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Abstract
This paper proposes a simple model for speaker recognition
based on i–vector pairs, and analyzes its similarity and dif-
ferences with respect to the state–of–the–art Probabilistic Lin-
ear Discriminant Analysis (PLDA) and Pairwise Support Vector
Machine (PSVM) models. Similar to the discriminative PSVM
approach, we propose a generative model of i–vector pairs,
rather than an usual i–vector based model. The model is based
on two Gaussian distributions, one for the “same speakers” and
the other for the “different speakers” i–vector pairs, and on the
assumption that the i–vector pairs are independent. This inde-
pendence assumption allows the distributions of the two classes
to be independently estimated. The “Two–Gaussian” approach
can be extended to the Heavy–Tailed distributions, still allow-
ing a fast closed form solution to be obtained for testing i–vector
pairs. We show that this model is closely related to PLDA and
to PSVM models, and that tested on the female part of the tel–
tel NIST SRE 2010 extended evaluation set, it is able to achieve
comparable accuracy with respect to the other models, trained
with different objective functions and training procedures.

1. Introduction
The current state–of–the–art in speaker recognition is based on
a low–dimensional representation of a speech segment, the so–
called i–vector [1, 2], in combination with Probabilistic Linear
Discriminant Analysis (PLDA) generative models [3, 4, 5]. An
i–vector is a compact representation of a speech segment, ob-
tained from the statistics of a Gaussian Mixture Model (GMM)
supervector [6] by a Maximum a Posteriori point estimate of
a posterior distribution [2]. A PLDA classifier models the un-
derlying distribution of the speaker and channel components of
the i–vectors in a probabilistic framework. From these distri-
butions it is possible to evaluate the likelihood ratio between
the “same speaker” hypothesis and “different speaker” hypoth-
esis for a pair of i–vectors. The same paradigm can be used
to train discriminative systems where the observation patterns
are pairs of i–vectors. In particular discriminative linear classi-
fiers, based on Pairwise Support Vector Machine (PSVM) [7, 8]
and on logistic regression [9] have been proposed, which have
been shown to achieve state–of–the–art results on recent NIST
evaluations [10, 11].

In this paper we propose a simple generative model for
speaker recognition based on i–vector pairs. The model is based
on two Gaussian distributions, one for the “same speaker” i–
vector pairs and the other for the “different speaker” pairs, and
on the assumption that the i–vector pairs are independent. We
illustrate the structure of the precision matrices of the two distri-
butions, and we detail how their parameters can be effectively
estimated. Moreover, since the independence assumption al-
lows the distributions of the two classes to be independently
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estimated, our “Two–Gaussian” model, referred to in the fol-
lowing as 2–GAU, can be easily extended to Heavy–Tailed dis-
tributions leading to the “Two–Heavy–Tailed” (2–HT) model.

We also show that the proposed model is closely related
to PLDA and to PSVM models, and that tested on the female
part of the tel–tel NIST SRE 2010 extended evaluation set, it is
able to achieve comparable accuracy with respect to the other
models, trained with different objective functions and training
procedures. Although we do not claim that this simple model
is more accurate than its state–of–the–art competitors, it has the
merit of shedding some light on the pairwise classifiers, reveal-
ing a possible unifying framework, despite relevant variations
about the model assumptions, the estimation procedures, and
the objective functions that each model optimizes.

The paper is organized as follows: Section 2 and 3 briefly
recall the PLDA and PSVM models, their parameters, and their
objective functions. Section 4 presents the 2–GAU model and
illustrates a very fast training procedure for estimating its pa-
rameters. Section 5 shows the similarity of the Gaussian PLDA
and PSVM models with the 2–GAU model. Section 6 extends
the 2–GAU model leading to the 2–HT model, and presents an
effective approach for training this more complex model, to-
gether with considerations about its training and testing com-
plexity. In Section 7 the similarities and differences of the clas-
sifiers are illustrated by using artificial uni–dimensional data.
Section 8 is devoted to the illustration of the experimental re-
sults, and conclusions are drawn in Section 9.

2. Gaussian PLDA
The generative Gaussian PLDA models [12, 3] are among the
best models for comparison of i–vectors. In this section we
briefly recall the Gaussian PLDA framework, and also the
“Two–covariance model” [4, 5], which provides a useful inter-
pretation of the PSVM approach described in Section 3.

2.1. PLDA

The i–vector generation process is described in the PLDA ap-
proach by means of a latent variable probabilistic model where
an i–vectorφi is represented as the sum of three factors, namely
a speaker factor y, an inter–session (channel) factor xi and a
residual noise εi as:

φi = m + Uy + Vxi + εi . (1)

Matrices U and V typically constrain the speaker and inter–
session factors to be of lower dimension than the i–vectors
space. PLDA estimates the distribution of the latent variables
that maximize the likelihood of the observed i–vectors, assum-
ing that i–vectors from the same speaker share the same speaker
factor, i.e., the same value for latent variable y [3]. The simplest
PLDA model assumes that all the hidden variables are Gaussian
distributed, and that the noise term εi has a full covariance ma-
trix, so that the terms Vxi and εi in (1) can be merged. Thus,
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an i–vector φi is re–defined as:

φi = m + Uy + εi , (2)

where the speaker factor y and the residual noise are distributed
as:

y ∼ N (0, I) εi ∼ N (0,Λ−1) , (3)

and Λ is the precision matrix of noise εi.

2.2. Two–covariance model

Further simplification of the PLDA model (2) is obtained as-
suming that the speaker and inter–session subspaces span the
entire i–vector space. This simplified model, referred to as the
Two–covariance model [4, 5], or 2–COV for short, accounts for
two Gaussian–distributed components: the speaker component
y, and the inter–session variability component εi, which are
combined to produce an i–vector as:

φi = m + y + εi , (4)

where
y ∼ N (0,B−1) εi ∼ N (0,W−1) , (5)

and B−1 and W−1 are the between–speaker and within–
speaker covariance matrix, respectively.

It has been shown in [7] that the 2–COV model log–
likelihood ratio for an i–vector pair is a quadratic function, in-
variant to i–vector swapping, which can be formulated as:

s(φ1,φ2) = φT
1 Λφ2 + φT

2 Λφ1 + φT
1 Γφ1 + φT

2 Γφ2

+(φ1 + φ2)T c + k , (6)

where the within-speaker and between–speaker covariances are
related to Λ,Γ, c and k according to:

Λ =
1

2
WT Λ̃W Γ =

1

2
WT (Λ̃− Γ̃)W

c = WT (Λ̃− Γ̃)Bµ k = k̃ +
1

2

[
(Bµ)T (Λ̃− 2Γ̃)Bµ

]
,

(7)

with

Λ̃ = (B + 2W)−1 Γ̃ = (B + W)−1

k̃ = 2 log |Γ̃| − log |B| − log |Λ̃|+ µTBµ .

3. PSVM
A successful alternative to generative PLDA models has been
presented in [7, 8], where a pairwise SVM model has been pro-
posed, which is trained to discriminate between “same speaker”
and “different speaker” pairs. This is in contrast with the usual
“one-versus-all” framework, where an SVM model is created
for each enrolled speaker, using as samples of the impostor
class the utterances of a background cohort of speakers. This
approach avoids the major weakness of “one-versus-all” SVM
training, namely the scarcity of available samples for the target
speakers.

In [7] it has been shown that the score of a second order
Taylor expansion of an i–vector pair Φ = (φ1,φ2) can be for-
mulated as a function s(Φ), invariant to i–vector swapping, and
that it leads to the same formulation of the 2–COV score (6). In
particular, the second order Taylor expansion for s(Φ) around
point Φ̂ = 0 is:

s(Φ) = s(Φ̂) + (Φ ·∇s|Φ̂) + ΦT (H(s)|Φ̂)Φ , (8)

where ∇ is the vector of differential operators

∇ =

(
∂

∂Φ1
, . . . ,

∂

∂Φd

)
,

d is the dimension of the i–vector pair, and H(s) is the Hessian
of function s(Φ).

Defining:

s(Φ̂) = k , ∇s|Φ̂ = [ c c ] , H(s)|Φ̂ =

[
Γ Λ
Λ Γ

]
, (9)

with a symmetric Λ, we obtain the quadratic function of the
i–vector pair:

s(φ1,φ2) = φT
1 Λφ2 + φT

2 Λφ1 + φT
1 Γφ1 + φT

2 Γφ2

+(φ1 + φ2)T c + k , (10)

which is identical to (6), but with matrices Λ and Γ, and vec-
tor c, estimated by means of a different objective function and
training procedure. It is worth noting that the structure of (9)
naturally arises from the symmetries of the problem (see Sec-
tion III-E in [7]).

4. Generative Two–Gaussian model
The goal of PLDA, and of the other classifiers of the same fam-
ily, is to model the distribution of the speaker and channel com-
ponents of the ivectors. We propose, instead, to directly charac-

terize the ivectors pairs Φij =

[
φi

φj

]
by a simple generative

Gaussian model.
Our main assumption is that the i–vector pairs, given their

labels, are independently generated from the two Gaussian dis-
tributions:

ΦS
ij ∼ N (µS ,Λ

−1
S ) ΦD

ij ∼ N (µD,Λ
−1
D ) , (11)

where S and D refer to “same speaker” and “different speak-
ers”, respectively. This assumption is not accurate, because the
complete set of i–vector pairs of a training dataset are, by def-
inition, correlated. However, this working hypothesis allows
obtaining a relevant simplification of the models.

The speaker verification log–likelihood ratio is simply com-
puted as:

logR = logN (Φij |µS ,Λ
−1
S )− logN (Φij |µD,Λ

−1
D ) .

(12)
A second assumption is that the two distributions have the same
mean, i.e., µS = µD .
Recalling that the i–vector pair likelihoods must be invariant to
i–vector swapping, the covariance matrices Λ−1

S and Λ−1
D must

obey the following symmetry constraints:

Λ−1
S =

[
AS BS

BS AS

]
Λ−1

D =

[
AD BD

BD AD

]
(13)

where, A∗ and B∗ are symmetric, and the mean of the distri-

butions µ = µS = µD are defined as µ =

[
m
m

]
, m being

a vector of the same dimensions of an i–vector. Although we
expect that BD ≈ 0, because the i–vectors should be uncorre-
lated, we do estimate this matrix from the data.

The equations for training AD and BD are illustrated in the
next subsection, devoted to their estimation.



275

4.1. 2–GAU model training

The 2–GAU models are trained by maximizing the likelihood of
the training pairs, under the i–vector pair independence assump-
tion. Although the number of training pairs is huge, because it
grows quadratically with the number of i–vectors, we here pro-
vide a fast solution that allows estimating the parameters of the
2–GAU model even with very large set of data. For the sake
of clarity we assume that i–vectors have been centered, so that
the mean of the two distributions is µ = 0, but µ can be easily
re–estimated extending the techniques detailed in the following.

Let δSij and δDij denote the indicator functions for the “same
speaker” and “different speaker” pair classes, respectively:

δSij =

{
1 if φi,φj belong to “same speaker” class
0 otherwise

δDij = 1− δSij . (14)

Maximum Likelihood estimate of the 2-GAU distribution pa-
rameters can be obtained in closed form [13] as:

Λ−1
S =

1

NS

∑
i,j

δSijΦijΦ
T
ij

Λ−1
D =

1

ND

∑
i,j

δDijΦijΦ
T
ij (15)

where NS and ND denote the number of “same–speaker” and
“different speaker” pairs, respectively.
The “different speaker” covariance, Λ−1

D , can be alternatively
computed as:

Λ−1
D =

1

ND

(
NTΛ−1

T −NSΛ−1
S

)
, (16)

where
Λ−1

T =
1

NT

∑
i,j

ΦijΦ
T
ij . (17)

is the total covariance matrix of the pairs, andNT is the number
of pairs.

Direct computation of Λ−1
S and Λ−1

D by means of (15) en-
tails a summation over all training pairs, which would have an
overwhelming complexity of O(N2d2), where N and d are the
number and the dimension of the i–vectors, respectively. How-
ever, by exploiting the block structure of (13), these covariances
can be efficiently obtained. The “same–speaker” covariance,
Λ−1

S , is compose of the blocks matrices AS and BS computed
as:

AS =
1

NS

∑
i,j

δSijφiφ
T
i BS =

1

NS

∑
i,j

δSijφiφ
T
j . (18)

Since δij = 1 for all pairs belonging to speaker s, (18) can be
rewritten, by substituting summations over the pairs with sum-
mations over the speakers, as:

AS =
1

NS

∑
s

∑
i|φi∈s

|s|φiφ
T
i

BS =
1

NS

∑
s

 ∑
i|φi∈s

φi

 ∑
j|φj∈s

φj

T

, (19)

where s denotes the set of i–vectors belonging to a speaker, and
|s| is its cardinality.

The total covariance matrix Λ−1
T can be obtained from block

matrices AT and BT . By analogy with (19), we get:

AT =
1

NT

∑
i

Nφiφ
T
i

BT =
1

NT

(∑
i

φi

)(∑
j

φj

)T

, (20)

and Λ−1
D is obtained from (16).

Computing these statistics by using (19) and (20) has complex-
ity O(Nd2), i.e., is linear with the number of i–vectors, thus
very fast even for large datasets.
It is worth noting that these estimates are closely related to the
i–vector within class and total covariances. However, since we
maximize the likelihood of i–vector pairs, speakers providing
more utterances have larger impact on the estimation of the co-
variances, as can be observed looking at matrices AT and BT .

5. Relation to the PLDA and PSVM models
In the following we show that the 2–GAU model is closely re-
lated to the 2–COV and PSVM models.

5.1. Relation to PLDA

Let’s recall that, if the noise term εi has full covariance matrix,
an i–vector is generated in the PLDA model according to (2),
where i–vectors from the same speaker share the same value for
the hidden variable y. Thus, a pair of “same speaker” i–vectors,
i.e., a pair sharing a single y, is modeled as:

ΦS
ij =

[
φi

φj

]
=

[
m
m

]
+

[
U
U

]
y +

[
εi
εj

]
, (21)

whereas, a “different speaker” i–vector pair is modeled as:

ΦD
ij =

[
φi

φj

]
=

[
m
m

]
+

[
U 0
0 U

] [
yi

yj

]
+

[
εi
εj

]
.

(22)
Since each model is a linear combination of Gaussian–
distributed variables, closed–form integration over the speaker
variables is possible, which gives:

ΦS ∼ N (µ,Λ−1
S ) ,ΦD ∼ N (µ,Λ−1

D ), (23)

where

Λ−1
S =

[
UUT + Λ−1 UUT

UUT UUT + Λ−1

]
Λ−1

D =

[
UUT + Λ−1 0

0 UUT + Λ−1

]
, (24)

and Λ is the noise precision matrix. Comparing (23) and (24)
with (11) and (13), respectively, it can be observed that the
PLDA model estimates a constrained solution for the covari-
ance matrices of the 2–GAU model. However, the parameters
of the PLDA model are estimated by maximizing the likelihood
of the training i–vectors, whereas the parameters of the 2–GAU
model are estimated by maximizing the likelihood of the train-
ing i–vector pairs. Although our original assumption - that the
i–vector pairs, given their labels, are independent and identi-
cally distributed random variables - is not accurate, it will be
shown in Section 8, devoted to the experiments, that it is does
not affect the model accuracy.
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5.2. Relation to PSVM

The PSVM approach was introduced as a discriminatively
trained model derived from the 2–COV in [7], where it was
shown that the scoring functions of the PSVM and of the 2–
COV models are formally equivalent. This equivalence has also
been stated without reference to the 2–COV model, as it has
been recalled in Section 3. The 2–GAU model allows providing
a novel interpretation of the PSVM scoring function. Devel-
oping the log–likelihood ratio of the 2–GAU model (12), and
recalling that µ = µS = µD , from (12) one gets:

logR = k − 1

2
(Φij − µ)TΛS (Φij − µ)

+
1

2
(Φij − µ)TΛD (Φij − µ)

= k +
1

2
(Φij − µ)T (ΛD −ΛS) (Φij − µ)

= k̃ + ΦT
ijc +

1

2
ΦT

ijHΦij , (25)

where H = ΛD − ΛS , c = −Hµ, and k̃ collects all the
terms that do not depend on the i–vector pair Φij . Comparing
(25) with (8) we can observe that the two expression are for-
mally equivalent. We can thus interpret the PSVM framework
as a discriminative approach for estimating the difference of the
precision matrices ΛD −ΛS , and the (shared) mean of the dis-
tributions of our 2–GAU model.

6. Two–Heavy–Tailed Model
The simplest PLDA model assumes a Gaussian distribution for
the prior parameters. However, in [3] it has been shown that ML
estimation of the PLDA parameters under a Gaussian assump-
tion fails to produce accurate models for i-vectors that are not
length–normalized. Thus, Heavy–Tailed distributions for the
model priors have been proposed leading to the Heavy-Tailed
PLDA model (HT–PLDA). A similar assumption for the prior
distribution can be used to model i–vector pairs leading to the
Two–Heavy–Tailed distribution model. In particular, for each
i–vector pair, we define a hidden variable νij that is assumed to
be an i.i.d. random variable generated from a Gamma distribu-
tion depending on the pair label as:

νij,S ∼ Γ
(aS

2
,
aS
2

)
νij,D ∼ Γ

(aD
2
,
aD
2

)
, (26)

where S, D denote the “same speaker” and “different speaker”
hypothesis, and aS , aD are the parameters of the two Gamma
distributions, respectively. We also assume that the pairs are
i.i.d. distributed, given the pair label and the hidden variables,
according to the Gaussian distributions:

ΦS
ij |νij|S ∼ N (µS ,Λ

−1
S ν−1

ij|S)

ΦD
ij |νij|D ∼ N (µD,Λ

−1
D ν−1

ij|D) . (27)

Integrating over the hidden variables, it follows that the pairs
are distributed according to the Student’s t–distributions [13]:

ΦS
ij ∼ T (µS ,ΛS , aS) ΦD

ij ∼ T (µD,Λ
−1
D , aD) , (28)

with aS and aD degrees of freedom, respectively. The likeli-
hood ratio of an i–vector pair can then be computed as the ratio
between two t–distributions. It is worth noting that, in contrast
with the other models, the separation surfaces produced by the
2–HT model are not constrained to be quadratic, but can have
more general shapes.

6.1. Relation with the HT–PLDA model

The 2–HT model has many similarities with the HT–PLDA
model. In particular, we can show that the HT–PLDA model,
with some additional constraints, formally corresponds to a
slight simplification of the 2-HT model in (27). The HT–PLDA
model assumes, as in (1), that an i–vector is generated according
to:

φi = m + Uy + Vxi + ε̄i , (29)

but with these distributions:

y|u1 ∼ N (0, Iu−1
1 ) , u1 ∼ Γ(

a1
2
,
a1
2

)

xi|u2i ∼ N (0, Iu−1
2i ) , u2 ∼ Γ(

a2
2
,
a2
2

)

ε̄i|νi ∼ N (0, Λ̄
−1
ν−1
i ) , νi ∼ Γ(

b

2
,
b

2
) , (30)

where u1, u2i and νi are independently distributed hidden vari-
ables, and a1, a2 and b are the parameters of the prior distribu-
tions for u1, u2i and νi, respectively.

We can simplify the HT–PLDA model assuming that, for
every speaker, νi = u1 and u2i = u1 regardless of the utter-
ance, with u ∼ Γ(a

2
, a
2
). This simplification violates the inde-

pendence assumptions of PLDA because it makes the priors for
the speaker and channel factors dependent. However, it allows
us to integrate over the hidden variables and, since the terms Vx

and Λ̄
−1 have the same precision matrix scaling factor, they can

be merged into a single term εi with Λ−1 = Λ̄
−1

+ VVT ,
leading to:

φi = m + Uy + εi , (31)

where

y ∼ T (0, I, a) εi ∼ T (0,Λ−1, a) (32)

In analogy with (11), the distributions for “same speaker” and
“different speaker” i–vector pairs can be written as:

ΦS
ij ∼ T (µS ,Λ

−1
S , a) ΦD

ij ∼ T (µD,Λ
−1
D , a) , (33)

where ΛS and ΛD are given by (24).
Comparing (33) with (27) it easy verifying that the HT–PLDA
model is formally equivalent to the proposed approach if we
assume that νij,S = νij,D = νij ∼ Γ(a

2
, a
2
) in (27).

Without the proposed simplification, the HT–PLDA model
cannot be transformed in the 2–HT model (28), and the speaker
verification log–likelihood ratio cannot be computed in closed
form, thus making the HT–PLDA model much more expensive
in testing than our proposed 2–HT model.

6.2. 2–HT model training

In contrast with the 2–GAU approach, the estimation of the 2–
HT parameters does not have a closed form solution, thus we
resort to Expectation-Maximization estimation.
We will illustrate only the estimation of the model parame-
ters for the “same speaker” distribution because the same ap-
proach can be used for estimating the parameters of the “differ-
ent speaker” class.

6.2.1. Expectation step

The expectation step requires computing the posterior distribu-
tion for the νij,S hidden variables, given the observations. Since



277

the Gamma distribution is a conjugate prior for the scaling fac-
tor of the precision matrix of the i–vector conditional distribu-
tion, the posterior for νij,S is again a Gamma distribution with
parameters:

νij,S,Φij ∼ Γ

(
aS + 2d

2
,
aS + ΦT

ijΛSΦij

2

)
, (34)

where d is the i–vector dimension (2d is, thus, the i–vector pair
dimension). The expectations necessary for the M–step are:

E [νij,S ] =
aS + 2d

aS + ΦT
ijΛSΦij

E [log νij,S ] = ψ(
aS + 2d

2
)− log

aS + ΦT
ijΛSΦij

2
(35)

where ψ(·) denotes the digamma function.

6.2.2. Maximization step

The objective to be maximized is:∑
i,j

δSijE [logP (Φij , νij,S)] , (36)

which corresponds to solving the problem:

argmax
ΛS ,aS

∑
i,j

δSij

[
1

2
log |ΛS | −

1

2
E [νij,S ] ΦT

ijΛSΦij

− log Γ
(aS

2

)
+
aS
2

log
aS
2

+(aS
2
− 1
)
E [log νij,S ]− aS

2
E [νij,S ]

]
.

(37)

The solution for ΛS is given by:

Λ−1
S =

1

NS

∑
i,j

δSijE [νij,S ] ΦijΦ
T
ij , (38)

The parameter aS is obtained as the solution of the equation:

log
aS
2
−ψ

(aS
2

)
=

1

NS

∑
ij

δSij (E [νij,S ]− E [log νij,S ]− 1)

(39)
which has no closed–form solution, thus it is solved numerically
by using a line search algorithm.

Computing Λ−1
S by means of (38) is very expensive be-

cause a single EM iteration has O(N2d2) computational com-
plexity. However, (38) can be rewritten, in matrix form, as:

Λ−1
S =

1

NS
Θ(∆S ◦N)ΘT , (40)

where Θ is the matrix of all i–vectors Θ = [φ1, . . . ,φN ], ∆S

is the matrix defined as ∆Si,j = δSij , N is matrix with ele-
ments Nij = E[νij,S ] and ◦ denotes the Hadamard product,
so that the complexity of an EM iteration reduces to O(N2d).
Although the training time for the 2–HT model remains much
higher compared to the 2–GAU training time, the scoring com-
plexity of the 2–HT model is comparable to the one the Gaus-
sian models (and PSVM), because given the parameters, the dis-
tributions in (28), and the corresponding likelihood ratios can be
easily computed.

Directly modeling the distributions of the “same speaker”
and “different speaker” i–vector pairs allows, thus, an easier

extension of the model to more complex distributions without
incurring in expensive or even intractable formulations. Dif-
ferent models can be devised to better capture the underlying
distribution of the i–vector pairs, such as Mixture Models in-
stead of single Gaussian or t–distributions. The effectiveness
of these approaches, however, has not yet been experimentally
validated.

7. Model comparison
An illustration of the similarities and differences of the models
considered in this paper is summarized in Figures 1 ((a)–(i)).
The figures show the contour levels1 of the scoring functions
of the 2–COV, 2–GAU, PSVM, and 2–HT models, respectively.
Darker areas correspond to higher scores for the “same class”
hypothesis. The dots represent training pairs of a set of data
randomly generated from Heavy–Tailed distributions. The fig-
ures do not show the data, but pairs of data, identified by their
associated label: white for “same class” and black for “differ-
ent class”. The PLDA model is equivalent to the 2–COV model
because no subspace dimension reduction is possible for uni–
dimensional data, thus it is not represented in these figures.

The contour plots clearly show that different separation re-
gions are used by the classifiers. In particular, the 2–COV, 2–
GAU, and PSVM classifiers have all quadratic shape separation
regions, but they differ due to the different objective function
that is optimized for each model. The shape of the separation
regions for 2-HT model is not quadratic, and has, for this ex-
ample, a sharper distribution of its log–likelihood ratio scores.

8. Experiments
The models have been tested on the female part of the tel-tel ex-
tended NIST 2010 evaluation trials [10] using a front–end based
on 60-dimensional cepstral features. In particular, the i-vector
extractor is based on a 2048-component full covariance gender-
independent UBM, and on a gender-dependent T matrix. The
UBM was trained on NIST SRE 2004, 2005 and 2006 data. The
i–vector extractor has been trained from the same data, and in
addition with Switchboard II Phases 2 and 3, Switchboard Cel-
lular Parts 1 and 2, and Fisher datasets. For these experiments
the dimension of the i-vectors was set to d = 400. All classifiers
were trained with the complete set of data, excluding the Fisher
dataset. The Gaussian PLDA system was implemented accord-
ing to the framework illustrated in [3]. Since the 2–GAU and
2–HT models do not explicitly allow constraining the speaker
space, Linear Discriminant Analysis (LDA) was used as an al-
ternative approach for reducing the i–vector dimensions. The
PLDA, 2–COV, and 2–GAU systems were trained with length–
normalized i–vectors. Length–normalization was applied after
mean removal and whitening of the i–vector covariance matrix.
For the PLDA with low dimensional speaker subspace, covari-
ance whitening was replaced by Within Class Covariance Nor-
malization (WCCN)2. For the PSVM system, the i–vector were
whitened by WCCN, but no length–normalization was applied,
as we did in the experiments illustrated in[7]. Finally, no nor-
malization was applied for the 2–HT system.

1A strictly monotone non–linear transformation of the scores has
been performed to enhance the image quality

2The discussion of the appropriateness of the use of WCCN, rather
than covariance whitening, as the i–vector pre-processing for PLDA
models with low–dimensional speaker subspace compared to the noise
space, is beyond the scope of this paper.
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Figure 1: Contour plots of the scoring functions of different classifiers for a set of pairs of uni–dimensional data. Data were randomly
generated from Heavy–Tailed distributions. The first set of images refers to easily separable classes, whereas the second set refers
to more noisy data. The “same class” and “different class” pairs are represented by white and black dots, respectively. Darker areas
correspond to higher scores for the “same class” hypothesis.
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Table 1: Comparison of the performance of PLDA, PSVM, 2–
COV, 2–GAU, and 2–HT models on the female part of the tel-tel
extended NIST 2010 evaluation trials. Systems marked by “*”
pre–process i–vectors by using WCCN rather than covariance
whitening. If relevant, the dimension of speaker or LDA sub-
space is given in parentheses.

System Length % min min
Norm. EER DCF08 DCF10

2–COV Y 2.26 0.123 0.468
2–GAU Y 2.32 0.121 0.451
PLDA* (U 120) Y 2.00 0.100 0.339
PLDA (U 120) Y 2.02 0.104 0.347
2–COV (LDA 120) Y 2.08 0.105 0.347
2–GAU (LDA 120) Y 2.08 0.105 0.341
PSVM* N 2.39 0.110 0.320
2–HT (LDA 120) N 2.27 0.109 0.328

Table 1 summarizes the performance of the evaluated mod-
els on the female part of the extended telephone condition in
the NIST 2010 evaluation. The recognition accuracy is given in
terms of Equal Error Rate (EER) and Minimum Detection Cost
Functions defined by NIST for the 2008 (minDCF08) and 2010
(minDCF10) evaluations [10]. The scores were not normal-
ized. The first two lines compare the performance of the 2–GAU
model with the 2–COV model, corresponding to a PLDA model
without speaker subspace dimensionality reduction. The two
models give similar results, thus the 2–GAU model assumption
about i–vector pair independence does not have significant im-
pact on the performance. Constraining the speaker subspace by
using a low–rank U or LDA shows significant improvement of
the performance for both systems. Again, the 2–GAU classifier
performs as well as the PLDA or 2–COV systems. Although not
shown in the Table, these systems perform much worse without
i–vector length–normalization. On the contrary, as shown in
the last two rows, the PSVM and the 2–HT classifiers are able
to achieve similar results without length–normalization.

9. Conclusions
A simple generative Gaussian model has been proposed using as
its observations ivectors pairs rather than the i-vectors. We have
highlighted the relations of this classifier with other pairwise
classifiers, and we have shown that this simple model is able
to achieve results that are comparable to the others approaches.
The extension of this approach to the Two–Heavy–Tailed model
has not given so far appreciable advantages, although it does not
require i–vector pre–processing except LDA. Further develop-
ments are possible for the proposed approach, such as using
Mixture Models, which are currently under test.
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[5] N. Brümmer and E. de Villiers, “The speaker partitioning
problem,” in Proc. Odyssey 2010, pp. 194–201, 2010.

[6] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker
verification using adapted Gaussian Mixture Models,”
Digital Signal Processing, vol. 10, no. 1-3, pp. 31–44,
2000.
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