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ABSTRACT 

 

In real scenarios, robust language identification (LID) is usually 

hindered by factors such as background noise, channel, and speech 

duration mismatches. To address these issues, this study focuses on 

the advancements of diverse acoustic features, back-ends, and their 

influence on LID system fusion. There is little research about the 

selection of complementary features for a multiple system fusion in 

LID. A set of distinct features are considered, which can be 

grouped into three categories: classical features, innovative 

features, and extensional features. In addition, both front-end 

concatenation and back-end fusion are considered. The results 

suggest that no single feature type is universally vital across all 

LID tasks and that a fusion of a diverse set is needed to ensure 

sustained LID performance in challenging scenarios. Moreover, the 

back-end fusion also consistently enhances the system performance 

significantly. More specifically, the proposed hybrid fusion method 

improves system performance by +38.5% and +46.2% on the 

DARPA RATS and the NIST LRE09 data sets, respectively. 

Index Terms— Language identification, acoustic feature, 

fusion, RATS, NIST LRE 
 

1. INTRODUCTION 

 

Language identification (LID) has recently emerged to be of 

substantial interest in the speech processing community [1-5]. It is 

a necessary pre-processing component for most automatic speech 

recognition (ASR) tasks. In recent years, acoustic and phonotactic 

models have been widely used for LID with some success. 

Phonotactic approaches usually are based on various phone 

recognizers and phoneme n-gram statistics to extract discriminative 

information related to each particular language. The most popular 

phonotactic modeling techniques are Parallel Phone Recognition 

and Language Modeling (PPRLM) [6] and Phone recognition-

SVM [7]. However, phonotactic models usually only perform well 

on relatively clean speech. In contrast, acoustic systems are usually 

based on some spectral features, which are followed by effective 

analysis models, such as joint factor analysis (JFA) [8] and i-

Vectors [9, 10] that can extract valid information efficiently. i-

Vector, which has become a popular technique used for different 

verification and recognition tasks [11-15], can represent each 

conversation in parallel with a set of low-dimensional total 

variability factors and demonstrates session variation robustness. 

Therefore, i-Vector is the analysis model adopted in this study. 

    In recent studies, Mel-frequency cepstral coefficients (MFCC)-

based features were widely employed for LID [1, 2, 5]. However, 

there are a variety of acoustic features other than MFCC [16-22], 

which have been successfully utilized for other audio based 

identification tasks [23-25] but seldom explored for LID. Even on 

the large-scale task LRE (language recognition evaluation), only 

several classical features have been involved [26]. While among 

those distinct features, Some feature sets may perform well in 

relatively clean conditions but are seldom validated under more 

challenging conditions (for example, a noisy scenario), which also 

warrants further investigation here. 

    In terms of back-end classifiers, various identifiers dependent on 

front-end feature extraction algorithms have been explored, 

including artificial neural networks, Gaussian mixture models, 

support vector machines, etc. Due to the effective performance for 

i-Vector based systems, generative Gaussian back-ends [27] are 

used as a benchmark classifier. As a comparison, another newly 

proposed back-end is examined to advance the investigation.  

    The main purpose of this study is to systematically investigate 

different front-end performances on noisy or highly channel-

mismatched data and large-scale data, which has not been well 

investigated. Their performances are validated on two back-ends. 

The merit of both front-ends and back-ends is further leveraged.  

This paper is organized as follows: Sec. 2 explores the features 

and their configurations, and Sec. 3 describes the principles of the 

system back-ends. The fusion scheme is detailed in Sec. 4. In Sec. 

5, we illustrate the special properties of the corpora, and the 

comprehensive experimental set-up is shown in Sec. 6. Sec. 7 

analyzes the results, and Sec. 8 summarizes the findings. 

 

2. FEATURES 

 

Historically, feature research for LID has focused on identifying a 

single, universally successful feature. There has been little effort to 

leverage multiple features across fused LID systems. A detailed 

investigation is warranted. To be specific, three types of features 

are explored in our LID experiments. 

 Classical features 

      Mel-frequency cepstral coefficients (MFCC) 

      Perceptual linear predictive (PLP) 

      Linear frequency cepstral coefficients (LFCC) 

      Gammatone frequency cepstral coefficients (GFCC)     

 Innovative features 

      Power Normalized Cepstral Coefficients (PNCC) 

      Perceptual minimum variance distortionless response (PMVDR) 



153

Table 1. Configuration of various LID features (‘Default’ means the 

original setting for the feature by their authors). 

 
Feature  Special  Configuration  Coefficients(Dim) 

MFCC # of Channels =  26       36 

PLP # of Channels  =  20    13 

LFCC # of filter banks = 32  20 

GFCC Default 39 

PNCC Default 12 

PMVDR Default 36 

RASTA-PLP Default 9 

RASTA-LFCC Default 20 

Multi-peak MFCC K=8        13 

Thomson MFCC K=8        13 

SWCE_MFCC K=8        13 

 Table 1. Configuration of various LID features (‘Default’ means 

the original setting for the feature by their authors) 

 Extensional features 

      RASTA-PLP  

      RASTA-LFCC  

       Multi-peak MFCC 

      Thomson MFCC  

      Sine-weighted cepstrum estimator (SWCE) MFCC 

     The MFCCs and PLP coefficients are well-known acoustic 

features that are used widely for many speech processing tasks. 

The LFCC, which can be extracted using a linear filter bank 

instead of a Mel scale filter bank, has been shown to be superior 

for speaker recognition [19]. LFCCs work especially well for 

female speakers because their shorter vocal tract results in the 

higher formant frequency, which can then be easily captured by a 

linear filter bank. For LID task, the overall performance can be 

boosted by improving the performance on female speech sub-set. 

Similar to the MFCCs, the Gammatone feature (GF) is obtained 

from a bank of Gammatone filters, which were originally proposed 

to model human cochlear filtering. The GFCCs are derived from 

the GF by a discrete cosine transform (DCT). It has been proved 

that the GFCC could provide a substantial contribution to the noise 

robustness of the Speaker Identification (SID) system in [17], but 

this contribution has yet to be validated in LID. 

    In addition to those classical features, researchers have recently 

also proposed some innovative features that could address various 

types of background noise or room reverberance. Instead of using 

the traditional log nonlinearity as in the MFCC, the PNCC [21] use 

a power-law nonlinearity in a medium-time power analysis that 

combines traditional short-time processing with a noise-

suppression algorithm, which is realized by an asymmetric filter 

that suppresses background excitation. Similarly, the PMVDR [16] 

cepstral coefficients were proposed by obtaining a minimum 

variance distortionless response spectral estimator, which 

represents the upper envelope of the speech signal. Unlike the 

MFCC, which utilizes a filter-bank, the PMVDR performs warping 

on the FFT power spectrum directly. This method is desirable for 

speaker independent tasks (such as a LID) because less pitch 

information is included. The advantage of this approach is 

prominent, especially in noisy car environments, gender 

mismatches, or imbalances in the training data. 

In addition to exploring new features, researchers have also 

considered using different filters that have the potential to improve 

classical features by offering a degree of noise suppression. The 

RASTA filter is a special band-pass filter, which suppresses 

spectrally high or low derivative (i.e., very rapidly-changing or 

very slow-changing) components versus a typical spectral range of 

speech. We used the RASTA-PLP and the RASTA-LFCC 

combinations for our system. In addition, we employed a multi-

taper method, which applied multiple (K) uncorrelated windows 

(tapers) to process a signal in the time-domain, and then averaged 

the signal in the frequency domain to more accurately estimate the 

power spectrum of the signal. For example, we represented the 

short-term signal spectrum using MFCCs, which were computed 

from a windowed discrete Fourier transform (DFT). Although 

windowing reduces spectral leakage, the spectrum estimation 

variance remains high; therefore, extensional features utilizing a 

multi-taper method is proposed to solve this problem. Except for 

the Hamming window, there are several alternative filters that have 

demonstrated a benefit for SID, such as multi-peak, Thomson, and 

the SWCE. All of these filters can extract the short duration 

features in a manner similar to the MFCCs, but with a much lower 

variance. For the Shifted Delta Cepstra (SDC) [18], previous work 

has shown that incorporating additional temporal information will 

benefit an acoustic event identification system, such as the systems 

of emotion identification [24-25], SID, and LID. Therefore, the 

SDC based on the common scheme, [7-1-3-7], is applied to all of 

the above-mentioned feature extraction, to derive 56 dimensional 

raw features used for i-Vector extraction (see Sec. 6).  

    Furthermore, because distinct feature sets have their own 

characteristics and advantages that might complement each other, 

feature level fusion will also be explored. The configuration 

employed in this study is shown in Table 1. Again, we note that 

this study is not focused on finding a single more effective feature 

for LID but on exploring a systematic strategy to leverage multiple 

features that are complementary. It is believed that this strategy 

will help to reduce the impact of recording mismatch conditions in 

both the training and the test sets to improve the LID performance. 

 

3. BACK-END 

 

Two back-end classifiers are investigated here. The first is the 

generative Gaussian back-end, which is the classical classifier for 

i-Vector based LID system. The second is the Gaussianized cosine 

distance scoring (GCDS) method, which was recently proposed to 

address multiple enrollment session-based tasks in [9]. 

 

3.1. Gaussian Back-end (GB) 

 

For the Gaussian back-end, the distribution of i-Vectors for each 

language was modeled by a Gaussian distribution, where a full 

covariance matrix was shared across all of the languages. For each 

i-Vector   corresponding to a test utterance, we evaluated the 

log-likelihood for each language as:  

      1 1 11 1
ln ( | )

2 2

T T T

l l lp l m m m c                 (1) 

where lm is the mean vector for language l,   is the common 

covariance matrix, and c is a constant. To enhance the efficiency of 

the operation and to suppress redundant information, a dimension 

reduction based on linear discriminative analysis (LDA) was also 

applied before the GB. The maximum number of dimensions for 

identification was one less than the number of classes.  

 

3.2. Gaussianized cosine distance scoring (GCDS)  

 

It is noted that the performance of the classical within the class 

covariance normalization (WCCN) based Cosine Distance Scoring 

(CDS) method depends strongly on the WCCN projection, which 

is usually difficult to estimate (especially in noisy and/or channel 

mismatch conditions). Therefore, we recently proposed to replace 

Feature  Special  Configuration  Coefficients(Dim) 

MFCC # of Channels =  26       12 

PLP # of Channels  =  20    13 

LFCC # of filter banks = 32  20 

GFCC Default 12 

PNCC Default 12 

PMVDR Default 12 

RASTA-PLP Default 9 

RASTA-LFCC Default 20 

Multi-peak MFCC K=8        13 

Thomson MFCC K=8        13 

SWCE_MFCC K=8        13 
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the WCCN with background data-based Gaussianization, called 

Gaussianized CDS (GCDS1) [9].  

 

4. FUSION 

 
System fusion usually significantly benefits the overall system 

performance because of the complementary effect among each 

individual session [28, 29]. Therefore, we propose to leverage the 

impact of both the front-end and the back-end fusion. The front-

end fusion is implemented by concatenating the i-Vectors from 

different raw features (also known as feature concatenation). The 

back-end fusion is implemented by utilizing the FoCal multi-class 

toolkit [30]. By measuring the goodness of each recognizer and 

assigning a proper weight based on the supervised development 

data, FoCal (linear logistic regression fusion) provides a calibrated 

fusion of the scores of multiple recognizers. In contrast to binary 

logistic regression, multi-class logistic regression scheme requests 

regularization, which involves parameter tuning. The parameters 

lambda and epsilon are set as 0.4 and 0.1, respectively.  

 

5. CORPORA 

 

To explore the system capability in identifying the language under 

highly degraded and/or noisy communication channel conditions, 

we performed an evaluation on the DARPA-sponsored Robust 

Automatic Transcription of Speech (RATS) database2. The task 

was to distinguish and identify six highly confusing language 

categories: (1) Arabic, (2) Farsi, (3) Dari, (4) Pashto, (5) Urdu, and 

(6) 10 other non-target languages. At the same time, there were 

severe channel mismatches among all instances, as shown in Fig. 

2. Because the testing files were sorted in the same order as the 

class IDs (Y axis in Fig. 2), assuming the channel has no impact on 

the experiments, the main diagonal line should be the only red 

zone with high probability, which indicates close match purely 

resulted from language factors. However, the confusion analysis 

shows that the transmission channel factors significantly impacted 

the classification results in a negative way. 

   Alternatively, to further validate the performance of the 

abovementioned features, we also evaluated them on the NIST 

LRE09 corpus, which contains 23 different languages (only in-set  

                                                 
1

“GCDS Algorithm source code”.  [Online]. Available: 

www.utdallas.edu/~gang.liu/code.htm 
2
    Given seven background channels (A, B, C, E, F, G, H) and six 

language classes, forty-two different combinations can be 

explored. However, because none of the non-target language 

examples from the test data were recorded under channel A, there 

were forty-one categories in total to investigate. 

Table 2. Corpus statistics for the DARPA RATS and NIST LRE09. 
Corpus DARPA RATS NIST LRE09(Inset) 

Data set TRAIN TEST TRAIN TEST 

Count 12035 877 11158 31178 

Avg. Duration(sec./file) 58.3 18.0 39.3 12.4 

SNR(dB) 5.9 8.0 23.30 23.8 
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Figure 2.  Channel confusion analysis for RATS corpus (as for 

class ID, the first character indicates channel label, the second 

presents 6 distinct language classes. Testing instances are sorted 

by Class ID).  
 

languages are considered here). While there was more language 

variety, another common challenge was the speech duration 

mismatch. Data from the training set only consisted of 30 sec. 

utterances, while the test set were made up of 3, 10 and 30 sec. 

utterances. Most of the training data were extracted from the VOA 

(Voice Over America) broadcasts [31]. There were channel 

mismatches across the training and the test set. The related corpus 

statistics information is summarized in Table 2, from which we can 

see that RATS was very noisy, while LRE09 was relatively clean. 

 

6. LID EXPERIMENTAL SET-UP 

 
The modeling was based on an i-Vector framework. The system 

employed in this study is illustrated in Fig. 1. We performed voice 

activity detection on all of the audio files with [32]. Specific raw 

VAD Raw Feature 

extraction 
UBM 

UB

M 

Total Variability 

Matrix 

 

i-Vector post-

processing 

GCDS  

Score 

Processing 

GB 

Audio Data 

Front-end Back-end 

Scores 

Data 1 Data 2 

Figure 1: i-Vector based Language identification system block diagram. Data 1 and 2 correspond to raw feature data for the UBM and 

Total Variability matrix, respectively. In this study, Data 1 and Data 2 are the same group of data as the training data. ‘Audio data’ is all 

of the acoustic data involved for the verification task.GB represents the Gaussian Back-end, GCDS is the Gaussianized CDS. 
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Table 3. Performance on RATS and LRE09 database (Cavg*100). 

 

Feature category Feature type 

RATS LRE09 

GB GCDS 
Backend 

  fusion 
GB GCDS 

Backend 

Fusion 

 

Classical 

features 

MFCC                     15.6 14.9 12.8 15.8 14.0 11.5 

LFCC                      16.5 16.0 15.0 16.6 15.1 12.2 

PLP 18.7 17.6 16.5 18.7 16.0 13.9 

GFCC                      14.9 14.5 13.1 16.6 14.8 12.0 

Innovative 

features  

PNCC                      14.4 14.0 11.6 16.0 15.1 12.2 

PMVDR 19.1 19.0 16.7 17.8 15.8 13.5 

 

 

Extensional 

features 

RASTA-LFCC 15.2 13.7 11.3 16.7 14.1 11.3 

RASTA-PLP           14.1 14.2 12.7 15.6 13.3 10.5 

Multi-peak MFCC   15.5 14.0 12.8 15.5 13.7 10.8 

Thomson MFCC     16.0 13.7 12.1 15.7 13.7 11.1 

SWCE MFCC 15.3 13.5 11.5 15.5 13.7 10.9 

Feature concatenation 13.1 12.4 9.6 11.7 11.3 8.5 
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Figure 3. System performance comparison across two corpora (Cllravg ). 

 

 

features were extracted as described in Sec. 2. After that, the 

training data from all target languages were used to build a 1024-

mixture Universal Background Model (UBM). We followed the i-

Vector system paradigm for language recognition as presented in 

[33, 34]. In the implementation, the total variability matrix was 

trained on all of the development data (same data as for the UBM) 

using the EM algorithm for Eigenvoice presented in [35]. We 

applied 5 iterations for the estimation and then 400 dimensional i-

Vectors were derived for further processing [36]. Length 

normalization was employed in i-Vector post-processing [37]. 

 
7.  RESULTS 

 

This section presents the experimental verification results for both 

the individual system and the fused system across two different 

corpora. In addition, the system performances are evaluated 

according to two measurements, Cavg and Cllravg, which are defined 

in the 2009 NIST Language recognition evaluation (LRE) plan 

[38]. To make it clear and concise, we only show the average cost 

performance Cavg expression here 

Miss Target

FA Non-target

FA Out-of-set

( )
1

( , )

( , )

T N

Miss T

avg FA T N

L LL

FA T O

C P P L

C C P P L L
N

C P P L L

 
  

 
    

 
    

                  (2)   

 

where NL is number of languages in the (closed-set) test,  LO is the 

Out-of-set language, PNon-target and POut-of-set are defined as below.   
         

Non-target Target Out-of-set(1 ) / ( 1)LP P P N                                (3) 

Out-of-set

0.0 for the closed - set condition

0.2 for the open - set condition
P


 


                      (4) 

Here, we only consider the closed-set tasks. In addition to the 

classification accuracy, the log likelihood ratios based performance 
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Table 4. Performance for different test duration condition on 

LRE09 database. (Hybrid fusion is the backend-fusion based on 

feature concatenation. “Mixed” means all testing files are 

considered as a whole and no distinction among test durations). 

Cavg*100 3sec 10sec 30sec Mixed 

Baseline(MFCC+GB) 23.1 15.1 9.3 15.8 

Hybrid Fusion  13.9 7.2 4.5 8.5 

Relative Gain (%) 39.8 52.3 51.6 46.2 

 

measure Cllravg (average Cllr) could show more information about 

system calibration. To illustrate the merit of both feature 

concatenation and back-end fusion precisely and respectively, we 

investigated the system performance on four different levels. 

 Individual system based on each feature 

 Backend-fusion based on each feature 

 System based on Feature concatenation  

 Backend-fusion based on Feature concatenation (Hybrid fusion) 

All of the results are represented as Cavg in Table 3. And to make it 

easier to observe and compare, we show all the performance as 

Cllravg (which has similar trend as Cavg) in Fig. 3. Here, i-Vector 

system that based on MFCC features with GB is used as 

benchmark system for further performance comparison.  

    Considering the results based on two different measurements, it 

is interesting to notify the performance similarities across diverse 

corpora. Firstly, the GCDS back-end consistently outperforms GB 

in general (only one exception is applying feature RASTA-PLP for 

RATS based on measurement Cavg). Secondly, either adopting 

feature concatenation or backend-fusion, system performance will 

be benefited significantly. Thirdly, when frond-end and back-end 

fusion are combined together (also known as proposed hybrid 

fusion), the system performance get improved further and achieve 

the best results.  

In terms of feature exploration, we note that RASTA filter 

solution has a positive impact on the LFCC and PLP features. To 

be specific, RASTA-LFCC and RASTA-PLP are the best features 

for backend-fusion systems according to RATS and LRE09 corpus, 

respectively. While for front-end fusion, we observe that applying 

a LDA before concatenation, which reduces the feature dimension 

in advance, will benefit the system for the LRE09 corpus. 

However, for the noisy RATS corpus, keeping the feature with the 

original, higher-dimension achieves a significant improvement. 

The assumption here is that for the features extracted from noisy 

data, the discriminative information spreads out across all feature 

dimensions and is therefore beneficial to keep all dimensions. 

    Moreover, Table 4 provides the details of the performance 

according to different test durations on the LRE09 corpus. It can 

be observed that the hybrid fusion benefits the performance of 

longer utterance scenarios more than shorter utterance one. 

In conclusion, the experiments demonstrate that both feature 

concatenation and backend-fusion schemes work for either noisy 

or large-scale dataset. To be more specific, with the proposed 

hybrid fusion, the system average cost performance Cavg decrease 

from baseline 0.156 to 0.096 (corresponding to a +38.5% gain) for 

DARPA RATS. On the other hand, for the NIST LRE09 corpus, 

the performance Cavg on the whole test set is decreased from 0.158 

to 0.085 (corresponding to a  +46.2% gain). 

 

8.  DISCUSSION AND CONCLUSION   

 

A multiple feature front-end set combined with various back-end 

combinations were proposed for a system fusion framework to 

fully explore robust LID in clean, noisy, and channel mismatch 

conditions. We considered difficult real-life scenarios for language 

recognition, where the test utterances were noisy and of varying 

duration, similar to what has been observed in the challenging 

DARPA RATS and NIST LRE09 scenarios. To address noise, 

channel, and duration mismatch, robust front-end processing is an 

obvious necessity. In this study, we systematically investigated a 

series of front-ends and back-ends, which demonstrated that by 

properly fusing various types of acoustic features and back-end 

classifiers, performance can be improved significantly. In addition, 

the latest proposed GCDS back-end outperforms a generative 

Gaussian back-end. To be more specific, for the DAPRA RATS 

scenario, hybrid fusion benefits average cost function Cavg with a 

relative +38.5% improvement. For the NIST LRE09 relatively 

clean scenario, the performance of whole utterance achieved a 

+46.2% relative improvement. These observations offer useful 

practices for other practitioners in the LID field.  
For the next steps, speech enhancement techniques will be 

investigated. It is noted that speech enhancement (such as non-

negative matrix factorization in [39]) can improve the audio 

quality and therefore should be beneficial for noisy, corrupted data. 
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