
299

Odyssey 2014:
The Speaker and Language Recognition Workshop
16-19 June 2014, Joensuu, Finland

Neural Network Bottleneck Features for Language Identification

Pavel Matejka1,2, Le Zhang1, Tim Ng1, Sri Harish Mallidi3

Ondrej Glembek1,2, Jeff Ma1, Bing Zhang1

1Raytheon BBN Technologies, USA
2Brno University of Technology, Czech Republic

3The John Hopkins University, USA
{pmatejka,lzhang,tng,oglembek,jma,bzhang}@bbn.com

Abstract
This paper presents the application of Neural Network Bot-

tleneck (BN) features in Language Identification (LID). BN fea-
tures are generally used for Large Vocabulary Speech Recogni-
tion in conjunction with conventional acoustic features, such as
MFCC or PLP. We compare the BN features to several common
types of acoustic features used in the state-of-the-art LIDsys-
tems. The test set is from DARPA RATS (Robust Automatic
Transcription of Speech) program, which seeks to advance
state-of-the-art detection capabilities on audio from highly de-
graded radio communication channels. On this type of noisy
data, we show that in average, the BN features provide a 45%
relative improvement in theCavgor Equal Error Rate (EER)
metrics across several test duration conditions, with respect to
our single best acoustic features.

Index Terms: language identification, noisy speech, robust
feature extraction

1. Introduction
The goal of the DARPA RATS (Robust Automatic Transcrip-
tion of Speech) program is to create technology capable of accu-
rately determining speech activity regions, detecting keywords,
and identifying language and speakers in highly degraded, weak
and/or noisy communication channels. The Patrol team, led by
BBN, participates in all the RATS tasks. The LID system that
the Patrol team built for the RATS Phase 1 evaluation was de-
scribed in [1]. That paper mainly focused on the individual sys-
tems built by members of the Patrol team, as well as on the
calibration and the fusion of the individual systems. The Pa-
trol team single best system for RATS Phase 2 evaluation was
summarized in [2].

The neural network (NN) based features become an insepa-
rable part of present-day state-of-the-art Large Vocabulary Con-
tinuous Speech Recognition (LVCSR) systems [3] but accord-
ing to our best knowledge, there has not been any effort in ap-
plying it to conventional acoustic LID. This paper describes the
usage of bottleneck (BN) features in the context of Language
Identification (LID).

A BN feature of a given frame of audio can be interpreted
as a compression of the information about the frame’s phonetic
class (and its phonetic context)—given as vector of (context-
dependent) phoneme posterior—into a low dimensional vec-
tor. There were previous attempts of using phoneme-based fea-
tures for frame-by-frame acoustic-based system. Ma et al. [2]
used log of phoneme posteriors generated by neural network
in conjunction with a block of PLP stream followed by HLDA
dimensionality reduction and reports dramatic gain. Diez et

al. [4] used phone log-likelihood ratios (PLLR) as an input to an
acoustic-based system, and fused it with a MFCC-SDC system
on the score level. Generally, both of these approaches share the
same idea, only the fusion is done on a different level: feature-
versus score-level. Han and Pelecanos [5] used a Arabic phone
recognizer and applied Shifted Delta Cepstra [18] concept to
capture linguistic information. The second approach they com-
pared was to stack several frames of phoneme posteriors with
PCA dimensionality reduction. They report nice gain on 120sec
condition on RATS task. Similar procedure and analysis is done
by Wang [6] on NIST LRE 2005 task.

At the time of concluding this work we found out that sim-
ilar work with bottleneck features has been done independently
by Song et.al [7] on NIST LRE 2009 task.

Conventional Phoneme Recognition followed by Language
Model (PRLM) systems (generally called phonotactic system)
usually build phoneme lattices from phoneme posteriors andde-
rive expected trigram counts from these lattice. Such counts
are then modeled with language-modeling techniques, Support
Vector Machine [8], phonotactic i-vector extraction basedon
Subspace Multinomial Model (SMM) [9]. In the phonotactic
system, it was shown, that at least trigrams need to be used to
perform well. We believe that the key point is to use context
dependent phoneme as targets in acoustic based LID. We pro-
pose to use the bottleneck features which compress the context
dependent phonemes into low dimensional vector using bottle-
neck in the Neural Network. Similar to the phonotactic system
our BN features tries to encode information about the phonetic
context, but they can also take an advantage of machinery of
acoustic system which was built over time and proved to be very
good. It would be difficult to use context dependent phoneme
posteriors in Mireia Diez’s and Jeff Ma’s approaches mentioned
above due to the high dimensional output of posteriors from
NN.

2. Stacked Bottleneck Features (SBN)

Bottleneck Neural-Network (BN-NN) refers to such topology
of a NN, one of whose hidden layers has significantly lower
dimensionality than the surrounding layers. It is assumed that
such layer—referred to as the bottleneck—compresses the in-
formation needed for mapping the NN input to the NN output,
increasing the system robustness to noise and overfitting. Abot-
tleneck feature vector is generally understood as a by-product of
forwarding a primary input feature vector through the BN-NN
and reading off the vector of values at the bottleneck layer.In
other words, after a BN-NN is trained for its primary task, the
bottleneck layer is declared to be the output layer and all suc-
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ceeding layers are ignored. Such NN then maps the primary
features to the bottleneck features.

We have used a cascade of two such NNs. The output of
the first network isstackedin time, defining context-dependent
input features for the second NN, hence the term Stacked Bot-
tleneck Features.

2.1. SBN Input Feature Extraction

Frequency domain linear prediction (FDLP) is an efficient tech-
nique to obtain a smooth parametric model of temporal enve-
lope [10, 11]. Long segments of input speech (of the order
of 10 seconds) are transformed into frequency domain using
discrete cosine transform (DCT). The DCT samples are de-
composed into sub-band DCT coefficients by applying critical
band windowing (Bark). The sub-band temporal envelopes are
then computed by applying FDLP on the sub-band DCT sam-
ples. The envelopes are compressed using a static compression
scheme, which is a logarithmic function and dynamic compres-
sion scheme [12]. The logarithmic compression is to model
the overall non-linear compression in the auditory system.The
transitions are enhanced by the dynamic compression. The first
part of Figure 1 shows the proposed feature extraction tech-
nique. The compressed envelopes are divided into 200 ms seg-
ments with a shift of 10 ms. DCT is applied both on static and
dynamic compressed envelopes to obtain modulation spectrum
representation. We use 14 modulation frequency components
from each cosine transform, to cover modulation range of 0-35
Hz, resulting in 28 coefficients per band.

Although it is in 16KHz sampling rate, the RATS audio data
is originally from the telephone corpora. Configurations for
narrow-band data in signal processing are used. The lower cut-
off frequency and the higher cut-off frequency are set to 125Hz
and 3800Hz, respectively. In this frequency region, 17 critical
bands are obtained (in Bark scale). This results in 476 modu-
lation coefficients (28 coefficients per band). In addition to the
476 FDLP features, a pitch value is estimated for each frame us-
ing the RAPT algorithm [13] followed by a speaker-based mean
and variance normalization. We expand the pitch feature con-
text with an 11-frame concatenation. These 11 pitch values are
then appended to the 476 FDLP features and the resulting 487
features are input to the NN training.

2.2. Neural Network Architecture

For the NN training, stacking strategy of a cascade of Neu-
ral Networks is shown in Figure 1 and described in de-
tails in [3, 14]. The configuration for the first NN is
487x1500x1500x80x1500xN, whereN is the number of tar-
gets. The 80 bottleneck outputs from the first NN are sam-
pled at timest, t−10, t−5, t+5 and t+10. Wheret is the
index of the current frame. The resulting 400-dimensional
features are input to the second NN with a configuration of
400x1500x1500x80x1500xN. The bottleneck layers in both
NNs have linear activation function which was shown to pro-
vide better performance [15]. All other hidden layers have sig-
moid as the non-linearity. The 80 bottleneck outputs from the
second NN are taken as features for conventional GMM–UBM–
i-vector based LID system. The targets for training both NN
are context-dependent cross-word quinphone codebooks which
are taken from a LVCSR PLP system using the state-clustering
approach as described in [16]. We used BBN Neural Network
software to train NN with Stochastic gradient descent algorithm
and batch size512. The software uses the Graphics Process-
ing Unit (GPU) for faster training. The weights are initialized

with Gaussian distribution with zero mean and unity variance
and biases are initialized with uniform distribution in therange
(−4.1,−3.9). The network is trained in about 15 iterations and
for Farsi it reaches 23% frame level accuracy for the first NN
and 28% for the second NN. We used two languages to train
Stacked bottleneck (SBN) architecture, Levantine where num-
ber of targets is N=3707 and Farsi where N is 5306. The data
used is derived from the RATS keyword search training cor-
pus, which consists of retransmitted telephone data (CallFriend,
Fisher and other RATS telephone data) over 8 radio channels.
The amount of training data is 480 hours for Levantine and 350
hours for Farsi.

3. The RATS LID Data Corpus
The Linguistic Data Consortium (LDC) provided training and
test data for the RATS evaluation tasks. For the LID evaluation
task, the provided audio recordings cover 5 target languages
(Arabic, Dari, Farsi, Pushtu, and Urdu) and 10 non-target lan-
guages (English, Spanish, Mandarin, Thai, Vietnamese, Rus-
sian, Japanese, Bengali, Korean, Tagalog). These recordings
were selected from both existing data resources and new data
collected specifically for RATS (more details can be found
in [1]). All recordings were about 2 minutes long and were
retransmitted through 8 different communication channels, la-
beled by the letters A through H. The retransmitted data was re-
leased to the RATS participants for developing their evaluation
systems. LDC issued 3 incremental data releases for the LID
task: LDC2011E95, LDC2011E111, and LDC2012E03. We
only used the first two releases for developing our LID systems.
All LID systems were evaluated under four testing conditions in
which test samples are 120, 30, 10 and 3 seconds long, respec-
tively. The RATS program does not provide development data
for the short-duration conditions, 30s, 10s and 3s. Hence the
participants need to find ways to develop systems for the short-
duration conditions. As described in [8], we partitioned the first
two data releases into training and development sets and created
the 30s, 10s and 3s short cuts from the 120s audio files.

The total number of test samples in the development is
about 7,120 samples for each condition. In the rest of the paper,
we use Dev to denote this development set. We also measured
LID performance on one adjudicated version of the LID Phase
1 evaluation data (also called Dev2 within the RATS program),
which includes 1,914, 1,782, 1,715, 1,340 samples for the 120s,
30s, 10s and 3s conditions, respectively. We use Eval to denote
this evaluation set.

4. LID System Description
First, we briefly review the LID system, that we use as our base-
line. The BBN LID system consisted of 4 major components,
speech activity detection (SAD), feature extraction, i-vector es-
timation, and neural network (NN) LID classifier.

4.1. Speech Activity Detection (SAD)

SAD system was carried out in three steps [17]. First, the
input frame-level acoustic features (PLP) were projected to a
lower-dimensional space using heteroscedastic linear discrimi-
nant analysis (HLDA). There are two classes for HLDA: speech
and non-speech. Second, the reduced features were used to
compute per-frame log likelihood scores with respect to speech
and non-speech classes, each class being represented separately
by 2048 Gaussian mixture model (GMM). Third, the frame-
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Figure 1: Block diagram of Stacked Bottleneck feature extraction with FDLP front-end.

level log likelihood scores were mapped to speech/non-speech
classification decisions to produce final segmentation outputs.
The mapping was done by thresholding the average per-frame
log likelihood ratios, computed over the sliding window.

4.2. Baseline Feature Extraction

We found in [2] that, in terms of LID performance, it was best
to project 11 frames, each including energy and the first 8 PLP
coefficients, down to 60-dimensional feature vector by HLDA
(we used languages as classes in the HLDA). We also found,
this configuration produced better LID performance than the
SDC coefficients [18]. We used Short Time Gaussianization
(STG) [19] prior to HLDA dimensionality reduction, which fur-
ther increased the robustness of the system.

4.3. i-vector Estimation

I-vector systems provide an elegant way of reducing the large-
dimensional variable-length input data (time sequence of fea-
tures) to a small-fixed-dimensional feature vector—referred to
as thei-vector—while retaining most of the relevant informa-
tion [20, 21]. The technique was originally inspired by Joint
Factor Analysis framework introduced in [22].

Our i-vector extractor was trained in 10 iterations of jointly
applying the Expectation Maximization (EM) algorithm and the
Minimum Divergence (MD) step [23]. Sufficient statistics for
both the i-vector extractor training and the i-vector estimation
were collected using a 1024-component GMM. The i-vector di-
mensionality was set to 400.

As mentioned before, all training samples have at least 2
minutes of audio. So, in terms of audio length these training
samples do not match the short-duration (30s, 10s and 3) test
samples. To reflect the shorter duration test conditions during
training, we estimated the 3s i-vectors for audio chunks of ap-
proximately 3 seconds of speech. The chunks were generated
by grouping adjacent speech regions within each training au-
dio file. We then combined these 3s i-vectors with the regular
i-vectors estimated on the entire audios to train the final LID
classifier. We experimented with different windows and over-
laps for cutting and generating i-vectors using 3s cuts provided
the best performance as shown in [2]. In our previous experi-
ments [1], we showed that adding these short i-vectors help only
the NN classifier [1] but not Logistic Regression (LR) classifier.

4.4. NN LID Classifiers

In [1], we have shown that Neural network (NN) classifier sig-
nificantly outperforms Logistic Regression. We have compared
NNs to Logistic regression, Gaussian backend, Cosine distance
and also recently introduced Discriminative Adaptive Gaussian
Backend [24] for Phase-3 evaluation and NN gives us consis-
tently the best performance across many systems. We used the
ICSI Quicknet NN tools to train NNs to map i-vectors to lan-

guage posteriors. We configured all our NNs with 3 layers (in-
put, hidden, and output) with the input layer taking the i-vectors
and the output layer generating posteriors for the 6 language
classes. We trained 5 NNs with the number of hidden nodes set
to 300, 400, 500, 600 and 700. We adopted this approach to
increase robustness, accuracy and to avoid the over fitting prob-
lem. We can see the analogy in machine learning where it is
called bootstrap aggregating (bagging). Similar results can be
obtained when we train 5 NNs with 400 hidden nodes and dif-
ferent random initialization of the weights. We trained separate
Logistic Regression (LR) classifier on our development set to
calibrate all 5 NN outputs. Then we take average of posterior
probability from LR. We take log of the average posterior as
final score of the system.

5. Results
5.1. Evaluation Metric

In accordance with the RATS program targets we focused on
improving the LID system performance on the 10s and 3s test
conditions. We will report the performance measured on these
two short-duration conditions in this paper. The final table
will show also the results for 30sec condition. We measured
the LID performance according to four metrics, Acc (accu-
racy defined as correctly recognized samples divided by all
samples), EER (we first compute EER for each language and
then take average),Cavg(computed the same way as in the
NIST LRE evaluation [25]), and one of the RATS Phase-3 op-
erating points: miss rate at false alarm rate equal to 1% (we
denote it asPmiss@FA1%). We report the Acc, EER,Cavg ,
Pmiss@FA1% scores as percentage numbers in this paper on the
Dev data. Last table shows the results also on the eval data.

5.2. Baseline Experiments

We ran several common acoustic features used nowadays in
Language Identification for comparison with our SBN features.
The short description of the baseline features follow:
PLP: We extract 8 PLP coefficients plus normalized energy us-
ing a 25ms Hamming window with a 10ms frame shift.

MFCC: This front-end operates on standard Mel-frequency
Cepstrum Coefficients (MFCC), extracted using a 25ms Ham-
ming window. We extract 8 MFCCs together with C0 every
10ms.

MHEC: The Hilbert envelope is calculated on the Gammatone
filter bank and smoothed with low-pass filter with cut-off fre-
quency of 20Hz. Framing with window 25ms and 10ms shift
is applied. Long term normalization is used before taking loga-
rithm and DCT. This results in 9 dimensional features including
C0. For more details see [27].

PLP2: The output power spectral estimates from the critical
band integration stage of FDLP(see Section 2.1), are inverse
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Table 1: Comparison of different acoustic features with
phoneme based features. Asterisk “*” denotes that, insteadof
stacking multiple frames and applying HLDA projection, only
one feature frame is used in LID modeling. All numbers are on
Dev set in [%]

3 sec 10 sec

Acc Cavg EER Acc Cavg EER

MHEC 64.82 17.45 16.91 82.95 7.76 7.39
PLP 65.90 17.10 16.75 82.85 8.22 7.88
MFCC 60.10 20.01 19.63 78.78 9.57 9.32
PLP2 61.33 18.85 18.40 80.66 8.82 8.25
logP* 69.31 16.15 15.51 85.52 7.14 6.96
logP 71.34 14.77 14.13 87.88 6.05 5.85
BN* 71.93 13.68 13.37 89.70 4.70 4.44
SBN* 72.78 13.21 12.70 90.37 4.26 4.10

Fourier transformed to obtain an autocorrelation sequence. This
sequence is used for time-domain linear prediction (TDLP),us-
ing a 19th-order model. The TDLP provides an all-pole ap-
proximation of the short-term spectrum. The output TDLP pa-
rameters are converted to 9 cepstral coefficients using cepstral
recursion [28].

logP*: The log phoneme posteriors are also very strong fea-
tures when modeled with acoustic system. We trained one neu-
ral network to produce 39 context independent phonemes for
Levantine. The input to the NN is a block of 9 frames of 12
PLP plus energy, deltas and double-deltas making together 351
dimensional vector. The neural network has 3 hidden layers
with 1500 neurons and output layer with 39 neurons. Only one
frame of 39 dimensional log-posterior vector is taken as an in-
put to the LID system. The system significantly outperformed
any acoustic feature-based system presented in Table 1.

logP in Table 1 presents results when the input to the LID sys-
tem is a stack of 11 frames of logP* concatenated together and
projected via HLDA (with language labels defining the classes)
to the 60 dimensional feature vector. Better results suggest that
there is an advantage to take the context into account.

BN*, SBN*: Last two lines of Table 1 present the results for
our best bottleneck features trained on Farsi with context de-
pendent phonemes as targets. BN* is 80 dimensional bottleneck
from the first stage Neural Network (see Figure 1) and SBN* is
80 dimensional bottleneck from the second stage NN in our cas-
cade. Only one frame of these features are fed into LID system.
The relative improvement inCavg is 25% for 3sec condition,
45% for 10sec condition and 60% for 30sec condition (see also
Table 5) over the best MHEC or PLP features.

The procedure of feature extraction, post-processing and,
normalization for PLP, PLP2, MFCC and MHEC are described
in Section 4.2.

5.3. Different Targets in SBN

One of the main question is: What target should we train the
SBN features on? With bottleneck features we ”do not care”
what the final targets are, because we take bottleneck from the
NN and ignore the succeeding layers. With this approach, we
can afford to use context dependent phonemes, as they contain
more context information and in this sense are closer to the
phonotactic system where trigrams are usually used. The an-

Table 2:Comparison of different targets in training of SBN fea-
tures. The number of context independent targets—CI is 49 and
context dependent targets—CD is 5306. The numbers in brack-
ets are number of targets. Both systems use 80 dimensional SBN
features. All numbers are on Dev set in [%]

3 sec 10 sec

Acc Cavg EER Acc Cavg EER

CI 70.33 14.46 14.22 88.79 5.30 5.16
CD 72.78 13.21 12.70 90.37 4.26 4.10

Table 3:Comparison of different size of the SBN features used
in the second NN. All numbers are on Dev set in [%]

3 sec 10 sec

Acc Cavg EER Acc Cavg EER

20 66.64 17.05 16.71 85.31 6.75 6.49
40 69.57 14.98 14.59 88.62 5.44 5.10
60 70.86 14.03 13.69 90.07 4.77 4.43
80 72.78 13.21 12.70 90.37 4.26 4.10
100 71.88 13.36 13.06 90.69 4.23 4.09
120 71.23 13.70 13.16 90.84 4.21 4.02

swer is in Table 2. We trained the same topology of the SBN
with only one difference. The targets for both NN in the SBN
were trained with context independent (CI) phonemes in the
first case and context dependent phonemes (CD) in the second
case. There is significant improvement mainly for the longer
duration files with using CD phonemes.

5.4. Size of Bottleneck Layer

We investigated also in the size of the bottleneck in the second
NN which directly influence the size of the LID system. The
results in Table 3 shows that the performance start to saturate
above 60 with optimum at 80.

5.5. Language Dependent System

Based on the analysis in [2], we also ran the ”Language-
Dependent” (LD) system, where 6 systems with different
language-dependent Universal Background Model (UBM) were
trained and fused together to form the final score. In our system,
we have 6 classes - 5 for target languages and one for the non-
target languages. Together, we trained 6 UBMs only on the data
belonging to the one language class. The i-vector extractorand
the NN classifier were trained on the data from all languages.
The final system is an average of language posterior probabil-
ities from final NN classifier of separate language dependent
systems. Note that the separate systems are first calibratedus-
ing Logistic regression, as described in Section 4.4. Table4
presents the results for the “baseline” language independent (LI)
system, with a single UBM trained on all data. Next, there are
6 separate LD systems, where first column of Table 4 denotes
the language on which the UBM was trained. There is There is
a small degradation in performance against baseline. This is ex-
pected since the UBM was trained only on one language hence
does not generalize good on other languages. The best LD sys-
tem is when we train the UBM on 10 out of set class languages
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Table 5:Final comparison of baseline PLP and Stacked bottleneck features on Dev and Eval data for 3s, 10s and 30s conditions. All
numbers are in [%].Pmiss denotes miss rate at false alarm rate equal to 1%.

3 sec 10 sec 30 sec

Dev set Acc Cavg EER Pmiss Acc Cavg EER Pmiss Acc Cavg EER Pmiss

1 PLP 65.90 17.10 16.75 61.7682.85 8.22 7.88 26.45 90.65 4.20 3.94 11.48
2 SBN FAR 72.78 13.21 12.70 49.3790.37 4.26 4.10 12.84 96.65 1.61 1.47 2.10
3 SBN LEV 72.97 13.10 12.88 48.89 91.51 4.15 3.98 10.61 96.50 1.56 1.55 2.10
4 SBN LDFAR 77.33 11.26 10.85 42.40 93.10 3.22 3.36 7.81 97.24 1.27 1.21 1.38
5 SBN LDLEV 78.01 10.82 10.53 39.47 93.50 3.09 3.08 6.87 97.24 1.15 1.09 1.14
6 AVG(4+5) 80.27 9.64 9.59 34.92 94.43 2.71 2.66 5.32 97.73 1.05 1.00 0.92

Eval set Acc Cavg EER Pmiss Acc Cavg EER Pmiss Acc Cavg EER Pmiss

1 PLP 61.84 17.99 18.25 60.1075.80 13.34 12.95 34.73 82.49 9.75 10.32 19.43
2 SBN FAR 68.71 14.42 13.72 46.5484.55 9.38 6.84 21.30 90.97 5.89 4.65 8.52
3 SBN LEV 71.17 13.97 13.81 42.89 83.91 9.47 6.29 21.39 91.92 5.84 4.81 8.96
4 SBN LDFAR 73.26 13.43 12.36 38.59 87.58 6.44 5.13 15.45 92.76 5.11 4.06 5.86
5 SBN LDLEV 74.91 12.88 12.38 35.07 87.52 8.09 4.71 14.08 92.93 5.81 3.96 5.68
6 AVG(4+5) 76.03 11.73 10.83 32.72 89.10 6.50 4.25 12.07 93.77 4.94 3.53 5.15

Table 4: Analysis of language dependent system. Comparison
of separate systems where UBM is trained only on one lan-
guage. Done with Farsi SBN80 features. All numbers are on
Dev set in [%]

3 sec 10 sec

Acc Cavg EER Acc Cavg EER

baseline 72.78 13.21 12.70 90.37 4.26 4.10
alv 72.04 13.46 13.11 90.12 4.54 4.37
fas 72.01 13.24 12.63 90.58 4.40 4.21
prs 71.80 12.64 12.39 90.32 4.43 4.30
pus 71.00 13.70 13.27 90.13 4.43 4.43
urd 71.88 13.74 13.45 89.73 4.81 4.72
xxx 73.95 13.81 13.03 91.03 4.37 4.20
avgLang 77.33 11.26 10.85 93.10 3.22 3.36
avgChan 78.05 10.58 10.40 93.37 3.32 3.16
avgAll 78.21 10.48 10.23 93.55 3.14 3.20

marked as “xxx”. This was also expected because the UBM is
more general since it was trained on multiple languages. Still, it
does not reach the performance of the LI system, because it was
not trained to model the target languages. Finally, “avgLang”
represents the average of scores of the 6 separate LD systems.
The relative gain is 20% for 3sec condition and 15% for 10sec
condition over the LI system.

We have nine channels in RATS program. If we repeat the
same experiment with channel dependent system and train the
UBM for every channel and we get similar results (“avgChan”
in Table 4). If we average all channel- and language-dependent
systems, we get about the same results (“avgAll” in Table 4).

5.6. Different target language in training of SBN

There are two languages in RATS program that we have word
transcriptions for which we have built speech to the text system
for the keyword spotting task. We have built Farsi and Levan-
tine SBN features and tested it for LID. Lines 2 and 3 in Table 5
shows the results of the SBN LID system where we used differ-

ent language for training the SBN features. The results are very
comparable with small favor in Levantine system.

5.7. Fusion

The final summary is in Table 5. In this table, we show in addi-
tion also one of the RATS Program target metricsPmiss@FA1%,
we also report results on the 30sec condition (120s is too good to
report anything on) and also full results on the evaluation data.
First system presents PLP baseline system. Next two systems(2
and 3) show the two stack-bottleneck systems trained on Farsi
and Levantine. Next two systems (4 and 5) are language de-
pendent variants of the 2 and 3. System number 6 is the fusion
(average of the scores) of systems 4 and 5. This fusion gives in
average 10% relative improvement on the development and also
evaluation data.

6. Conclusion
We have presented the bottleneck features in the context of Lan-
guage identification. It combines benefits of both phonotactic
and acoustic system. Usually, the phonotactic system is favor-
able for the long duration files, while acoustic for the shortones.
This approach takes the advantage of both. In addition, we can
also use modeling of context dependent phonemes in bottleneck
features. This brings very nice improvement over the context
independent phonemes.

Overall the bottleneck features provide dramatic relative
improvement 25% for 3sec condition, 45% for 10sec condition
and 60% for 30sec condition forCavg . The same or higher
relative gains can be seen also for the primary RATS metric
Pmiss@FA1% or average EER. We can extend the basic variant
of the LID system to Language dependent system where UBM
is trained on the subset of the data. This technique gives us ad-
ditional 15% relative improvement. This system also fuse well
with both classic acoustic and phonotacic approaches.
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