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ABSTRACT 

It is well known that speech utterances convey a rich diversity of 

information concerning the speaker in addition to related 

semantic content. Such information may contain speaker traits 

such as personality, likability, health/pathology, etc. To detect 

speaker traits in human computer interface is an important task 

toward formulating more efficient and natural computer 

engagement. This study proposes two groups of supra-segmental 

features for improving speaker trait detection performance.  

Compared with the 6125 dimension features based baseline 

system, the proposed supra-segmental system not only improves 

performance by 9.0%, but also is computationally attractive and 

proper for real life application since it derives a less than 63 

dimension features, which are 99% less than the baseline system. 

 

Index Terms—speaker trait, personality, likability, 

pathology, supra-segmental feature 

1. INTRODUCTION 

Speaker trait detection is the study of signals beyond the basic 

verbal message or speech. Automatic recognition of speaker 

traits could be useful in many daily applications, such as 

healthcare monitoring (psychological analysis), stress assessment, 

deception detection, education tutoring systems, etc.  

Although some speaker traits, such as age and gender, stress 

[1-3], height [4], sleepiness [5] and others [6], have been 

explored, there are less seldom explored traits, such as 

personality, likability and pathology which warrant exploration. 

In study [7], a pilot exploration for personality detection was 

considered based on linguistic cues which mainly relied on text. 

Researchers recently showed that likability can be robustly 

detected from real-life telephone speech [8]. Pathologic speech 

detection, based on single phonemes, also acquired high 

accuracy [9]. This study further explores these aspects in a 

unified way according to the Sub-Challenges outlined in [10]. 

The first is personality detection, with Personality assessed 

along five dimensions (also known as the Big Five) as in [7]: 

Openness to experience (intellectual, insightful);  

Conscientiousness (self-disciplined, organized); 

Extraversion (sociable, assertive, playful);  

Agreeableness (friendly, cooperative);  

Neuroticism (insecure, anxious). 

In this study, each of five personality dimensions (OCEAN) is 

mapped into: X or NX, where N means “not”, { , , , , }X O C E A N . 

 _________________ 
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      In the Likability Sub-Challenge, the likability of a speaker’s 

voice needs to be assessed on a binary decision basis: L or NL 

(Likeable or Non-Likeable). 

In the Pathology Sub-Challenge, the intelligibility of a 

speaker’s voice needs to be assessed on a binary decision basis: I 

or NI (Intelligible or Non-Intelligible). 

      This study, like other studies in data mining, involves feature 

representation and model classification. Although limitation 

from a given feature sometimes can be compensated to some 

degree by a discriminative backend modeling technology, a 

reasonable feature front-end always plays a vital role in the 

success of such applications. In the baseline system [10], a brute 

force feature set with 6125 dimensions is used for all three Sub-

Challenges, where some discriminant features may thus be 

undermined by less informative ones.  

      In this study, we propose a speaker trait detection method 

based on supra-segmental features. The assumption behind this 

approach is that, when compared with a short windowed feature 

extraction approach (usually 20~30ms), the supra-segmental 

feature can capture a more global picture of speaker trait since it 

is reasonable to expect the speaker will exhibit the single trait in 

one short utterance (for example, less than 10 seconds).  

This paper is organized as follows. Sec. 2 describes the three 

databases employed in this study. Sec. 3 outlines the baseline 

system and the adopted performance metric. The proposed supra-

segmental feature extraction scheme is presented in Sec. 4. 

Backend systems are described next in Sec. 5. Experiments are 

reported in Sec.6 and research findings are summarized in Sec. 7. 

2. DATABASE 

This study uses the Speaker Personality Corpus (SPC) for 

Personality detection which consists of 640 French clips of audio 

files. The majority of the data are approximately 10 sec in 

duration. Non-native speaker judgment ratings are provided for 

the Big Five personality traits to ensure ratings are determined 

based purely on acoustic cues. 

The Speaker Likability Database (SLD) is used for the 

speaker Likability Sub-Challenge. Participant raters were 

instructed to rate telephone recorded speech stimuli according to 

the likability of each stimulus, without taking into account 

sentence content or transmission quality. This data set is labeled 

either as ‘likable’ (L) class or ‘non-likable’ (NL) class. 

NKI CCRT Speech Corpus is used for the speaker Pathology 

Sub-Challenge. Unlike the previous two corpora which were 

sampled at 8 kHz, this corpus is sampled at 16 kHz. The speech 

consists of recorded neutral Dutch text read before and after 

concomitant chemo-radiation treatment (CCRT) for inoperable 

tumors of the head and neck. The audio clips are assessed by 

native Dutch speakers, who are also speech pathologists. Every 
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sample is labeled as belonging to either the ‘intelligible’ (I) class 

or ‘non-intelligible’ (IL) class.  

Further details regarding the corpus are given in [11-13]1.  

3. BASELINE SYSTEM 

The baseline system for this study employs front-end features 

extracted by the open source platform: openSMILE feature 

extractor toolkit [14]. Backend classifiers are implemented using 

the open source data mining platform: WEKA [15]. 

3.1. Feature extraction of baseline 

The baseline features are extracted on a per-frame level. Each 

frame contains 64 low-level descriptors (LLD) including MFCC, 

Zero-Crossing Rate, etc. The final feature set is produced by 

computing frame-level static functionals (e.g., mean, deviation, 

max) across each of these LLD streams. These features are also 

called utterance features, since the functionals are computed 

across the entire utterance. The feature dimension is 6125 [10].  

These mechanically produced high-dimensional features will not 

only potentially dilute the contribution of the more saline feature, 

but also render some high computation classifier impossible. 

3.2. Backend classifier of baseline 

A linear Support Vector Machine (SVM) trained with Sequential 

Minimal Optimization (SMO) is used as the backend classifier 

for the baseline system, which is robust against over-fitting in 

high dimensional feature spaces. This backend is abbreviated as 

SVM-SMO in the remainder of this study.  

3.3. Performance measurement metrics 

The unweighted average (UA) recall is used to measure 

performance. In the binary case (‘X’ and ‘NX’), it is defined as: 

Recall(X) + Recall( X)
( )

2

N
UA X                        (1) 

Our study relies on unweighted average recall rather than 

weighted average (WA) recall (‘conventional’ accuracy) since it 

is also meaningful for highly unbalanced data.  

4. SUPRA-SEGMENTAL FEATURE 

Frame-based features may be ideal for content-sensitive 

applications, such as automatic speech recognition (ASR) [38]. 

In speaker trait detection where content plays a less informative 

role, supra-segmental features should be more discriminative. 

Two groups of supra-segmental features are investigated here. 

4.1. Shifted Delta Cepstrum 

The first group is shifted delta cepstrum (SDC) features. The 

inclusion of SDC in the context of speaker trait detection can 

extract longer temporal information. It is reasonable to expect 

that speaker have a single trait in a relative broad time span. 

Compared with traditional dynamic procedure (for example, 

delta and double delta in MFCC), SDC can extract acoustic 

information beyond the word boundary. The SDC is in fact a k 

block of delta cepstrum coefficients and illustrated in Figure 1 

                                                                 

 
1 Due to corpus license agreement, we do not have access to the 

test files’ ground truth. All experiments are strictly following the 

training and development configuration as in [10]. 

[17, 37-42]. Suppose the basic set of cepstrum coefficients,{cj(t), 

j=1,2,..,N-1}, is available at frame t, where j is the dimension 

index and N the number of cepstrum coefficients, then the SDC 

feature can be expressed as 

( ) ( ) ( ) ( ),

0,1,..., 1

iN j j js t c t iP d c t iP d

i k

      

 
 (2) 

where d is time difference between frames for spectra 

computation, P is time shift between each block, and k is the 

total number of blocks. SDC coefficients can be concatenated 

with the basic static cepstrum coefficients. Thus, we can obtain a 

feature vector by concatenating cj(t) and S(iN+j)(t) (j=0,…,N-1; i= 

0, …,k-1), which is the SDC version of features. The classical 

SDC configuration N-d-P-k in language identification 7-1-3-7 

(the overall dimension is 56) is adopted in this study (Though 

optimum performance is possible with other settings, we will not 

divert away from the main goal). It is noted that these features 

based on the basic set of frame-based cepstrum coefficients. 

Therefore, we call them frame-based supra-segmental features. 

In this study, state-of-the-art Power-normalized cepstral 

coefficients (PNCC) are used as static features [18] to derive 

supra-segmental features. 

 

 
Figure 1. Computation of the SDC feature vector at frame t 

for parameters N-d-P-k. The horizontal hatched box means the 

basic cepstrum coefficients, diagonal hatched box delta feature 

vector. 

4.2. Phoneme Statistics feature 

The second group of supra-segmental features is based on 

phoneme statistics. High-level information, such as phoneme 

structure, usually carries some semantic cues. Some high-level 

characteristic, such as different speaker traits, inevitably has a 

direct impact on the production of speech and thereby the basic 

speech unit, phoneme. For example, people may elongate/ 

shorten some phoneme due to organs dysfunction. As a first step 

in this direction, a phoneme level emphasis will be investigated. 

However, one drawback for any phoneme approach is that a 

language dependent phoneme recognizer requires a significant 

amount of labeled phoneme transcription, which is time 

consuming and expensive. So, a language independent approach 

will be more practical. In this study where the speech involved 

French, German and Dutch, the independent Hungarian phoneme 

recognizer [19] is finally used to detect phoneme based features. 

Although there is language mismatch between phoneme 

recognizer and processed speech, the procedure followed here 

can be understood as sampling one language phoneme space 

with the codebook from another language phoneme space, and 

therefore, the phoneme recognizer can be used as speech unit 

detector/coder. This assumption will also be validated in the 

experiment stage. The phoneme statistics feature extraction is 

outlined as follows: 
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Step 1: The phoneme recognizer first converts an acoustic 

utterance into a quadruple unit sequence. For example, the kth 

phoneme quadruple unit in the ith utterance can be coded as: 

(PHNik, BEGik, ENDik ,LLKik), where PHN is phoneme label, 

BEG segment beginning time, END segment ending time, and 

LLK log likelihood. LLK can be thought of as a measurement of 

the similarity between detected phoneme and phoneme behind 

the trained phoneme model. The larger the LLK, the more 

confident is the recognizer about its detection decision. This step 

therefore extracts the atomic phoneme feature.  

Step 2: Calculate duration of the jth phoneme and derive its mean 

and variance based on ith utterance. This constitutes the duration 

feature stream: (DURj_mean, DURj_var). Derive the mean and 

variance of jth phoneme LLK within each utterance. This 

constitutes the probability feature stream: (LLKj_mean, LLKj_var). j 

is in the range of [1, J], where J is the total phoneme number in 

the phone recognizer’s dictionary. 

      Due to randomness from either speaker and/or speech 

contents, different phoneme statistics induce different impact to 

final performance. Therefore, we also need to find an optimal 

feature subset based on the basic unit from step 2. We propose 

the following three type feature subset:  

DUR_mv_LLK_mv: a vector of concatenation of quadruple 

phoneme statistics unit (DURj_mean, DURj_var, LLKj_mean, 

LLKj_var). The vector dimension is 4J. 

DUR_m: a vector of concatenation of unitary phoneme 

statistics unit  (DURj_mean) . The vector dimension is J. 

DUR_m_LLK_avg: a vector of concatenation of DUR_m 

and LLK_avg, the average of {LLKj_mean}, j is in the range of 

[1,J]. The vector dimension is J+1. 

After completing the above steps, each utterance is converted 

into a dimension-fixed feature vector which can be processed by 

using a frame independent classifier (such as an SVM-SMO).  

5. BACKEND  

Two groups of supra-segmental features are proposed in Sec 4. 

Due to their differences, two backends are investigated. Fusion is 

also explored to further improve performance. The entire 

proposed system is illustrated in Figure 2. 

 
Figure 2. Flowchart of the proposed system: Two groups of 

supra-segmental features + post-processing and backend fusion. 

In this study the data for UBM, Total variability matrix (T), and 

PLDA model development are the same as training data. 

5.1. i-Vector and  PLDA classifier for SDC features 

The first group is SDC-based supra-segmental features, which 

can also be called sub-utterance features and are still frame 

length-varied features. Therefore, we propose to adopt i-Vector 

and probabilistic linear discriminant analysis (PLDA) framework 

to fully explore the first group’s discriminating capability. i-

Vector and PLDA is the state-of-the-art framework for many 

speech-based identification tasks, such as identification of 

speaker[34, 35,44-47] and age [36] . 

i-Vector model is represented by 

M m T                                (3) 

where T is the total variability space matrix and  is i-Vector, m 

is the UBM mean supervector, and M is the super-vector derived 

from supra-segmental features [20]. For each utterance, one i-

Vector feature can be derived. 

The i-Vector derivation procedure in this study is i) extracting 

supra-segmental acoustic features from each utterance, ii) 

grouping all the training data to train a universal background 

model (UBM), iii) computing Baum-Welch statistic for each 

utterance based on first two steps, iv) training total variability 

matrix T with all training data and extract i-Vector for both 

training data and test data. All these steps (after raw feature 

extraction and before classification) are noted as raw feature 

post-processing and illustrated in the green block of Figure 2. A 

256-mixture UBM is trained for each task. A 50-dimension i-

Vector is extracted for each audio file. 

Note the matrix T contains both discriminative speaker trait 

information and non-speaker trait distortion information, 

Therefore, after extracting the i-Vector, PLDA is employed as 

the backend since it can effectively remove distortion [21]. Let 

the instance j of speaker trait i be 
ij and let it be modeled as: 

ij i ij ijVy Ux z                                          (4) 

where V and U are rectangular matrices and represent eigenvoice 

and eigenchannel subspace respectively. yi and xij are the speaker 

trait factor and non-speaker trait factor respectively. The model 

parameters are learned from training data as each category has 

multiple utterances. Since the same speaker traits can be shared 

among different speakers and this study focuses on speaker 

independent trait detection, we expect better performance by 

removing the non-speaker trait distortion. During classification, 

the detection score is calculated like follows: 

( | )
( | ) log

( | )

i j

i j

i j

p w M
score w M

p w M



                        (5) 

where Mj is the averaged i-Vector for the jth speaker trait [22]. It 

should be noted that the i-Vector PLDA based framework gives 

better results than the raw acoustic feature based GMM [23,43]. 

Therefore, only results for the former are reported here. 

5.2. SVM-SMO for phoneme statistics feature 

The second group, phoneme statistics features, is utterance-wise 

features and has the same dimension number, though some 

dimensions may be missing due to varied speech contents. The 

SVM-SMO classifier in the baseline system is employed. 

5.3. Fusion 

Note that the i-Vector system can convert varied-length features 

into low dimensional fixed-length features and the SVM system 

can work with the fixed-length feature. To better explore 

discriminating capabilities of different front-ends and backends, 

linear fusion is deployed by using fusion toolkit Focal [24] (train 

data is used for fusion parameter learning).  

6. EXPERIMENT RESULTS AND DISCUSSION 

Based on the i-Vector and PLDA framework, the PNCC-SDC 

supra-segmental feature’s performance on all of the three 

speaker trait challenges (personality, likability, and 

intelligibility), are illustrated in Figure 2. Except on personality 

A (Agreeableness) detection where the proposed SDC supra-
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segmental features are inferior to the baseline, they perform 

better in all the remaining six scenarios with significant gains.  It 

should be noted that the dimension of i-Vector in this study is 50, 

which is far less than the baseline features’ dimension, which is 

6125. Although the i-Vector training stage is notoriously 

computationally demanding, it can be done off-line, which is 

beneficial to the on-line application. 

    The second group of supra-segmental feature, phoneme 

statistics features, should be more discriminative for phoneme-

based tasks, such as detection of intelligibility versus that of 

personality or likability, in which the impact of phoneme 

variation is less prominent. Therefore, only the result for 

intelligibility detection is explored in this study. First of all, we 

want to find the optimal phoneme statistic features set. 

Performance of various phoneme features is summarized on 

Table 1. All proposed phoneme supra-segmental features can 

improve system performance, but the variance is less informative 

due to non-trait randomness and therefore is dropped in further 

exploration. Integration of averaged similarity indicator, LLK, 

can significantly boost performance by measuring how standard 

is the subjects’ pronunciation, which in theory can help the 

intelligibility detection. Secondly, we want to prove the 

language-independent assumption behind our approach. Three 

phoneme recognizers, trained with Czech, Russian, and 

Hungarian languages respectively are used for the intelligibility 

detection. Dictionary size (or the phoneme count) of the three 

language are 45, 52, and 61. From Table 2, we can observe that, 

although the phoneme dictionary size varied significantly from 

one phoneme recognizer to another (maximal phoneme 

dictionary size varies by 35.6% relatively), performance varied 

only 1.4%. In addition, we should note that each phoneme 

recognizer has a different phonetic Alphabet. Therefore, based 

on the relative stable performance from Table 2, we can 

tentatively suggest that the phoneme statistic feature can robustly 

capture the intelligibility/non-intelligibility characteristics with 

the presence of language mismatch, therefore offering better 

scalability to be generalized to the unseen language in the field 

application. Another observation from Table 2 is that higher 

dictionary size can aid system performance since it results in 

higher resolution in the phoneme space. So, only the Hungarian 

phoneme recognizer is adopted thereafter. 

To fully leverage the potential of the two supra-segmental 

features, fusion is applied and results are summarized in Table 3. 

Although phoneme statistics are a bit inferior to the SDC 

features, the 17.8% relative improvement against baseline proves 

complementarity of the two kinds of features.  

Finally, we compared our proposed system with the baseline 

system and summarized results in Table 4. Across all the three 

speaker trait detections, the proposed system can consistently 

provide significant improvements and, compared with best 

results on the same experiment configuration, our system (noted 

as CRSS in Table 4) performs better on the Likability trait 

detection. Though admittedly the proposed system is inferior to 

the other two best published system, our proposed system can 

address the three speaker trait detection in a unified way.  

7. CONCLUSIONS 

This paper has described our efforts to detect speaker traits based 

on supra-segment acoustic features. The proposed SDC-iVector 

system can consistently improve performance across all the three 

speaker trait detection. Another group of novel phoneme 

statistics features also demonstrate their superiority on 

intelligibility detection and can dramatically improve system 

performance when fused with the SDC-based supra-segmental 

feature sub-system. Compared with the baseline system, the 

proposed system not only relatively improves performance by 

9.0%, but also is computationally attractive and proper for real 

life application. It derives less than 63 dimension features, which 

are 99% less than the baseline system. 

This study is based on the Speaker Trait Challenge 2012 

corpora [10], which have already promoted some ongoing 

research. However, most of efforts focus on backend classifiers 

[25~28]. There are only a few researches involving feature, for 

example pitch and intonation [29], prosody [30], voice quality 

hierarchical feature [31], and this study targets expanding 

research on the trait dependent feature and also with real life 

application restrictions in mind, such as low-computation and 

scalability. It is also important to note that the proposed SDC-

subsystem can consistently perform better than the baseline 

system, which is rarely the case in all the three best published 

trait challenge systems [32] [29] [33] since each of them either 

address only one sub-challenge or cannot perform better than the 

baseline system in all the three sub-challenges (i.e., Personality, 

Likability, and Pathology, respectively). This may suggest those 

systems are over-tuned for specific data. 
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Figure 3. Comparison between baseline system and proposed 

SDC supra-segmental system across seven trait detection 

tasks(OCEAN_avg is the average of five personality 

traits:OCEAN, L is Likability and I is intelligibility). 

 

Table 1. Phoneme-based feature optimization on 

intelligibility detection. The performance measurement is 

UA(%). (m:  mean; v: variance; The dimension of each 

feature type is put in parenthesis; Note, the phoneme 

recognizer has 61 phoneme units in the dictionary)  

Feature Scheme (Feature Dimension) SVM 

Baseline (6125) 61.4 

DUR_mv_LLK_mv (61X4) 62.3 

DUR_m (61) 63.8 

DUR_m_LLK_avg (61+1) 64.9 
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Table 2. Performance comparison of 3 phoneme 

recognizers on intelligibility detection. 

Phoneme Recognizer Czech Russian Hungarian 

Phoneme dictionary size 45 52 61 

UA(%) 64.0 64.5 64.9 

 

Table 3. Fusion of phoneme statistics feature sub-system 

and SDC sub-system on intelligibility detection.  

Feature Scheme UA(%) 

Baseline  61.4 

Phoneme Stats Feature 66.4 

SDC feature 67.9 

SDC system + Phoneme Stats system 72.3 

 

Table 4. Personality, Likability, and Pathology Sub-

Challenge results on development dataset by baseline 

system and CRSS proposed system. The performance 

measurement is UA(%). Relative gain is computed as: 

(CRSS-Baseline)/Baseline X 100%. 

Task Baseline CRSS Gain(%) Best  

OCEAN_avg. 70.3 73.3 +4.3 76.9[32] 

(N)L 58.5 61.6 +5.3 61.1[29] 

(N)I 61.4 72.3       +17.8 79.9[33] 

Average 63.4 69.1 +9.0 / 
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