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Abstract 

Voice activity detection, i.e., discrimination of the speech/non-
speech segments in a speech signal, is an important enabling 
technology for a variety of speech-based applications 
including the speaker recognition. In this work we provide a 
performance evaluation of the following supervised and 
unsupervised VAD algorithms in the context of text-dependent 
speaker recognition on the RSR2015 (Robust Speaker 
Recognition 2015) task : Energy-based VAD with and without 
hangover scheme and endpoint detection, vector quantization-
based VAD, Gaussian mixtures model (GMM)-based VAD 
(both supervised and unsupervised way), and sequential 
GMM-based VAD. Experimental results show that both the 
supervised and unsupervised GMM-based VADs perform 
better than the other VAD algorithms. Considering all three 
evaluation metrics (equal error rate, old (SRE 2008) and new 
(SRE 2010) normalized detection cost functions) unsupervised 
GMM-based VAD performed the best.  

1. Introduction 

Voice activity detection (VAD) is a fundamental task in 
various speech-related applications, such as speech coding, 
speech enhancement, speaker diarization, speaker and speech 
recognition. It is often defined as the problem of 
distinguishing active speech from nonspeech (silence and/or 
noise) in a utterance. One major step which affects directly the 
performance of speaker/speech recognition systems is the 
detection of speech from audio stream. For example, too many 
false alarms, or too many nonspeech segments wrongly 
detected as speech and used in the training can corrupt the 
acoustic models, and hence reduces recognition accuracy. On 
the other hand, during testing, if not enough speech segments 
are detected then the speaker/speech recognition algorithms 
will not be able to detect the speaker/full spoken sentence. 
Therefore, accurate determination of active speech from 
nonspeech in a recording both in clean and noisy 
environments is an important task. Depending on the 
surrounding environment of the recording, nonspeech can be 
silence, noise, music, or a variety of other acoustical signals 
such as door knocking, coughing, paper shuffling, heating 
ventilation and air conditioning, passing of a vehicle, train, or 
even background speech [1]. One of the main components in 
any VAD algorithm is the extraction of relevant features such 
as energy, signal-to-noise ratio (SNR), periodicity, dynamics 
of speech, zero crossing rate (ZCR) from the given recording 
that can represent discriminative characteristics of speech 
comparing to nonspeech. More recent VAD algorithms, while 
utilizing the many of the same features, use statistical models 
to distinguish speech/nonspeech based on the average of the 

log-likelihood ratios between the observed signal and 
background noise in individual frequency bins [2]. In [3] 
contextual information derived from multiple observations has 
been incorporated into the likelihood ratio tests (LRT) and a 
novel way to improve the robustness of existing LRT-based 
VADs has been proposed in [5] by selecting the harmonic 
frequency components for computing the likelihood ratio (LR) 
scores of the voiced frames.  
In NIST Speaker Recognition (text-independent) Evaluations 
(SREs) participating sites typically used Energy-based VAD 
with/without spectral subtraction technique as a pre-processor 
[4, 8], phoneme recognizer-based VAD with a post-processing 
using short-term energy [6], ASR transcripts provided by 
NIST in the VAD [21], supervised Gaussian mixture models 
(GMM)-based VAD [7, 14].    
For supervised VAD algorithm it can be difficult and 
laborious to obtain suitable training data. Therefore, it is 
desirable to design a VAD that is both robust and 
unsupervised, i.e., does not require a specialized training data. 
Recently there has been interest in developing unsupervised 
VAD algorithms that have the performance advantages of 
supervised techniques [11]. Some recently proposed 
unsupervised VADs are: vector quantization-based self-
adaptive VAD [9], and sequential GMM-based VAD [10].  
In this work we use unsupervised and supervised VAD 
algorithms for text-dependent speaker recognition task on the 
RSR2015 corpus [18]. Contrary to the text-independent 
speaker verification, a process of verifying the identity without 
constraint on the speech content, text-dependent speaker 
verification requires the speaker uttering the enrolled pass-
phrase. The pass-phrase may be unique or user dependent or 
prompted by the system. The following VADs are considered: 
energy-based VAD [13], energy-based VAD with a hangover 
scheme, vector quantization-based VAD [9], sequential 
GMM-based VAD [10], supervised GMM-based VAD [6, 14]. 
We also use an unsupervised GMM-based VAD by combining 
the energy-based and log likelihood ratio (LLR)-based voice 
activity detection criteria, where the LLR is calculated using 
16-component speech and non-speech GMMs [9, 12]. In order 
to train GMMs speech and nonspeech feature frames are 
separated from the observed signal based on a fraction of the 
lowest and highest energy frames [9].   
 

2. Voice Activity Detectors 

 
The voice activity detection (VAD) problem considers 
detecting the presence of speech in an utterance. A VAD 
usually has the following three modules [1]: 
1. Feature extraction: The objective of this module is to extract 
discriminative features from the observed signal for detection. 
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2. Decision making: This module defines the rule or method 
for assigning a class (speech or nonspeech) based on the 
extracted feature. 
3. Hangover scheme: This module, which is often 
implemented as a finite state machine, is employed to increase 
detection hits and reduce false alarms. The motivation for this 
module is found in the speech production process and the 
reduced signal energy of word beginnings and endings. 
VAD algorithms considered in this work for performance 
evaluation in the context of text-dependent speaker 
verification task are described in this section. 

2.1. Energy-based VAD 

Energy is a simple measure of loudness of a signal. In the 
VAD literature energy is one of the most widely used features 
due to its simplicity and adequate performance in clean 
environment. The energy of the mth frame of a signal 
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where n is the sample index, N is the frame length. 
In this work we use two energy-based VAD:  
Energy-based VAD: CRIM's VAD software a slight 
modification from the software available from ISIP at 
Mississippi State University [13]. 
Energy-based VAD I: This VAD is shown in fig. 1.  
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Figure 1:Energy-based voice activity detector with 
hangover scheme and end detection. 

After computing the frame-wise energy of the speech signal a 
moving averaging filter is used with a 9-frames sliding 
window to smooth the decision boundaries. The decision 
threshold θ  is then computed from the sorted 

logE log( )sE using following formula: 
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where 1θ and 2θ represent those values of sorted energy that 

correspond to the 20% and 80% length (or indices) of the 
sorted energy vector. VAD decision is made by comparing the 

energy of each frame to the decision thresholdθ . Speech is 

active if the logE θ>  otherwise non-speech is decided. 
The VAD decision is then smoothed using a hang-over 
scheme. Most of the VAD algorithms that formulate the 
decision rule on a frame by frame basis normally use decision 
smoothing algorithms in order to improve the robustness 
against the noise. The motivations for these approaches are 
found in the speech production process and the reduced signal 
energy of word beginnings and endings. The so called hang-
over scheme extends and smoothes the VAD decision in order 
to recover speech periods that are masked by acoustic noise. 
The hang over scheme influences the behavior of the VAD in 
a two distinct ways. Firstly the scheme delays the transition 
from the noise state to the speech state. This is done in such a 
way that if the VAD decision making process indicates speech 
then the final VAD decision is always speech. The delay is 
introduced to ensure the hangover scheme does not move into 
the speech state as a result of a false-alarm. The scheme 
secondly delays the transition from the speech state to the 
noise state, i.e., even if the VAD results indicates noise, the 
VAD will not necessarily decide noise, but will begin to 
progress through the transition states to the noise state. This 
effectively delays the transition from the speech state to the 
noise state and results in a reduction in miss detections. The 
VAD is thus quick to react to a change from noise to speech, 
but is slow to react to a change from speech to noise.  
To get the final VAD labels we use an end-point detection 
algorithm that looks for the beginning and end of speech. It 
usually checks for a specified duration of silences in the VAD 
decision and if the silence duration is longer than that specific 
duration then it is considered to be out of the sentence. The 
outputs of end detector are frame indices that contain speech. 
 

2.2. Vector Quantization (VQ)-based VAD [9] 

 
Speech and non-speech segmentations were performed using 
an unsupervised voice activity detector proposed in [1]. 
Various steps of this VAD is shown in figure 2. At first log 
energy logE is computed for each frame after enhancing the 
speech signal using spectral subtraction technique. The goal of 
speech enhancement is to increase energy contrast between the 
speech and non-speech. The log energy values are sorted in 
ascending order. The lowest and highest energy frames (e.g., 
10% of all frames in each case) are considered as non-speech 
and speech frames, respectively. 12-dimensional Mel-
frequency cepstral coefficients (MFCCs) features are 
computed from the original signal (without speech 
enhancement). Using k-means (k = 16) clustering speech and 
non-speech models are then trained taking the MFCCs 
corresponding to the lowest and highest energy frame indices. 
If s

kx  and ns
kx represent codevectors for the speech and non-

speech, respectively, obtained using k-means and tc represents 

the cepstral feature vector of tth frame then the Euclidian 
distance measures between tc & s

kx  and tc & ns
kx are given 

by: 

                                
2
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Figure 2: Vector quantization-based self adaptive voice activity detector. 

Now, for each frame speech is decided if  

( ) ( )( )min min 0− ≥s ns

k k
D D  and log

min≥E E , where 

min 75 dB= −E [9].   

Then hangover scheme is used to prevent speech leakage. The 
hangover scheme does this by reducing the risk of a low-
energy portion of speech being falsely classified as non-
speech. The final VAD labels are then obtained using an end-
point detection algorithm. Robustness of energy-based VAD 
can be improved by enhancing the noisy speech signal before 
feeding into the VAD algorithm. Note that in the case of 
RSR2015 database there is no difference in performances with 
or without applying speech enhancement. Therefore we did 
not use speech enhancement in any of the VAD algorithms 
used in this work 

2.3. Sequential GMM (SGMM)-based VAD [10] 

A sequential Gaussian mixture model (SGMM)-based VAD 
algorithm in the Mel-filterbank spectral domain was proposed 
in [10] that uses an unsupervised learning framework. The 
input signal is first decomposed into 8-Mel subbands in the 
frequency domain. Then the log Mel filterbank spectrum is 
computed and smoothed using a median filter with a window 
of 5-frames for classification. The Gaussian Mixture Model 
used comprised two Gaussian distributions, each trying to 
model either nonspeech or speech. The models were trained 
using an unsupervised learning process, whereby the initial 
frames (usually first sixty frames, if the number of frames of 

an utterance is less than sixty then half of the total frames is 
taken as initial frames) from a signal were clustered into the 
two Gaussians, with the distribution with the lowest mean 
representing nonspeech regions and the distribution with the 
higher mean representing speech regions. The estimated 
distributions were also used to determine a decision threshold 
to discriminate speech from non-speech. Usually, it is chosen 
as the point between two centers where the probabilities are 
equal.  
Then speech/nonspeech detection is performed in each sub-
band, independently of all other subbands, and the results 
from each subband were used to determine the final output 
through a voting procedure decided by some threshold 
determined experimentally. After taking the average of all 8 
subbands decisions a decision threshold is computed from it 
using equation (2) for making speech/nonspeech decisions. A 
hangover scheme which simply delays the transition from a 
speech declaration to a non-speech declaration is also 
implemented to account for the low energy regions of the tail 
end of utterances. An endpoint detection algorithm is then 
used to get the final VAD labels. 

2.4. Supervised GMM-based VAD [14] 

To train speech and nonspeech Gaussian mixture models we 
select training data from NIST Speaker recognition evaluation 
(SRE) telephone data from 2004 to 2010 inclusive. we extract 
11-dimensional MFCC (including the log energy) features, 
augmented with their first, second, and third derivative 
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features making 44-dimensional features, from the all training 
data. Pre-existing VAD segmentations of reasonable quality 
are then used to separate speech and nonspeech feature 
vectors. Two 256-component Gaussian mixture models 
(GMMs) with diagonal covariance matrices are estimated for 
the speech and nonspeech models using the separated speech 
and nonspeech MFCC feature vectors. The GMM estimation 
process begins with a single Gaussian, which is then iteratively 
split, mean-perturbed and re-estimated up to 256 components 
using a Maximum likelihood criterion. Each split doubles the 
number of Gaussians.  
Now, using the trained GMMs, producing a speech/nonspeech 
VAD segmentation for a new recording (i.e., RSR data in our 
case) involves the following: 
• Extract 44-dimensional MFCC features for all the 

recordings whose VAD segmentations are needed. 
• Compute the log likelihoods, speech log likelihood 

sLL and nonspeech log likelihood ,nsLL  of each feature 
vector with respect to each trained GMM. 

• Apply a median filter of length of 41 to smooth the 
decision boundaries and then compute the log likelihood 
ratio (LLR), s nsLLR LL LL= − . The length of LLR vector 
is same as the number of frames in each feature, i.e., one 
LLR for each frame  

• Now, choose speech if LLR τ> where 0.1.τ =   

2.5. Unsupervised GMM-based VAD [14] 

The unsupervised Gaussian mixture model (GMM)-based 
VAD, shown in fig. 3, is conceptually similar to the VQ-based 
self adaptive VAD [9] described in section 2.2. In VQ-based 
VAD speech and nonspeech models are estimated using k-
means (with k = 16) clustering whereas in this case they are 
trained using 16-component GMMs with diagonal covariance 
matrices. In unsupervised GMM-based VAD k-means 
clustering is used just for initialization.  
In unsupervised GMM-based VAD, producing 
speech/nonspeech VAD segmentations for an audio recording 
at hand involves the following steps:  

• compute the log energy logE frame by frame, sort the 
energies and take the lowest and highest (e.g., 10% of all 
frames in each case) energy frame indices. 

• determine the energy threshold θ from the sorted energies 
using equation (2). 

• compute the MFCC (12-dimensional including the 0th 
cepstral coefficients, no feature normalization method is 
applied)  features from the observed signal. 

• train a 16-components GMM for speech  

{ } { } { }( ), ,s s s s
c c cwλ µ= Σ by taking the MFCCs 

corresponding to the highest energy frame indices. 
Similarly, by taking MFCCs that corresponds to the lowest 
energy frame indices train a 16-components GMM for 

nonspeech { } { } { }( ), ,ns ns ns ns
c c cwλ µ= Σ  where  

1,2,...,c C= is mixture component index and 

C represents number of mixture components. 

• compute speech log likelihood sLL of each feature with 

respect to the trained speech modelsλ . Similarly, given 

trained nonspeech modelnsλ  compute nonspeech log 

likelihood nsLL . 

• Compute the log likelihood ratio LLR  by simply 
subtracting nonspeech log likelihood from the speech log 
likelihood. Smooth the LLR  using a moving averaging 
filter with a sliding window of 23-frames. Determine a 
threshold llrθ from the sorted likelihood ratio using 

equation (2). 

• Choose speech if llrLLR θ≥ and logE θ≥ otherwise 

nonspeech. 
• Then hangover scheme is used to prevent speech leakage. 

The hangover scheme does this by reducing the risk of a 
low-energy portion of speech being falsely classified as 
non-speech. The final VAD labels (contains only speech 
frames) are then obtained using an end-point detection 
algorithm.  

The RSR2015 corpus was collected in office environment 
using 6 portable devices, i.e., there are different channel 
distortions. For noisy corpus under additive and reverberant 
environments robustness of this VAD can be improved by 
simply enhancing the signal using a spectral subtraction 
technique before feeding into this VAD or by incorporating 
following changes: 
1. Since energy is not a robust feature, specifically in low 
signal-to-noise condition, its robustness can be improved 
using spectral subtraction as a pre-processor [4].  
2. Instead of MFCCs, robust features such as one proposed in 
[15], can be used for estimating the GMMs. 

3. Experiments and results 

Speaker recognition experiments are carried out on the female 
trials of the RSR2015 corpus. Following six VAD algorithms 
(described in section 2) are used for performance evaluation: 
Energy-based VAD [13], Energy-based VAD I, VQ-based 
VAD [9], sequential GMM(SGMM)-based VAD [10], GMM-
based VAD (supervised) [6, 14], and GMM-based VAD 
(unsupervised). 
Performance evaluation metrics used in this work are : the 
Equal Error Rate (EER), the old normalized minimum 
detection cost function (minDCFOld) and the new normalized 
minimum detection cost function (minDCFnew). minDCFOld 
and minDCFnew correspond to the evaluation metric for the 
NIST SRE in 2008 and 2010, respectively. 

3.1. Speech Corpus 

RSR2015 (Robust Speaker Recognition 2015), a new speech 
corpus for text-dependent robust speaker recognition, contains 
audio recordings from 298 speakers, 142 female and 156 male 
in 9 sessions each, with a total of 151 hours of speech. The 
speakers were selected to be representative of the ethnic 
distribution of Singaporean population, with age ranging from 
17 to 42 [18]. The database was collected in office 
environment using six portable devices (4 smart phones and 2 
tablets) from different manufacturers. Each speaker was 
recorded using three different devices out of the six. Each of 
the 9 sessions for a speaker is organized into 3 parts [18]:  
part I- 30 sentences from the TIMIT database covering all 
English phones. The average duration of sentences is 3.2 
seconds and total duration is 71 hours.  
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Figure 3: Block diagram of unsupervised Gaussian mixture model (GMM)-based voice activity detector.

 
part II- 30 short commands designed for the StarHome 
applications. The average duration of short commands is 2 
seconds and total duration is 45 hours. 
part III - consists of three 10- and ten 5-session dependent 
digit strings. 
The information about where to get this corpus can be found 
in [22]. This work deals with a subset of part I of the 
RSR2015 corpus. Similar to [20] , the background set is used 
for UBM and Joint Factor Analysis (JFA) training and a 
restricted test set from the part I evaluation set is used for 
testing. This restricted test set consists of all the female trails 
obtained by selecting all the target trials and 50000 high 
scoring nontarget trials. Working with the restricted test set 
causes the error rates to increase by a factor of 2 [20, see 
section 4.1]. 

3.2. Features Extraction 

We extract 20-dimensional MFCC features (including the log 
energy). First and second derivatives are appended with the 
static coefficients for a total feature dimension of 60. Then the 
nonspeech frames are removed using the VAD segmentations 
of each of the VAD algorithms. Short-term mean and variance 
normalization (STMVN) with a sliding window of 151-frames 
is then applied to normalized the features. Features having less 

than 151 frames are normalized with a full utterance-based 
MVN 

3.3. Experimental Setup 

We made six systems for different VAD algorithms considered 
here. For each system a 512-component gender-independent 
UBM (universal background model) with diagonal covariance 
matrices was trained using all background features  (63587 
recordings with 32770 from 50 male speakers and 30817 from 
47 female speakers). Baum-Welch statistics were generated 
from extracted MFCCs using the trained UBM. Joint Factor 
Analysis (JFA) was trained using extracted Baum-Welch 
statistics from all the background data. We use a JFA-based 
speaker verification framework as proposed in [19, 20] with 
the rank of eigenchannels matrix = 50 but without UBM 
adaptation. Please see section 4 of [20] for details about this 
framework. A restricted test set, as mentioned in section 3.1, is 
used for evaluation [20].    

3.4. Results 

In this work we used the part I portion of the RSR2015 
corpus. We report results on the female trials of restricted test 
set of the RSR2015 corpus. The numbers of target and 
nontarget trials in this restricted test set were 8664 and 50000, 
respectively. Fig. 4 presents an utterance from the RSR2015 
corpus uttered by a female speaker and its VAD segmentations 
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obtained by all six VAD algorithms considered in this work. It 
is observed from fig. 4 that compared to with VAD algorithms 
the unsupervised GMM-based VAD was able to detect 
speech/nonspeech more accurately. Table 1 presents the equal 
error rate (EER), minDCFold (minimum normalized detection 
cost for NIST SRE 2008) and minDCFnew (minimum 
normalized detection cost for NIST SRE 2010) achieved by all 
six voice activity detection (VAD) algorithms. It is observed 
from the presented results that both the supervised and 
unsupervised versions of GMM-based VAD yielded better 
recognition accuracy than all other VAD algorithms. In terms 
of all three evaluation metrics unsupervised GMM-based VAD 
outperformed all other VADs. The relative improvements 
achieved by unsupervised GMM-based VAD over all other 
VADs are shown in table 2. Combining energy-based and 
likelihood ratio-based criteria in VAD algorithm was found 
helpful. Energy is sensitive to additive noise distortions but its 
robustness can be improved by incorporating a noise reduction 
technique as a pre-processor [4, 9].  

Table 1:Text dependent speaker verification results in 
terms of EER, minDCFold and minDCFnew on the 
female trails of restricted test set of the RSR2015 
corpus obtained for different VAD algorithms. 

 
EER 
(%) 

minDCFold minDCFnew 

Energy-based  
VAD 

2.5 0.096 0.250 

Energy-based  
VAD I 

2.3 0.085 0.267 

VQ-based 
VAD 

2.2 0.087 0.227 

GMM-based VAD 
 (supervised) 

2.1 0.080 0.214 

GMM-based VAD 
 (unsupervised) 

2.1 0.078 0.178 

SGMM-based  
VAD 

2.2 0.083 0.201 

 

Table 2:Percentage relative improvements (RI) 
obtained by the unsupervised GMM-based voice 
activity detector (VAD) over all other VADs in EER, 
minDCFold and minDCFnew on the restricted test set. A 
positive RI indicates reduction in EER, minDCFold 
and minDCFnew. 

 
EER 
(%) 

minDCFold 

(%) 
minDCFnew 

(%) 
Energy-based 

VAD 
16 18.7 28.8 

Energy-based 
VAD I 

8.6 8.2 33.3 

VQ-based 
VAD 

4.5 10.3 21.5 

GMM-based VAD 
(supervised) 

0 2.5 16.8 

SGMM-based 
VAD 

4.5 6.0 11.4 

4. Conclusions 

In this paper we compared several unsupervised and 
supervised voice activity detection (VAD) algorithms in terms 
of speaker verification performances on the RSR corpus. It is 
observed that, if implemented properly, unsupervised VAD 
can provide similar/better performance than the supervised 
VAD. Combining energy-based and likelihood ratio-based 
VAD criterion provided better discrimination of speech from 
nonspeech. Among all the VAD both the supervised and 
unsupervised GMM VAD showed better performance in 
terms of speaker recognition accuracy. The unsupervised 
GMM-based VAD outperformed all other VADs when 
speaker recognition performances are compared in terms of all 
three evaluation metrics, i.e., EER, minDCFold and 
minDCFnew. 
 
Our future works are: 
 
� To evaluate the performance of all the VAD algorithms in 

different additive and convolutive noise environments. 
� To do fusion of the decisions of different VAD 

algorithms. 
� To incorporate robust features such as, robust cepstral 

coefficients [15], long-term signal variability (LTSV) 
[16], multiband LTSV [17]. 

� To evaluate the performances in text-independent speaker 
recognition task on the NIST SRE 2012 corpora. 
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Figure 4: (a) An utterance from the RSR2015 corpus (female)in time domain and its VAD segmentations achieved by (b) 
Energy-based VAD, (c) energy-based VAD I, (d) sequential GMM(SGMM)-based VAD, (e) VQ-based VAD, (f) supervised 

GMM-based VAD, and (g) unsupervised GMM-based VAD algorithms. 

 


