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Abstract
Speaker verification systems are usually evaluated by a

weighted average of its false acceptance (FA) rate and false re-
jection (FR) rate. The weights are known as the operating point
(OP) and depend on the applications. Recent researches suggest
that, for the purpose of score calibration of speaker verification
systems, it is beneficial to let discriminative training emphasize
on the operating points of interest, i.e., use application-specific
loss functions. In score calibration, a transformation is applied
to the scores in order to make them better represent likelihood
ratios. The same application-specific training objective can be
used in discriminative training of all parameters of a speaker
verification system. In this study, we apply application-specific
loss functions in discriminative PLDA training. We observe an
improvement in the minimun detection cost function (minDCF)
for the male trials of the NIST SRE10 telephone for the targeted
operating point compared to the baseline, discriminative PLDA
training with logistic regression loss.

1. Introduction
When making a decision based on the output from a speaker
verification system, we would typically like to minimize the ex-
pected cost of the decision. This is reflected in the detection
cost function (DCF) used as the evaluation metric in the NIST
speaker recognition evaluations [1]. DCF assigns one cost to
false acceptance (FA) and one cost to false rejection (FR). To-
gether with a prior probability for a trial being a target trial, i.e.,
the claimed identity is true, the two costs constitutes the DCF
evaluation parameters, known as an operating point (OP). The
optimal OP depends on the application. For example, in foren-
sic applications, the prior probability of a target trial is usually
low, whereas in access control it is expected to be high. More-
over, in both forensic and access control applications, the costs
of FA and FR may vary depending on outer factors. For exam-
ple, in an access control application, the cost of FA may depend
on resources requested. In such a case it is desirable that the
system performs well at a variety of operating points. However,
it is rare that an application needs the system to perform well
at all possible operating points. Therefore we need application-
specific speaker verification systems optimized for the OPs on
which it will be used.

The current state-of-the-art speaker verification is based on
probabilistic linear discriminant analysis (PLDA) [2, 3], with i-
vectors [4] as features. For such a system, several studies have
shown that discriminative training of the PLDA model param-
eters is effective [5, 6]. In these studies, the logistic regression
(LR) loss function and its approximation, the hinge (SVM) loss
functions, were proposed. These loss functions have the benefit
of being convex and thus easy to be optimized. However, they

are not application-specific.

For the purpose of score calibration and fusion, discrim-
inative training has been well developed [7, 8]. Typically an
affine transformation of the log-likelihood ration (llr) score is
optimized. Application-dependent score calibration, by means
of loss functions that emphasize on a certain range of operat-
ing points, has been successfully used in [9]. However, score
calibration cannot increase the ability of the system to discrim-
inate between target and non-target trials, i.e., it cannot reduce
the minimum detection cost function (minDCF), since it will
not change the order of the scores in a set of trials. In order
for discriminative training to increase the systems ability to dis-
criminate between trial labels, it must be applied to the earlier
stages in the speaker verification process.

In principle, the application-specific loss functions pro-
posed for score calibration can be used for discriminative train-
ing of all the model parameters in a speaker verification system
[9]. However, when training a large number of model parame-
ters, the non-convexity of the application-specific loss functions
becomes a serious problem. In addition, when the training fo-
cuses only on a small range of operating points, i.e., the subset
of the training trials whose score is close to the threshold of
the operating point, the risk of over-training may increase. It is
therefore not certain that application-specific loss functions are
beneficial in discriminative PLDA training.

In this study we focus on application-dependent discrimina-
tive training of PLDA-based speaker verification systems with
i-vectors as features. In order to obtain a good baseline, we
first experimentally compare different regularization and fea-
ture normalization options. These experiments show that reg-
ularization towards the generative maximum likelihood model
and normalizing the i-vectors with their total covariance give the
best discrimination but but WCCN and regularization towards
0 give a more well-calibrated system. We then compare two
application-specific specific loss function, the Brier loss which
focuses on a narrow range of OPs compared to the logistic re-
gression loss and the 0-1 loss which targets only one specific
OP. We observe small improvements in minDCF and EER for
the application-specific loss functions over logistic regression
on the male trials of NIST SRE 2010 coreext-coreext condition-
5.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the DCF. Section 3 introduces the i-vector +
PLDA system. Section 4 introduces discriminative PLDA train-
ing. Section 5, introduces the loss functions. Section 6 dis-
cusses the optimization strategy. Section 7, presents our exper-
iments. Finally, Section 8 concludes the paper.
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2. Detection cost function
When making a decision based on the output from a speaker
verification system, we would typically like to minimize the ex-
pected cost of the decision1. The DCF measures the cost for a
specific application with a prior probability of a target trial, Ptar,
and the costs CFR and CFA for FR and FA respectively.

DCF = PtarCFRPFR + (1− Ptar)CFAPFA, (1)

where PFR = P (error|tar) and PFA = P (error|non-tar) are the
empirical probability for FR and FA respectively estimated in
the evaluation data-base. Since the Bayes decision is not af-
fected by an equal scaling of both costs, we can rewrite it as

DCF = PeffPFR + (1− Peff)PFA, (2)

where
Peff =

PtarCFR

PtarCFR + (1− Ptar)CFA
, (3)

is known as the effective prior. The decision threshold for the
log-likelihood ratio (llr) score is given by

τ = − log
Peff

1− Peff
(4)

= −
„

log
Ptar

1− Ptar
+ log

CFR

CFA

«
, (5)

assuming that the llr scores are calibrated [8]. When building a
speaker verification system, we should optimize it for the mini-
mum expected cost in the application.

3. I-vector and PLDA based Speaker
Verification

3.1. i-vector

In the i-vector system [4], it is assumed that a Gaussian Mixture
Model (GMM) -supervector, µ, corresponding to an utterance
can be modeled as

µ = µ̄ + T ω, (6)

where ω is a random vector known as the i-vector, T is a basis
matrix for the total variability space, i.e., for both speaker and
channel variability, of µ, and µ̄ is the mean of µ. It is assumed
that ω follows standard normal distribution and that its dimen-
sion, d, i.e., the rank of T , is lower than the dimension of µ̄.
The i-vector is the MAP point estimate of ω.

3.2. PLDA

In [3], it was proposed to use PLDA in speaker verification with
i-vectors as features. In that study, a modification of the orig-
inal PLDA model, suitable for low-dimensional features were
suggested. It models i-vectors, ω, as

ω = m + V y + Dz, (7)

where, m is the mean of the i-vectors, y and z are random
vectors depending on speakers and sessions respectively. The
speaker variability is given by V and the channel variability is
given by D. The elements of y and z are assumed to be inde-
pendent and each follows a standard normal distribution. Usu-

1This is however not the only possibility if we consider a set of trials.
For example, in some scenarios minimizing the risk for a very high
total cost of several trials might be more important than minimizing the
expected cost of the set of trial.

ally, rank(V ) < d but rank(D) = d. For the special case when
rank(V ) = d, the model is referred to as the two covariance
model [10].

For scoring two i-vectors, ωi and ωj , we need to calcu-
late the llr score of the hypothesis Hs that the two i-vectors are
from the same speaker and the hypothesisHd that they are from
different speakers, i.e.,

sij = log
p(ωi , ωj |Hs)

p(ωi , ωj |Hd)

= log

R
P (ωi |y)P (ωj |y)P (y)dyR R

P (ωi |y1)P (ωj |y2)P (y1)P (y2)dy1dy2
,(8)

since the speaker factors, y, are the same if the two i-vectors are
from the same speaker. Eq. (8) has a closed form solution. It is
given by:

s(ωi, ωj) = ωT
i P ωj + ωT

j P ωi + ωT
i Qωi + ωT

j Qωj

+(ωi + ωj )
T c + k, (9)

where

P =
1

2
Σ−1

tot Σac(Σtot − ΣacΣ
−1
tot Σac)

−1, (10)

Q =
1

2
Σ−1

tot − (Σtot − ΣacΣ
−1
tot Σac)

−1, (11)

c = −2(P + Q)m, (12)

k =
1

2
(log |Σtot| − log |Σtot − ΣacΣ

−1
tot Σac|)

+mT 2(P + Q)m, (13)

and Σac = V V T and Σtot = V V T + DDT .
In [2], the parameters m, V and D were trained to maxi-

mize likelihood (ML).

[m̂, V̂ , Σ̂] = arg max
mV ,Σ

KY

k=1

LkY

l=1

P (ωkl|m, V , Σ), (14)

where index k denotes speaker, index l denotes i-vector, K
is the number of speakers and Lk is the number of training
i-vectors for speaker k. This is typically done by the EM-
algorithm as described in [11].

4. Discriminative PLDA Training
4.1. Training procedure

The discriminative trainingmethod [5, 6] trains the parameters,
P , Q, c and k, of the scoring function in Eq. (9) directly in-
stead of the parameters, m, V and D of the PLDA model in
Eq. (7). Let tij equal to 1 if ωi and ωj are from the same
speaker and −1 if they are from different speakers. Further let
θ = vec([P , Q, c, k]). Then θ can be trained discriminatively
by minimizing the total loss:

E(θ) =
NX

i=1

NX

j=1

βij l (tij , sij(θ)) + λ�θ − θ̄�2, (15)

where l(t, s) is a loss function for a trial, βij is a weight, N is
the number of i-vectors in the training set, and λ�θ−θ̄�2 is a L2
regularization term. In our experiments, θ̄, is either 0 or the ML
trained parameter vector. The weight β compensates for the fact
that Peff in the intended application is typically different for the
training database. For this purpose it is set to Peff/Ntar for the
target trials and (1−Peff)/Nnon-tar for the non-target (impostor)
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trials, where Ntar and Nnon-tar are the number of target and non-
target trials respectively, in the training database.

The gradient of in E(θ) in (15) is given by, ([6]),

∇E(θ) =

2
64
∇P E(θ)
∇QE(θ)
∇cE(θ)
∇kE(θ)

3
75

=

2
64

2vec(ΩGΩT )
2vec([Ω ◦ (1AG)]ΩT )

2[Ω ◦ (1AG)Ω]1B

1T
BG1B

3
75 , (16)

where 1A is a d×n matrix of ones and 1B is a n× 1 matrix of
ones, ◦ denotes the element wise multiplication of two matrices
and

Gij = βij
∂l(tij , sij)

∂si,j
, (17)

An alternative approach for discriminative PLDA training
was presented in [12]. In that study, a generalization of the
PLDA model was considered in order to deal with multiple en-
rollment sessions. In the case of only one enrollment session,
the method corresponds to standard PLDA. In their discrimi-
native training scheme, only the eigenvalues of the covariance
matrices of the PLDA model, or, a scaling factor of them was
trained discriminatively while remaining parameters were ob-
tained from ML training. We do not consider that method in
this study.

4.2. Regularization and normalization

In order to obtain good performance regularization as well a
normalization of the i-vectors are needed. In [13], L2 regu-
larization and within class covariance normalization (WCCN)
were applied. In order to find a good baseline, we will com-
pare two regularization options and two normalization options.
For regularization we compare L2 regularization towards either
0 or the generative ML model. For normalization, we compare
WCCN with total covariance normalization (TCN).

5. Loss functions
5.1. Logistic regression loss

A modification of the logistic regression (LR) loss function suit-
able for training log-likelihood ratios was proposed in [7]. It is
given by,

lLR(t, s; τ) = log(1 + exp(−t(s + τ)), (18)

As explained in [14] and [8], the logistic regression loss has
the property that it focuses on a wide range of OPs. Therefore
it was proposed as application-independent evaluation metric
in speaker verification in those works. It is also the negative
conditional likelihood of the labels in the training set given the
i-vectors. We will refer to it as logistic regression (LR) loss
in this paper and use let ML refer to the generative maximum
likelihood in Eq. (14). The LR loss was used for discriminative
PLDA training in [5] and will be our baseline.

5.2. Application dependent loss functions

In [15] and [9] loss functions that emphasize on more narrow
range of OPs than the logistic regression were suggested for
evaluation and calibration. In this study, we will use one of

them, the Brier loss,

lBrier(t, s; τ) =
1

(1 + exp t(s + τ))2
, (19)

In order to target one specific operating point we should
optimize the 0-1 loss,

l0−1(t, s; τ) =


1 if ts < tτ,
0 else.

(20)

In order to use the discriminative training method [5, 6] we need
to calculate the derivative in Eq. 17. A standard trick to make
the 0-1 loss differentiable is to approximate it with the sigmoid
function [16],

lσ(t, s; τ) =
1

1 + exp(αt(s + τ))
. (21)

This function is differentiable and can become arbitrary close to
the 0-1 loss function if α is increased. We will refer to this as the
approximate 0-1 loss. In order for it to be a good approximation
to the 0-1 loss, we need to make α large enough. Since these
loss functions are bounded, they are also more robust to outliers
than the LR loss. We will target the evaluation parameters of
NIST SRE08, (Ptar, CFR, CFA) = (0.01, 10, 1), i.e., we will use
these parameters for calculating τ and Peff that are used in the
loss function. Notice that if no regularization is used, i.e., λ =
0, then the value of τ will not affect minDCF and EER.

6. Optimization process
Since the Brier and the approximate 0-1 loss are non-convex
we may get stuck in a bad local minima during the optimiza-
tion process. A simple approach to deal with the non-convexity
of the approximate 0-1 loss was proposed in [16]. In this work
they gradually increase the values of α during optimization. Al-
though the loss function is non-convex for any choice of α, it
was empirically shown that lower values of α results in fewer
local minima. We will use this with α = [1, 10, 100]. For the
Brier loss we will use two steps, first the approximate 0-1 loss
with α = 1 and then the Brier loss. In both cases we will start
from the LR model. It should be noted that the work in [16] in
addition to this strategy tried to escape local minima by system-
atically searching their neighborhood for lower points. We will
apply such a strategy in future work.

7. Experiments
We performed four experiments. Different regularization and
normalization techniques are compared in Subsection 7.2. In
Subsection 7.3, we compare the different loss functions. In Sub-
cection 7.4, we compare the training methods when a portion of
the training data used for the calibration. Finally in Subsection
7.5, we investigate, how the choice of the weight, β, in Eq. (15)
affects the performance.

7.1. Experimental setup

We used the male trials of NIST SRE 2006 core task (SRE06),
as the development set and the male trials of NIST SRE 2008
core condition-6 (SRE08) and NIST SRE 2010 coreext-coreext
condition-5 (SRE10) as the evaluation sets. The development
set was used to select the regularization parameter, λ, that min-
imized the detection cost function (DCF).

Voice activity detection using spectral subtraction [17] was
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Table 1: Comparison of regularization and normalization tech-
niques on the development set, SRE06. The results are for the
optimal regularization parameter λ. EER is in (%).

Training Norm. Reg. actDCF minDCF EER
ML WCCN - 0.0248 0.0116 2.33
ML TCN - 0.0270 0.0117 2.24
LR WCCN 0 0.0177 0.0176 3.49
LR WCCN ML 0.0220 0.0110 2.37
LR TCN 0 0.0221 0.0177 3.89
LR TCN ML 0.0216 0.0110 2.13

used for removing non speech. For features we used 15 PLP
coefficients and log-energy plus their first-order and second-
order derivatives. We applied feature warping [18] before ap-
plying VAD. We used gender-dependent systems. For training
the UBM and i-vector extractor, we used NIST SRE 2004 and
2005, Switchboard II-Phase 1, 2 and 3, Switchboard Cellular
-Part 1 and 2. The dimension of the i-vector, d, was set to 400.
For PLDA training we used the same sets except Switchboard
II-Phase 1. Also, we excluded in the Switchboard corpora la-
beled as noisy or cross-talk. The number of i-vectors in the
training data was 9152 corresponding to 61861 target trials (in-
cluding same segment trials), and 41822267 non-target trials.
After the optimal regularization parameter was found, we added
NIST SRE06 to the PLDA training data and evaluated SRE08
and SRE10 using the same regularization. Including SRE06,
the number of i-vectors in the training data was 11102 corre-
sponding to 72182 target trials (including same segment trials),
and 61560571 non-target trials. In order to make the choice of
λ robust to the size of the training set, we scale the weights β,
with the size of the training data. For WCCN, NIST SRE 2004
and NIST SRE 2005 were used as this was argued to be good
in [4]. The i-vectors were length-normalized [19] in all experi-
ments. The rank of V was set to 250.

For optimization, we used the L-BGFS method by [20]. We
used its default stopping criteria and in addition we stopped the
training if no change in minDCF had been observed on the de-
velopment set for 20 iterations.

We reported the actual detection cost (actDCF), i.e., using
the decision threshold, τ , in Eq. 4, minDCF and equal error rate
(EER). Since the training aims to optimize the detection cost of
NIST SRE08, we will report this cost at this OP.

7.2. Baseline regularization and normalization results

We first compare the two regularization options and the two
normalization options. The result are shown in Table 1. As
expected, LR had better calibration than ML. The best minDCF
and EER were obtained with TCN and regularization towards
the ML model but WCCN and regularization towards 0 gave
the best actDCF. However, notice that the regularization param-
eter, λ was chosen to minimize minDCF. In the remaining ex-
periments we used the combination that gave the best discrimi-
nation, i.e., TCN with regularization towards ML.

7.3. Training objective results

The results for the different training objectives are summarized
in Table 2.

We can see that actDCF is better for all discriminative ob-
jectives compared to the generative ML model. However the

ML model is competitive in minDCF and EER. The application-
specific training objective gives better minDCF and EER than
LR for SRE10 but not for SRE08. The fact that the Brier and
the approximate 0-1 loss performs very similar suggests that
they may have found similar minima.

7.4. Calibration

The discriminative training methods were better in terms of act-
DCF compared to the ML trained model. However, in terms
of the calibration insensitive evaluation metrics, minDCF and
EER, the ML trained model is very competitive. The actDCF
can be improved with calibration. However, for this we need to
use a portion of the training data which could deteriorate the
model. Figure 1 shows the actDCF for the various systems
when some of the training data is used for calibration. Cali-
bration was done with the Bosaris toolkit [21], by applying an
affine transformation to the score, estimated with the CLLR loss
with the same value of Peff as for the discriminative training. We
used the same regularization parameter λ as in the previous ex-
periment. SRE06 was not included in the training data for this
experiment.

Three things are noticeable. First, ML training with calibra-
tion was better than discriminative training without calibration.
Second, the discriminative training objectives are also benefited
from calibration. Third, using 75-90% of the data for PLDA
training and the rest for calibration is the optimal, which seems
to be quite a lot considering that the PLDA model models is
much more complex than the calibration model.

Without regularization, the discriminative training objec-
tives used in this study should not need calibration. Regular-
ization seems therefore to destroy the nice properties of these
objective functions to a quite large extent.

7.5. Effect of the weight in the training objective

The choice of Peff/Ntar for the target trials and (1−Peff)/Nnon-tar

for the non-target trials is optimal assuming that the trials in the
training data are statistically independent and that the evaluation
data is similar to the training data. However, this assumption
does not hold since every speech segment was used in many
trials. Thus the optimal β might be a different one. In order
to investigate this we substitute Peff with P �

eff = γPeff/(γPeff +
(1−γ)(1−Peff)), and vary γ between 0 and 1. For γ = 0.5 this
gives P �

eff = Peff, for γ = 1, it gives P �
eff = 1 and for γ = 0,

it gives P �
eff = 0. We used the Brier loss in this experiment.

SRE06 was not included in the training data for this experiment.
The results shown in Figure 2.

The choice of β seemed to be important for actDCF but
less important for minDCF. It is very noticeable that minDCF
for SRE10 was slightly lower for γ = 1 (no weight for non-
target trials) or γ = 0 (no weight for target trials) than for other
values of γ. The reason why this can give a good result could be
that we are doing regularization towards the ML model and the
discriminative training with γ equal to 0 or 1 may have stopped
quickly, i.e., without deviating much from the ML model. For
this reason we show the results for training with regularization
towards 0. In this case, γ = 0 or γ = 1 should not work well.
This was confirmed in Figure 2.

8. Conclusion and future work
We have evaluated application-specific loss function in discrim-
inative PLDA training. We observed a reduction of minDCF
with around 8% on the male trials of NIST SRE10 coreext-
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Table 2: The results obtained by the different training objectives.
SRE10 SRE08

Training actDCF minDCF EER (%) actDCF minDCF EER (%)
ML 0.0272 0.0089 1.80 0.0323 0.0207 4.17
Log. Reg. 0.0221 0.0098 1.91 0.0282 0.0199 4.26
Appr. 0-1 0.0244 0.0091 1.78 0.0291 0.0207 4.24
Brier 0.0260 0.0090 1.80 0.0296 0.0204 4.42
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Figure 1: The effect of calibration using a portion of the training data. The x-axis indicates the percentage of the training data used for
training the PLDA model. For the calibrated results, the remaining training data was used for calibration.

coreext condition-5 compared to logistic regression loss. How-
ever, on NIST SRE08 core condition-6, we did not see any in-
provement. Our experiments indicate that the optimization of
the non-convex application-specific loss functions is difficult.
Future work will therefore include better optimization tech-
niques. After a better optimization strategy have been found,
it would be interesting to investigate more in detail what is the
best loss function in various situations. In particular, if focusing
on a broad range of OPs is effective as regularization.

The regularization as well as the use of TCN was chosen
because it minimize DCF. However, WCCN and regularization
towards 0 gave better actDCF. It would be worth investigating
if this configuration gives better actDCF also when calibration
is applied.
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[7] N. Brümmer, L. Burget, J. Cernocký, O. Glembek,
F. Grézl, M. Karafiát, D. A. van Leeuwen, P. Matejka,
P. Schwarz, and A. Strasheim, “Fusion of heterogeneous
speaker recognition systems in the stbu submission for the
nist speaker recognition evaluation 2006,” IEEE Transac-
tions on Audio, Speech & Language Processing, vol. 15,
no. 7, pp. 2072–2084, 2007.
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