
112

Odyssey 2014:
The Speaker and Language Recognition Workshop
16-19 June 2014, Joensuu, Finland

Allpass modelling of Fourier phase for speaker verification

Karthika Vijayan, Vinay Kumar and K. Sri Rama Murty

Department of Electrical Engineering
Indian Institute of Technology Hyderabad, India

{ee11p011, ee10b039, ksrm}@iith.ac.in

Abstract
This paper proposes features based on parametric representa-
tion of Fourier phase of speech for speaker verification. Direct
computation of Fourier phase suffers from phase wrapping and
hence we attempt parametric modelling of phase spectrum us-
ing an allpass (AP) filter. The coefficients of the AP filter are
estimated by minimizing an entropy based objective function
motivated from speech production process. The AP cepstral
coefficients (APCC) derived from the group delay response of
estimated AP filter are used as features for speaker verification.
An i-vector based speaker verification system is employed to
evaluate the performance of the proposed APCC features on
NIST 2003 speaker recognition evaluation database. The equal
error rates (EER) obtained from speaker verification systems
built using APCC features and baseline mel-frequency cepstral
coefficients (MFCC) are reported. A relative improvement of
12% was obtained over MFCC features by combining evidences
from both MFCC and APCC based systems.

1. Introduction
Speaker verification refers to verifying a person’s claimed iden-
tity by employing a machine [1]. The accuracy of speaker verifi-
cation systems critically depend on the features extracted from
speech signals. Most of the speaker verification systems use
features derived from the magnitude spectrum of speech signal.
Mel-frequency cepstral coefficients (MFCC) [2] and linear pre-
diction cepstral coefficients (LPCC) [3], which represent the en-
velope of magnitude spectrum, are the commonly used features
for speaker recognition. Another commonly used set of features
of speech is frequency domain linear prediction (FDLP) coeffi-
cients, which model the magnitude envelope of speech signals
in analytic domain [4]. The phase information is neglected in
all these feature sets, which is equally important as magnitude
in speaker characterization. It is evident from informal listen-
ing that identification of speaker from phase distorted speech1

is difficult, which points to the relevance of phase in conveying
speaker specific characteristics. Apart from speaker recogni-
tion, the phase information in speech signals has also been ap-
plied for signal estimation [5], speech enhancement [6], speech
separation [7] etc. Also the significance of phase spectral char-
acteristics of signals in speech as well as image processing is
elaborately described in [8].

Several attempts have been made for feature extraction
from phase characteristics of speech. Features derived from am-
plitude weighted instantaneous frequency of a set of bandpass
components of speech signal were proposed with application to
speaker identification in [9]. Another set of features extracted

1Speech signals synthesized with distorted phase spectra are given
in http://www.iith.ac.in/˜ee11p011.

from subband instantaneous frequencies obtained using a gam-
matone filter-bank was proposed in [10] for speech recognition.
Features based on amplitude modulation-frequency modulation
decomposition of speech signals were proposed in [11, 12]. All
these features deal with phase of analytic domain representation
of speech.

Importance of short-time phase spectrum in speech process-
ing was extensively studied in [13], mentioning its applications
to pitch determination, formant extraction, epochs estimation
etc. The significance of phase in human speech recognition was
further explored in [14] based on subjective studies. Computa-
tion of phase based features was attempted directly from short
time Fourier transform representation of speech signals in [15].
In this work, ambiguity in calculation of phase values based on
clipping positions in speech signal was nullified by calculating
phases of each frequency component with respect to a fixed ba-
sis frequency. But the phase wrapping problem associated with
computation of Fourier phase was not addressed.

Feature extraction from speech by capturing phase spectral
information using a group delay function for speaker identifi-
cation was presented in [16]. The computation of group delay
function in [16] was based on a minimum phase assumption
[17] on speech signals. Since speech signal is the output of a
nonminimum phase vocal tract system, these group delay fea-
tures represent only partial phase spectral information. A set
of post processed group delay features was proposed in [18],
which dealt with the spiky nature of group delay of speech sig-
nals. The spikiness of group delay function was addressed using
zeros of short term z-transform representation of speech signals
in [19]. Phase based features for speaker recognition were de-
rived from linear prediction (LP) residual, since the unmodelled
phase spectrum of speech after LP analysis will be contained in
it [20]. This set of features also represent incomplete phase
spectral information from residual phase alone.

Unlike all the methods mentioned above, we propose para-
metric modelling of phase spectrum of speech signals for fea-
ture extraction. The modelling of phase spectrum of speech sig-
nals is attempted as the response of an allpass (AP) system. AP
modelling of LP residual was attempted to extract features for
speaker recognition in [21]. In this paper, we propose AP mod-
elling of a phase signal which is derived from speech upon re-
moval of magnitude spectrum. The modelling is performed by
imposing constraints on the signal input to the AP system based
on speech production process. The estimated AP coefficients
(APC) are transformed to cepstral domain to obtain allpass cep-
stral coefficients (APCC) which serve as features for speaker
verification. The verification system is built on the state-of-the-
art i-vector based architecture [22]. A GMM-UBM based mod-
elling is employed to obtain speaker specific statistical models
[23]. The speaker verification studies are conducted for male
speakers in NIST 2003 speaker recognition evaluation database.
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The equal error rate (EER) for APCC based speaker verifica-
tion is reported. Also the combination of APCC and the base-
line MFCC features are observed to deliver an EER lesser than
their individual EERs, indicating the existence of complemen-
tary speaker specific information in both magnitude and phase
of speech signals.

The rest of the paper is organized as follows: In section
2, our motivation to model phase spectrum and the prerequi-
sites for modelling are explained, section 3 discusses extraction
of APCCs and building speaker verification system and section
4 demonstrates the speaker verification studies portraying the
effectiveness of APCCs. In section 5, we summarize the contri-
butions of this work towards speaker verification.

2. Modelling of phase spectrum
The Fourier transform representation of a discrete time signal,
s[n] is [17]:

S(jω) =
∞
�

n=−∞

s[n]e−jωn (1)

which can be represented in polar form as:

S(jω) = |S(jω)|ej∠S(jω) (2)

where |S(jω)| is the magnitude spectrum and ∠S(jω) is the
phase spectrum of s[n]. This expression will completely rep-
resent s[n] only when both |S(jω)| and ∠S(jω) are speci-
fied. Features like MFCC and LPCC derive information from
|S(jω)| alone. The features representing only a portion of
speech characteristics cannot completely capture information
about the speaker.

Direct computation of∠S(jω) is affected with phase wrap-
ping problem. In this paper, we attempt to parametrize ∠S(jω)
and derive features from it. The parametric modelling of phase
spectrum can be attempted by suppressing magnitude spectrum
in order to highlight phase spectral characteristics in speech sig-
nal. Amagnitude suppressed signal, termed as phase signal y[n]
is generated from speech signal, s[n] as follows:

y[n] = F
−1

�

S(jω)

|S(jω)|

�

(3)

where F
−1 denotes the inverse discrete-time Fourier trans-

form.
The phase signal will clearly have a flat magnitude spec-

trum and hence negligible autocorrelations, since power spec-
tral density and autocorrelation function are Fourier transform
pairs. Fig. 1(b) portrays the phase signal derived from the
speech segment in Fig. 1(a). Even though y[n] is uncorrelated,
its samples are not statistically independent. It posses higher
order statistical relationships between samples due to the phase
spectrum contained in it. The cumulants are the most commonly
used measures for representing higher order statistics [24]. The
rich 3rd and 4th order relations existing in y[n] can be ex-
pressed in terms of 3rd and 4th order cumulants- C3,y(k1, k2)
and C4,y(k1, k2, k3) respectively. The contour plots of esti-
mates of cumulants [25] computed for a 25ms segment of y[n]
in Fig. 1(b) are shown in Fig. 2. The 4th order cumulant,
C4,y(k1, k2, k3) is plotted for single slice of k3. Modelling a
suitable system with y[n] as its output, is expected to capture
these higher order relations in y[n] and thus model the phase
spectrum ∠S(jω).
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Figure 1: Signals at different stages of AP modelling: (a)
Speech signal, s[n] (b) Phase signal, y[n] and (c) AP residual,
x[n].
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Figure 2: Illustration of higher order relations existing in phase
signal: Contour plots of estimated cumulants of y[n].

2.1. Allpass systems

The allpass (AP) system is an autoregressive moving aver-
age (ARMA) model capable of modelling phase characteristics
of systems, including nonminimum phase systems. AP sys-
tems are capable of generating uncorrelated and dependent out-
put samples when excited with non-Gaussian, independent and
identically distributed (i.i.d) input sequence [26]. Since these
characteristics match with those of y[n], AP system is expected
to be a suitable choice for phase modelling. The system transfer
function of anM th order AP system is:

H(z) =
aM + aM−1z

−1 + ...+ a1z
−M+1 + z−M

1 + a1z−1 + ...+ aM−1z−M+1 + aMz−M
(4)

Such a system has flat magnitude response (|H(jω)| = 1) with
its poles lying at conjugate reciprocal locations of its zeros.
Both numerator and denominator polynomials ofH(z) are rep-
resented by the same set of coefficients and thus H(z) can be
uniquely described in terms of a = [a1a2...aM ]T , termed as
AP coefficients (APC).

The input-output relationship ofH(z) is given by:

y[n] = −

M
�

l=1

aly[n− l]+x[n−M ]+

M
�

l=1

alx[n−M+ l] (5)
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where y[n] is constituted by uncorrelated and dependent sam-
ples when x[n] is a non-Gaussian i.i.d sequence.

For a stable and causal H(z), all the poles will lie inside
unit circle in z plane. Consequently all zeros will lie outside
the unit circle, which act as poles of the inverse filter H−1(z).
ThusH−1(z)will be unstable unless it is a noncausal filter [27].
Hence the criterion of noncausality is forced on H−1(z) and
the input signal x[n], given y[n] and a, should be computed in
a noncausal manner as:

x[n] = −

M
�

l=1

alx[n+ l]+y[n+M ]+

M
�

l=1

aly[n+M− l] (6)

The APCs are estimated by imposing constraints over input sig-
nal x[n] based on speech production process.

3. Estimation of allpass cepstral coefficients
AP modelling of phase signal aims to model the phase spec-
trum of speech by capturing higher order statistical relation-
ships in y[n] and generate an AP residual, x[n] with maximally
independent samples. This is an ill posed problem in which
both the system parameters a and input signal x[n] are un-
known. Hence it requires some assumptions or prior knowledge
of either the system or input to make the modelling problem
tractable. In [26], Chi et al. proposed an AP modelling method
which maximizes qth order cumulant of a non-Gaussian i.i.d.
input sequence. This approach requires knowledge of the opti-
mum value of q. Modelling based on least absolute deviations
for AP modelling is proposed in [28] by imposing a Laplacian
distribution on x[n]. A maximum likelihood approach for AP
modelling is presented in [29] when x[n] follows any arbitrary
probability distribution with known parameters. These methods
require prior knowledge of probability distribution followed by
x[n]. In this paper we attempt to model AP system by imposing
constraints on x[n] from a speech production perspective.

The excitation signal to the vocal tract system while pro-
ducing voiced speech, will have significant values only at glot-
tal closure instants (GCI) [30]. Hence the input signal can be
viewed as train of impulses, in which energy distribution is con-
strained to GCIs alone. The excitation at GCIs are not spiky
in nature. Still such a consideration of impulse excitation at
GCIs renders an advantage of mathematical simplification for
the modelling process. The APCs are needed to be estimated
such that input signal x[n] should have its energy localized to
GCIs. Since x[n] is generated by inverse filtering y[n] through
AP system and the magnitude response of AP system is flat,
the total energy in x[n] is same as that of y[n]. Hence frames
of y[n] can be normalized to have unit energy so as to obtain
frames of x[n] containing unit energy. The sample-wise energy
content in x[n] can be represented as:

e[n] = x
2[n] (7)

Since e[n] has positive sample values and sum of samples is
unity, it can be viewed as a valid probability mass function. The
energy e[n] can be concentrated to a few samples by minimizing
its entropy function. The entropy associated with e[n] can be
defined as a function of APCs as [31]:

J(a) = −

N
�

n=1

e[n] log e[n] (8)

We choose J(a) as the objective function to be minimized for
estimating a. The minimum entropy deconvolution strategy
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Figure 3: Illustration of absence of higher order relations in AP
residual: Contour plots of estimated cumulants of x[n].

[32] has been successfully used for applications like period es-
timation of periodic/quasi periodic signals [33]. In this paper,
a gradient based iterative procedure is followed for minimiza-
tion of J(a). APCs, a should be initialized with small random
values such that the locations of poles of H(z) are within unit
circle. The values of a will be updated iteratively with the gra-
dient of J(a). At iteration k, the APCs ak will be computed
as:

ak = ak−1 − µ
∂J(a)

∂a
|a=ak−1

(9)

where ak−1 is the APCs estimated at (k − 1)th iteration and µ
is the learning rate parameter (µ is empirically chosen as 0.005
in this study). The gradient of J(a) with respect to a can be
computed using chain rule and is given as:

∂J(a)

∂a
=

∂J(a)

∂e[n]

∂e[n]

∂x[n]

∂x[n]

∂a

= −
N
�

n=1

[1 + log(e[n])](2x[n])

�

∂x[n]

∂a

�

(10)

The input signal x[n] can be computed as in (6). The derivative
of x[n] with respect to a can be computed as:

∂x[n]

∂ap

= −
M
�

l=1

al
∂x[n+ l]

∂ap

−x[n+p]+y[n+M−p] (11)

∀p ∈ {1, 2...M}. It is clear from (11) that the derivative of
x[n] with respect to ap can be computed by filtering y[n+M−
p]− x[n+ p] through an all-pole filter with coefficients a. The
updating of coefficients is terminated when value of J saturates
to a minimum possible value, i.e.J(ak−1)− J(ak) < ǫ, with ǫ
chosen to be 10−6.

The proposed algorithm delivers a set of APCs a by mod-
elling frames of y[n] and generates AP residual, x[n] with its
energy localized to GCIs. The AP residual x[n] generated by
modelling a segment of y[n] in Fig. 1(b) is shown in Fig. 1(c),
which clearly demonstrates the train of impulse-like nature of
x[n]. The AP system is expected to capture the higher order
statistical relations from y[n] and generate an x[n] with maxi-
mally independent samples. The estimates of 3rd and 4th order
cumulants for the segment of AP residual in Fig. 1(c) is shown
in Fig. 3. From this figure, it is clearly evident that the 3rd and
4th order relationships existed in y[n] (See Fig. 2) are absent in
x[n].

The estimated APCs a, are expected to have captured
speaker specific information from speech signals. To illustrate
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Figure 4: Illustration of effectiveness of AP coefficients in cap-
turing speaker characteristics: (a) Groupdelaygram from esti-
mated APCs and (b) Spectrogram of speech signal.
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Figure 5: Minimization of entropy function with respect to or-
der of AP system,M .

the information captured by APCs, groupdelaygram is plotted
by computing the group delay of estimated AP system (group
delay computation is explained in section.3.1) for segments of
phase signal. The groupdelaygram in Fig. 4(a) demonstrates all
formant tracks as clearly as in the spectrogram of speech given
in Fig. 4(b). This clearly illustrates the efficiency of estimated
APCs in capturing speaker characteristics.

The minimization of entropy function attained for different
orders of AP system (M ) is shown in Fig. 5. For small val-
ues ofM , the minimization of entropy function is not effective
and hence resultant APCs are unreliable. While for large values
ofM , the modelling procedure tries to overfit the phase signal
y[n] and destroys the energy localization in x[n]. The model
orders between 10 and 15 are observed to be providing faithful
AP models. The estimated APCs are observed to be capturing
speech characteristics effectively and hence are used to derive
features for speaker verification.

3.1. Allpass cepstral coefficients

The estimated APCs are coefficients of a polynomial and are not
stabilized. Small changes in values of APCs will result in huge
changes in the poles and zeros ofH(z). Hence APCs should be
transformed to a more stabilized set of coefficients. The group
delay of the estimated AP system is computed as [17]:

τ (ω) = I

�

H ′(jω)

H(jω)

�

(12)

where I {.} denotes the imaginary part of a complex quantity
and H ′(jω) is the derivative of H(jω). The H ′(jω) can be

computed using Fourier transform relationship [17]:

H
′(jω) = −jF{n h[n]}. (13)

where h[n] is the impulse response of AP system and F de-
notes Fourier transform. Discrete cosine transformation (DCT)
is performed over the group delay to account for redundancies
existing in it. The first few coefficients from DCT output are
retained, which we call as allpass cepstral coefficients (APCC).
The logarithmic transformation involved in cepstrum computa-
tion is neglected, owing to the additive nature of group delay
response. The APCC together with its first and second order
differences constitute the APCC feature vectors. Speaker veri-
fication system is built using these APCC feature vectors.

3.2. Speaker verification system

An i-vector based speaker verification system is used to evalu-
ate performance of the proposed APCC features. Speaker inde-
pendent distribution of APCC features is captured using a uni-
versal background model (UBM) [34], which is essentially a
very large Gaussian mixture model (GMM) trained by pooling
features from several speakers. The parameters of the UBM
are adapted to reference/test utterance to capture the speaker-
dependent distribution [23]. The mean vectors of the adapted
GMM are concatenated to form a GMM supervector, which
essentially represents speaker and session specific information
[35]. The dimensionality of the GMM supervectors is reduced
using total variability matrix (T-matrix), to obtain a low dimen-
sional representation referred to as the i-vectors [22]. Proba-
bilistic linear discriminant analysis (PLDA) is performed on the
i-vectors to compensate for session/channel effects and to yield
efficient classification [36]. The i-vectors from reference and
test utterances are used to compute a likelihood based confi-
dence score Λ, which is used to take decision on claimed iden-
tity.

4. Speaker Verification Studies
4.1. Database for building UBM

Speech data of male speakers from switchboard cellular part-2
database was used as training data for building the UBM, T-
matrix and PLDA model. There are 1446 male speaker files
in the database. The total available database is divided into
2 subsets- one for training the UBM and other for training T-
matrix and PLDA model.

4.2. Database for performance evaluation

The performance of speaker verification system based on pro-
posed APCC features is carried out on male speakers from
NIST-2003 speaker recognition evaluation database [37]. We
have chosen NIST-2003 over more recent versions of NIST
databases due to its relatively small data size, which is suit-
able for the very limited computational resources available to
us. There are 1492 male test utterances in the database. The
average duration of reference utterance is 2 minutes and that of
test utterance is 30 seconds [38]. There are a 14773 test pair ut-
terances out of which 1214 are genuine and 13559 are impostor
tests.

4.3. Speaker verification evaluation

The speech signals are segmented into frames of 25ms duration
with 10ms shift. Phase signals are derived from these speech
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Figure 6: Detection error trade-off curves for speaker verifica-
tion systems.

Table 1: Equal error rates obtained using different features in
speaker verification.

Feature used EER (%)
MFCC 1.32
APCC 7.58

MFCC + APCC 1.15

frames and a 10th order AP modelling is performed to obtain
APCs. 39 dimensional APCC feature vectors (13 cepstra +
13 Δ + 13 ΔΔ) are extracted from each speech segment and
speaker verification system is trained. The confidence scores
between the reference and test utterances are obtained and the
performance of the proposed speaker verification is demon-
strated as detection error trade-off [39] curve in Fig.6. The
equal error rate (EER) of 7.58% was obtained, illustrating the
effectiveness of proposed APCC features in speaker characteri-
zation. The speaker recognition system built as an autoassocia-
tive neural network based on features derived from LP residual
phase resulted in an EER of 22% for NIST 2003 [20]. Also the
EER obtained with modified group delay features [16] evalu-
ated upon NIST 2003 was reported as 11.92% [40].

The performance of APCC features is compared with the
baseline MFCC features (13 cepstra + 13 Δ + 13 ΔΔ) ex-
tracted from magnitude spectrum of speech signals. Table. 1
shows the performance of both systems based on MFCC and
APCC. MFCC features are observed as superior to APCC in
speaker characterization. Since MFCC and APCC features rep-
resent magnitude and phase spectral information in speech re-
spectively, the confidence scores obtained from both are com-
bined to investigate their complementary nature. The scores
from both systems are fused as a convex combination:

Λfused = αΛMFCC + (1− α)ΛAPCC (14)

The weight of combination α is chosen as 0.7, giving more em-
phasis to MFCC features. The resulting EER is observed to be
lesser than that of both MFCC and APCC features, delivering a
relative improvement of 12% compared to MFCCs. This points
to the existence of complementary speaker specific information
in both MFCC and APCC features.

5. Conclusions
A set of features derived from phase spectrum of speech signals
for speaker verification was proposed in this paper. The phase
spectrum of speech was parametrically modelled to explore
speaker specific information in it. Allpass systems were chosen
to model phase spectrum. Cepstral features were derived from
allpass coefficients (APCC) to represent phase information in
speech. APCC features were used to build speaker verifica-
tion system whose performance was evaluated on male speakers
from NIST 2003 speaker recognition evaluation database. An
equal error rate (EER) of 7.58% was obtained from APCC fea-
tures as opposed to 1.32% from mel cepstral features (MFCC).
The combination of systems based on MFCC and APCC fea-
tures delivered an EER of 1.15% which is clearly lesser than
the individual EERs of both systems. The speaker verification
studies in this paper illustrated the effectiveness of APCCs in
capturing phase spectral characteristics and marked the pres-
ence of complementary speaker information in magnitude and
phase spectrum of speech signals.

6. References
[1] Joseph P. Campbell Jr, “Speaker recognition: A tutorial,”

in Proceedings of the IEEE, September 1999, vol. 85, pp.
1437–1462.

[2] Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon, Spo-
ken language processing: A guide to theory, algorithm
and system development, Prentice Hall PTR, Upper Sad-
dle River, NJ, USA, 1st edition, 2001.

[3] John Makhoul, “Linear prediction: A tutorial review,” in
Proceedings of the IEEE, April 1975, vol. 63, pp. 561–
580.

[4] Marios Athineos and Daniel P.W. Ellis, “Frequency-
domain linear prediction for temporal features,” in IEEE
Workshop on Automatic Speech Recognition and Under-
standing, 2003, pp. 261–266.

[5] D. Griffin and Jae S. Lim, “Signal estimation from mod-
ified short time fourier transform,” in IEEE Transactions
on Acoustics, Speech and Signal Processing, April 1984,
vol. 32, pp. 236–243.

[6] P. Mowlaee and R. Saeidi, “Iterative closed-loop phase-
aware single-channel speech enhancement,” in IEEE
Signal Processing Letters, December 2013, vol. 20, pp.
1235–1239.

[7] P. Mowlaee, R. Saeidi, and R. Martin, “Phase estimation
for signal reconstruction in single-channel speech separa-
tion,” in Interspeech 2012, September 2012, pp. 1548–
1551.

[8] Alan V. Oppenheim and Jae S. Lim, “The importance of
phase in signals,” in Proceedings of the IEEE, May 1981,
vol. 69, pp. 529–550.

[9] Marco Grimaldi and Fred Cummins, “Speaker identifica-
tion using instantaneous frequencies,” in IEEE Transac-
tions on Audio, Speech and Language processing, August
2008, vol. 16, pp. 1097–1111.

[10] Hui Yin, Volker Hohmann, and Climent Nadeu, “Acous-
tic features for speech recognition based on gammatone
filterbank and instantaneous frequency,” in Speech Com-
munication, 2011, vol. 53, pp. 707–715.



117

[11] Dimitrios Dimitriadis, Petros Maragos, and Alexandros
Potamianos, “Robust AM-FM features for speech recog-
nition,” in IEEE Signal Processing Letters, September
2005, vol. 12, pp. 621–624.

[12] Tharmarajah Thiruvaran, Julien Epps, Eliathamby Am-
bikairajah, and Edward Jones, “An investigation of sub-
band FM feature extraction in speaker recognition,” in IET
Irish Signals and Systems Conference, ISSC, June 2008,
pp. 32–36.

[13] Leigh D. Alsteris and Kuldip K. Paliwal, “Short-time
phase spectrum in speech processing: A review and some
experimental results,” in Digital Signal Processing, May
2007, vol. 17, pp. 578–616.

[14] Guangji Shi, Maryam Modir Shanechi, and Parham
Aarabi, “On the importance of phase in human speech
recognition,” in IEEE Transactions on Audio, Speech and
Language processing, September 2006, vol. 14, pp. 1867–
1874.

[15] Longbiao Wang, Shinji Ohtsuka, and Seiichi Nakagawa,
“High improvement of speaker identification and verifi-
cation by combining MFCC and phase information,” in
Proc. of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’09), April 2009,
pp. 4529–4532.

[16] Rajesh M. Hegde, Hema A. Murthy, and Gadde V. Ra-
mana Rao, “Application of the modified group delay func-
tion to speaker identification and discrimination,” in Proc.
of IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP’04), 2004, pp. 517–520.

[17] Alan V. Oppenheim, Ronald W. Schafer, and John R.
Buck, Discrete-time signal processing, Signal processing
series. Prentice Hall Inc., Upper Saddle River, NJ, USA,
2nd edition, January 1999.

[18] Tharmarajah Thiruvaran, Eliathamby Ambikairajah, and
Julien Epps, “Group delay features for speaker recog-
nition,” in International Conference on Information,
Communications & Signal Processing, ICICS, December
2007, pp. 1–5.

[19] Baris Bozkurt, Laurent Couvreur, and Thierry Dutoit,
“Chirp group delay analysis of speech signals,” in Speech
communication, March 2007, vol. 49, pp. 159–176.

[20] K. Sri Rama Murty and B. Yegnanarayana, “Combin-
ing evidence from residual phase and MFCC features for
speaker recognition,” in IEEE Signal Processing Letters,
January 2006, vol. 13, pp. 52–56.

[21] K. Sri Rama Murty, Vivek Boominathan, and Karthika
Vijayan, “Allpass modelling of LP residual for speaker
recognition,” in International Conference on Signal pro-
cessing and communications (SPCOM), July 2012, pp. 1–
5.

[22] Najim Dehak, Patrick J. Kenny, Réda Dehak, Pierre Du-
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[33] G. González, R.E. Badra, R. Medina, and J. Regidor, “Pe-
riod estimation using minimum entropy deconvolution,”
in Signal Processing, January 1995, vol. 41, pp. 91–100.

[34] Douglas A. Reynolds and Richard C. Rose, “Robust text-
independent speaker identification using gaussian mixture
speaker models,” in IEEE Transactions on Speech and
Audio Processing, January 1995, vol. 3, pp. 72–83.

[35] Patrick Kenny, Pierre Ouellet, Najim Dehak, Vishwa
Gupta, and Pierre Dumouchel, “A study of inter-speaker
variability in speaker verification,” in IEEE Transactions
on Audio, Speech and Language processing.

[36] Patrick Kenny, “Bayesian speaker verification with heavy-
tailed priors,” in Proc of Odyssey 2010: The speaker and
language recognition workshop, Brno, Czech Republic,
2012.

[37] Linguistic Data Consortium, Philadelphia, NIST 2003
speaker recognition evaluation, 2003.

[38] Linguistic Data Consortium, Philadelphia, The NIST year
2003 speaker recognition evaluation plan, February 2003.

[39] A. Martin, G. Doddington, T. Kamm, and M. Ordowski,
“The DET curve in assessment of detection task perfor-
mance,” in Eur. Conf. Speech Processing Technology,
Rhodes, Greece., 1997, pp. 1895–1898.

[40] R. Padmanabhan and Hema A. Murthy, “Acoustic feature
diversity and speaker verification,” in Interspeech 2010,
September 2010, pp. 2110–2113.


