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Abstract

This paper proposes two novel frontends for robust lan-
guage identification (LID) using a convolutional neural network
(CNN) trained for automatic speech recognition (ASR). In the
CNN/i-vector frontend, the CNN is used to obtain the posterior
probabilities for i-vector training and extraction instead of a uni-
versal background model (UBM). The CNN/posterior frontend
is somewhat similar to a phonetic system in that the occupation
counts of (tied) triphone states (senones) given by the CNN are
used for classification. They are compressed to a low dimen-
sional vector using probabilistic principal component analysis
(PPCA). Evaluated on heavily degraded speech data, the pro-
posed front ends provide significant improvements of up to 50%
on average equal error rate compared to a UBM/i-vector base-
line. Moreover, the proposed frontends are complementary and
give significant gains of up to 20% relative to the best single
system when combined.

1. Introduction

The i-vector framework, originally developed for speaker
recognition [1], has been successfully used as a feature ex-
traction frontend for language identification (LID) [2]. In
speaker recognition, probabilistic linear discriminant analysis
(PLDA) [3] is used to generate verification scores using the i-
vectors as input. For LID, a Gaussian backend is commonly
used to model the languages and generate the final scores. Re-
cent work [4, 5], however, has shown that a neural network can
outperform a Gaussian backend in noisy conditions.

Another family of LID approaches is based on the modeling
of phonetic sequences produced by open-phone loop recogniz-
ers, such as parallel phone recognition and language modeling
(PPRLM) [6, 7], and phoneme posteriogram [8]. In general, the
phone-based approaches perform comparably to the i-vector-
based approaches; the fusion of those two systems results in
significant improvements (e.g., [8, 9]).

Although state-of-the-art LID systems achieve good perfor-
mance in clean conditions, noisy conditions still pose a consid-
erable challenge. In this study, we focus on noise-robust LID
using data released by the Defense Advanced Research Projects
Agency (DARPA) under the Robust Automatic Transcription of
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Speech (RATS) program. The RATS data is heavily degraded
by time-varying channel distortions.

In a recent article [10], we proposed a new speaker ver-
ification framework in which we used a deep neural network
(DNN) trained for automatic speech recognition (ASR) to gen-
erate the posterior probabilities for a set of states that replace
the Gaussians in the traditional UBM-GMM approach. The new
framework exhibited significant improvements on the clean and
collected noise telephone conditions of the 2012 NIST speaker
recognition evaluation data.

In this paper, we show how this new paradigm can be suc-
cessfully applied to the LID task. Specifically, we demonstrate
how our approach can generalize to the use of convolutional
neural networks (CNN) instead of DNN. ASR studies demon-
strated that the CNN modeling is more robust against noise dis-
tortions than DNN modeling [11], thus making it an ideal can-
didate for this task.

Finally, we propose a new approach where the state poste-
rior counts from the CNN are used directly for language identi-
fication. This approach is inspired by both the phoneme posteri-
ogram and PRLM approaches to language identification [8, 12].
Both of the approaches proposed in this work generate vectors
of a fixed dimension that can be further modeled in a standard
fashion.

In the following sections, we first introduce some important
concepts needed to understand the proposed CNN/i-vector and
CNN/posterior systems described in Sections 3 and 4. The ex-
periments and results will then be presented before this paper
concludes.

2. Posterior extraction using CNN

The proposed approaches detailed in the following sections rely
on the posterior probability generated by a CNN for a set of
ASR states called senones. In this section, we introduce the
concept of senones and describe how their posteriors are mod-
eled using CNNss.

2.1. Senones in ASR

The senones are defined as tied states within context-dependent
phones. They can represent, for example, each one of the three
states within all triphones. They are the unit for which obser-
vation probabilities are computed during ASR. Therefore, the
pronunciations of all words are represented by a sequence of
senones Q. In general, the set of senones is automatically de-
fined by a decision tree using a maximum likelihood (ML) ap-
proach [13]. The decision tree is grown by asking a set of lo-
cally optimal questions that give the largest likelihood increase,
assuming that the data on each side of the split can be modeled
by a single Gaussian. The leaves of the decision tree are then



taken as the final set of senones.

Once the set of senones is defined, a Viterbi decoder is used
to align the training data into the corresponding senones using a
preexisting ASR model. These alignments are used to estimate
the observation probability distribution p(x|q), where z is an
observation vector (the acoustic features) and ¢ is the senone.
The estimation of the observation probability distribution and
the realignment can be optimized alternatively and iteratively.

2.2. CNN for speech recognition

Traditionally, a speech recognition system uses Gaussian mix-
ture models (GMM) to model the likelihood for each senone
p(z|q). Recent studies have shown that DNNs are better at esti-
mating the senone posteriors p(g|z) than GMMs [14, 15]. The
observation probability can then be obtained from the posteriors
and priors of the senones using Bayes rule, as follows:

p(qlz)p(z)/p(a), )

where p(z|q) is the observation probability needed for decod-
ing, p(q) is the senone prior and p(g|z) is the senone posterior
obtained from the DNN. Since p(z) is not available, the scaled
likelihood p(z|q)/p(z) is normally used during ASR decoding.

For noisy conditions, CNNs were proposed to replace
DNNSs to improve robustness against frequency distortion. A
CNN is a neural network where the first layer is composed of
a convolutional filter followed by max-pooling. The rest of the
layers are identical to those of a standard DNN. CNNs were
first introduced for image processing by [16, 17], and later used
for speech recognition [18, 19]. Typically, for speech, the in-
put features given to a CNN are the log mel-filterbank coeffi-
cients. Figure 1 presents an example of a convolutional layer.
The target frame is generally accompanied by context informa-
tion that includes several filter bank feature vectors around the
target frame. One or more convolutional filters are then applied
to the feature matrix. While in image processing this filter is
generally small with respect to the size of the input image, in
ASR, the filter is defined with the same length as the total num-
ber of frames. In effect, this means that no convolution happens
in the time domain: a single weighted sum is done across time.
On the other hand, the filter is generally much shorter than the
number of filter banks. This way, the output is a single vector
whose components are obtained by doing a weighted sum of
several rows of the input matrix. For speech recognition, it was
found in [20] that convolution performed only on the filter bank
axis performed as well as convolution on both axes.

The dimension of the output vector of the convolutional
layer depends on the number of filter banks and the height of
the convolutional filter. In Figure 1, there are 7-dimensional
filter bank features from 5 frames (2 left, 2 right and 1 center
frames) used to represent one center/target frame. The height of
the convolutional filter is 2 and its width is, as mentioned above,
equal to the number of frames included in the input. Since we
do not extend the input to deal with boundary issues, the output
of the convolution is a 6-dimensional vector.

After the convolutional filter is applied, the resulting vec-
tor goes through a process called max-pooling by which the
maximum value from N adjacent elements is selected. This
process can be done with or without overlap. The process of
max-pooling is expected to add robustness to noisy and channel
distortions by picking the largest value from a set of adjacent
filter banks that have already gone through convolutional filter-
ing. The result of this example, where the pooling size is 3 and
no overlap is used, is a 2-dimensional output.

p(zlg) =
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In practice, 40 filter banks with a context of 15 frames are
used, and the height of the convolutional filter is 8. Many con-
volutional filters can be used to model the data in more detail;
we used 200 in this work. The output vectors of the different
filters are concatenated into a long vector that is then input to a
traditional DNN. This DNN usually includes 5 to 7 hidden lay-
ers. The output layer of the DNN contains one node for each
senone defined by the decision tree.
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Figure 1: Diagram of a convolutional layer including convolu-
tion and max-pooling. Only one convolutional filter is shown in
this example and non-overlapping pooling is used.

A flow diagram for CNN training in ASR is shown in Fig-
ure 2. A hidden Markov model (HMM) ASR system with GMM
states is trained on 39 dimensional MFCC features and used to
generate reliable alignments for the subsequent CNN training
where 40 dimensional filter bank features are used. The final
acoustic model is composed of the original HMM from the pre-
vious HMM-GMM system and the new CNN.
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Figure 2: Flow diagram for CNN training for ASR.

3. CNN/i-vector System

The i-vector framework initially developed for speaker recog-
nition gives excellent performance for LID [2]. This approach
extracts a low-dimensional vector representing a waveform us-
ing the maximum likelihood criteria. A Gaussian backend, neu-
ral network, or other standard machine learning approaches can
then be used to generate the likelihood scores for each language.



In state-of-the-art systems, a UBM is used to estimate the
posterior probabilities for every frame to further generate the
Baum-Welch statistics necessary for i-vector training and ex-
traction. In [10], we proposed a new paradigm in which a DNN,
trained for ASR, replaces the UBM to estimate the posterior
probability for each frame (also known as frame alignment).
From these posteriors, the resulting Baum-Welch statistics can
be computed easily using a new set of features (such as MFCCs)
The statistics are then whitened by the means and covariance of
single Gaussians for each state estimated on a larget set of train-
ing data.

We demonstrated that this approach gives significant im-
provements in speaker recognition accuracy. This work aims at
evaluating this new framework for the LID task. Additionally,
a different type of network, CNN, is used in order to improve
noise robustness, since the target data in this study is speech that
is highly degraded by noise and channel distortions.

Figure 3 presents the flow diagram of the CNN/i-vector hy-
brid system for i-vector modeling. First, a CNN trained for ASR
is used to extract the posteriors for every frame. Then, instead of
the posteriors generated by the UBM in the traditional UBM/i-
vector framework, the posteriors from the CNN are used to es-
timate the zeroth and first order statistics for the following i-
vector model training. Note that an important characteristic of
the approach is that one does not have to compromise by de-
signing a feature that works well for both senone posterior esti-
mation and i-vector estimation. Indeed, the first order statistics
extraction in the i-vector model can use completely different
features from the features used for the CNN. While the CNN
features should contain information about the phonetic content,
the features used for i-vector extraction should contain infor-
mation about the spoken language. Both sets of features can be
chosen separately to improve the final LID performance.

N
Speech features
Logmel filterbank |
- JL Frame ~
(/ ™\ posteriors Acoustic features for
CNN . P
. // language identification
— N J
Zeroth-order First-order
statistics statistics |

Standard i-vector Model

Figure 3: The flow diagram of CNN/i-vector hybrid system for
i-vector model.

4. CNN/Posterior System

The CNN/i-vector approach described in the previous section
can be considered part of the family of LID methods that fo-
cus on modeling short-time acoustic features. Another family
of methods focus on modeling the sequence of phonetic units,
given by a phone recognizer. Standard approaches involve col-
lecting the probabilities and counts of phone sequences as a
representation of the signal using the output of one or several
open-phone loop recognizers [6, 7]. Another approach uses the
phoneme posteriogram counts from the phone recognizer to cre-
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ate bigram conditional probabilities which are then used to cre-
ate features for LID (e.g., [8]).

Inspired by these approaches, we propose to use the senone
posteriors obtained by the CNN for LID. Since senones are de-
fined as states coming from context-dependent phones, their
posterior probabilities are intrinsically contextualized by the
phonetic context. As such, we argue that our method allevi-
ates the need of the standard approaches for contextualization
which is done using Ngram modeling. Furthermore, we fully
utilize the benefit of CNN modeling’s relative robustness to
noise, channel distortions and speaker variability. That is, we
expect that the occupation counts given by the CNN capture the
frequency of usage of each senone for the language present in a
sample, and that they are relatively independent of other condi-
tions found in the signal.

The counts for each senone g on the <th file are given by

Zy(i) = Z Yq(i,t), ¢ € Q

t|tes

@

where 74 (4, t), the posterior of the senone g given the tth frame
of the ith file, is obtained by the CNN, @ is the set of senones,
and S corresponds to the set of speech frames as determined
by a speech activity detector. Similarly to lattice counts used
by PRLM approaches, this count does not depend on hard deci-
sions from the recognizer. To create the log-posterior features,
we divide these values by the number of speech frames Ng and
take the logarithm.

W, (i) = log Z,(i)/Ns 3)

Finally, we form a feature vector to represent waveform ¢ by
concatenating these values for all senones

R . R R T
W (i) = [Wo(i), Wa(@), -+, Wa(i)] @

The dimension of the resulting vector is equal to the number
of senones (usually between 3K and 7K), which is much larger
than the usual size of the i-vector modeled by standard backend
approaches for LID. We use probabilistic principal component
analysis (PPCA) to reduce the dimension of W (i), similarly to
what was done in [21] for MLLR features. Mean and variance
normalization is applied prior to PPCA. These vectors can then
be modeled with standard backends used for i-vectors.

In contrast to the i-vector based approaches in the previ-
ous section, where the zeroth and first order statistics are used,
the proposed CNN/posterior approach only uses zeroth order
statistics to estimate the low-dimensional vector. The informa-
tion available to the backend from these two systems are thus
very different, even though the process at the core of these two
systems, the CNN, is identical. We will show further that these
two approaches are complementary and give a significant im-
provement when used in combination.

5. Experiments

In this study, we evaluated the proposed approaches on the
RATS LID task consisting of five target languages (Farsi, Urdu,
Pashto, Arabic Levantine and Dari) and a pre-defined set of out-
of-set languages [5, 22]. Clean conversational telephone record-
ings were retransmitted over seven channels for the RATS pro-
gram (the eighth channel D was excluded from the LID task).
The signal-to-noise ratio (SNR) of retransmitted signals ranged
between 30dB to OdB. Four conditions are considered in which
test signals are constrained to have duration close to 3, 10, 30
and 120 seconds. The details of the task can be found in [23].



5.1. System setup

The baseline system used in this study is the standard UBM/i-
vector system followed by a neural network backend. The data
used for training the UBM and i-vector models include five tar-
get languages and other out-of-set languages from the RATS
LID training set. Similar to [24], a 140 dimensional 2D-DCT
feature optimized for RATS LID task are used for the UBM/i-
vector framework. A 2048 diagonal component UBM is trained
in a gender-independent fashion, along with a 400 dimensional
i-vector extractor.

To extract the posterior probability of the senones, both
HMM-GMM and HMM-CNN models are trained on the RATS
KWS training data which only contains Arabic Levantine and
Farsi. The following experiments confirm that the posterior
from the CNN can result in good performance despite the
fact that only two languages were used for training. The
3353 senones are generated by the decision tree and the cross-
word triphone HMM-GMM ASR with 200k Gaussians are
trained with maximum likelihood (ML). The features used in
the HMM-GMM model are 39-dimensional MFCC features, in-
cluding 13 static features (including C0) and first and second or-
der derivatives. The features were pre-processed with speaker-
based cepstral mean and covariance normalization (MVN).

A CNN was trained using cross entropy on the alignments
from the HMM-GMM. The input features are given by 40 log
mel-filterbank coefficients with a context of 7 frames from each
side of the center frame for which predictions are made. Two
hundred convolutional filters of size 8 are used in the convolu-
tional layer and the pooling size is set to three without overlap.
The subsequent DNN includes five hidden layers, with 1200
nodes per hidden layer, and the output layer, with 3353 nodes
representing the senones.

Neural network backends with a single hidden layer of 200
nodes are used for all presented systems. All input vectors to the
NN backend are of size 400 (for the baseline system, CNN/i-
vector and CNN/posterior). The output layer is of size 6, in-
cluding the 5 target languages and an “unknown language” cat-
egory. To optimize the performance on all durations, the origi-
nal dataset is chunked into 8 and 30-second segments with 50%
overlap. The chunked data as well as the original data are used
together for NN training. The scores generated by the NN are
further calibrated through logistic regression using 2-fold cross-
validation on the test data.

The performance was evaluated on three measurements, in-
cluding the average equal error rate (EER) over all target lan-
guages, the miss rate where the false alarm rate is equal to 1%
widely used in the RATS programs [23], and the Cavg defined in
the NIST Language Recognition Evaluation (LRE) 2009 [25].

5.2. Results

To make a fair comparison between the proposed CNN/i-vector
hybrid system and the UBM/i-vector baseline system, the same
2D-DCT features are used in the CNN/i-vector system to com-
pute the first-order sufficient statistics using the frame posteriors
given by the CNN. In addition, as the CNN/i-vector system ef-
fectively use 3353 classes, another baseline system is presented
where a supervised UBM is used to replace the standard UBM,
similarly to what was done in [10]. Each Gaussian in the super-
vised UBM is trained using the frames assigned to one senone
by the CNN posterior. This UBM is then used in the standard
way to generate i-vectors.

The performance of the CNN/i-vector, CNN/posterior sys-
tems, the baseline systems and two fusion systems using lin-
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ear logistic regression and 2-fold cross-validation are presented
in Figure 4 for the three different error metrics. We can see
that both the new CNN/i-vector and CNN/posterior systems
achieve a significant improvement compared to the baseline sys-
tems across all duration conditions and error metrics. Further-
more, we can see that the fusion of the two proposed systems
(called fusion 2-way in the figure) gives a significant improve-
ment over both individual systems, indicating that these two
systems are highly complementary. Finally, the addition of the
UBM/i-vector system does not lead to consistent improvements.
It might be caused by the large performance gap between the
UBM/i-vector system and proposed systems. Table 1 shows the
average EER numbers plotted in the top of Figure 4.
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Figure 4: Average EER, average Cdet and Pmiss at 5% Pfa for
different systems over the four duration conditions. Fusion 2-
way refers to the fusion of the CNN/i-vector and CNN/posterior
systems. Fusion 3-way refers to the fusion of those two systems
as well as the UBM/i-vector system.



Table 1: Average EER for different systems over the four dura-
tion conditions. Fusion 2-way refers to the fusion of the CNN/i-
vector and CNN/posterior systems. Fusion 3-way refers to the
fusion of those two systems as well as the UBM/i-vector system.

System 3sec  10sec 30sec 120 sec
UBM/i-vector 17.82 1146  7.34 4.82
SupUBM/i-vector 1699  9.89 6.96 3.42
CNN/posterior 14.08  7.06 4.71 2.00
CNN/i-vector 13.60  6.57 4.50 2.37
Fusion 2-way 1095 5.24 3.53 2.13
Fusion 3-way 11.88 5.24 3.73 1.86

6. Conclusions

We introduced two novel front-ends for language identification
that make use of the posterior probabilities generated by a CNN.
The CNN was trained for prediction of a set of senones — the
states within context-dependent phones — for speech recog-
nition. The first system, called CNN/ivector system, uses the
posterior probabilities as input to the standard i-vector train-
ing and extraction procedures. The second system, called
CNN/posterior system, uses the posteriors to directly estimate
a set of normalized zeroth order statistics for the senones. This
vector is reduced in dimension and modeled using a standard
neural network backend. While the second system only mod-
els the posteriors for the senones, the first system models the
distribution of a set of selected features for each of the senones.

Since senones are constrained by phonetic context, the pro-
posed systems implicitly model phonetic sequence informa-
tion without the bigram or trigram modeling required by other
phone-based approaches to language identification. Further-
more, since CNN posteriors are relatively robust to noise and
channel degradations, the proposed front-ends are also adequate
for this kind of challenging data.

Results of the newly proposed approaches were presented
on heavily degraded speech data from the RATS LID task. We
showed relative improvements between 23% and 50% on aver-
age EER with respect to a state-of-the-art UBM/i-vector system
across different duration conditions. We also observed that the
fusion of both approaches gives to a 20% relative performance
gain over the best individual system, an improvement that im-
plies these systems contain complementary information.

As next step, we plan to study the performance influence of
a series of variables of the CNN for LID, such as the configura-
tions, data languages, and evaluate the proposed approaches on
more languages (e.g., NIST LRE tasks).
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