role,
and none of the two methods helps to identify this category of
people (0%). Conversely, R4+54 roles (guests) only represents
35.9% of the 580 speakers list. The semi-supervised method
allows to successfully identify 31.5% of the guests, and the un-
supervised method, in which speakers models are automatically
created without any human supervision, is able to identify 28%
of them.

Aside from the headliners, the broadcast news programs are
uniquely composed of TV professionals who only officiate on
that channel. The influence of these individuals is lower and it
becomes more difficult to trace, because their name is often as-
sociated with a single channel or to a single show. They always
appear in the same situation, and fulfill the same role each time.
This set includes the R1, R2 and R3 roles.

However, differences can be identified within these three
following roles:

3This percentage comes from table 3, it corresponds to 100%-
90.9%, etc.

• R1: They always appear with the same appearance and
the same clothes, in the same context. They finally have
a relative important fame: again, it is difficult to obtain
relevant and reliable data to produce robust speaker mod-
els with the proposed method.

• R2: This role is ultimately less difficult to identify be-
cause journalists often have a presence on several chan-
nels, in different situations. This variability leads to a
better identification. The fact that they appear on several
channels increase their fame. For example, the Semi-
supervised method has a recovery rate of 42.8%.

• R3: This role corresponds to individuals usually appear-
ing outside, and very occasionally. That imply real diffi-
culties to obtain relevant data. In addition, little informa-
tion flows because the contexts in which they appear are
usually very different. Moreover, these individuals often
work in noisy environments which increase the difficul-
ties to obtain reliable acoustic information.

7. Conclusions
In this paper, the various approaches proposed help to quickly
obtain data in order to produce models for speaker identifica-
tion. Regardless the method used, people with an important
fame like celebrities are easy to model because of the ease to
find related data. However, the proposed methods do not pro-
vide sufficient data to model anchors or journalists (unless they
have an activity outside the channel). The semi-supervised ap-
proach has obtained better results than the unsupervised ap-
proach. Speaker models produced are more robust because of
the controls made by the human annotator.

Aside from celebrities which are true “headliners”, the
shows are composed of a group of TV professionals who of-
ficiate on the channel in question (sometimes exclusively). The
fame of these persons is limited; it becomes difficult to find re-
lated data on video-sharing websites because their presence is
unfrequent, and restricted to a particular situation.
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Abstract
Existing methods for unsupervised identification of speakers in
TV broadcast usually rely on the output of a speaker diariza-
tion module and try to name each cluster using names provided
by another source of information: we call it “late naming”.
Hence, written names extracted from title blocks tend to lead
to high precision identification, although they cannot correct er-
rors made during the clustering step.

In this paper, we extend our previous “late naming” ap-
proach in two ways: “integrated naming” and “early naming”.
While “late naming” relies on a speaker diarization module op-
timized for speaker diarization, “integrated naming” jointly op-
timize speaker diarization and name propagation in terms of
identification errors. “Early naming” modifies the speaker di-
arization module by adding constraints preventing two clusters
with different written names to be merged together.

While “integrated naming” yields similar identification per-
formance as “late naming” (with better precision), “early nam-
ing” improves over this baseline both in terms of identification
error rate and stability of the clustering stopping criterion.
Index Terms: speaker identification, speaker diarization, writ-
ten names, multimodal fusion, TV broadcast.

1. Introduction
Knowing “who said what” in broadcast TV programs is very
useful to provide efficient information access to large video col-
lections. Therefore, the identification of speakers is important
for the search and browsing in this type of data. Conventional
approaches are supervised with the use of voice biometric mod-
els. However, the use of biometric models faces two main prob-
lems: 1) manual annotations: generating biometric models is
very costly because of the great number of recognizable persons
in video collections; 2) lack of prior knowledge on persons ap-
pearing in videos (except for journalists and anchors): a very
large amount of a priori trained speaker models (several hun-
dreds or more) is needed for covering only a decent percentage
of speakers in a show.

A solution to these problems is to use other information
sources for naming speakers in a video. This is called unsuper-
vised naming of speakers and most approaches for that can be
decomposed into the three steps:

1. Speaker clustering (or diarization),

2. Extraction of hypothesis names from the video (or from
the collection of videos),

This work was partly realized as part of the Quaero Program and the
QCompere project, respectively funded by OSEO (French State agency
for innovation) and ANR (French national research agency).

3. Mapping (or association) between hypothesis names and
speaker clusters.

Speaker diarization is the process of partitioning the audio
stream into homogeneous clusters without prior knowledge on
the speakers’ voice. Each cluster must correspond to only one
speaker and vice versa. Most systems use a bottom-up approach
which tries to merge speech turns into clusters that are the purest
as possible using a distance metric (with a distance-based crite-
rion to stop the clustering).

Two modalities, intrinsic to the video, can provide the name
of speakers in broadcast TV: pronounced names and names
written on the screen (see figure 1). Most state-of-the-art ap-

(a) (b)

Figure 1: Example of written names on the screen

proaches rely on pronounced names due to the poor quality
of written names transcription observed in the past. Nam-
ing speakers with pronounced names has been proposed by
Canseco et al. [1, 2] and Charhad et al. [3]. Manually-designed
linguistic patterns indicate whether a name refers to the speaker
of the current speech turn, the following or the previous one.
Tranter et al. [4] learn these patterns as sequences of n-grams.
Mauclair et al. [5] use semantic classification trees (SCT) to
match names and speaker turns. Estève et al. [6] compare these
two techniques. They conclude that SCTs are less sensitive
to automatic speech transcriptions errors than sequences of n-
grams. Jousse et al. [7] improved over the SCT baseline: first,
each name is attached locally to a nearby speech turn; names are
then propagated globally to speaker clusters. They also show
a performance drop from 19.5% to 85% in speaker identifica-
tion error rate when using automatic speech transcription in-
stead of (perfect) manual transcriptions and named entities de-
tection. More recently, we proposed three propagation methods
to propagate written names to speaker clusters [8]. These unsu-
pervised multi-modal methods yield much better performance
than mono-modal ones. We also show that these methods lead
to 98.9% accuracy with perfect speaker diarization.

The use of automatically extracted pronounced names faces
several challenges: (i) transcription errors; (ii) named entity de-
tection errors (missing first/last name, false alarms, etc.); (iii)
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mapping errors (current, previous or next speech turn).
The use of automatically extracted written names faces sim-

ilar difficulties: (a) transcription errors – though better video
quality reduces these errors; (b) detection errors – fewer be-
cause each TV show uses specific spatial position for title
blocks1; (c) mapping errors – though a name is usually writ-
ten on the screen while the person is talking, yielding easier
affiliation.

This paper addresses other errors that can impact results:
the errors made during the clustering process (during speaker
diarization). For instance, the incorrect merging of two clusters
containing different speakers can severely impact the speaker
naming performance. Tuning the stopping criterion for hierar-
chical clustering is important to avoid such a problem. In this
paper, we rely on the hypothesis that the high precision of writ-
ten names to identify the current speaker can help us improve
the diarization process in order to avoid the problems mentioned
earlier. We limit our study to the use of written names for unsu-
pervised speaker identification in videos and propose an exten-
sion of [8]. In this previous work, we proposed three methods
for “late naming” of speakers which are highly dependent on
the quality of speaker diarization. In this article, we present two
novel approaches to overcome this issue: “integrated naming”
aims at better choosing the value of the stopping criterion in
order to minimize the speaker identification error while “early
naming” adds written names-driven constraints to speaker di-
arization.

The outline of the paper is as follows. Section 2 presents
the experimental setup as well as the speaker diarization mod-
ule and the written names extraction module used in our ex-
periments. Then, we describe our speaker naming methods in
Section 3. Section 4 presents our experiments. Finally, we con-
clude this work and give some perspectives.

2. Experimental setup
The REPERE [9] evaluation campaign phase 1 took place in
January 2013. The main objective of this challenge is to answer
the two following questions at any instant of the video: “who is
speaking?” “who is seen?”. In this paper, we try to answer the
first question in an unsupervised way.

2.1. REPERE Corpus

The dataset used in our experiments is extracted from a corpus
created for the REPERE challenge [10], which addresses multi-
modal person identification in videos. Videos are recorded from
seven different shows (including news and talk shows) broad-
casted on two French TV channels. An overview of the data is
presented in Table 1.

Train Test
Raw video 58h 15h
Annotated part 24h 3h
Number of annotated frames 8766 1229

Table 1: Train and test sets statistics

Though raw videos were provided to the participants (in-
cluding the whole show, adverts and part of surrounding shows),
only excerpts of the target shows were manually annotated for
the evaluation.

1Title block: spatial position used in the TV show to write a name
and introduce the corresponding person.

Our evaluation is performed on test set. It is important to
note that, although the whole test set is processed, the perfor-
mance is measured only on the annotated frames. Figure 2
shows some statistics of the test set (duration and number of
videos) for each TV show available in the REPERE corpus.

Figure 2: Duration and number of videos for the various TV
shows available in the REPERE collection

2.2. Evaluation Metrics

Alongside the usual precision P and recall R, the official
REPERE metric is also used for evaluation. It is called the Es-
timated Global Error Rate (EGER). This metric is defined as:

EGER =
#fa + #miss + #conf

#total
where #total is the number of person utterances to be detected,
#conf the number of utterances wrongly identified, #miss the
number of missed utterances and #fa the number of false alarms.

To evaluate speaker diarization performance, we also used the
diarization error rate (DER) defined by:

DER =
dfa + dmiss + dconf

dtotal

where dtotal is the total speech time, dfa the duration of false
alarm, dmiss the duration of missed speech and dconf the du-
ration of the speech time where hypothesis and reference dis-
agree. As identities of speakers are not considered, hypothesis
and reference are aligned 1-to-1 to minimized dconf .

2.3. Audio and Video Processing Modules

2.3.1. Speaker Diarization

Speaker diarization consists in segmenting the audio stream into
speaker turns and tagging each turn with a label specific of the
speaker. Given that no a priori knowledge of the speaker’s
voice is available in the unsupervised condition, only anony-
mous speaker labels can be provided at this stage.

After splitting the signal into acoustically homogeneous
segments, we calculate a similarity score matrix between each
pair of segments using the BIC criterion [11] with single full-
covariance Gaussians. This similarity matrix is then given as
input of a complete-link agglomerative clustering. Depending
on the similarity threshold used as stopping criterion, several
clustering results can be obtained.

It is worth mentioning that the matrix is not updated after
each merging of clusters, as this is usually the case for regular
BIC clustering.

We are aware that hierarchical clustering based on BIC dis-
tance is less efficient than hierarchical clustering with CLR dis-
tance [12] but our goal, here, is to do a fair comparison of sev-
eral speaker naming methods, independently of the similarity
measure (BIC or CLR).
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2.3.2. Written names extraction

To detect the names written on the screen used to introduce
a person, a detection and transcription system is needed. For
this task we used LOOV [13] (LIG Overlaid OCR in Video).
This system has been previously evaluated on another broad-
cast news corpus with low-resolution videos. We obtained a
character error rate (CER) of 4.6% for any type of text and of
2.6% for names written on the screen to introduce a person.
From the transcriptions, we use a simple technique in order to
detect the spatial positions of title blocks. This technique com-
pares each transcript with a list of famous names (list extracted
from Wikipedia, 175k names). Whenever a transcription corre-
sponds to a famous name, we add its spatial position to a list.
With the repeating positions in this list we find the spatial posi-
tions of title blocks used to introduce a person. However, these
text boxes detected do not always contain a name. A simple
filtering based on some linguistic rules allows us to filter false
positives.

3. Unsupervised Naming of Speakers
We propose three methods for unsupervised (i.e. with no prior
biometric models) naming of speakers with written names.

3.1. Late naming (LN)

Late naming is based on our previous work [8] (method M3).
Speaker diarization and overlaid names recognition are run in-
dependently from each other. Speaker diarization is tuned to
achieve the best diarization performance (i.e. minimize the di-
arization error rate, DER) as shown in Figure 3.

Figure 3: Late naming

The mapping between written names and speaker clusters is
based on the following observations:

• when only one name is written on screen, any co-
occurring speech turn is very likely (95% precision ac-
cording to the train set) to be uttered by this person;

• the speaker diarization system can produce over-
segmented speaker clusters, i.e. split speech turns from
one speaker into two or more clusters.

Therefore, this method proceeds in two steps. First, speech
turns with exactly one co-occurring name are tagged. Then,
each remaining unnamed speech turn is tagged cluster-wise us-
ing the following criteria:

f(s) = argmax
n∈N

TF (s, n) · IDF (n)

where the Term-Frequency Inverse Document Frequency (TF-
IDF)[14, 15] coefficient – made popular by the information re-
trieval research community – is adapted to our problem as fol-
lows:

TF (s, n) =
duration of name n in cluster s

total duration of all names in cluster s

IDF (n) =
# speaker clusters

# speaker clusters co-occurring with n

In other words, speaker clusters are analogous to textual docu-
ments, whose words are detected written names.

Late naming is based on this method but there is a slight up-
date that needs to be mentioned: we reduce the temporal scope
of each written name to the more co-occurring speech turn, this
can correct the time offset between audio and written names
segmentation. It is important to note that the diarization can be
different before and after the name-clusters association: some
clusters may be merged (same name) or split (speech turn with
a different name). Therefore, the scoring of the diarization can
marginally change.

3.2. Integrated naming (IN)

One limitation of the late naming method is that the thresh-
old used to stop hierarchical clustering is optimized in terms
of diarization error rate (DER), while the ultimate objective is
speaker identification, not diarization. Obviously, optimizing
DER does not necessarily lead to the lower identification error
rate (EGER). Therefore, “integrated naming” is a simple exten-
sion of “late naming” where the stopping criterion threshold is
tuned in order to minimize the EGER. We will show later in the
experiments that the resulting threshold is generally higher than
the one selected to minimize DER (i.e. agglomerative clustering
is stopped earlier)

Figure 4: Integrated naming

In practice, as shown in Figure 4, we keep multiple cluster-
ing outputs, on which we apply the same method as in the “late
naming” strategy described before. The threshold optimizing
EGER on the training set is chosen.

3.3. Early naming (EN)

As already stated, when one or more names are written on the
screen, there is a very high probability that the name of the cur-
rent speaker corresponds to the written name on screen. There-
fore, in “early naming”, we use the information provided by
written names during the clustering process.

Before clustering, we associate each written name n to the
more co-occurring speech turns. At this stage, a speech turn can
have several names if several names are written on the screen at
the same time. Then, regular agglomerative clustering (based
on speech turn similarity) is performed with the constraint that
merging two clusters s without at least one name n in com-
mon is forbidden. For example, two clusters s1 and s2 can be
merged into a new one snew in the following case (the list of
associated names is shown between brackets):

• s1(∅) ∪ s2(∅)⇒ snew(∅)
• s1(n1) ∪ s2(∅)⇒ snew(n1)

• s1(n1, n2) ∪ s2(∅)⇒ snew(n1, n2)

• s1(n1, n2) ∪ s2(n1)⇒ snew(n1)

Below are examples where the two clusters cannot be merged:

• s1(n1) ∪ s2(n2)⇒ Forbidden

• s1(n1, n3) ∪ s2(n2)⇒ Forbidden
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The clustering is stopped according to the optimal (mini-
mizing EGER) threshold learned on the training set.

Figure 5: Early naming

4. Results
In this section we compare the ability of our naming methods
to correctly identify speakers in TV broadcast and more par-
ticularly their sensitivity to the value of the stopping criterion
threshold.

4.1. Learning the threshold as stop criterion

We used the training set to learn the stopping criterion threshold.
However, in order to be less dependent on manual annotations,
we did not use the whole 24 hours training set and selected 100
subsets randomly from it. These subsets were chosen to match
the test set (duration, balance between shows, and number of
videos for each show).

Naming strategy median min max standard
deviation

LN: lower DER 1540 1440 1680 54
IN: lower EGER 1620 1520 1740 44
EN: lower EGER 1260 300 1640 277

Table 2: Threshold learned on 100 subsets of the train set, to
minimize the DER or the EGER, LN: Late naming, IN: Inte-
grate naming, EN: Early naming

As expected, Table 2 shows that the optimal threshold for
IN is higher than those for LN. It means that IN stops earlier in
the agglomerative clustering though split clusters may end up
with the same name.

The constrained clustering of EN stops at a lower threshold.
The standard deviation for EN is very high compared to the two
others methods, it is possible to interpreted that EN is less sen-
sitive to the threshold value. For the rest of the paper, we chose
to use the median as global threshold.

4.2. Speaker Identification

For all the following experiences, it is important to note that
the stopping criterion thresholds are learned on the training set
while the results are displayed for the test set. Figure 6 shows
the evolution of EGER with respect to the selected threshold
and should be read from right to left as a smaller threshold value
means that the agglomerative clustering stops later. LN and
IN curves overlap but differ in the optimal stopping criterion
threshold: threshold a© aims at minimizing the DER (late nam-
ing) while b© focuses on minimizing EGER (integrated nam-
ing). EN behaves very differently. 1© shows the impact of the
written name constraints and c© the threshold learned to mini-
mize the EGER.

Table 3 summarizes the performance of the three methods.
The integrated naming has a lower EGER but the difference is

Figure 6: Influence of the stopping criterion threshold ( a©, b©,
c© learned on train set) on identification error rate on test set,

for the three naming strategies.

very small, yet this method has better precision due to its higher
threshold. As far as EN is concerned, the clustering constraint
helps keeping the same precision (80.4%) though the thresh-
old is lower. It allows to correctly merge some additional clus-
ters and therefore increases the recall to 68.3%. For IN and
EN, minimizing the EGER still allows to maximize other met-
rics like precision, providing at least enough speech duration to
build speakers models.

Naming strategy Thr. EGER (%) P (%) R (%)
Late (LN) a© 1540 32.1 80.4 66.0
Integrated (IN) b© 1620 32.4 81.5 65.3
Early (EN) c© 1260 29.9 80.4 68.3

Table 3: Trained stopping criterion threshold learned on the
train set and the corresponding identification error (EGER), pre-
cision (P) and recall (R) obtained on test set.

4.3. Speaker Diarization

Figure 7 shows the evolution of DER as a function of the thresh-
old. The baseline “before naming” corresponds to an audio-
only diarization. As explained in section 3.2 the diarization is
different before and after the late naming.

Figure 7: Influence of the stopping criterion threshold on di-
arization error rate on test set, before and after naming.

2© and 3© show the influence of the direct speech turn tag-
ging step. At the start of the clustering 2©, this step merges
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speech turns with the same name. At the end of the clustering
3©, this step removes from clusters some speech turns with a

different name. 1© shows the effect of the constraints prevent-
ing clusters with different names from being merged.

a© corresponds to the threshold tuned to minimize the DER.
We obtain an 18.11% DER on the test set without written names
(see Table 4). “Integrated naming” has a higher threshold but
some clusters end up merged (thanks to their identical associ-
ated names), leading to a lower DER of 17.5%. The constrained
clustering shows only a small variation of DER (from 18.7% to
20.2%, with a minimum of 16.37%) over the [0-1800] thresh-
old range: it appears to be much less sensitive to the threshold
choice (see figure 7).

Thr DER
Before naming a© 1540 18.11
After late and integrated naming b© 1620 17.51
After early naming c© 1260 16.37

Table 4: DER depending on the threshold

4.4. Sensitivity to the training set

Threshold tuning is achieved by randomly selecting 100 subsets
from the training set and choosing the best threshold value for
each of them.

The x-axis of Figure 8 summarizes the range of variation of
this optimal threshold over the 100 training subsets (e.g. 1440 to
1680 for late naming strategy), as already introduced in Table 2.
The y-axis reports the corresponding average identification er-
ror rate (EGER) and its standard deviation on the test set.

Figure 8: Average and standard deviation of the EGER on test
set depending on the subsets used to learn the threshold

This figure points out that late and integrated naming strate-
gies are more dependent on the training set and may therefore
suffer from over fitting. Their respective identification error
rates (EGER) has a standard deviation of 1.2% and 0.8%, while
standard deviation of early naming EGER is only 0.2% (though
the range of optimal thresholds over the 100 training subsets is
much bigger).

4.5. Show-dependent threshold

The test corpus is composed of seven different types of shows
(as illustrated in Figure 2). While a global show-independent
threshold (Thr. corpus) can be trained, we also investigate
the use of a show-dependent threshold (Thr. per show) and
report the outcome of this experiment in Figure 9. Thr. oracle
corresponds to the best possible performance in case an oracle

is able to predict the best threshold. The robustness of a
particular naming strategy can be inferred by the difference
between the thresholds tuned on the whole training set (Thr.
corpus and Thr. per show) and the optimal threshold (Thr
oracle).

Figure 9: Identification error rate (EGER) for a show-dependent
or show-independent stopping criterion.

Figure 9 shows that there is a difference of behavior be-
tween DER minimization (late naming) or EGER minimization
(integrated or early naming). On one hand, DER minimization
aims at associating one specific cluster to each speaker, whether
they can be named or not. On the other hand, EGER minimiza-
tion tries to associate its name to every speaker. Anonymous
speakers can remain in the same cluster or split into several clus-
ters as it has no influence on the final value of the identification
error rate (EGER).

The REPERE corpus is composed of various types of
shows. Some contains numerous speakers (up to 18 for news
show BFM Story) whose names are usually displayed only once.
Others, like the debate Pile Et Face, only have three speak-
ers (two guests and the anchor) whose names are displayed 24
times on average over the duration of each show. For this partic-
ular type of show, the optimal DER threshold is 1300 while the
EGER one is 1560. As a matter of fact, since speaker names are
written multiple times, it is not worth trying to get exactly one
cluster per speaker. A speaker cluster can be split into multiple
smaller clusters as long as those clusters are named correctly.

Finally, we highlight that oracle results show almost iden-
tical performance for the three strategies. However, since early
naming is less sensitive to the chosen threshold, it leads to much
better identification performance (very close to the oracle one).

5. Conclusions
In this paper, we introduced and analyzed two naming strategies
for unsupervised speaker identification in TV broadcast. Inte-
grated naming is a simple extension of our previous work [8]
that improves precision (+1.1%) while keeping the same iden-
tification error rate (32.4%). Early naming relies on the knowl-
edge of overlaid names during the clustering process. This in-
formation is used to constrain clustering by preventing two clus-
ters named by different written names from being merged. This
method leads to better identification error rate (29.9%) and is
less sensitive to the choice of the stopping criterion threshold.
These two methods allow maximizing the metric associated to
the target task. Future works will focus on the integration of ad-
ditional sources of information like pronounced names or face
clustering.
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Abstract 
This paper presents a design concept for speech-based mobile 
applications that is based on the use of a narrative storyline. Its 
main contribution is to introduce the idea of conceptualizing 
speech-based mobile multimedia tagging and retrieval 
applications as a story that develops via interaction of the user 
with characters representing elements of the system. The aim 
of this paper is to encourage and support the research 
community to further explore and develop this concept into 
mature systems that allow for the accumulation and access of 
large quantities of speech-annotated images. We provide two 
resources intended to facilitate such work: First, we describe 
two applications, together referred as the ‘Verbals Mobile 
System’, that we have developed on the basis of this design 
concept, and implemented on Android platform 2.2 (API level 
8) using Google's Speech Recognition service, Text-to-Speech 
Engine and Flickr API. The code for these applications has 
been made publically available to encourage further extension. 
Second, we distill our practical findings into a discussion of 
technology limitations and guidelines for the design of speech-
based mobile applications, in an effort to support researchers 
to build on our work, while avoiding known pitfalls. 
Index Terms: Mobile Speech Application, Multimedia 
Service, Narrative-driven design, Image Retrieval, Image 
Tagging, Android, Flickr  

1. Introduction 
Speech-based mobile applications, and specifically those that 
make use of a combination of speech and multimedia, are 
evolving rapidly. The data that such applications generate 
represent an interesting challenge for the research area of 
speech, language and audio in multimedia. However, speech 
has not yet established itself as a mainstream annotation 
modality for users who capture, save and share multimedia 
with their mobile phones. Instead, if users tag photos, they 
generally rely on text-based input forms. Before speech 
processing technology becomes truly relevant in the area of 
mobile multimedia, applications that allow users to use speech 
to tag and retrieve photos must establish their foothold. As 
long as use of such applications is not yet widespread, 
researchers will lack the critical mass of speech-annotated 
multimedia data that is necessary in order to address the 
question of how speech processing technology may support 
mobile speech-based image tagging and retrieval. This paper 
is motivated by the need for applications that break with 
existing conventions and practices in order to allow speech 
processing technology to realize its full potential to support 
users in capturing, sharing, viewing, and retrieving multimedia 
using mobile devices. 

Upon first consideration, it appears nearly trivial to bring a 
photo-sharing website such as Flickr to a mobile phone by 
exploiting speech technology and using spoken tags and 
spoken queries to replace text-based user interaction. The fact 
that the telephone was originally developed as a device to 
support spoken communication, suggests, a priori, that voice 
input would be widely accepted by users as a mode for 
interacting with an image retrieval system. However, the idea 
that replacing text-tags with speech-tags is a simple switch 
soon reveals itself to be an overhasty assumption. Despite the 
research work that has been devoted to the topic of using 
speech to tag images, for example [1], [2], [3], there does not 
exist a single mobile application enabling speech-based 
tagging and retrieval of multimedia that has managed to enter 
mainstream use. In this paper, we take the standpoint that the 
challenges faced by such applications are not exclusively 
technical in nature, but rather have a critical dependency on 
the expectations and needs of users. The goal of this paper is 
to introduce a new design concept for mobile speech-based 
multimedia tagging and retrieval applications that tackles the 
challenges of handling the interaction between technological 
limitations and how users expect the system to work and what 
they want to achieve. 

The key insight of our design concept is that the 
interaction of the user with the tagging and retrieval 
application can be conceptualized as a narrative. Within the 
storyline of this narrative different characters interact. These 
characters correspond to different elements of the system, and 
have personalities that reflect the function, speed and 
reliability of these elements. If the storyline is designed so that 
it is both engaging and easy to understand, the user will be 
able to formulate a useful model to understand the inner 
mechanics of the system that will promote acceptance and 
patience.  

The rest of the paper is organized as follows. In Section 2, 
we discuss the preliminary investigation that led us to be 
concerned with the interaction of user expectations and 
technological limitations and to arrive at the concept of 
narrative-driven multimedia tagging and retrieval. In Section 
3, we present background information on narrative structure 
and also our narrative-based design concept. Then, in Section 
4, we describe our experiences in applying this design concept 
in the development of a particular mobile application for 
speech-based tagging and retrieval of images, called the 
‘Verbals Mobile System’ (where ‘verbal’ refers to a voice 
tag). Finally, in Section 5, we distill our experiences into a 
series of lessons learned that will inform the development of 
other speech-based mobile applications for multimedia that 
apply the same design concept. We finish with a conclusion 
and outlook onto future work. 

90

Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013.



2. Preliminary Investigation 
The troublesomeness of speech recognition errors for systems 
that allow users to speech-tag their photos has been pointed 
out in the literature [2], [4]. The focus of our investigations 
was set specifically on speech-tagging in mobile 
environments, and we began with an informal study of 
existing mobile applications and a field study. During the field 
study, we tested mobile speech recognition technology in a 
series of real-world environments. Our investigation identified 
a set of key design challenges for the design and 
implementation of mobile ‘voice’ interfaces that connect with 
a remote image sharing server. The first set of challenges is 
technical in nature: Speech recognition in mobile 
environments (i.e., settings characterized by every-day noise 
conditions) falls far short of the recognition levels of human 
listeners in the same environments. Mobile environments are 
more challenging than other environments in which speech 
recognition technology is used because they are uncontrolled 
and highly variable (including background babble, birds, 
traffic, music, construction, wind). The strength of the signal 
received by a smartphone can vary with environment (e.g., at 
high-altitude, in forests, or in basements), meaning that 
connection with a remote image-sharing server is not stable. 
Mobile speech recognition technology that requires an Internet 
connection also suffers from delay and disconnection. The 
second set of challenges is related to users: The use of speech 
input is restricted by social and cultural norms that apply in 
both public and private spaces. Speech is for this reason not 
always acceptable in certain civic settings (e.g., in certain 
parts of hospitals or during a lecture/meeting) and may also be 
more disruptive than text input when a user is simultaneously 
engaged in social interactions with other people. 
Misrecognitions and delays caused by the technical challenges 
mentioned above can be a source of enormous frustration for 
users, causing them to experience the application as tedious to 
use or not worth the effort. 

A critical characteristic of these design challenges is that 
the technical challenges are not separated from the user 
challenges, but rather the two sets of challenges are 
interdependent. Based on this observation, we concluded 
speech-based mobile applications must arise from a 
convergence of design and technology. We then set for 
ourselves the objective of developing a design concept that 
would accommodate both the needs of users and the technical 
restrictions of mobile speech, focusing on two main questions: 
(1) How to improve the tolerance of users for mobile 
multimedia applications which are considered technically to 
be ‘not-perfect’ or ‘still-evolving’? (2) How to deal with 
possible errors, introduced by automatic speech recognition 
into tags and queries, in a manner acceptable to users?  

As the basis for our design concept, we chose to 
conceptualize user interaction with the mobile application as a 
narrative. The aim of the narrative is to engage users and to 
provide useful explanations for the system’s unexpected 
behavior. In the following section, we describe the ‘Verbals 
Mobile System’, which we developed as an application of this 
design to the task of image tagging and retrieval. 

3. Narrative-Driven Mobile Speech 
Design Concept 

Narrative structure could be understood as consisting of two 
parts: Content and Form. While content consists of story, i.e., 

characters, events, and conflicts, the form deals with plot, i.e., 
how the story is told or narrated. A narrative adds to the 
meaning generation process and engages an audience by 
facilitating interpretation of the story [5], [5], [6], [7]. 
Narrative structures are widely utilized in variety of media like 
newspapers, television advertisements, documentaries, films, 
and games to communicate with the audience [6], [7]. 

 Upon first consideration, there are a seemingly endless 
number of stories, making it difficult to decide which storyline 
would be most appropriate for use in a mobile speech-based 
application. Ideally, the story chosen should be appropriate for 
any possible user of the system. Closer examination of literary 
and anthropological research reveals that narratives generally 
fall into broad patterns that share wide appeal. The folklorists 
and anthropologists that have analyzed and discussed narrative 
patterns in folklores and myths include Tvzentan Todorov, 
Vladimir Propp, Claude Levi-Strass, Roland Barthes and 
Joseph Campbell. Vladimir Propp’s analyzed Russian 
folktales and discussed 31 narrative functions in his seminal 
book, ‘Morphology of Folk tales’, first published in 1928. He 
defined narrative functions as smallest possible unit of a 
narrative and described a certain order of appearance narrative 
functions in Russian folktales [8]. Propp’s work has 
influenced work of many theoreticians and practitioners 
including Joseph Campbell, who analyzed myths in various 
cultures in his book ‘The Hero with a Thousand Faces’ [9], 
[10]. Campbell describes a pattern called Hero’s Journey, 
which has been used in many Hollywood movies including 
Star Wars. It is the Hero’s Journey narrative pattern that we 
chose to build upon in our design concept because it involves 
a single protagonist (who is represented in our concept by the 
user), overcoming unexpected obstacles (which are 
represented by unpredictable behavior of system elements 
such as speech recognition) in order to reach a goal (tagging or 
retrieval of images). 

Various mediums offer varying benefits and limitations 
for incorporating narrative structures. The narratives could be 
adapted to these strengths and limitations [6], [7], [11]. For 
instance, a three-hours adventure film may have multiple 
subplots and numerous characters, whereas a thirty-second 
television commercial may have a single plot and a character. 
Narrative structure for mobile phones has not been explored 
much as yet. However, with their increasing ubiquity and 
technological advancement, mobile phones as a medium 
present an evolving and challenging platform for use of 
narrative structures [6], [7], [12]. Mobile phones facilitate 
various modes of interactions not possible in mediums like 
films or television. Mobile phones, like the World Wide Web 
itself, is an interactive medium rich with possibilities for 
multi-modal interactions (e.g., text, speech, touch) and the 
simultaneous use of multimodal features (e.g., audio, video, 
images). Further, the mobile phone is usually seen as a 
personalized object primarily used by a single user. This 
provides possibilities for a much more intimate interaction 
with the user. Due to these characteristics, mobile phones offer 
a rich platform for exploring narrative structures.  

Our design concept enhances the tolerance of users for 
imperfect mobile phone technology by using a narrative in 
order to provide an explanation for unexpected behavior, such 
as disconnections, delays, and speech recognition errors. 
Because they are engaged with the narrative, users will also 
experience the time needed for processing and transmission to 
be less frustrating. In the next section, we apply our design 
concept to develop the ‘Verbals Mobile System’.  
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4. Verbals Mobile System 
This section first describes the narrative structure that was 
developed for the ‘Verbals Mobile System’, which we 
developed as an application of this design to the task of image 
tagging and retrieval. 

4.1. Narrative Structure 

As the basis for our design concept, we chose to conceptualize 
user interaction with the mobile application as a narrative, 
which we create by overlaying a dialogue with characters and 
a storyline. As previously mentioned, we build on the 
narrative pattern of ‘Hero’s Journey’. We brainstormed on 
various possibilities for a story and a plot and narrowed them 
down to the theme of travelling back in time in combination 
with a common human interest to view images of events in the 
past. As a result, the narrative of ‘Verbals Mobile System’ is 
based on the theme of ‘Communication with the Past’ and the 
genre of ‘adventure’.  

The narrative emerges via the interaction of a set of 
characters who pursue individual goals and each have their 
own personalities. Different realizations of the interaction are 
conceivable. For example, it would be possible for all 
characters to be explicitly instantiated by animation or voices 
seen and heard by the user and to interact with the user 
directly. We choose for a realization in which the user 
interacts with only a single, central character and that the other 
characters are not directly represented. Rather their actions are 
reported to the user by the central character. This choice 
simplifies the user interaction with the system and allows us to 
map the narrative onto a dialogue between two persons, the 
user, who is the protagonist of the narrative and the central 
character, who is directed by the user. 

In the remainder of this section, we discuss the characters 
in our narrative (summarized in Table 1) and the mechanics of 
the plot. Note that the narrative-based designed concept that 
we proposed is not restricted to use of these characters or 
mechanisms. Rather, the specifics that we present here serve 
as an example of how the cast of characters can be established, 
and what the correspondence should be between the characters 
and the elements of the system. 
Central character: ‘Pica’ is the central character and is a bird 
that can be directed by the users of our applications. We 
selected a bird since the human users of the applications could 
naturally associate birds with flying and with the activity of 
sending messages or communication with distant lands. The 
type of bird is a European Magpie, which was chosen because 
it is a common bird in the Netherlands and is also well known 
to for its habit of carrying shiny objects off and for its 
mischievous intelligence. We characterized ‘Pica’ as having a 
special ability to fly to ‘The Past’ and some ability to 
understand human voice. A user interacts with Pica and can 
direct her to travel back in time to access the human memories 
in the ‘Past'. When users start the ‘Verbals Push’ application, 
they hear the voice of Pica saying, ‘I am Pica, the magpie, I 
can carry your tags and images to the invisible Land of the 
Past. Select an images that you wish to send to the Garden of 
Human memories in the Past’. 
Mentor: ‘Google’, is characterized as the omnipresent mentor 
of Pica, who helps her in understanding and interpreting 
human voice. A user can speak to Pica and send her on a 
journey to the ‘Past’. The user can direct Pica to bring images 
from ‘Past’ and can also send images and some tags to ‘Past’. 
The ‘Past’ appears in the narrative as a distant vast land 

holding shared human memories. Users all live in the 
‘Present’ and any moment before the ‘Present’ is in the ‘Past’. 
Please see Table-1 for the list of characters and their roles in 
the Verbals Mobile System. 

Table 1. List of characters and their roles. 

Character Role in narrative Role in the 
application 

Pica 
[Protagonist] 

Pica, a female magpie 
has the ability to fly 
back in time to reach 
‘The Past’. Pica could 
carry images and tags 

Interaction 
with the user 

Google 
[Mentor] 

An omnipresent mentor, 
who helps Pica in 
understanding human 
voice 

Accessing 
Google 
speech 
recognition 
service and 
obtaining 
results 

Flickr 
[Guardian] 

The guardian of an 
invisible valley in the 
distant clouds having an 
entrance to ‘The Past’. 
To enter ‘The Past’ for 
the first time Pica has to 
provide a secret code 

Fetch/Post 
images and 
tags from 
Flickr, Flickr 
account 
authentication 

Zaat 
[Antagonist] 

A wind demon in ‘The 
Past’ who shoots fast 
vertical winds to slow-
down, disorient or 
snatch images from Pica 
in her journey 

To deal with 
delay or error 
in image 
fetch/post  

Bazooka 
[Antagonist] 

A sonic demon that fires 
rapid noise beams to 
disrupt Pica’s 
communication with 
Google. Bazooka does 
not like silence and 
human voice 

To deal with 
incorrect 
speech 
recognition of 
a user’s voice 
input 

 
Quest: To enter the ‘Past’, Pica has to provide secret code to 
‘Flickr’. ‘Flickr’ is the guardian of an invisible valley in the 
distant clouds having an entrance to the ‘Past’.  
Conflict and challenges: Bazooka, a sonic demon does not 
like silence and human voice. Bazooka tries to attack with 
rapid noise beams whenever it gets to know of a 
communication between a human (user) and Pica. The noise 
beams could disrupt Pica’s communication with ‘Google’ and 
hence lead to misinterpretations. So, the first challenge for a 
user is to successfully communicate with Pica so that Bazooka 
does not get to break the communication. Zaat, a wind demon 
in the ‘Past’ shoots fast vertical winds to slow-down, disorient 
or snatch images from Pica in her journey. So, the second 
challenge for a user is to succeed in either sending images and 
some tags to the ‘Past’ or retrieving images from the ‘Past’. 
Reward: Users who succeed in dealing with the conflicts and 
the challenges get to see ten images from the ‘Past’ as 
identified by their spoken tags (Verbals Pull) or their selected 
image and spoken tags successfully stored in ‘The Past’ 
(Verbals Push). 
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4.2. Architecture of the Verbals Mobile System 

In this section, we discuss the Verbals Mobile System's 
architecture. The system consists of two separate applications: 
one for speech tagging (referred to as ‘Verbals Push’) and for 
speech search (referred to as ‘Verbals Pull’). We have 
implemented the architecture as an Android phone application 
using Google Speech API, and Flickr API. The open source 
source-code of the Verbals Mobile System, including both the 
Verbal Push Application1 and the Verbal Pull Application2, is 
available on line. We have also made a demo video3 available. 
 
Verbals Push Application: The architecture of the Verbals 
Push application for speech tagging is depicted in Figure 1. 
The dialogue manager is the heart of the architecture. The user 
interacts (through the mobile phone’s user interface) with the 
dialogue manager and the dialogue manager based on the 
current state of the application decides on subsequent actions 
and provides user feedbacks. For instance, when a user starts 
the application the dialogue manager introduces the 
application (including the character of ‘Pica’ as part of the 
narrative) and facilitates the user to select an image from 
phone’s memory. Further, the dialogue manager uses Google 
Speech API to identify user’s spoken-tags (or ‘verbals’). 
Google Speech API sends user spoken-input to Google Speech 
servers and receives results. The speech recognition results are 
shown on phone’s interface and dialogue manager requests for 
an implicit confirmation from the user. On receiving a ‘go-
ahead’ from the user, dialogue manager connects with Flickr 
API, sends user authentication information and then pushes 
the selected image and the spoken-tag to the users Flickr 
account. Now, the user should see the image and the tags on 
his/her Flickr photostream. The dialogue manager uses the 
phone’s text-to-speech engine to provide spoken feedback to 
the user and facilitates dialogue delivery for the narrative. The 
dialogues are implemented in an XML file format.  
Verbals Pull Application: The architecture of the Verbals 
Pull application for speech-based image retrieval is depicted in 
Figure 2. The dialogue manager is, again, the heart of the 
architecture. The user interacts (through the mobile phone’s 
user interface) with the dialogue manager and the dialogue 
manager based on the current state of the application decides 
on subsequent actions and provides user feedbacks. For 
instance, when a user starts the application the dialogue 
manager introduces the application (including the character of 
‘Pica’ as part of the narrative) and encourages the user to 
speak a location. Further, the dialogue manager uses Google 
Speech API to identify user’s spoken-tag (in this case a 
location name). Google Speech API sends user spoken-input 
to Google Speech servers and receives results. The speech 
recognition results are shown on phone’s interface and 
dialogue manager requests for an implicit confirmation from 
the user. On receiving a ‘go-ahead’ from the user, dialogue 
manager connects with Flickr API, and then requests for ten 
random public images on Flickr that are tagged with the user’s 
spoken-tag (a location name).  The Flickr API returns the 
images and the images are shown on the phone’s user 
interface.  Again here the dialogue manger uses phone’s text-
to-speech engine to provide spoken feedback to the user and 

                                                 
1 https://github.com/abhigyan/Verbals-Push 
2 https://github.com/abhigyan/Verbals-Pull 
3 http://youtu.be/rnXtBsVgEII 

facilitates dialogue delivery as part of the narrative. The 
dialogues are implemented in an XML file format.  

 
Figure 1: Verbals Push Application. 

 
Figure 2: Verbals Pull Application. 

5. Mobile speech in practice 
In this section, we briefly present our general observations, 
first covering technical and then design aspects. 

5.1. Technical Challenges and Limitations 

Android platform: Before starting development it is 
important to realize that the Android platform based speech 
application development will require a real mobile phone in 
the development process as the Android emulator does not 
cater to voice input. 
Dialogue manager: Implementing a dialogue manager is the 
key aspect for a narrative driven mobile speech applications.  
Android (2.2) framework requires a low-level implementation 
of dialogue manager. Many conventional server-side dialogue-
driven applications like IVR systems use VoiceXML, which 
structures and simplifies the implementation of dialogues 
manager by facilitating a high-level implementation. 
However, VoiceXML (version 2.0 and 2.1) is primarily 
designed for server-side implementations and not suitable for 
client-side implementations as in case of Verbal’s Mobile 
System. The upcoming version of VoiceXML may address 
this issue.  
Mobile speech recognition: The Google Speech API, as of 
the time of writing, offers limited functionalities, a factor that 
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constrains the features and interaction models that can be 
implemented in mobile speech application by application 
developers. For instance, it is not possible to record the user’s 
voice input while using the Speech Recognition service or to 
retrieve the recorded audio-file from speech servers. A user 
click is needed to start the Speech Recognition as the mobile 
speech recognition cannot be in ‘always on’ mode. For this 
reason, design for speech-enabled application on mobile 
phone needs to balance ‘speech’ and ‘touch’ input. Google 
Speech Recognition’s language options are evolving and at the 
time of writing there are limitations in vocabulary. For 
instance, during the time of implementation of Verbals Mobile 
System, Dutch Language and English (Dutch) Locale were not 
available. Implementing and designing mobile speech using 
Android (API 2.2) requires an Internet connection as the user's 
speech input is sent and results are received from Google’s 
speech servers. This dependence on communication with 
speech servers brings possibilities of delays, errors and 
disconnections.  
Mobile speech synthesis: The Android’s default Text-to-
Speech Engine (PICO) provides limited options. For instance, 
for speech synthesis only a ‘female’ voice option is available. 
Similarly, various speech synthesis audio-effects like echo, 
tempo, and accents are not yet available. This limits the use of 
narrative based on multiple characters as such a scenario 
would require variation in dialogue delivery in terms of pace, 
voice, pitch to depict contrast, variation in moods and 
personalities of the characters.  
Multimedia sharing platform: Certain functionalities (like 
Image Post) using Flickr API requires user authentication. At 
the time of implementation of the Verbals Mobile System, the 
Flickr API was migrating to OAuth authentication scheme. 
Although this new mechanism is enhanced and more secure 
compared to the earlier version of authentication, it requires 
investing additional implementation time. Time and care is 
needed in selecting an Android-Java Flickr library. There are 
varieties of options available but many libraries offer 
incomplete functionalities and some are not well documented. 

5.2. Guidelines for Mobile Speech Applications 

Our guidelines for mobile speech application design 
emphasize user aspects, since we anticipate that specific 
aspects of the needs of users will endure, even after technical 
limitations have been addressed. First, we note that users 
needs in a certain sense run ahead of technology. Even as 
mobile phone coverage continues to improve globally, users 
will continue to find new places to capture and share 
multimedia (e.g., underground, under water). Multimedia 
content contains increasingly more information, for example, 
we can anticipate a move from images to video to 3D video. It 
is important not to assume that bandwidth is cheap, and its 
price might be the limitation on use for some users. 

Second, we note that narrative-driven dialogue design has 
an enormous potential to engage users with speech based 
systems and improve their experience. However, a variety of 
factors shape the aesthetics of dialogues and narrative 
structure for that are appropriate for mobile platforms. Long 
and complex dialogues that maybe fine for interactive 
applications on the Web or for films, but these could create 
significant problems and reduce user experience when used in 
mobile speech applications. The aesthetics of vocal delivery is 
important: ‘machine-like’, ‘young adult’, ‘feminine’ and 
having ‘native English accent’ can all contribute to building 

the narrative. However, these can also have an impact on 
users’ individual emotional response and must be taken into 
consideration. In order to target broad appeal, various popular 
genres of narrative like humor, horror or mystery could be 
leveraged. 

6. Conclusions and Outlook 
We have presented a narrative-based design that we have 
developed in order to reconcile technological limitations of 
mobile speech-based applications with user expectations. We 
start from the observation that the key to wider uptake of 
mobile speech-based applications for multimedia tagging and 
retrieval is not exclusively technical in nature. Rather, such a 
solution requires careful consideration of what users expect 
applications to do, and what they actually can do, given 
technological limitations.  

We have presented an example narrative that builds on the 
‘Hero’s Journey’ narrative pattern. The individual characters 
involved in the narrative correspond to individual elements of 
the application, and are given personalities that reflect the 
unexpected behavior of these elements, so that they can serve 
to ‘explain’ to users why speech-based tagging and retrieval 
does not always precede along a smooth and predictable path, 
but rather encounters technical limitations. 

We would like to note that we anticipate our approach will 
remain relevant, even as speech-based mobile technology 
continues to develop. A notion of “error free” speech 
recognition is difficult to formulate, since a speech recognition 
system that never makes an error must recognize speech better 
than a human being. However, even should “error free” speech 
recognition measured by any reasonable notion be achieved, 
tagging and retrieval systems still stand to benefit from 
collecting more and richer data from the users, in terms tags 
and queries that are more specific. Here, the engagement of a 
narrative-based system could help to extend users’ patience 
and direct their formulation of tags and queries.  

We would like to point out that smartphones offer 
possibilities for multi-modal interactions for narrative 
structure, going far beyond what we have covered here. 
Moving forward, we see opportunities for narrative-driven 
speech applications to be enhanced by integrating rich user 
context information (e.g., geo-location) and sensor 
information (e.g., from accelerometers) as narrative elements. 
We also are interested in the question of speech-based 
annotation and retrieval of video. The fact that video is a 
temporally continuous medium opens new challenges e.g., 
will users associate speech annotation with particular parts of 
the video, or with the whole video? The fact that videos may 
already contain speech might make it undesirable to add a 
second layer of spoken annotation. For example, users might 
be able to easily “speak over” existing speech to add or listen 
to annotations.  

The number and variety of challenges left open by our 
work provides a rich field for future investigation, which must 
include design and implementation of mature mobile speech-
based tagging and retrieval applications as well as testing and 
refinement. We hope that with this work, we have opened the 
door for such a future and have provided tools and resources 
that might prove useful to support it. 
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Abstract
In this paper, we create an open-domain conversational sys-
tem by combining the power of internet browser interfaces
with multi-modal inputs and data mined from web search and
browser logs. The work focuses on two novel components: (1)
dynamic contextual adaptation of speech recognition and under-
standing models using visual context, and (2) fusion of users’
speech and gesture inputs to understand their intents and asso-
ciated arguments. The system was evaluated in a living room
setup with live test subjects on a real-time implementation of
the multimodal dialog system. Users interacted with a television
browser using gestures and speech. Gestures were captured by
Microsoft Kinect skeleton tracking and speech was recorded by
a Kinect microphone array. Results show a 16% error rate re-
duction (ERR) for contextual ASR adaptation to clickable web
page content, and 7-10% ERR when using gestures with speech.
Analysis of the results suggest a strategy for selection of multi-
modal intent when users clearly and persistently indicate point-
ing intent (e.g., eye gaze), giving a 54.7% ERR over lexical
features.
Index Terms: spoken dialog systems, spoken language under-
standing, multi-modal fusion, conversational search, conversa-
tional browsing.

1. Introduction
Spoken dialog (conversational) systems have seen considerable
advancements over the past two decades [1]. A variety of prac-
tical goal-oriented conversational systems have been built and
deployed. The goal of these systems is to automatically identify
the intent of the user as expressed in natural language, extract
associated arguments or slots, and take actions accordingly to
satisfy the user’s requests.

A major limitation of conversational systems is their nar-
row scope; conversational systems are constrained to operate
over a small number of narrowly defined, known domains, with
hand-crafted domain-dependent schemas (ontologies). As a re-
sult, there has been an increased level of interest by the re-
search community to create open-domain conversational sys-
tems. These systems utilize very broad vocabularies, grammars,
and intent models. However, the breadth of domain coverage
comes at the cost of lower accuracy; without the constraints of
limited tasks, speech-enabled systems are often unable to cope
with the complexity open-domain speech recognition and un-
derstanding.

Advances in hand-held devices, touch displays and vision
processing technology provide an opportunity for the speech
community to increase the domain coverage of conversational
systems. Rather than relying on spoken input only, systems can

exploit the visual constraints introduced by touch, gesture, and
eye gaze. For example, pointing gestures can be used to narrow
the focus of attention to sub-region of the visual presentation,
giving the conversational system useful priors on what to expect
the user to say (e.g., selecting an item by pointing at it and say-
ing “that one”). Since Bolt’s seminal work on voice and gesture
at the graphics interface [2], several studies investigated use of
multi-modality for conversational interactions with a machine.
Previous studies investigated the use of pointing gestures [3],
touch gestures (including selection of items or an area on the
screen for example with a remote control [4, 5], with finger [6]
or with a pen [7]), and gaze and head-pose [8].

Another promising source of constraints for open-domain
conversational systems is data from web search and internet
browsers [9]. Web search engines and browsers are perhaps
the most pervasive, ubiquitous open-domain tools available to
people today to find information and complete transactions. In
many ways, search and browse have elements of automated con-
versational interactions, or the “interactive, spontaneous com-
munication between two or more [agents] who are following
rules of etiquette” [10]. Search and browse conversations are
interactive because the system responds to what has previously
been communicated. The conversations are spontaneous be-
cause the user is not constrained by domain. Developers of
search engines and browsers place considerable emphasis on the
design of interactions. These interaction models in many ways
are patterned after rules of etiquette of human-human conver-
sations, with designs considering how to maximize information
flow while minimizing unpleasant interruptions (e.g., relevance
versus monetization).

Early work on leveraging search engines and browsers fo-
cused on exploiting offline information in the user logs: queries
and corresponding clicks on links (documents) from search en-
gines and browsers capturing interactions over many hundreds
of millions of users and sessions. Work on exploiting the query-
click graphs include [11–16]. More recent work has focused on
human-computer addressee detection for conversational brows-
ing [17], as well as methods to exploit the combination of search
logs and semantic graphs [18–21].

In this paper, we create an open-domain conversational
system by combining the power of internet browser interfaces
with multi-modal inputs and data mined from web search and
browser logs. We focus on two input modes, speech and ges-
ture, and combine them to interact with browser and web page
interfaces and page elements (e.g., links, drop-down menus,
forms). By utilizing the pre-existing interaction mechanisms
of web pages, we are able to by-pass the requirement to craft
interactive user experiences for each domain of interest. In this
way, the system inherits the open-domain designs and protocols
of internet searching and browsing.
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2. Conversational Scenario
In the conversational search and browse scenario, a user is free
to navigate and interact with any page on the web through natu-
ral conversations with the machine. The user can speak with no
constraints on their vocabulary, grammar, or choice of intent.
As the user is browsing, they may choose to refer to content
on the current page or not. Users may select links of the page
contents in at least 3 ways:

1. Explicit clicks: User utterance refers to a link on the
page, such as “show me Il Fornaio” or “Il Fornaio” in
Figure 1. The utterance may be accompanied with hand
gestures and eye focus.

2. Location referrals: User’s utterance may include the
relative position of the hyper-link on the page, such as
“click on the top one”. These may again be accompanied
with gestures and eye focus.

3. Gesture and speech: Users may click on a link by ges-
turing in combination with speech, for example, point-
ing to the link and saying “that one”, where the spoken
utterance does not overlap with the anchor text of the
hyper-link.

Figure 1: Example multimodal (speech + gesture) scenario.

Developing a system to enable the above scenario presents
several technical challenges. First, the system must decide
whether the user is referring to content on the current page or
another page. If the user refers to the current page, the system
must capture the intent: click, fill a form, scroll up/down, etc.
In Figure 1, the user’s intent in Turn 1 (from another web page)
was to navigate to this current page by saying “I’m looking for a
restaurant in Palo Alto”. Turn 2 refines the content on the page
to only show Italian restaurants. And finally, in Turn 3, the in-
tent was to select the restaurant link they gestured towards. If
the user had said “now show me what’s playing at the closest
theater”, the system would need to recognize the shift in user
intent/task as well as understand that the user is not referring to
any content on the page, but rather wants to navigate to a movie
theater listings web page.

3. Context Adaptation
A particularly effective method to reduce complexity of con-
versational systems is adapting to context. The context is in
multiple forms. Some of the more common examples include:

• Visual Context: used to increase the prior likelihood the
user will refer to entities/relations on the page

• Dialog Context: used for grounding, co-reference res-
olution, as well as potentially more complex inference
and reasoning

• Personal Context: used to increase the prior of choices
based on personal preferences from histories, geograph-
ically, etc.

In this paper, we leverage visual context. We use
maximum-a-posteriori (MAP) unsupervised adaptation to adapt
the statistical language model (SLM) of the speech recognizer
to the content on the page [22]. The adaptation text can either be
extracted from the page links (anchor text/titles) and/or landing
page content. The extraction can be completed at either run-
time or during an offline web page crawl procedure. For the
example in Figure 1, the listed restaurant names, street names,
food genre are all extracted from the scrape of the link/anchor
text. The SLM probabilities and lexicons for names such as “Il
Fornaio” can be increased to reflect the given visual context.
The details of the restaurant found on the landing page of the
link can be included in the adaptation data as well.

In addition to adapting the speech recognizer, the visual
context can be used to adapt the semantic components of the
system. For the example of Figure 1, priors of intents related
to restaurants would be increased (reservations, reviews, etc.).
Each of the links represents a new intent that can be dynami-
cally added to the system.

An advantage of adapting to the page content at run-time
versus crawl-time is the scalability of the solution: the system
is always “fresh” and able to support conversational interaction
on a page even if its content has recently changed. This is partic-
ularly important for dynamic pages (restaurant/movie reviews,
breaking news, sporting results).

By following the above procedure to dynamically adapt to
the visual context, the system in effect scales to the breadth of
the web. By adjusting priors based on the visual content of the
page, as well as related/connected pages (landing pages), the
system can achieve this scale robustly, as will be demonstrated
in the experiments of Section 5.

4. Multimodal Click Intent Detection
In addition to expressing intent verbally, a user may find it more
natural in certain situations to express their intent visually. The
simultaneous combination of two modes of intent expression
is referred to as multimodal intent. This paper focuses on the
combination of speech and hand gesture. Specifically, we study
the effect of speaking while pointing at an object, such as a link
on a web page. The scenario in Figure1 shows a user pointing
at a restaurant link and saying “Show me that one.” Multimodal
interactions such as these are powerful, saving time by reducing
dialog turns as well as intent/speech recognition errors.

In the following, we discuss each mode of intent capture
separately, and then how they are combined. Then we show ex-
perimental results that illustrate the power of the resulting mul-
timodal user interface.

4.1. Lexical Intent

Given the dynamic nature of web pages, we seek an effective
lexical intent similarity measure that can be implemented with-
out the requirement for supervised training. For this purpose,
we utilize the well known term frequency-inverse document
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frequency (TF-IDF) similarity measure from web search rele-
vance [23].

For our purposes, we treat the k-th actionable element on
the web page, pk, (e.g., link, drop-down menu, form) as a doc-
ument. We will refer to the user’s utterance as a query, q. The
TF-IDF similarity between the query, q, and the page element,
pk, is given as

TF-IDF(q, pk) =
∑

t∈q

tf-idft,pk (1)

where t denotes each term (word) in the query, TF is the number
of occurrences of the term in pk, and IDF is the log inverse of
the number of page elements that contain the term t. The IDF
factor is especially important for our task, since many terms
on a given page will have little or no semantic discriminating
power. For example, anchor text from links on a restaurant web
page are likely to have the term restaurant in almost every link.

4.2. Gesture Intent

As with lexical intent, we seek a measure to capture the simul-
taneous voice and visual gesture intent of the user. For both
speech recognition and hand movement detection, we use the
popular and low-cost sensor Kinect. Kinect is a microphone
array and a skeletal tracking motion sensing input device by
Microsoft for the Xbox video game console and Windows PCs.
The sensor has adequate resolution and software to accurately
track hand movements. However, additional processing is re-
quired to discriminate intentional hand gestures such as point-
ing from unintentional hand movements.

Figure 2: Pointing gesture intent model

For this work, we employ a simple model of pointing intent;
a sequence starting with the hand motion, a brief pause with the
hand still, followed by a spoken query. Figure 2 represents this
model. Typically (as with Kinect) the hand gesture controls a
cursor. The simplest method to determine the intended object
selection is to compute the shortest straight line distance from
the cursor to the (bounding box around) the page element. To
decrease the chance of false positives, a gesture focus region
may also be used. Gesture focus regions can be implemented
with a weighting function, typically based on the inverse dis-
tance of the cursor to the object. Figure 3 shows the family of
exponential inverse distance weighting (IDW) functions used in
the experiments

Gesture Score = exp(
−|d|a
10b

). (2)

The IDW is used to specify the region of focus around the
gesture’s cursor. The goal of the IDW is to help balance the
precision-recall of the gesture detection: a narrower region
around the cursor (e.g., a = 2, b = 0) decreases the false alarms
by reducing the affect of nearby objects, while a wider region
(a = 1, b = 1) decreases the chance of incorrectly missing
the intended object. The distance is measured in pixels from
the gesture cursor to the object on the screen (e.g., web link,
drop-down menu, form region). The IDW functions map the
distances to [0, 1], with a distance of 0 (the user is pointing di-
rectly at the object of interest) mapped to the maximum weight
of 1.

Figure 3: Gesture focus windows around the cursor.

4.3. Combining Intents

To form a single multimodal score for the kth page element,
SMk , we use linear interpolation to combine the lexical score
and the gesture score

SMk = (1− α) TF-IDF(q, pk) + α · Gesture Score

= (1− α)
∑

t∈q

tf-idft,pk + α · exp(
−|d|a
10b

) (3)

The values for α, a, and b are determined experimentally. Once
the multimodal intent score is computed, it can be used for de-
tection of intent by thresholding the score

Λ(SMk ) ≷accept
reject θ. (4)

The threshold θ can be optimized to minimize the cost of the
error types: false accept, where the system incorrectly detected
the presence of a user intent, and miss, where the system failed
to detect the intent of the user.

5. Experiments and Results
5.1. Data Sets

We collected two data sets from 8 speakers during 25 sessions
(set 1) and 7 speakers during 14 sessions (set 2). Both collec-
tions were performed in a living room set up, where users were
seated on a couch approximately 5-6 feet away from a televi-
sion screen. At the beginning of their first session, users were
shown a short tutorial video demonstrating how the system can
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be used, and were asked to improvise open-domain usage sce-
narios. In the first collection, the tutorial video included exam-
ple usage scenarios with explicit (voice) clicks (as defined in
Section 2) whereas in the second collection, the tutorial video
included examples of using gesture with speech to click on a
link. In both collections, users searched and browsed the web
over open-domain tasks (e.g., shopping).

The total number of user turns in the first collection is
2,868, and 917 (31.9%) of these have a click intent. The second
set includes 1,101 user turns, and 284 (25.8%) of these have a
click intent. For the second set, we also computed the num-
ber of different types of clicks: 87.3% of the clicks are explicit
clicks, 1.1% are location referrals and 11.6% include combined
gesture and speech.

While hand pointing gestures were used for “click” intents,
the collected data also includes cases of false gestures and false
alarms by the system, such as a user lifting their arm to reach
something on the coffee table. Hence, we further analyzed the
usage of multi-modal input on a subset of the second collection.
First, we separated out all utterances that control the display,
such as “scroll down”, as these can be captured with a high pre-
cision using the user’s spoken utterances. Table 1 summarizes
this analysis. 558 user turns are split into two: ones that are
accompanied with a hand gesture and no gesture. The intent of
these turns are categorized into click intents and non-click in-
tents. In this analysis, we merged the gesture and speech clicks
with location clicks as the second group is very infrequent, and
named them “Click other”. In this data subset, 22.8% of user
utterances did not have a click intent, and yet a gesture was
captured falsely. Similarly, 18.3% of the click utterances (ex-
cluding the explicit clicks) did not include a pointing gesture.

Table 1: Statistics of user turns with/without hand gestures.

Gesture No Gesture TOTAL
Found Found

Click “that one” 15 (2.7%) 1 (0.1%) 16 (2.8%)
Click other 25 (4.5%) 102 (18.3%) 127 (22.8%)
Non-Click 127 (22.8%) 288 (51.6%) 415 (74.4%)

TOTAL 167 (30.0%) 391 (70.0%) 558

5.2. Results

To examine the effectiveness of contextual adaptation for ASR,
we used 2,868 utterances (9,346 words) from the first collec-
tion and completed tests on statistical language model (SLM)
adaptation. While the average utterance length in this set looks
short (3.3 words), this is mainly because this set contains all
user turns in a session, including commands to change the dis-
play, which are usually 1-2 words (such as “scroll down” and
“back”). About 40% of the utterances are such commands, 32%
are click utterances, and 28% are the rest.

Table 2 shows the word error rate (WER) results from these
experiments, where we compare a generic large vocabulary
400K word conversational speech recognition language model
(LVCSR-LM) with its dynamically adapted version. The ta-
ble also includes an analysis of impact on performance of click
(32%) and non-click (68%) utterance subsets. Overall, with
an out-of-vocabulary (OOV) rate of 0.25% and adapting the
language models to the visual context improved the WER of
the LVCSR-LM from 20.6% to 19.2%. WER for the context-
related click utterance subset improved from 28.2% to 23.7%
(a relative improvement of 16%), without a degradation on the
performance of the rest of the turns. The small improvement

(from 17.4% to 17.1%) on the non-click turns can be partially
due to domain adaptation as a side effect of adapting to the vi-
sual content.

Table 2: ASR WER with contextual adaptation.

LM WER WER WER
overall Click subset Non-Click subset

LVCSR-LM 20.6 28.2 17.4
LVCSR-LM 19.2 23.7 17.1
+ adaptation

To study the effects of the gesture intent signal independent
of how often it is used and the quality of the gesture detector, we
complete simulations where all components/measures are real
except the gesture. Table 3 shows results on a held-out random
sample of 75% of the turns in data sets 1 and 2. The table shows
the probability of the error types (false accept and miss) using
the multimodal score and the intent detector of Equations 3-
4. Results are computed for both manual transcription of the
speech and automatic speech recognition using the contextual
adaptation. The parameters of the detector are varied to show
the affects of the size and shape of the gesture focus window
(a and b) and the interpolation weight (α) between lexical and
gesture-based intent. Since we normalized the scores of the lex-
ical and gesture intent detectors to be [0-1], α can be interpreted
as the relative importance of the gesture score in the combina-
tion.

For these experiments, we also simulated the human user’s
gesture intent to control for gesture precision. The simulation
places the gesture cursor on an equidistant curve from the in-
tended page element (link). The gesture precision distance, R,
is the number of pixels that the cursor is away from the desired
object (e.g., web link) and the page. We simulated gestures
for two different gesture precisions: R = 0 and R = 20 pix-
els. The probability of missing the multimodal intent, Pmiss,
is computed in the operating region where the probability of
falsely detecting an intent is low (Pfa = 1%). We focus on this
operating region due to the sensitivity of users to false positives
and the objectionable user experience of the system incorrectly
taking actions (clicking).

The best performing multimodal intent detector uses a bal-
anced blend of lexical and gesture (α = 0.5) and a broad ges-
ture focus window (a = 1,b = 2). At these settings, with per-
fect speech recognition, perfect gesture precision (R = 0), and
the user gesturing towards the intended page element (link) for
100% of the trials, the Pmiss(@Pfa=1%) = 8.1%. This repre-
sents an upper bound on the performance and is a 68.2% error
rate reduction (ERR) compared to the single mode lexical in-
tent detector (‘No Gesture”) with Pmiss(@Pfa=1%) = 25.5%.
With the same settings for the gesture focus window, with au-
tomatic speech recognition (ASR), and with a gesture precision
of R = 20, the Pmiss(@Pfa=1%) = 16.9%. This is a 50.3%
error rate reduction (ERR) over lexical intent alone.

Using the same development data set used to compute the
results in Table 3, we conducted experiments with real human
gestures and an automated gesture detection model. For this
test, we extracted gesture positions from the data logs that were
generated using the model shown in Figure 2. We examined
two cases: (1) all logged gestures and (2) only gestures where
the user also said “that one”. The first case includes all cases
where a gesture was detected, which is approximately 30.0%
of the test cases (see Table 1). The second case was used to
isolate human gesture precision from the errors introduced by
the gesture detection model.
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Table 3: Summary of multi-modal intent detection with simulated gestures.

R = 0 R = 20
IDW IDW Gesture Pmiss@Pfa=1% Pmiss@Pfa=1% Pmiss@Pfa=1% Pmiss@Pfa=1%
a b α Manual ASR Manual ASR

No Gesture - - - - - 25.5% 34.0%
1 0 0.25 10.2% 21.1% 25.5% 34.0%
1 0 0.50 9.5% 19.4% 25.5% 34.0%
1 0 0.75 10.0% 19.9% 25.5% 34.0%
1 1 0.25 10.2% 21.1% 21.5% 31.5%
1 1 0.50 8.3% 18.3% 16.9% 27.1%
1 1 0.75 8.6% 18.5% 8.3% 20.1%
1 2 0.25 10.9% 21.3% 12.3% 23.1%

Gesture 1 2 0.50 8.1% 18.3% 7.2% 16.9%
1 2 0.75 8.3% 18.3% 7.6% 17.1%
2 0 0.25 10.4% 21.3% 25.5% 34.0%
2 0 0.50 9.5% 19.4% 25.5% 34.0%
2 0 0.75 10.0% 19.9% 25.5% 34.0%
2 1 0.25 10.2% 21.1% 25.5% 34.0%
2 1 0.50 8.3% 18.3% 25.5% 34.0%
2 1 0.75 10.0% 19.9% 25.5% 34.0%
2 2 0.25 10.2% 21.1% 25.0% 33.3%
2 2 0.50 8.3% 18.3% 23.4% 32.2%
2 2 0.75 8.3% 18.3% 20.6% 30.8%

Figure 4: DET results for multi-modal intent detection

The results are shown in Table 4. With the introduc-
tion of errors due to both human gesture precision and the
gesture detection model, the performance over all the trials
was Pmiss(@Pfa=1%) = 22.9% (ERR=10.2%) and 31.7%
(ERR=6.8%) for manual transcriptions and ASR, respectively.
For the case where the user clearly indicated the pointing
intention with the phrase “that one” while gesturing, the
Pmiss(@Pfa=1%) = 15.4% for both manual and ASR (per-
fect recognition of the phrase), which is ERR=39.6% and
ERR=54.7%, respectively. For this second case, we computed
the average gesture precision for humans. Referring to Table 3,
the gesture precision (R) for humans was is in the range of 16.4
to 28.6 pixels, depending on the density of the visual content on
the screen. In other words, humans are able to precisely ges-
ture towards the intended element. The drop in performance,
therefore, was a result of (1) humans only gesturing toward the
intended page element 30.0% of the time (see Table 1) and (2)

errors in the gesture detection model (see Figure 2).
Figure 4 summarizes the performance of the same experi-

ment for ASR and compares human performance to the upper
bound with perfect gesture detection and 100% user participa-
tion in gesturing towards the intended page element (link) when
speaking. The top two curves show the performance of the real
multimodal lexical+gesture detector compared to the baseline
(lexical only).

Table 4: Multi-modal intent detection with real gestures.

IDF IDF Gesture Pmiss@Pfa=1% Pmiss@Pfa=1%

a b α Manual ASR
No Gesture - - - 25.5% 34.0%

All 1 2 0.50 22.9% 31.7%
Gestures 1 2 0.50 15.4% 15.4%

+ “that one”

6. Conclusions
This paper described the development of a multi-modal dialog
system for conversational web search and internet browsing.
The work focused on two novel components: dynamic con-
textual adaptation of speech recognition and spoken language
understanding models using multi-modal conversational con-
text, and fusion of users’ multi-modal speech and gesture in-
puts for understanding their intents and associated arguments.
The system was evaluated in a living room setup with live test
subjects on a real-time implementation of the multimodal dia-
log system. Results showed a 16% error rate reduction (ERR)
for contextual ASR adaptation to clickable web page content,
and 7-10% ERR when using gestures with speech. Analysis of
the results showed that when users clearly and always indicate
pointing intent while simultaneously using voice, the combi-
nation of modalities yields a 54.7% ERR over lexical features.
While we observed users only point with hand gesture 30% of
the time, the result suggests that other, more persistent modali-
ties (e.g., eye gaze) could be used to yield substantial gains over
speech alone.
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Abstract

This paper describes the acquisition, transcription and
annotation of a multi-media corpus of academic spoken
English, the LMELectures. It consists of two lecture se-
ries that were read in the summer term 2009 at the com-
puter science department of the University of Erlangen-
Nuremberg, covering topics in pattern analysis, machine
learning and interventional medical image processing. In
total, about 40 hours of high-definition audio and video of
a single speaker was acquired in a constant recording en-
vironment. In addition to the recordings, the presentation
slides are available in machine readable (PDF) format.
The manual annotations include a suggested segmenta-
tion into speech turns and a complete manual transcrip-
tion that was done using BLITZSCRIBE2, a new tool for
the rapid transcription. For one lecture series, the lecturer
assigned key words to each recordings; one recording of
that series was further annotated with a list of ranked key
phrases by five human annotators each. The corpus is
available for non-commercial purpose upon request.
Index Terms: corpus description, academic spoken En-
glish, e-learning

1. Introduction
The LMELectures corpus of academic spoken English
consists of high-definition audio and video recordings of
two graduate level lecture series read in the summer term
2009 at the computer science department of the Univer-
sity of Erlangen-Nuremberg. The pattern analysis (PA)
series consists of 18 recordings covering topics in pat-
tern analysis, pattern recognition and machine learning.
The interventional medical image processing (IMIP) se-
ries consists of 18 recordings covering topics in medi-
cal image reconstruction, registration and analysis. The
lectures are read by a single, non-native but proficient
speaker, and acquired in the E-Studio1 which ensures a
constant recording environment in the same room using
a clip-on cordless close-talking microphone. The record-
ings were professionally edited to achieve a constant high

1RRZE MultiMediaZentrum, http://www.rrze.
uni-erlangen.de/dienste/arbeiten-rechnen/
multimedia/

audio and video quality. Note that not all lectures are
consecutive; some recordings had to be dropped from the
corpus because of a different speaker, sole use of Ger-
man language, or technical issues such as a misplaced or
defect close-talking microphone.

This paper documents the acquisition of the audio
and video data (Sec. 2), the semi-automatic segmentation
(Sec. 3), the subsequent manual transcription (Sec. 4),
and the additional annotations (Sec. 5). Sec. 6 lists pos-
sible uses of the LMELectures and places the corpus in
context with other corpora of academic spoken English.
Sec. 7 suggests a partitioning of the data that is recom-
mended for research on automatic speech recognition and
key phrase extraction.

2. Audio and Video Data

The audio data was acquired at a sampling rate of 48 kHz
and 16 bit quantization, and stored in the Audio Inter-
change File Format (AIFF). A 16 kHz version for the
use with speech recognition systems was produced using
down-sampling. The cordless close-talking microphone
was able to reduce most of the room acoustics and back-
ground noises.

The video was acquired using an HD camera with
manually controlled viewpoint and zoom setting to track
the lecturer. Furthermore, the currently displayed pre-
sentation slide and, if applicable, on-screen writings is
captured seperately. The video data is available in two
formats:

• Presenter only, 640 x 360 pixel resolution, H.264
encoded (see Fig. 1, inset on the top left).

• Presenter, currently displayed slide and on-screen
writings and lecture title, 1280 x 600 pixel resolu-
tion, H.264 encoded (see Fig. 1).

In total, 39.5 hours of audio and video data was ac-
quired from 36 lecture recordings. The video recordings
feature an AAC encoded audio stream based on the orig-
inal 48 kHz data.
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Figure 1: Example image from the video of lecture IMIP01. The left side shows the lecturer (top) and the lecture title
(bottom), the right side shows the current slide and on-screen writings.

3. Semi-Automatic Segmentation
For the manual transcription, as well as for most speech
recognition and understanding tasks, long recordings are
typically split into short segments of speech. Another
benefit is that longer periods of silence are removed from
the data. The segmentation of the LMELectures is based
on the time alignments of a Hungarian phoneme recog-
nizer [1] that has been successfully used for speech/non-
speech detection in various speaker and language identi-
fication tasks. The rich phonetic alphabet of the Hungar-
ian language was found to be advantageous in the pres-
ence of various languages (here German and English)
or wrong pronunciations. The set of phoneme strings
was reduced by mapping the 61 original symbols to two
groups: the pause (pau), noise (int, e.g., a door slam) and
speaker noise (spk, only if following pau, e.g., cough)
symbols were mapped to silence and the remaining sym-
bols to speech. Merging adjacent segments of silence and
speech results in an initial speech/non-speech segmenta-
tion (cf. Fig. 2).

Due to the design of the phoneme recognizer, the re-
sulting segmentation has very sharp cut-offs and does not
necessarily reflect the actual utterance or sentence struc-
ture, as even a very short pause may terminate a speech
segment. With the aim of producing speech segments
of an average length of four to five seconds2, consec-
utive speech segments are merged based on certain cri-

2as suggested by previous experiences of the group with manual
transcription and speech recognition system training and evaluation

teria regarding segment lengths and intermediate silence
(cf. Tab. 1).

Algorithm 1: Merge of consecutive segments based
on their duration and interleaving silence.

for all segments i do
if Pau(i, i+ 1) < min. pau or Dur(i) <
min. dur then

required← true
while required or Dur(i) < max. dur do

if ! required then
if Dur(i) > med. dur or
Dur(Merge(i, i+ 1)) >
max. dur or Pau(i, i+ 1) >
max. pau then break

end
i← Merge(i, i+ 1)
required← (Pau(i, i+ 1) <
min. pau)

end
end

end

Algorithm 1 outlines the greedy merging procedure.
150 ms were added to the end of each segment to ease the
sharp cut-offs. Given the desired target length, the ma-
jor control variables are the pauses. Allowing too long
pauses within a segment (max.pau) may lead to seg-
ments that contain the end and beginning of two separate

103

Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013.



Figure 2: �And then (breath) we know�. Adjacent segments of silence or speech phonemes are merged to an initial
speech (gray) and non-speech (white) segmentation.

quantity description value
min.dur if segment is shorter than min. dur, merge with following 2 s
med.dur stop if merged segment is longer than med. dur 4 s
max.dur only merge if resulting segment is shorter than max. dur 6 s
max.pau maximum duration of pause within a segment 1 s
min.pau minimum duration of pause between two segments 0.5 s

Table 1: Final merging criteria for consecutive speech
segments.

utterances. Requiring long silences between segments
(min.pau) leads to unnaturally long segments.

The segmentation closest to the desired characteris-
tics comprises 23 857 speech turns with an average du-
ration of 4.4 seconds, and a total of about 29 hours of
speech. Note that these segments are for the purpose of
recognition, and do not necessarily resemble dialog acts
or “actual” speech turns. The right column of Tab. 1
shows the respective merging criteria. The typically 0.5 s
to 3 s of silence between speech segments accumulate to
about 10 hours.

4. Manual Transcription
The manual transcription of speech typically requires
about ten to 50 times the duration of speech using profes-
sional tools like TRANSCRIBER [2, 3]. TRANSCRIBER,
similar to other tools, allows to work on long record-
ings by identifying segments of speech, noise and other
acoustic events. Furthermore, higher level information
like speaker, speech or language attributes can be anno-
tated. However, this higher level information regarding
the data at hand is usually known in advance, and lectures
are typically very dense in terms of speech, thus reducing
the main task to the (desirably) fast transcription of the
speech segments.

The segments were manually transcribed using
BLITZSCRIBE2,3 a platform independent graphical user
interface specifically designed for the rapid transcription
of large amounts of speech data. It is inspired by re-

3http://www5.informatik.uni-erlangen.de/en/
research/software/blitzscribe2/

Figure 3: Screenshot of the BLITZSCRIBE2 transcription
tool; (1) waveform of the currently selected speech seg-
ment, (2) progress bar indicating the current playback po-
sition, (3) text field for the transcription, (4) list of seg-
ments with transcription (if available).

search of Roy et al. [3] and is publicly available as part
of the Java Speech Toolkit (JSTK) [4].4 Fig. 3 shows the
interface that displays the waveform of the currently se-
lected speech segment, a progress bar indicating the cur-
rent playback position, an input text field to type the tran-
scription, and a list of turns, optionally with prior tran-
scription.

The key idea to speed up the transcription is to sim-
plify the way the user interacts with the program: al-
though the mouse may be used to select certain turns
for transcription or replay the audio at a desired time,
the most frequent commands are accessed via keyboard
shortcuts listed in Tab. 2.

For a typical segment, the transcriber types the tran-
scription as he listens to the audio, pauses the playback if
necessary (CTRL+SPACE), and hits ENTER to save the
transcription, which loads the next segment and starts the
playback. This process is very ergonomic as the hands

4http://code.google.com/p/jstk
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key combination command
ENTER save transcript, load and play next segment
SHIFT +BACKSPACE save transcript, load previous segment
SHIFT +ENTER save transcript, load next segment
CTRL +SPACE start/pause/resume/restart playback
CTRL +BACKSPACE rewind audio and restart playback
ALT +S save transcription file

Table 2: Keyboard shortcuts for fast user interactions in
BLITZSCRIBE2.
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Figure 4: Change of the median transcription real time
factor required by transcriber 1 throughout the transcrip-
tion process.

remain on the keyboard during all times.
The lectures were transcribed by two transcribers.

The work was shared among the transcribers and no lec-
ture was transcribed twice. As the language is very tech-
nical, a list of common abbreviations and technical terms
was provided along with the annotation guidelines. The
overall median time required to transcribe a segment was
about five times real time, which is a significant improve-
ment over traditional transcription tools. Fig. 4 shows
the decreasing transcription real time factor of one tran-
scriber while adapting to the BLITZSCRIBE2 tool.

In total, about 300 500 words were transcribed with
an average of 14 words per speech segment. Intermit-
tent German words were transcribed and marked; those
typically include greetings or short back-channel. Other
foreign, mispronounced or fragmented words were tran-
scribed as closely as possible, and marked for later spe-
cial treatment. The resulting vocabulary size is 5 383 in-
cluding multiple forms of words (e.g., plural, composita),
but excluding words in foreign languages and mispro-
nounced or word fragments.

5. Further Manual Annotations
The presentation slides are available in machine readable
(PDF) format, however, only the video provides accurate
information about the display times. The lecturer added
key words to each of the lecture recordings in series PA.

Lecturer’s Phrases A
nn

ot
at

or
1

A
nn

ot
at

or
2

A
nn

ot
at

or
3

A
nn

ot
at

or
4

A
nn

ot
at

or
5

linear regression • • • • •
norms • • • ◦
dep. linear regression ◦ ◦
ridge regression • • •
discriminant analysis ◦ ◦ ◦
motivation
AP(5) 0.90
NDCG(5) 0.73

Table 3: Master key phrases of lecture PA06 assigned by
the lecturer, coverage indicators (•) for the human anno-
tators, and phrase rank of the automatic rankings, if ap-
plicable. The empty bullets (◦) indicate a partial match,
e.g., “linear discriminant analysis” satisfies “discriminant
analysis.”

The individual lecture PA06 was further annotated with
a ranked list of key phrases by five human subjects that
have either attended the lecture or a similar lecture in a
different term. The annotators furthermore graded the
phrases present in their ranking in terms of quality from
1 – “sehr relevant” (very relevant) to 6 – “nutzlos” (use-
less). This additional annotation can be used to assess
the quality of automatic rankings using measures such as
average precision (AP) [5] or normalized distributed cu-
mulative gain (NDCG) [6, 7], two measures popular in
the search engine and information retrieval community.

Tab. 3 shows, for PA06, the lecturer’s phrases,
whether the raters also extracted them, and the average
AP and NDCG when comparing each rater to the remain-
ing ones when considering the top five ranked terms.

6. Intended Use and Distinction from Other
Corpora of Academic Spoken English

The corpus, with its annotations, is an excellent resource
for various mono- and multi-modal research. The roughly
30 hours of speech of a single speaker provide a great
base to work on acoustic and language modeling, speaker
adaptation, prosodic analysis and key phrase extraction.
The spoken language is somewhere in between read text
and spontaneous speech, with passages of well-structured
and articulated speech followed by a mumbled utterance
with disfluencies and hesitations. At a higher level, the
video can be used to determine slide timings, on-screen
writing and other interactions of the lecturer. The two se-
ries of consecutive lectures provide a good scenario to
work on automatic vocabulary extension and language
model adaptation as required for a production system.
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name duration # turns # words % OOV
train 24h 31m 55s 20 214 250 536 —
dev 2h 07m 28s 1 802 21 909 0.87 %
test 2h 12m 30s 1 750 23 497 0.99 %

Table 4: Data partitioning for the LMELectures corpus;
the number of words excludes word fragments and for-
eign words. The percentage of OOV words is given with
respect to the words present in the train partition.

The two main corpora of academic spoken English
are the BASE corpus,5 and the Michigan Corpus of Aca-
demic Spoken English (MICASE) [8]. Although both
corpora cover more than 150 hours of speech, their set-
ting is different from the LMELectures. The BASE cor-
pus covers 160 lectures and 40 seminars from four broad
disciplinary groups (Arts and Humanities, Life and Med-
ical Sciences, Physical Sciences, Social Sciences). Au-
dio, video and transcription material are available for li-
censing. The MICASE corpus features a wide variety of
recordings of academic events including lectures, collo-
quia, meetings, dissertation defenses, etc.. Again, audio
and transcripts are subject to licensing, but video data is
unavailable.

The main distinction of the LMELectures is however
the technical homogeneity in terms of recording environ-
ment, speaker, and topic of the two lecture series.

7. Suggested Data Partitioning
For experiments on speech recognition and key phrase
extraction, the authors suggest to partition the data in
three parts. The development set, devel, consists of the
four lecture sessions IMIP13, IMIP17, PA15 and PA17,
and has a total duration of about two hours. The test
set, test, consists of the four lecture sessions IMIP05,
IMIP09, PA06 and PA08, and has also a total duration
of about two hours. The remaining 28 lecture sessions
form the training set, train, with a total of about 24 hours.
Tab. 4 summarizes the partitioning and lists details on
the duration, number of segments and words, and out-
of-vocabulary (OOV) rate with respect to a lexicon based
on the training set. A baseline speech recognition exper-
iments using the KALDI toolkit resulted in a word error
rate of about 11 % on the test set [9]. For any other par-
titioning, the authors suggest to include PA06 in the test
set as it was annotated with key phrases.

8. Summary
This paper describes the collection and annotation of a
new corpus of academic spoken English that consists of

5The British Academic Spoken English (BASE) corpus project. De-
veloped at the Universities of Warwick and Reading under the director-
ship of Hilary Nesi and Paul Thompson.

audio/video recordings of two series of computer science
lectures at the graduate level. The data was acquired in
high definition, and was edited to achieve a constant qual-
ity; there are two versions of the video available: one
that shows only the presenter (including accidental parts
of the blackboard and projector canvas), and a combined
view that shows both the presenter and the currently dis-
played slide including on-screen writing. The PDF slides
are available, although there exists no exact lecture to
slide set alignment: some slide sets overlap multiple ses-
sions, some sessions focus on classic blackboard oriented
teaching.

In addition to the plain data, several manual annota-
tions are available:

• The newly developed BLITZSCRIBE2 was used to
transcribe the roughly 30 hours of speech in about
five times real time instead of ten to 50 times
real time as reported for other transcription tools.
BLITZSCRIBE2 is freely available as part of the
JSTK.

• The lecturer assigned a rough set of key phrases
to each lecture, which can be considered a ground
truth from a teaching perspective.

• For an individual lecture PA06, five human annota-
tors that either observed that very lecture or a simi-
lar one in previous years extracted and ranked a set
of key phrases.

The collected corpus forms a good base for future
research on ASR for lecture-style, non-native speech (a
significant percentage throughout the world), supervised
and unsupervised key phrase extraction, topic segmenta-
tion, slide to speech alignment, and other e-learning re-
lated issues. The corpus is available for non-commercial
use upon request, please contact the authors for details.
Further details of the transcription and annotation process
can be found in [10].
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