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Abstract
When Hidden Markov Models (HMMs) were first introduced,
two competing representation models were proposed, the
Moore model, with separate emission and transition distribu-
tions, which is commonly used in speech technologies, and
the Mealy model, with a single emission-transition distribu-
tion. Since then the literature has mostly focused on the Moore
model. In this paper, we would like to show the use of Mealy-
HMMs for telephone conversation speaker diarization task. We
present the Viterbi training and decoding for Mealy-HMMs and
show that it yields similar performance compared to Moore-
HMMs with a fewer number of parameters.

1. Introduction
Hidden Markov Models (HMMs) are well-known density esti-
mators of sequences, often used in several domains like auto-
matic speech recognition [1]. The most used variant of HMMs,
also known as the Moore-HMM [2] is composed of two kinds
of components: emission density functions p(xn|sn), which
model the density of observing xn at time n while in state
sn, and transition probability distributions p(sn |sn−1 ), which
model the probability of going from a given state sn−1 at time
n − 1 to another state sn at time n. This separation between
emission and transition probabilities thus assumes that while in
a given state sn at time n, the probability of observing data
xn does not depend on the state the sequence was at the pre-
vious time step. Hence, if the distribution of xn for sequences
where the HMM went through state sn−1 = i is very different
from the distribution of xn for sequences where the HMMwent
through state sn−1 = j, both will be blended into a single dis-
tribution at state sn. This is due to the Markovian property of
HMMs and the separation of emission and transition distribu-
tions, but can sometimes lead to bad representation.

In this paper, we would like to consider another represen-
tation of HMMs, introduced as Mealy-HMMs [3], where emis-
sion and transition distributions are merged into a single joint
model. In the Mealy-HMM, the joint likelihood of being in state
sn at time n and emitting data xn given the previous state was
sn−1 is modeled by a single distribution of p(xn, sn |sn−1 ).
Such distribution can then be used to model complete sequences
similarly to Moore-HMMs, but without the downside of having
two kinds of distributions to merge.

In order to overcome the difference in the nature of tran-
sition probabilities and emission densities several approaches
have already been proposed in the literature. The so-called
Fudge factor [4], for instance, is a poorly theoretically justi-
fied technical compensation which requires the estimation of
a hyper-parameter on some development set, in order to com-

pensate for the difference in variances. A better approach,
dubbed the Hidden-Distortion Model (HDM) [5] was recently
proposed. It also requires a hyper-parameter but it can be se-
lected using the same training set as for all other parameters.

Speaker diarization is an unsupervised task where, for
a given conversation, the goal is to determine “Who spoke
when?”. This is done by segmenting and clustering the con-
versation into homogeneous clusters, such that each cluster rep-
resents one speaker. If the number of speakers is not known it
should be estimated from the conversation. Other events such
as non-speech and overlapping speech should also be detected.
Different tasks have their specific difficulties, such as meetings,
shows, or telephone conversations. A variety of methods have
been proposed to solve the speaker diarization task. A good
overview can be found in [6].

In this paper we concentrate on a telephone conversation
speaker diarization task. In this case the number of speakers
is known a-priori and assumed to be always equal to 2. The
difficulty comes from a relatively high speaker switching rate
and the variety of different channels.

Telephone conversation speaker diarization can have impor-
tant security applications as well as practical use in call cen-
ters where the the number of speakers is assumed to be always
two. Nevertheless, there is not much work done on telephone
conversation speaker diarization. The best reported results use
factor analysis [7]. However, it is hard to compare their per-
formance with the results in this paper as they are on a differ-
ent database, the overlapping speech are not taken into account
in [7] while we use a block to detect it, and the error is a part
of the total error. When using iterative diarization systems, the
Moore-HMM based speaker diarization system performance on
the same database is not as good as HDM based systems [5],
which showed better results. However the goal of this work is
to show the potential of Mealy-HMMs and compare it with the
same system using a Moore-HMM representation, as presented
in [8]. The rest of the paper goes as follows: Section 2 formu-
lates the training and decoding algorithms for Mealy-HMMs,
using Viterbi; Section 3 describes the Mealy-HMM based di-
arization system; Section 4 presents the diarization result; and
Section 5 concludes the paper.

2. Continuous Mealy-HMMs
While Mealy-HMMs were proposed several years ago, we
haven’t seen in the literature a precise Viterbi decoding algo-
rithm or an EM parameter estimation algorithm for the Mealy-
HMM, in particular for the continuous data case. The Baum-
Welch algorithm was first presented in 2007 [9] for the discrete
case.

Let us denote p(x) the density of a continuous random vari-
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able and P (m) the probability of a discrete random variable.
Let us assume we have a system with K hidden states. We

would like to define a joint transition-emission (TE) matrix

A (xn) = [aqk (xn)]q,k∈{1,...,K}

where
aqk (xn) = p (xn, sn = q|sn−1 = k )

is the probability of being at time n in state q and obser-
vation xn ∈ Rd×1 given the previous state was k. Let
Xn2

n1
= [x (n1) , x (n1 + 1) , . . . , x (n2)] be a partial sequence

(X = XN
1 is the full sequence). The assumption is that the TE

density depends only on the previous state, i.e.,

p
�
xn, sn = q

��Xn−1
1 , XN

n+1, sn−1 = k,

{sm = km}m/∈{n−1,n}

�

= p (xn, sn = q |sn−1 = k )

.

The constraint is that the integration over the sum of each col-
umn of A (xn) gives 1,

∀k •
� �K

q=1
aqk (xn)dxn = 1.

In such formulation we do not assume that the emission and
transition probabilities are statistically independent, given the
model.

During all the discussion we will assume that

∀q, k • aqk (xn) =
�Mqk

m=1
ωm
qkN

�
xn;µ

m
qk,Σ

m
qk

�

is a linear combination of Gaussian mixture components, such
that �K

q=1

�Mqk

m=1
ωm
qk = 1,

sum over all the mixture component weights for all TE func-
tions which transit from state k equals 1. We denote ω as
the mixture weight; µ ∈ Rd×1 as the mixture mean vector;
Σ ∈ Rd×d as the mixture covariance matrix; and Mqk as the
number of mixture components.

In addition we define prior TE density functions to be in
state k with the first observation,

Π(x1) = [π1 (x1) , . . . , πK (x1)]
T ,

πk (x1) = p (x1|s1 = k)

such that � �K

k=1
πk (x1)dx1 = 1.

From now on, we will assume for simplicity that ∀q, k •
Mqk =Mk =M .

We now enumerate two problems to be solved for continu-
ous Mealy-HMMs for the task of speaker diarization:

1. Given the model M = {A,Π}, find the path S∗ which
maximizes the log-likelihood of a sequence of data sam-
ples X = {x1, . . . , xN} and the sequence of states
S = {s1, . . . , sN}:

L (X,S∗|M ) = log p (X,S∗|M )

= max
{sn}

�
π̃s1 (x1) +

N�

n=2

ãsnsn−1 (xn)

�
(1)

where π̃k (x1) = log πk (x1) and ãqk (x) =
log aqk (x).
This problem can be solved using the well known Viterbi
algorithm.

2. The parameter estimation problem (we will formulate it
here only using Viterbi as well): given the data X =�
Xi

�I

i=1
, consisting of I sequences each one of length

Ni, and the model parametersM, we would like to find
a new model M̂ which maximizes the log-likelihood
L (X,S∗|M ).

2.1. Viterbi Algorithm

To find the best path we have to define two vari-
ables: δ (k, n) = max

Sn−1
1

p
�
Sn−1
1 , sn = k,Xn

1

��M
�

where Sn2
n1

= {sn1 , sn1+1, . . . , sn2},
δ (n) = [δ (1, n) , δ (2, n) , . . . , δ (K,n)]T , and
ψ (k, n) = S

∗n−1

1 (n− 1) where S
∗n−1

1 =
argmax

Sn−1
1

p
�
Sn−1
1 , sn = k,Xn

1

��M
�
, and ψ (n) =

[ψ (1, n) , ψ (2, n) , . . . , ψ (K,n)]T .
Initialization:

δ (1) = Π (x1)

ψ (1) = [0, 0, . . . , 0]T
(2)

Recursion:

δ (k, n) = max
�
Ak (xn)

◦ δT (n− 1)
�

ψ (k, n) = argmax
�
Ak (xn)

◦ δT (n− 1)
� 2 ≤ n ≤ N

(3)
where Ak (x) is the kth row of A(x) and the operator ◦ is

the Hadamard product.
Termination:

p (X,S∗|M ) = max δ (N)
s∗N = argmax δ (N)

(4)

Backtracking:

s∗n−1 = ψ (s∗n, n) n = N − 1, N − 2, . . . , 1 (5)

2.2. Parameters Estimation

In this section we present the estimation procedure of the con-
tinuous Mealy-HMM parameters, including the TE initial vec-
tor and the TE matrix.

2.2.1. Viterbi Parameter Estimation

In order to apply the Viterbi algorithm, in addition to the data
X =

�
Xi

�I

i=1
and initial model M, the sequences of states

S =
�
Si

�I

i=1
=

�
sin = kin

�
i=1,...,I
n=1,...Ni

, provided by the Viterbi

decoding algorithm are also given. The log-likelihood of the
data and the state sequences given the model is:
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L (X,S|M) = log (p (X,S|M))

= log

�
I�

i=1

p
�
xi1

���Qsi1

�
·

Ni�

n=2

p
�
xn

���Msinsin−1

��

=
I�

i=1

�
log p

�
xi1

���Qsi1

�
+

Ni�

n=2

log p
�
xn

���Msinsin−1

��

=
K�

k=1

�

{n:sin=k}
log p

�
xin

���Qk

�

+
�

q,k∈{1,...,K}

�

{n:(sin,sin−1)=(q,k)}
log p (xn|Mqk )

(6)

where Mqk and Qk are the models of the TE density function
aqk(x) and TE initial density function πk(x) respectively.

Let

Xqk =
�
xin :

�
sin, s

i
n−1

�
= (q, k)

�
,

be all the data associated with the qth TE function from the
kth state, and nqk be the cardinality of the Xqk set. We will
also define Xk =

�K
q=1Xqk as the data associated with the

kth state, and nk =
�K

q=1 nqk as a cardinality of Xk (we
define the transition-emission prior Pqk =

nqk

nk
). For each

state the model is the union of the models of all TE functions,
Mk = {M1k, . . . ,MKk}. The model of each state can be
trained separately with the data associated by the Viterbi de-
coding {Xk}Kk=1. It is important to clarify that if the GMM
model trained by the dataXqk is

Gqk =
��
ωm
qk

�
,
�
µm
qk

�
,
�
Σm

qk

��

then
Mqk =

��
Pqk · ωm

qk

�
,
�
µm
qk

�
,
�
Σm

qk

��

and it is not a model of a pdf as it integrates to Pqk. On the
other handMk is a model of a pdf.

2.3. Relation Between Mealy-HMMs and Moore-HMMs

In the past, equivalences between Mealy and Moore types of
HMMs were considered, but it was mostly done for the discrete
case. We would like to consider two important issues: equiva-
lent models and minimal models.
Let X∗ be the set of all possible sequences, e.g., X = {0, 1}
then X∗ = {∅, 0, 1, 00, 01, . . .}, and string probabilities P :
X∗ �→ [0, 1] then:
Definition of Equivalent Models: Two HMMs (both Mealy,
both Moore, or one Mealy and another Moore) with string prob-
abilities P and P � respectively, are equivalent, if P = P �.
Mealy Minimal Model Definition: A Mealy-HMM with rank
K is called minimal if for any other equivalent Mealy-HMM
with rankK�,K ≤ K�.
Moore Minimal Model Definition: AMoore-HMMwith rank
K is called minimal if for any other equivalent Moore-HMM
with rankK�,K ≤ K�.

While finding a minimal model is still an open question in
general, for discrete HMMs it was shown that the “expressive
power” of Mealy- and Moore-HMMs are the same, meaning
that for each Moore-HMM there exists a Mealy-HMM equiva-
lent model and vice versa: for every Mealy-HMM there exists a
Moore-HMM equivalent model. It has also been shown that the

order of a minimal Mealy model does not exceed the order of a
minimal Moore model [2]. It can be shown that the “expressive
power” of the continuous Mealy- and Moore-HMMs are also
the same and that the order of a minimal Mealy model does not
exceed the order of a minimal Moore model. It can be shown
that the number of states in the Moore-HMM can be up to K2

in order to be equivalent to a K-state Mealy-HMM. The state
have to be grouped into k-state groups to represent one state in
the Mealy-HMM, as shown in Figure 1.

Figure 1: Two state Mealy-HMM represented as 4-state Moore-
HMM.

2.3.1. Moore-HMM vs Mealy-HMM Discussion

This section discusses the relation between Moore- and Mealy-
HMMs with respect to the number of parameters. We consider
two cases:
1st : The true model is a K-state Moore-HMM but we model

it with a Mealy-HMM. A K-state Moore-HMM can
be replaced by a K-state Mealy-HMM with the same
order GMM on the transitions, i.e., replacing one M -
component GMM in a state by K GMMs withM com-
ponents each in the transitions. This means that we
need to estimate K − 1 times more parameters, how-
ever the Mealy-HMM is equivalent to the Moore-HMM.
K × (K − 1) transition probabilities have to be esti-
mated in the Moore-HMM while in Mealy-HMM they
are part of the GMM parameters, but still required.

2nd : The true model is aK-state Mealy-HMM but we model
it with a Moore-HMM. In this case, the number of pa-
rameters is reduced, but the model is not equivalent to
the original Mealy-HMM. This will most likely dam-
age the performance. In order to correct for this, we
need to increase the number of states, but we do not
know how many states should be added, up toK2 states.
In this case, the number of GMM parameters becomes
the same, but the number of transitions becomes K22.
Most of the transitions should tend to zero, and onlyK2

should have meaningful values. After training of theK2-
state Moore-HMM, if it is trained for segmentation pur-
pose, the states should be grouped into K groups of K
states each. Each group represents one event (one state in
the Mealy-HMM). We see that a Moore-HMM does not
increase dramatically the number of estimated parame-
ters (in the transition matrix only) if any, but adds a lot
of uncertainty, as we do not know how many states are
required and which states are related to the same event.

2.3.2. Moore-HMM vs Mealy-HMM for Diarization

In the case of speaker diarization, we can imagine that the start
of speech (the transition) may differ by speaking after a silence
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or just after another speaker. In the first case, the speech may
be more calm and quite, while after another speaker it might
be louder. These differences in the speech should appear in the
model representation. In our model we have one hyper-state
for each speaker (K speakers) plus one hyper-state for the non-
speech, Section 3.1. Three options are possible. Two options
with Moore-HMM and one with Mealy-HMM:

1st : The number of states in the Moore-HMM is equal to the
number of speakers plus one (K + 1). In order to de-
scribe all the possible transition effects, a GMM with
many mixture components is required.

2nd : The transition from one speaker (or non-speech) to an-
other will first pass through extra state which will ac-
count for the transition effects. This way the speaker
hyper-state GMM can have less mixture components,
however, additional (K + 1) × K states for transi-
tions should be added. The total number of states be-
comes (K + 1)2 and it makes the transition matrix to be
(K + 1)2 × (K + 1)2. Although, the transition matrix
is sparse, but still the segmentation is much more time
consuming.

3rd : Using Mealy-HMM with K + 1 hyper-states. As the
GMMs are on the transitions, and not in the states, the
transition effects are modeled in a natural way. No extra
state is required; the speaker model may have less mix-
ture components; the segmentation is even simpler than
in the (K + 1)-state Moore-HMM.

We see that a Mealy-HMM has only advantages over the
Moore-HMM. In Section 4 we will show that Mealy-HMM
achieves a bit better results than Moore-HMM with fewer to-
tal number of mixture components. If the number of speakers is
not known in advance, and transition states are provided in the
Moore-HMM, a merging process of two speakers becomes less
trivial as it is not done by replacing two states by one state with
merged data, but also all the transition states to the states and
from the states should be replaced and retrained and it is much
more complicated.

3. Diarization System
In this section we describe the telephone conversation speaker
diarization system for both Moore- and Mealy-HMM cases.

3.1. Speaker Diarization System

The baseline diarization system corresponds to [5] where more
details could be found. Figure 2 shows the block diagram of
the system. 12 mel-frequency cepstral coefficient (MFCC) fea-
tures from 20ms windows are extracted each 10ms. A simple
threshold voice activity detection (VAD) is applied for initial
speech/non-speech segmentation. In parallel, an overlapping
speech detection is performed. The overlapping speech detec-
tor is based on maximum a-posteriori estimator of the wave
form entropy, which is estimated each 100ms [10]. The de-
tected overlapped speech is taken out of the conversation, be-
fore performing speaker model initialization using weighted-
segmental K-means (WSKM) [8]. The diarization process itself
is based on an 3-hyper-state fixed-duration Mealy- or Moore-
HMM (Sections 3.2 and 3.3), for two speakers and non-speech
classes. Each hyper-state model has tied states of 200ms for
the first 5 iterations and only 100ms tied states for the last
iteration. The state models we used for Moore-HMM are 21
Gaussian component GMMs with full covariance matrices, as

this gave the best diarization performances [8], and 24Gaussian
component GMMs in order to have an overall same number of
Gaussians as in the best Mealy-HMM system. In the Mealy-
HMM, the number of mixtures in the transition states and in the
hyper-states were varied in order to obtain the best configura-
tion. The transition matrix is initialized using the initial seg-
mentation provided from the VAD and the WSKM. The Viterbi
decoding gives a new segmentation and clustering, which is
used for the subsequent retraining iteration.

Figure 2: Baseline diarization system.

In order to compare the Moore-HMM based speaker di-
arization system with a Mealy-HMM based speaker diariza-
tion system we keep the same configuration but we replace the
Fixed-duration Moore-HMM block (Section 3.2 and Figure 3)
by a Fixed-durationMealy-HMM block, as explained in Section
3.3.

3.2. Fixed-Duration Moore-HMM

Figure 3 shows an example of a 3-hyper-state fix-duration
Moore-HMM. When the system enters into one hyper-state, it
has to stay in this hyper-state for a predefined number of frames,
τ (20 in our case). At the last frame of the fixed-duration seg-
ment, the system can transit to the first state of any hyper-state
(including returning to the first state of the same hyper-state).
At each iteration, the best path is found using Viterbi decoding.

Figure 3: 3-state fixed duration Moore-HMM.

For K hyper-state Moore-HMM, the transition matrix is
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composed ofK ×K blocks:

A =




A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AK1 AK2 · · · AKK


 (7)

Each block Aqk is a τ × τ matrix (τ is the number of states
in each hyper-state). Each matrix on the main diagonal is the in-
ternal hyper-state transition matrix and it contains only zeros ex-
cept ones on the diagonal below the main diagonal and P (k|k),
the probability of returning to the first state of the hyper-state
(self-loop on the hyper-state level), at the right element of the
first row (eq. 8). Each matrix out of the main diagonal contains
only zeros except the right element of the first row, which is the
transition probability to go to hyper-state q from hyper-state k,
P (q|k) (eq. 9).

Akk =




0 · · · 0 P (k|k)
1 0 · · · 0
...

...
. . .

...
0 · · · 1 0


 ∈ Rτ×τ (8)

Aqk =




0 · · · 0 P (q|k)
0 0 · · · 0
...

...
. . .

...
0 · · · 0 0


 ∈ Rτ×τ (9)

The probabilities at position (1, τ) are trained using the Viterbi
statistics.

3.3. Fixed-Duration Mealy-HMM

Figure 4 shows an example of a 3-hyper-state fixed-duration
Mealy-HMM. Unlike with Moore-HMMs, a Mealy-HMM sys-
tem enters into a hyper-state through one TE state (pink circle)
from each hyper-state, and then has to stay in this hyper-state
for a predefined number of frames, τ − 1 (19 in our case). At
the last frame of the fixed-duration segment, the system transits
to the first state of any hyper-state via the TE state (including
returning to the first state of the same hyper-state). Inside the
hyper-state, all the TE density functions are tied, i.e., share all
their parameters. At each iteration, the best path is found using
Viterbi decoding. If it is not the final iteration, the models are
retrained with the Viterbi training algorithm (Section 2.2.1).

4. Experiments and Results
In this section we describe the experimental setup and present
the results of the Mealy-HMM based system as compared to a
Moore-HMM-based system.

4.1. Diarization Error Rate (DER)

The results are presented in terms of diarization error rates
(DER) [11] with a non-scoring collar of 0.5sec around the
changing points, i.e., 0.25sec on each side of the changing
points. The DER is defined as follows:

DER = 100

S�
s=1

dur(s) ·max(NRef (s), NSys(s))−NCor(s))

S�
s=1

dur(s) ·NRef (s)

(10)

Figure 4: 3-state fixed duration Mealy-HMM.

Given S speech segments in the conversation, the DER is cal-
culated according to the following notation:

• dur (s) - Duration of segment s.
• NRef (s) - The number of speakers assigned to segment
s.

• NSys (s) - The number of speakers assigned by the sys-
tem to segment s.

• NCor (s) - The number of speakers assigned by the sys-
tem to segment s which actually takes part in s.

Since the indexing of the speakers by the system does not use
any prior knowledge about their identity, the DER should be
calculated for all possible permutations of the speaker indices,
and the minimum obtained DER is taken.

4.2. Database

We used a subsets of 108 conversations extracted from LDC
America Call Home English language corpus [12]. The
database is sampled at 8 kHz in a 2 channel µ-law format. The
channels were summed to generate a two-speaker conversation.
Only the transcribed part of each conversation was taken, re-
sulting in about 10 minutes per conversation.

4.3. Experiments

We first examine the Moore-HMM-based diarization system
with 21 and 24 Gaussian components per state. These systems
are the baseline to be compared to the Mealy-HMM based di-
arization system and the DER results are presented in Table 1.
We can see that both configurations give the same DER, how-
ever the second configuration has 9Gaussian components more.
With 27 Gaussians per state the results are significantly worse.

Table 1: Baseline Moore-HMM diarization results.

Gaussians per hyper-state 21 24 27
DER [%] 21.73 21.45 24.43

Different configurations of Mealy-HMM were then exam-
ined, mostly varying the number of Gaussian components in the
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hyper-state and the TE distribution functions. The results are
summarized in Table 2. The first row specifies the number of
Gaussian components in the hyper-state distribution functions,
while the first column specifies the number of Gaussian compo-
nent in the TE distribution functions. We can see that the results
improve as the number of Gaussian components in the hyper-
state increases and the best results are achieved with 21 and 24
components. For the TE, if the number of mixture components
in the hyper-state is sufficiently large, 1 Gaussian can give DER
close to the best DER, achieved for 3 Gaussian components
only. This is probably due to the fact that only once in 20 time
stamps one of the 3 TE is entered, which means that TE distribu-
tion functions are trained using only 5% of the data. The con-
figuration of 16 Gaussian components in the hyper-states and
one Gaussian in the TE achieves a DER similar to the baseline
system with 6 components less. Similar DER and same number
of Gaussian components are in the configuration of 10Gaussian
components in the hyper-state with 3 Gaussian components in
the TE. 6 Gaussian components, both in hyper-state and TE has
a complexity of Moore-HMM with 24 Gaussian components
and similar DER. The configuration of 21Gaussian components
in the hyper-state and 1 Gaussian components in the TE has the
same number of Gaussian components as the baseline system
with 24Gaussian components and achieves a slight reduction in
the DER (about 2.5% relative improvement). When we use 24
Gaussian components in the hyper-state and 3Gaussian compo-
nents in the TE, relative improvement is about 8.9%. The com-
plexity of such Mealy-HMM is equivalent to Moore-HMMwith
33 Gaussian components. However, in Moore-HMM, when the
number of Gaussian components per state goes above 24 the
DER becomes higher (as can be seen in the case of 27 Gaussian
components, in Table 1).

Table 2: Mealy-HMM diarization results in terms of DER [%],
for a given number of Gaussians in the hyper-state (rows) and
in the TE (columns).

2 3 6 10 16 21 24
1 28.67 27.11 24.33 22.20 21.23 20.91 20.73
2 28.82 27.02 24.57 22.21 21.02 20.42 20.22
3 - 25.94 23.59 21.61 20.41 19.69 19.54
6 - - 21.61 24.43 23.26 21.26 21.91
10 - - - - - 32.94 -

5. Conclusion
In this work we presented training and decoding algorithms for
Mealy-HMMs as well as an application to speaker diarization.
The advantage of the Mealy-HMM structure given the fixed-
duration constraint is limited due to the fact that Mealy-HMMs
have an impact only on the transitions from one hyper-state to
another. Nevertheless, we showed that we achieve the same
performance as Moore-HMMs with a smaller model and better
performance with a Mealy-HMM which has the same number
of Gaussian components. When we use a Mealy-HMM with
higher number of Gaussian components than the best Moore-
HMM configuration, the relative improvement is about 8.9%.

The approach is not limited to the case of two speakers
and it will be interesting to test Mealy-HMMs on conversations

with more speakers. Estimation of the number of speakers is
not within the scope of the paper, but it would be interesting to
test it on the presented model. Although Mealy-HMMs should
naturally balance the emissions and the transitions, as they are
blended into one distribution, in the Viterbi training case the
decoupling is possible. So a full optimization could be done in
order to obtain a better clustering, for example with the ”fudge
factor” (as it is done in HDMs).
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