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Abstract
In this study, we describe the systems developed by the Center
for Robust Speech Systems (CRSS), Univ. of Texas - Dallas, for
the NIST i-vector challenge. Given the emphasis of this chal-
lenge is on utilizing unlabeled development data, our system de-
velopment focuses on: 1) leveraging the channel variation from
unlabeled development data through unsupervised clustering; 2)
investigating different classifiers containing complementary in-
formation that can be used in fusion; and 3) extracting meta-data
information for test and model i-vectors. Our results indicate
substantial improvement in performance by incorporating one
or more of the aforementioned techniques.
Index Terms: i-Vector challenge, UBS-SVM, PLDA, WCCN

1. Introduction
The main idea behind i-vector machine learning challenge is on
developing classification systems for speaker verification by di-
rectly providing i-vectors to all participants, thereby bypassing
any requirements for front-end signal processing algorithms. I-
vectors have been the center of attention for most speaker and
language verification tasks [1-12]. This evaluation poses a new
challenge by supplying development data without correspond-
ing speaker labels. The labels of development data have been
an essential component in state-of-the-art probabilistic linear
discriminant analysis (PLDA) [10, 11] based classification sys-
tems. They are also necessary to generate artificial trial sets
to be able to train score calibration and fusion parameters. To
address these new challenges, we consider three approaches:
1) a hybrid of top-down and bottom-up hierarchical clustering
methods to estimate development data labels; 2) constructing an
artificial development set by extracting a subset of the labeled
training data provided by NIST; and 3) clustering the develop-
ment data into 2 or more sub-classes to obtain meta-information
for the trials. The NIST i-vector challenge can be a suitable plat-
form to improve i-vector based recognition systems that do not
require labeled development data which is typically expensive
to generate [20, 6, 7].

2. Data description
The data provided for this challenge consists of 36,572 develop-
ment i-vectors to be used for building the system and a separate
set of evaluation i-vectors to produce the trials [13]. The devel-
opment data does not contain any speaker labels. Each i-Vector
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has a dimension of 600 and comes with an additional informa-
tion indicating the duration of the audio file used to extract it.
In the evaluation set there are five i-vectors representing each
target speaker and a single i-vector corresponding to each test
segment. There are a total of 1,306 target speakers (6,530 i-
vectors) and 9,634 test i-vectors. Therefore, the total number of
trials are 12,582,004. These trials are partitioned into progress
subset and evaluation subset. The progress subset comprises
of 40% of the total trials and evaluation subset contains the re-
maining 60%. The results reported in this study are based on
scores obtained from the progress subset.

3. System description
3.1. UBS-SVM Anti-model (UBS-SVM)

As in most classifiers, SVM performance is compromised when
training data is imbalanced. This is the case in most of the
speaker verification problems where there are limited examples
for enrollment speakers (positive instances) while much larger
examples for imposter speakers (negative instances). Due to this
mismatch, the final performance of the system may severely de-
grade. An imbalanced dataset is likely to result in an over-fitting
hyperplane for the enrollment speakers due to the limited num-
ber of positive instances. In such problems, a common solution
is to start with an individual SVM classifier using a unified im-
poster background dataset with the assumption that imposters
are concentrated in a specific region of the data-space [14]. Mo-
tivated by this, we split negative samples into two equal halves.
One half is considered as “positive samples” and the other as
“negative samples”. These subsets are used to train a single
binary-class SVM (namely the universal SVM). Next, all sup-
port vectors from both positive and negative sides will form a
new dataset that can be called the Universal Background Sup-
port (UBS) imposter dataset. Since this universal SVM is built
with balanced data, it does not suffer from the problem of imbal-
anced classes. Another advantage is that the number of support
vectors chosen through this algorithm is much smaller than the
original set. Hence, UBS-SVM not only alleviates the data im-
balance problem but also reduces the computation load in SVM
training. Figure 1 summarizes the proposed background data
selection method. 1

The proposed UBS-SVM algorithm is described in Algo-
rithm 1. Given that some sessions are severely corrupted by
noise and channel distortions, we use the average of all the pos-
itive examples for each enrollment speaker to obtain one in-
stance. Our observations show that averaging results in higher

1We should note that the official protocols for the i-vector challenge
were not entirely followed in this study.
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Figure 1: (a) Traditional SVM modeling for one-enrollment vs.
all imposter; (b) Proposed UBS-based SVM modeling, half pos-
itive vs. half imposter. X and + stands for negative example and
positive example, respectively. The circled X and + stands for
the support vector for negative example and positive example,
respectively. All the circled X and + in (b) consists of UBS im-
poster dataset.

performance.

Algorithm 1 Universal Background Support data selection-
based SVM
Step 1: Randomly split imposter data into two equal halves.
Step 2: Build SVM based on the two halves. This SVM is
called universal SVM (denoted a-SVM).
Step 3: Using both the negative and positive support vectors of
the a-SVM and data of the jth enrollment speaker, train the jth
speaker model (denoted u-SVMj), where 1 ≤ j ≤ S and S is
the total number of enrollment speakers.

3.2. Multi-session PLDA

It has been previously shown that when only one instance is
available for each target speaker, PLDA-based classification
[17, 18] outperforms other back-end systems. To handle the
multi-session case with PLDA, two methods were investigated.
As the labels of the development data are not provided, an un-
supervised clustering is performed prior to the PLDA modeling.

3.2.1. Unsupervised clustering for PLDA

PLDA is a process that follows factor analysis in order to sepa-
rate the between-speaker and within-speaker variability in the
i-vector space. However, to model PLDA properly, a large
amount of labeled data is required.

In order to find the development data labels, we employ
an iterative bottom-up classification algorithms. In order to
improve both clustering speed and reliability, the i-vectors ex-
tracted from audio files of less than 20 secs are excluded from
the process. we apply a bottom-up hierarchical clustering using
k-means algorithm by treating each i-vector as a separate clus-
ter to start with. The similarity between two clusters are then
determined by averaging the distance between i-vectors in the
first cluster and those in the second cluster. Here, the distance
is defined as the cosine distance between two i-vectors. The ter-
mination criterion of each iteration of clustering is set according
to the inconsistency coefficient which is an measure of similar-
ity decreasing gradient during clustering. After each iteration,
i-vectors from each clusters are averaged followed by length

normalizion. Then another iteration starts by treating each av-
eraged i-vector as separate cluster. The best performance was
achieved when using 4 iterations.

The two algorithms described below are designed to com-
bine the information obtained from different model i-vectors
supplied for each speaker. Each of these method results in a
different set of scores which contain complementary informa-
tion useful for the final submission.

3.2.2. Pre-scoring Average PLDA (PLDA1)

Here, the i-vectors of the jth enrollment speaker are grouped
and averaged before applying PLDA to perform verification.
This allows using the centroids of multiple instances provided
for each speaker to average out potential noise and/or channel
mismatch.

3.2.3. Post-scoring Average PLDA (PLDA2)

Each target i-vector is treated as if it originated from a differ-
ent speaker. After applying PLDA, scores obtained from the i-
vectors belonging to each speaker are averaged together. This is
based on the assumption that each individual sample/utterance
captures some distinct speaker characteristics and environment
distortions.

3.3. Within-Class Covariance Normalization

Next, within-class covariance normalization (WCCN) has
previously been used in SVM-based speaker verification
systems[16]. It was originally developed for generalized linear
kernel functions of the form,

k(v1, v2) = vT1 Rv2, (1)

where v1 and v2 are the two vectors in the feature space and
R is a positive semidefinite parameter matrix. R is equal to
the inverse covariance matrix of the development data. WCCN
proposes to set R to W−1, where W is the within-class covari-
ance matrix over all classes (i.e., speakers) obtained from the
development data [19]. W is computed as follows:

W =
1

Ns

Ns∑
i=1

1

Nu

Nu∑
j=1

(vij − v̄i)(vij − v̄i)t, (2)

where Ns is the total number of speakers available in the devel-
opment data, Nu is the number of utterances for each speaker,
and v̄i represents the mean of i-vectors belonging to the ith

speaker. Since the development data lacks speaker labels, a K-
means based unsupervised clustering is applied to form speaker
classes. Our experiments show that 2048 classes yield the best
performance.

The WCC matrix obtained in Eq. 2 is used to normalize the
modified cosine kernel in Eq.3, as oppose to the linear kernel
from Eq. 1.

k(v1, v2) =
(AT v1)(AT v2)√

(AT v1)T (AT v1)(AT v2)T (AT v2)
(3)

where A is obtained through the Cholesky decomposition of
W−1.

4. Score calibration and fusion
The fusion of multiple systems, which ideally possess comple-
mentary information, plays a significant role in the design of
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Figure 3: Top 2 principle components of the development i-
vectors.
a successful verification system. In this section, we describe a
fusion algorithm that yields a set of scores with a potentially
lower error probability.

4.1. Multivariate Gaussian Score Fusion

It is fair to assume that properly calibrated scores have a bi-
modal distribution, one corresponding to non-target trial scores
and the other to target scores.2 Each mode can be best rep-
resented by one of many probability distribution functions. For
simplicity, while acknowledging that normal distributions could
be sub-optimal, we use a normal probability density assumption
to represent the distribution of both target and non-target scores.
Since we intend to use a generalized model for all systems,
normal probability density functions result in acceptable per-
formance. In order to graphically illustrate the proposed fusion
procedure, we assume two sets of scores generated by two sys-
tems based on the same set of trials. Fig. 2 depicts the individual
score histograms (populations for different score values). Here,
the x and y axes correspond to systems 1 and 2, respectively.
It is self-evident that the probability of error (false-alarms and

2Note that if the trials are comprised of sets with different condi-
tions, each mode may consist of multiple sub-modes, as was the case
for NIST SRE 2012.

misses) is correlated with the amount of overlap between the
target and non-target probability distributions. Evaluating these
systems independently, will result in a probability of error pro-
portional to the volume enclosed by the the two overlap sides.
In this case,

P (error) ∝ a× b (4)
where a and b are the lengths of target and non-target over-
lapping regions illustrated in Fig. 2. By jointly evaluating the
systems, the error region becomes a sub-set of the rectangle en-
closed by a and b. Considering the areas as upper bounds for er-
ror rates, this upper bound is smaller when the scores are jointly
evaluated (dark shaded area in Fig. 2).

In the fusion procedure, the score vectors are a concatena-
tion of the scores from individual systems and are used to esti-
mate parameters of multivariate Gaussian distributions for tar-
get and non-target scores. The training data is obtained through
the development trials described in Section 4.3.

4.2. Meta-Data Extraction

Integrating Quality measures into the fusion procedure has pre-
viously been shown to contribute to improving speaker verifi-
cation performance [22]. Such features can be a measure for
the reliability of a certain i-vector. File durations, provided in
the dataset, are of this kind. It is fair to assume that i-vectors
corresponding to files with longer duration are better able to
model speaker identities. The Bosaris toolkit supplies the op-
tion to incorporate quality measures in both fusion and calibra-
tion [20, 21].

In this study, we attempt to extract an additional set of qual-
ity measures, which are obtained by taking the difference be-
tween i-vectors used in each trial. This is based on the assump-
tion that the enrollment data might belong to more than one
categories, such as speaker gender, which would have a major
effect on the decisions made by the systems. We start by assum-
ing 2 main classes for the i-vectors. This may also be validated
through our observations. Fig. 3 depicts the top 2 directions
of the i-vector principle components. The likelihood of each i-
vector belonging to one of the two clusters therefore is used as
a potential quality measure.

Table 1: MinDCF values from development and evaluation tri-
als

# Systems Development trials Enrollment trials
minDCF EER minDCF

1 CDS (baseline) 0.36 2.4 0.386
2 CDS+Znorm 0.27 1.9 0.363
3 UBS-SVM 0.27 2.2 0.347
4 plda1 0.26 1.8 0.379
5 plda2 0.49 6.4 0.576
6 wccn 0.36 2.0 0.455
7 knn 0.27 2.3 0.375
8 knn+Znorm 0.29 2.0 0.383

4.3. Calibration

Unlike the NIST SRE challenge, in the i-vector challenge par-
ticipants do not have access to labeled development data. This
poses restrictions on the ability to generate artificial trials and
be able to train fusion and calibration parameters. Our approach
here was to use a subset of the labeled train data (i.e. model i-
vectors) to generate target trials. Generating non-target trials is
not as difficult. Each target trial for one model can be consid-
ered a non-target trial when compared with all the other models
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comb. 1 2 3 4 5 6 7 8 9 fused
1,3,4,5,6 D × D D D D × × × 0.326

1,3,4,5,6,7,8 D × D D D D D D × 0.344
1,3,4,5,6,7,8,9(1,4) D × D D D D D D D 0.330
1,3,4,6,7,8,9(1,4) D × D D × D D D D 0.329

1,3 D × D × × × × × × 0.317
1,3,4 D × D D × × × × × 0.324

1,3,4,6 D × D × D × × × × 0.336
1,3,7 D × D × × × D × × 0.318
1,3,8 D × D × × × × D × 0.357

1,3,9(1,4) D × D × × × × × D 0.318
2,3 D × D × × × × × × 0.328

1,3,9(2,4) D × D × × × × × D 0.332
3 × × D × × × × × × 0.325

3,9(1,4) × × D × × × × × D 0.368
1,3,9(1,3,4) D × D × × × × × D 0.325

Table 2: MinDCF from evaluation trials. In each row ticks indicated whether a system was used in that particular submission (con-
sequently, crosses mean that a system was not used for that row). System 9 is the multi-variate Gaussian fusion system (MVGF) and
takes multiple systems as input. Subsystems used in each submission for MVGF are specified in parentheses in front of system 9.

(for every target trial there are 1305 non-target trials). Besides
the lack of sufficient target trials, the low diversity in non-target
trials also reduces the reliability of the development trials. Es-
sentially, the non-target trials in the aforementioned paradigm
are pulled out of a closed set of models, resulting in what is
commonly known as in-set trials. To add some variety to the
non-target trials, we used development i-vectors as the potential
out of set test data. Hence, development trials are a combination
of comparing models with a mixture of in-set and out-of-set test
data. In this section, we will provide some results which explore
different ratios of in-set and out-of-set test files to obtained the
best performance. Better performance implies that the develop-
ment trials are a closer approximation of the actual enrollment
trials (for which we do not have access to their labels). Another
parameter one must estimate to best resemble the enrollment tri-
als is the prior probability of target trials, typically represented
as the evaluation prior.

π =
Ntarget

Ntarget +Nnon−target
(5)

The prior, alongside the cost coefficients used to compute
the DCF from the three values that define the operating point
at which the system performance is evaluated [20, 21]. In the
evaluation description, the DCF equation is formulated as bel-
low:

DCF (t) = PMiss(t) + 100PFA(t) (6)

The same equation in terms of the false alarm miss probability
cost coefficients and the prior is:

DCF (t) = πCMissPMiss(t) + (1− π)CFAPFA(t) (7)

Eq.7 does not provide sufficient information to extract the prior
probability. However, once the prior is known, computing suit-
able values for CFA and CMiss is trivial. A series of exper-
iments were conducted to estimate this value. Since evaluat-
ing the performance of any given system is feasible through
the evaluation website, one can easily obtain the minDCF by
submitting a given set of scores. Applying the same system
to development trials with known prior should yield a similar

minDCF when the prior is close to that of the enrolment set. It
is expected that the proper prior would be 0.001 or 0.01, values
that have been commonly used in previous NIST SREs. Our ex-
periments indicated that by using 0.001 for the prior probability
of target scores provided very effective overall performance for
the i-Vector system.

5. Results
A total of 8 subsystems are designed for submission. Table. 1
summarizes the performance of individual subsystems, includ-
ing both development and enrollment trials3. We are able to
compute the EER for development trials, since we have ac-
cess to labels. Table. 2 shows the performance of fused systems
for enrollment trials, submitted to the online scoring system.
All submissions use durations as quality measures in the final
fusion. The best result is obtained from fusing system 1 (CDS
baseline) and 3 (UBS-SVM). While the PLDA1 averaging tech-
nique gives some improvement, PLDA2 degrades the perfor-
mance in almost all cases. This may suggest that the clustering
method proposed in this study requires further improvement.
Otherwise, PLDA2 cannot sufficiently learn channel variations
from the background model.

6. Conclusions
In this study, we proposed a novel imposter selection method
for an SVM-based speaker verification system. We showed that
selecting informative background data is crucial in the construc-
tion of our state-of-the-art SVM-based speaker verification sys-
tem. In the proposed method, a universal background dataset
was derived to balance positive and negative examples. In ad-
dition, clustering-based data mining is used to label speaker
information in the development i-vectors. This unsupervised
labeling mechanism allowed us to implement algorithms that
require labeled background information for channel compensa-
tion, such as PLDA and WCCN. A series of experiments were
conducted to verify these advancements and submitted to the
i-vector system website.

3Development trials are those constructed for in-house experiments
as described in Section 4.3
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