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Abstract 

This paper presents a Speech Technology Center (STC) system 

submitted to the NIST i-vector Challenge. The system includes 

different subsystems based on PLDA, LDA-SVM, RBM-PLDA 

and DBN-PLDA. We propose an original iterative scheme for 

clustering the NIST i-vector Challenge devset. We also introduce 

the RBM-PLDA subsystem in the NIST i-vector Challenge. 

Experiments performed on the progress dataset demonstrate that 

although the RBM-PLDA and DBN-PLDA subsystems are 

inferior to the other subsystems in terms of absolute minDCF, in 

the fusion they provide a substantial gain into the efficiency of 

the resulting STC system, reaching 0.239 at the minDCF point. 

Index Terms: NIST, i-vector, PLDA, SVM, RBM. 

1. Introduction 

The NIST i-vector Challenge [1], like the earlier evaluations, 

deals with the task of speaker detection. The aim of this task is to 

determine whether or not the target speaker is speaking in a 

given segment of dialog speech. At the same time, the current 

evaluation differs from the previous evaluations in three 

important aspects: 

 Feedback is possible, which means that each time after 

results are submitted, the participants are informed 

about the minDCF of their systems. 

 All the data allowed for training are not labeled, i.e. 

they have no ID labels for gender, channel, language, 

etc. 

 All input data are represented as i-vectors obtained 

using an i-vector extractor unknown to the participants. 

The first condition allows participants to endlessly improve 

their systems (tune their parameters, thresholds, etc), which 

shifts the accent of the current research from theoretical novelty 

of methods towards sophisticated empirical work. 

The second condition forces researchers to deal with the 

problem of clustering the training database of the NIST i-vector 

Challenge as much as with solving the main task: speaker 

detection. This is due to the fact that today the most successful 

method is the generative PLDA model in i-vector space [2-4]. 

Training a PLDA model requires a labeled training database. 

The third of the three conditions is caused by the organizers’ 

desire to interest the Machine Learning community in the 

speaker detection task. This means that all NIST participants are 

placed in equal conditions with regard to the ability to generate i-

vectors.  

Studies [5-7] show that the use of models like Deep Neural 

Networks (DNN) and Boltzmann Machines (BM), which were 

very successful for Automatic Speech Recognition (ASR), fails 

in the space of i-vectors for the speaker recognition task. These 

models clearly perform worse than classical PLDA. In our 

opinion, the use of acoustic features as input would give stimulus 

to those participants who work on feature extraction on the basis 

of new promising approaches, such as pseudo-i-vector extraction 

from the sets of MFCC features using DNNs [8-10]. 

To sum up, it is our belief that under the conditions of the 

current NIST i-vector Challenge, the most successful strategy is 

using the classic PLDA model, assuming the task of efficient 

training of the PLDA model on an unlabeled training dataset can 

be solved, which means searching for reliable methods of 

database labeling. 

The aim of this paper is to provide a detailed description of 

the text-independent speaker verification system developed at 

Speech Technology Center Ltd for participation in the NIST i-

vector Challenge. 

The NIST i-vector Challenge organizers provided the devset 

as a set of telephone channel i-vectors of both genders, uniform 

in terms of channel and language, so for our first PLDA 

subsystem we used only one gender-independent Gaussian 

PLDA analyzer, instead of using, for instance, a mixture of 

PLDA analyzers [11] in order to capture a more complex 

structure in data. 

The second subsystem that could be useful in the NIST i-

vector Challenge was an SVM-based subsystem. For the SVM 

subsystem the problems of an unlabeled training dataset are not 

so critical, because it can use the whole development set, which 

according to the NIST conditions does not overlap with the 

evaluation set. 

Our work has two key aspects that are marked by their 

novelty. The first deals with the problem of clustering and the 

search for the true labeling of the NIST i-vector Challenge 

devset. We propose using a version of agglomerative clustering 

in i-vector space as a clustering algorithm. The second is our 

third subsystem, in which we tested the use of Boltzmann 

Machines for the NIST i-vector Challenge. 

The paper is organized as follows. A detailed description of 

the STC speaker verification system is given in Section 2. 

Section 3 shows how we performed the clustering of the NIST 

development set. Section 4 describes our final experiments on 

the test dataset of the NIST i-vector Challenge. Section 5 

concludes the paper. 

http://www.ifmo.ru/eng/


232

 

 

2. Description of the STC system 

In this section we provide a description of all speaker 

verification subsystems used in our work. 

2.1. Baseline cosine i-vector scoring 

State-of-the-art speaker verification systems are systems working 

in the i-vector space. Each such vector is extracted using total 

variability factor analysis (TV-FA) [12] from a whole speaker 

utterance and is a good representation of the speaker for any 

subsequent classifiers. The TV-FA method makes it possible to 

obtain such a representation in the following way. In it the mean 

supervector 

iT  0 ,     (1) 

where 
0  is the mean supervector, T  is the matrix that defines 

the Total Variability subspace, and i is the low dimension vector 

having the prior distribution N(0, I). 

The baseline system provided by the organizers of the NIST 

i-vector Challenge uses cosine evaluation, which is standard in i-

vector technology: 
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where 
testi  is the i-vector of the test utterance, 

enroli  is the i-vector 

of the target speaker from the evaluation dataset. Since 

according to the conditions of the competition each target 

speaker has five model i-vectors, in the baseline system the 
enroli  

vector is obtained by simply averaging those five vectors. We 

should note that all i-vectors of the test set must be whitened. 

2.2. PLDA subsystem 

Among state-of-the-art speaker verification systems, leading 

positions are occupied by PLDA systems [3,4,13] working in the 

i-vector space. In our work we used a PLDA model both for 

verification and for the clustering task. In the case of the PLDA 

verification system we used the following model: 

rrr UxsVymsi  )()( 0
,   (3) 

where )(sir
 is an F-dimensitional i-vector from set },...,{ 1 Rii , 

obtained from R utterances belonging to speaker s, and y, x, 

),0(  Nr  are hidden speaker factors, channel factors and 

Gaussian noise, respectively. 

In this paper, we assume the Gaussian nature of the priors of 

these variables. In (3) the model parameters are an [F × 1] mean 

vector 
0m ; a matrix V of dimension [F × N1] whose columns are 

referred to as eigenvoices; a matrix U of dimension [F × N2] 

whose columns are referred to as eigenchannels; and [F × F] 

diag-covariance matrix of the noise covariance matrix Σ. In the 

case of the PLDA clustering system, we used model 

rr sVymsi  )()( 0
,   (4) 

without a channel term and full-covariance matrix   of the 

noise. This choice of models will be explained in detail in 

Section 3.5. 

To obtain PLDA evaluations we used normalization of i-

vectors, as proposed in [4]. The PLDA model makes it possible 

to calculate )|( tariP , )|( impiP  – the marginal likelihood for 

target and impostor hypotheses and, correspondingly, the PLDA 

score: 

)|()|(
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Score
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 .   (5) 

In this paper we also obtained the target speaker i-vector 

enrolli  for the PLDA method using simple averaging of the given 

five model i-vectors. For the PLDA subsystem we used i-vector 

normalization proposed in [4]. 

2.3. LDA-SVM subsystem 

It is well-known that using a discriminative SVM method in 

combination with another generative method, for example 

PLDA, produces a highly efficient speaker verification system 

[14,15]. 

In our verification system SVM was applied to the i-vectors 

after LDA projection (l-vectors). The distance from a test l-

vector 
testl  to the SVM hyperplane of the a-th speaker )(a

enroll  is 

given below: 

0

1

)(,   
L

=k

ktestkk

a

enrolltest )l,K(ly=)(lf ,  (6) 

where 
kl  are the i-vectors after LDA (the L support vectors 

obtained by training the speaker’s SVM hyperplane), 
ky  are the 

target values of two classes: {+1} for the Target class and {-1} 

for the Imposter class for the given speaker. A linear kernel 

),( ktest llK was used.  

For the NIST i-vector Challenge our SVM system had three 

specific features: 

 SVM was applied in the space of LDA projections of i-

vectors. 

 We used its own devset clustering algorithm for the 

SVM subsystem, in contrast to the PLDA and RBM-

PLDA (see Section 2.4) subsystems, which yielded a 

labeled data set for LDA matrix training. 

 S-normalization of the resulting SVM scores was used. 

In this paper we used s-normalization [16] for SVM subsystem 

scores. In our case, if the enrollment is represented by R=5 mean 

l-vectors, the s-normalized score is calculated using the Z-

normalized distance ),( )(R

enrolltest

normZ lf   obtained beforehand 

from the test l-vector testl
 to the multi-session SVM hyperplane 

)(R

enroll  and the z-normalized distance ),( testenroll

normZ lf   

from the mean l-vector of the enrollment 
enrolll  to the test SVM 

hyperplane : 

 ),(),(
2

1 )(

testenroll

normZR

enrolltest

normZ lflfscore   ,  (7) 

where the target speaker l-vector 
enrolll  was obtained using 

simple averaging of the given five model l-vectors, and the target 

test
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speaker hyperplane )(R

enroll  was obtained using the imposter set 

and the target speaker l-vector 
enrolll . The whole development set 

was used as an imposter set for the SVM and as the s-

normalization set. This was done because the development and 

evaluation sets have non-overlapping speakers. 

It is known that an SVM system is typically weaker than 

PLDA, but under the conditions of incomplete compensation of 

automatic labeling noise for the PLDA system, it can be 

expected that SVM, which does not need a labeled imposter set, 

will have an advantage. That was what we observed in our final 

experiments. 

As a result of our submission on the NIST i-vector Challenge 

progress set, our SVM subsystem obtained minDCF = 0.286. 

2.4. RBM-PLDA subsystem 

The recent success of Deep Neural Networks [17] for Automatic 

Speech Recognition prompted the speaker recognition 

community to try to use Restricted Boltzmann Machines (RBM) 

for pseudo i-vector extraction [8-10]. 

We also decided to test this technology for the NIST i-vector 

Challenge. Figure 1 shows the diagram of our RBM for pseudo 

i-vector (b-vector) extractor. We will use this term further on, 

even though, strictly speaking, we are dealing with non-linear 

RBM transformation of the TV i-vector. We will call b-vector a 

vector of log posterior probabilities of the softmax layer.  

 

 
Figure 1. Diagram of the supervized learning of the proposed 

RBM for pseudo-i-vector extractor. 

 

The visible input layer consists of       Gaussian units. 

The binary hidden layer consists of H units. The softmax layer 

consists of S=1745 units (the number of target speakers).      

and      are the weights of the corresponding links. As output 

we use posteriors of the softmax layer: 

        
   {  }

∑     {  } 
 

,   (8) 

where the full input for the softmax unit is      
   

 

∑    
   

  
 
 , and    are the states of the hidden units [18].  

We did not use discriminative “fine-tuning” phase for 

training our extractor, limiting ourselves to generative 

pretraining of the extractor. This pretraining phase is the 

standard procedure of generative RBM training using contrastive 

divergence.  

Following [18,19] we create a concatenated training set 

X {     }   
  , where    is the k-th input i-vector out of K 

development set vectors that were earlier clustered in S = 1745 

cluster speakers by means of PLDA (see Section 3.5.). The 

binary vector    that corresponds to the s-th target speaker 

contains zeros, except for the s-th component, which equals 1. 

Thus, we implement a supervised scheme for generative RBM 

training, by feeding both the i-vectors and the labels of the target 

speakers to the hybrid binary Gaussian input layer X. Such an 

RBM is parametrized by joint distribution of hidden and 

observed variables: 

         
 

 
            (9) 

where the energy function E is: 
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and Z is the partition function,   
   

 ,          
   

 are the biases 

for the visible, hidden and softmax layers, respectively. Because 

of i-vector normalization, we suppose that standard deviations 

for the Gaussian visible layer      . The posteriors are defined 

in the following way: 

                [     
   

 ∑    
   

  
 
 ], (11) 

where sigm denotes the sigmoid function. This training scheme 

allows us to model input data structure taking into account target 

speaker labels. In models with a hidden layer, effects on visible 

variables are highly correlated, so we can expect that the outputs 

of our softmax layer will be highly correlated as well. For this 

reason we apply PCA to the log of the 1745-dimensional vector 

of the softmax layer output, in order to obtain a pseudo i-vector 

with the dimension    , which we will refer to as b-vector.  

Our experiments demonstrated that the best efficiency of the 

RBM-PLDA subsystem can be obtained when          . 

After obtaining the pseudo i-vectors of 1745 speakers from the 

labeled part of the NIST i-vector Challenge development set (see 

Section 3.5), we used them for maximum-likelihood training of 

the standard PLDA model [2].  For the RBM b-vector PLDA 

(RBM-PLDA) subsystem we took a Gaussian PLDA model in 

the form (4), where the number of eigenvoices was        . 

However, in contrast to the TV i-vector PLDA subsystem, where 

the noise covariance matrix   had a diagonal form, here it has 

the full covariance form. 

As a result of our submission on the NIST i-vector Challenge 

progress set, our RBM-PLDA system obtained minDCF = 0.293. 

2.5. Subsystems fusion 

The fusion score over all subsystems was based on the linear 

model. Consequently, for our three subsystems we had: 





3

1k

kkk scorewCScore ,   (12) 

where the index k ranges over the set {LDA-SVM, PLDA, 

RBM-PLDA},        is the output value of the k-th subsystem, 

kw  is the weight coefficient for the k-th subsystem, Score  is 

the final score of the subsystems fusion. For PLDA and RBM-
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PLDA subsystems we used  -normalizing coefficients 
PLDAC  

and 
PLDARBMC 

 which were calculated on the clustered 

development set as follows: 

1 PLDAPLDAC   ,   (13)
 
 

1

  PLDARBMPLDARBMC  ,  
 
(14) 

where 
PLDA  and 

PLDARBM   are the standard deviations of 

imposter scores of the PLDA and RBM-PLDA methods 

respectively. For LDA-SVM subsystem the  -normalization 

coefficient was equal to 1 because of the use of s-norm (see 

Section 2.3): 

11  

SVMSVMC  .    (15) 

Weight coefficients 
PLDAw , 

PLDARBMw 
 and 

SVMLDAw 
 were 

defined up to the second digit after the decimal by several 

submissions with the aim of minimizing the minDCF value of 

fused system. 

2.6. Quality measure function 

It is well-known that there is a dependence between the value of 

the minDCF threshold of a verification system and the duration 

of the speech segments that were used for extracting the enroll 

and test i-vectors. Using a quality measure function (QMF) [20] 

makes it possible to compensate the shift in minDCF thresholds 

for different speech segment durations, which improves the 

minDCF value of a verification system. 

In the NIST i-vector Challenge we deal with 5 session 

speaker models. The total duration of all 5 model segments on 

average is much larger than the duration of the test segments. For 

this reason we ignored the dependence between the threshold 

shift and the durations of enroll fragrments and focused on 

estimating the dependence of the minDCF threshold shift on the 

test segment durations. QMF was examined in the PLDA 

verification system. 

We used the result of clustering the devset data, as will be 

demonstrated in Section 3.5, and divided it into two subsets. One 

subset consisting of 1000 speaker classes was used for PLDA 

training. The other subset was used for testing and estimating the 

minDCF threshold values for different durations of test speech 

segments. In our experiments we also used 5 session speaker 

models (selected from the second subset of the development set) 

for making estimates at the minDCF point. 

According to the competition conditions, segment durations 

followed a log normal distribution. We examined several points 

of test segment duration values around the maximum of the log 

normal distribution (Figure 2). 

Figure 3 shows the dependence       of the minDCF 

threshold on the log values of test utterance durations. We 

applied linear approximation for describing such a dependence: 

                        .         (16) 

This allowed us to use (17) as the QMF function for PLDA: 

                         .         (17) 

In Formulas (16) and (17) t is the duration of the test 

segment in seconds. Using the approximation (16) we also 

calculated the expected value of the parameter             , 

which was further specified by means of submissions on the 

progress set of the NIST i-vector Challenge. 

In our experiments we discovered that the function log     in 

(17) can be easily replaced with √ . Then the value       
       provides the same minDCF on the NIST i-vector 

Challenge progress set as in the case of the function log    . 

 

 
Figure 2. Log normal distribution of speech segment durations in 

the development set and the points for QMF calculation. 

 

 
Figure 3. Linear approximation of the dependence of the 

minDCF threshold value       on the log of the test utterance 

duration. 

 

Thus we used the function √  as QMF: 

                  √ ,   (18) 

                        √ ,  (19) 

                          √ . (20) 

The coefficients           and          were further 

specified by submissions as 6.1404 and 0.14, respectively. 
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3. The clustering problem 

This section describes the clustering algorithms that we used in 

our subsystems. Description of the experiments performed on an 

in-House dataset is given. 

3.1. In-House data 

We assumed that the properties we revealed on the in-House data 

could be generalized for the i-vector space from the NIST i-

vector challenge data. Our evaluation dataset consists of 600-

dimensional i-vectors (as in the data for NIST i-vector challenge) 

created by our gender independent T-extractor based on the 

previous NIST SREs. These vectors were obtained from 

recordings of 500 speakers in the telephone channel, half of 

whom were men and half women. Each speaker has several 

sessions. The minimum number of sessions per speaker is one, 

the maximum is 50. The total number of  i-vectors in the 

database is 5213. 

3.2. Clustering error metrics 

Let us introduce definitions that are relevant for the task of 

effective PLDA training on an unlabeled dataset. 

1. The i-vector of the speaker S is considered to be 

clustered correctly if it belongs to a cluster in which 

the majority of vectors belong to the speaker S. 

2. If there is more than one cluster in which there are 

vectors belonging to the speaker S, only vectors 

belonging to the cluster with most of i-vectors of the 

speaker S are considered to be clustered correctly. 

3. In case such clusters have an equal number of vectors 

of the speaker S, we consider vectors of only one 

cluster to be clustered correctly. 

Let us consider the value of clustering purity   which 

characterizes the portion of correctly clustered i-vectors in the 

general dataset: 

     
     

 
 [%],  (21) 

where       is the number of correctly clustered vectors;   is 

the total number of vectors in the dataset. 

Let us consider two clustering errors that influence training 

quality of the PLDA model. 

        is the error of assigning i-vectors of different 

speakers to one cluster. 

        is the error of separating the i-vector set of one 

speaker into several clusters. 

Let us define a “clean” speaker cluster as a cluster which 

contains only the i-vectors of one speaker. Let us define a 

“contaminated” cluster as a cluster which contains i-vectors of 

different speakers (even only one i-vector of a different speaker). 

Then the error of assigning i-vectors of different speakers to one 

cluster equals: 

           
    

    
    ,   (22) 

where      is the number of contaminated clusters after 

performing the clustering;      is the number of found clusters. 

The error of separating the i-vector set of one speaker into 

several clusters equals: 

           
      

   

    
 [%],   (23) 

where       
    is the number of erroneous clean speaker clusters 

that appeared as a result of dividing the vector set of one speaker 

into several clusters. 

Let us define the total clustering error as: 

                    .   (24) 

3.3. Clustering algorithm for the PLDA subsystems 

For automatic i-vector segmentation into speaker clusters we 

used our own modification of the classic Agglomerative 

Hierarchical Clustering (AHC) algorithm [21]. AHC has been 

widely used as a speaker clustering strategy in many speaker 

diarization systems [22-24]. 

In order to perform i-vectors clustering, we need to solve the 

problem of choosing the similarity measure of  i-vectors based 

on the nature and specific characteristics of the i-vector space. 

From verification tasks it is well-known that: 

 First, the cosine metric [14] is a convenient 

comparison metric in the i-vector space that does not 

require training. 

 Second, the model of averaging normalized i-vectors 

(searching for the speaker center [25,26]) is considered 

the most efficient multi-session model. 

It follows that for initial clustering it is convenient to use the 

cos metric. After this initial clustering step, it makes sense to use 

the more efficient PLDA metric (5), which explicitly takes into 

account between-speaker and within-speaker covariance. This 

idea leads to an iterative clustering algorithm, which will be 

described in 3.2. Consequently, the similarity measure   of i-

vectors is defined as: 

                               (25) 

or 

                      .               (26) 

Our two-stage algorithm for speaker clustering in the i-vector 

space is given below.  

At the first stage, cluster search with the threshold    is 

performed. 

 

Algorithm 1 (Data,   ) 

Input data:  

Data[LxM] are the whitened and normalized i-vectors that need 

to be labeled (  is the i-vector dimension;   is the number of 

vectors),    is the threshold for including the vector   into a 

cluster with the center  : 

          – including   into the cluster with the center    

          – not including   into the cluster with the 

center    

Output data: 

 Cluster Data [LxM] are the clustered vectors; 

 Labels [1xM] are the clustering labels, Labels    
       , where n is the number of found clusters. 

Init:      
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while         

1. We randomly select one of the Data vectors as the 

center   
  of the current cluster   . 

Init:            

2. while       

2.1 Using the threshold    we collect vectors into 

   so as                
      ; 

2.2 We re-evaluate the normalized center of the 

current cluster 

   
    

 

 
∑   

 
   ; (K is the number of vectors 

in the cluster   ) 

  
     

  
   

‖  
   ‖

. 

2.3 We calculate             
    

    ; 

2.4      ; 

end 

3. We move the vectors of the cluster    from the Data 

set to the clustered set Cluster Data and add the label 

of the new cluster for these vectors to Labels; 

4.      ; 

end 

 

Our first stage of the clustering is in fact similar to the 

algorithm proposed in [27, 28], which implemented an extension 

of the standard Mean Shift (MS) algorithm [29] to MS based on 

the cos distance: 

                   .  (27) 

At the second stage we combine the obtained clusters with 

the threshold   . The cluster with the center    and the cluster 

with the center    have to be combined if the following condition 

is met: 

   (     )    .    (28) 

At this stage we used simple Repeat-Until loop algorithm. 

This stage is necessary to compensate for the error of 

dividing a set of vectors for one speaker into several clusters. 

3.4. Clustering quality 

In this section we examine the dependence between clustering 

quality and its parameters, using the cos metric as an example. 

In our in-House experiments we obtained the dependence   

on the threshold values    and   , which is illustrated in 

Figure 4. The maximum value of   obtained on the in-House 

database using the proposed algorithm is obtained with    = 0.27 

and        , and equals 85%. 

Figure 5 demonstrates the dependence of the total error 

       on the value of the threshold    , when    = 0.27. This 

condition maximizes  . The figure shows that when the 

threshold value is 0.2 <    < 0.3 the total error reaches the 

minimum value. 

The condition of not using the second Bottom-Up stage is the 

condition     . As can be seen from Figure 5, the presence of 

the minimum        forces us to use this second clustering 

stage. We also confirmed these conclusions after making several 

submissions on the NIST i-vector challenge progress set. 

 

 
Figure 4. The dependence of the clustering purity   on the value 

of the thresholds    ,and    

 

Besides, it follows from Figures 4 and 5 that it is sufficient to 

use the condition         in order to achieve the optimum both 

for        and for Q. 

 

 
Figure 5. The dependence of the error        on the value of the  

 threshold   . 

 

We would like to note that the experiments performed on an 

in-House data allowed us to formulate our clustering strategy. 

But the selection of the thresholds    and    for the NIST i-

vector challenge devset clustering was performed experimentally 

by means of several submissions on the NIST i-vector Challenge 

progress set. 

3.5. PLDA clustering 

As mentioned above, in our work we used both stages of our 

clustering algorithm, with the cos metric and with the PLDA 

metric. Figure 6 shows the iterative scheme that we used for 

clustering the NIST i-vector Challenge devset.  

Before using this scheme, the NIST i-vector Challenge  

devset was preprocessed to construct the            . To do that, 
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we selected only those i-vectors that were produced from devset 

segments longer than 20 seconds. 

At the initialization step of the PLDA clustering (“COS 

Clustering” block in Figure 6) we applied our clustering 

algorithm with the cos metric to the             16 times, with 

16 random clustering initializations. The thresholds for the two 

stages         = 0.29 were found by several submissions. As a 

result of 16 passes we obtained 16 sets of speaker clusters. The 

intersection of these 16 sets gave us a raw set of clusters. This 

strategy allowed us to lower the dependence on the random 

choice of the initial point of our clustering algorithm and to make 

the raw set more robust. This raw set was then post-processed in 

the following way. We selected from it only the speaker clusters 

that contained no less than 2 and no more than 50 i-vectors, thus 

obtaining            . As demonstrated by the results of our 

progress set submissions, such a choice of the interval of 

possible cluster sizes led to the minimum minDCF. It follows 

that the proposed cluster post-processing method results in 

clustering purity that provides efficient PLDA model training. 

The resulting set included 1542 speaker clusters containing 

8682 i-vectors. Then on this “cleaned”             set we trained 

the PLDA model for the verification task. The configuration of 

this model was as follows: the number of eigenvoices for the V-

matrix was N1 = 350, and the number of eigenchannels for the U-

matrix was N2 = 20. The noise matrix Σ was diagonal. As a result 

of the submission on the NIST i-vector Challenge progress set 

(not shown in Figure 6) this PLDA model achieved minDCF = 

0.293 without using any QMF function. The choice of such a 

model configuration for the verification task is motivated by high 

labeling noise which will inevitably be present at the 

initialization step. To make the PLDA model more robust it was 

necessary to use a diagonal covariance and minimize the number 

of eigenchannels. 

The first iteration of the PLDA clustering starts with ML 

training of the PLDA model on             (see Formula (4)) for 

the clustering task (see “PLDA Training” block in Figure 6). The 

configuration of this model was as follows: the number of 

eigenvoices N1 = 300, and the number of eigenchannels N2 = 0. 

The noise matrix Σ was full covariance. Interestingly, 

submissions on the NIST i-vector challenge progress set showed 

that choosing a full-covariance PLDA model for the clustering 

task turned out to be more efficient than choosing the diagonal 

one. 

 
Figure 6: The proposed scheme for clustering the NIST i-vector 

Challenge   devset. 

 

Then we used this model for clustering             and 

applied our clustering algorithm with the PLDA metric (see 

“PLDA Clustering” block in Figure 6). This process of PLDA 

re-clustering can be continued iteratively, as shown in Figure 6. 

We performed the first stage of our algorithm with    =      . 

However, the second stage was again performed with the cos 

metric (see Formula (28)) with the threshold    =     . These 

thresholds were found simply by several submissions. We should 

note that, in contrast to the initialization step, here we used not 

16 initial points but only one. This departure from the sensible 

strategy of the initialization step was motivated simply by saving 

our resources.  

After this PLDA clustering, we obtained new speaker 

clusters, so that their number reached 2492 clusters, and the total 

number of i-vectors in these clusters was 17186. After that we 

performed the same post-processing as at the initialization step, 

but with a different lower boundary. In this case we only used 

speaker clusters that contained no less than 3 and no more than 

50 i-vectors. In this way we obtained the            set 

consisting of 1745 speaker clusters with 13093 i-vectors. This 

            was used to train the PLDA model with the 

following verification configuration: N1 = 350, N2 = 55 , Σ was 

diagonal. In this PLDA model configuration, increasing the 

number of eigenchannels to N2 = 55 was motivated by the 

decrease in clustering noise, which enabled us to make the 

verification model more robust. The result of the submission on 

the NIST i-vector Challenge  progress set was that this PLDA 

model achieved minDCF = 0.288 without using any QMF 

function.  

In our work only the one iteration of the iterative PLDA 

clustering was performed. Increasing the number of iterations 

further made them difficult to control, which meant difficulty in 

finding the optimal model configuration at each iteration. 

3.6. Clustering for the SVM subsystem 

As mentioned before, the LDA-SVM subsystem used its own 

clustering algorithm. This algorithm is in fact the Bottom-Up 

stage of the classic AHC, but details of its implementation differ 

from the algorithm for the PLDA and RBM-PLDA subsystems 

described above. Let us call it Algorithm 2, in contrast to 

Aglorithm 1 from Sections 3.3 and 3.5. 

This overlap in Algorithms 1 and 2 is caused by the 

independent development of the subsystems by different authors 

of this paper during the whole time of the NIST i-vector 

Challenge. As demonstrated by the subsequent fusion of the 

subsystems, using different clustering algorithms increases 

fusing efficiency. Clustering was performed only on those data 

from the development set that had speech duration longer than 

10 seconds. This constraint was selected a priori based on the 

assumption that short recordings have very noisy i-vectors that 

are difficult to cluster. We will call this set            .  

The clustering algorithm consisted of the following steps: 

 

Algorithm 2 

1. Each i-vector was taken as a separate cluster. 

2. The two closest clusters were merged into one. The 

degree of similarity between clusters was defined as 

the value of the cos metric between the “averaged” 

i-vectors of these clusters. 

3. For the merged cluster, the “averaged” i-vector was 

recalculated as the average value of all i-vectors in 

this cluster. 

4. Steps 2-3 were repeated while the value of the cos 

metric was greater than the threshold 0.45. 

The threshold for stopping clustering at the cos metric value 

of 0.45 was based on the results of the submissions of the SVM-

LDA subsystem.  
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The result of this cos clustering was a set of about 3000 

speaker clusters containing over 25000 i-vectors. After that, just 

as in Section 3.5, a PLDA model was trained on this set. The 

configuration of this model was as follows: the number of 

eigenvoices was N1 = 300, the number of eigenchannels N2 = 0. 

However, in contrast to the clustering algorithm in Section 3.5, 

the noise matrix Σ was diagonal. In fact, we performed PLDA 

clustering that corresponded to only the first PLDA iteration of 

Section 3.5. 

Then we used this model for obtaining the scores (5) on 

           . We applied Algorithm 2 to these scores using the 

PLDA metric and the threshold 0.43. The threshold for stopping 

clustering at the PLDA metric value of 0.43 was based on the 

results of the submissions of the SVM-LDA subsystem. The 

final clusters were filtered by size (number of merged i-vectors): 

clusters smaller than 2 and larger than 30 were deleted. The final 

clustering was used for LDA module training. 

4. Final experiments 

The final experiments were conducted on the NIST i-vector 

Challenge data. The data available for the NIST i-vector 

Challenge are development data for training systems and a 

separate evaluation set for the Challenge. The speakers used in 

these datasets are disjoint. The i-vectors are obtained from 

spoken telephone speech in the NIST Speaker Recognition 

(SRE’s) from 2004 to 2012. The dimension of the i-vectors is 

600. Each vector has meta information, namely the amount of 

speech (in seconds) used to compute the i-vector. Segment 

durations were sampled from a log normal distribution with a 

mean of 39.58 seconds [1]. 

4.1. Development and evaluation sets of the NIST i-

vector Challenge 

Development data contain a very large number of unlabeled i-

vectors obtained from segments of telephone speech. These 

vectors are constructed from telephone recordings of various 

male and female speaker voices. 

Evaluation data consist of sets of 5 i-vectors defining the 

target speaker models and of single i-vectors representing test 

segments. The number of target speaker models is 1,306 

(comprising 6,530 i-vectors) and the number of test i-vectors 

9,634 (one i-vector each). 

4.2. Trials for submission and scoring 

The full set of trials for the Challenge consists of all possible 

pairs involving a target speaker model and a single i-vector test 

segment. Thus the total number of trials is 12,582,004.  

The trials are divided into two subsets: progress subset and 

evaluation subset. The progress subset comprises 40% of the 

trials and is used to monitor progress in the scoreboard. The 

remaining 60% of the trials forms the evaluation subset, and will 

be used to generate the official final scores determined at the end 

of the Challenge. 

4.3. The influence of QMF functions 

Even though, as described in Section 2.6, we explored QMF 

functions only for the PLDA verification subsystem, we decided 

to use the linear form of QMF (17) in all our other subsystems. 

Table 1 shows the minDCFs of different subsystems with 

and without QMF functions calculated with Formulas (18), (19) 

and (20). Table 1 shows that using QMF for the SVM subsystem 

leads to the highest reduction of minDCF by 10%. The same 

reduction for PLDA and RBM-PLDA is 2% and 1.5% 

respectively. The last row of the table shows the results for 

fusing all three subsystems. Using QMF functions for the 

resulting fused system results in minDCF = 0.241, which means 

a 7% minDCF reduction. 

It is obvious that for this NIST i-vector Challenge, taking 

into account the variations in test utterance duration is one of the 

key issues. 

 

Table 1. Experimental results for the NIST i-vector Challenge. 

Method of model 

estimation 

minDCF on progress set 

without QMF with QMF 

LDA-SVM subsystem 0.286 0.259 

PLDA subsystem 0.288 0.282 

RBM-PLDA subsystem 0.293 0.289 

Fusion 

(        =           

=          = 0.33) 
0.259 0.241 

 

Table 1 also demonstrates that regardless of QMF, the most 

efficient of our subsystems was SVM, which is somewhat at 

odds with the state-of-the-art in past NIST SRE’s, where 

discriminative SVM-based systems were outperformed by 

generative PLDA-based systems. However, in the NIST i-vector 

Challenge, a PLDA system requires a perfect labeling of the 

development set in order to outperform an SVM system, which 

must be very difficult to accomplish in practice. In contrast, an 

SVM system can use the whole devset as an imposter set without 

clustering. 

4.4. Fusing different configurations 

Tables 2-5 demonstrate the results of fusing all our subsystems 

in different combinations. All results are shown with QMF 

functions. Tables 2-4 show that the best combination of two 

subsystems is fusing LDA-SVM and RBM-PLDA, which 

achieves minDCF = 0.241. The least efficient combination was 

fusing two PLDA subsystems (see Table 3), with minDCF = 

0.263. We can explain it by two reasons. 

First, the combinations of different PLDA subsystems with 

LDA-SVM used two different clustering algorithms, while the 

combination of PLDA and RBM-PLDA used the same clustering 

result obtained by Algorithm 1 from Section 3.5. This resulted in 

the two PLDA subsystems being more correlated than in 

combination with the LDA-SVM subsystem, so that fusing them 

was less effective. 

Second, a comparison of Tables 2 and 4 shows that under 

equal clustering conditions fusing the RBM-PLDA and LDA-

SVM subsystems is more efficient. 

 



239

 

 

Table 2. Experimental results for LDA-SVM and PLDA 

subsystems. 

Method of model estimation 

minDCF on 

progress set 

with QMF 

LDA-SVM subsystem 0.259 

PLDA subsystem 0.282 

Fusion 

(        = 0.51,       = 0.49) 0.252 

 

Table 3. Experimental results for PLDA and RBM-PLDA 

subsystems 

Method of model estimation 

minDCF on 

progress set 

with QMF 

PLDA subsystem 0.282 

RBM-PLDA subsystem 0.289 

Fusion 

(      = 0.5,          = 0.5) 0.263 

 

We find the explanation for this is that the RBM classifier 

performs a nonlinear transformation. It enables the transition into 

a new b-vector space. PLDA subsystems trained in the b-space 

are decorrelated with subsystems trained in the i-vector space, 

which leads to successful fusion. It should be noted in Tables 2-4 

that by comparing the results of separate subsystems, we find 

that the RBM-PLDA subsystem based on i-vectors is inferior to 

both classic PLDA and SVM subsystems. This is in accordance 

with similar results obtained by [5-7], where methods using 

Boltzmann Machines in i-vector space are also outperformed by 

PLDA. 

 

Table 4. Experimental results for LDA-SVM and RBM-PLDA 

subsystems. 

Method of model estimation  

minDCF on 

progress set 

with QMF 

LDA-SVM subsystem 0.259 

RBM-PLDA subsystem 0.289 

Fusion 

(         = 0.51,           = 0.49) 0.241 

 

We also tried to include a second hidden layer to our RBM-

PLDA model (referred as DBN-PLDA), but we observed that 

adding another hidden layer did not yield any substantial 

reduction at the minDCF point. Table 5 includes our best result 

minDCF = 0.239 obtained by fusing three subsystems LDA-

SVM, RBM-PLDA and DBN-PLDA. 

 

 

Table 5. Experimental results for LDA-SVM, RBM-PLDA and 

DBN-PLDA subsystems. 

Method of model estimation 

minDCF on 

progress set 

with QMF 

LDA-SVM subsystem 0.259 

RBM-PLDA subsystem 0.289 

DBN-PLDA subsystem 0.290 

Fusion 

(        =           =          = 

0.33) 
0.239 

 

5. Conclusions 

In this paper we presented the STC NIST i-vector Challenge 

speaker verification system, which includes different subsystems 

based on PLDA, LDA-SVM, RBM-PLDA and DBN-PLDA. 

We proposed a version of agglomerative clustering in i-

vector space for use as the clustering algorithm for the NIST i-

vector Challenge devset, based on PLDA iterations. Non-linear 

transformation of the TV i-vector is performed using RBM, 

which leads to successful fusion with classic i-vector systems. 

Experiments conducted on the NIST i-vector evaluation set show 

that fusing LDA-SVM, RBM-PLDA and DBN-PLDA 

subsystems is the best option. It enabled us to achieve 

minDCF = 0.239. 

In our future work we plan to focus on exploring different 

DNN configurations as pseudo i-vector extractors. 
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