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Abstract
This work presents Trial-Based Calibration (TBC), a novel, au-
tomated calibration technique robust to both unseen and widely
varying conditions. Motivated by the approach taken by foren-
sic experts in speaker recognition, TBC delays estimating cal-
ibration parameters until trial-time when acoustic and behav-
ioral conditions of both sides of the trial are known. An audio
characterization system is used to select a small subset of can-
didate calibration audio samples that best match the conditions
of the enrollment sample and a subset that resembles the test
conditions. Calibration parameters learned from the target and
impostor trials generated by pairing up these samples are then
used to calibrate the score output from the speaker identification
system. Evaluated on a diverse, pooled collection of 5 different
databases with 14 distinct conditions, the proposed TBC out-
performs traditional calibration methods and obtains calibration
performance similar to having an ideally matched calibration
set.

1. Introduction
Calibration is an important aspect in the usability of speaker
identification (SID) systems. Calibration aims to transform
scores to log-likelihood ratios (LLR) so that a single identifica-
tion score can be meaningfully interpreted. For well-calibrated
scores the optimal decision threshold for a certain cost func-
tion, given by a linear combination of the probability of miss
and probability of false alarm, can be theoretically determined
using Bayes decision theory.

In this work, we explore the problem of calibration when
the trial conditions are variable. We wish to obtain a set of cal-
ibrated scores for which the optimal decision threshold com-
puted for each pair of enrollment and test conditions is inde-
pendent of these conditions. For example, we want the optimal
thresholds to be the same for both telephone channel and mi-
crophone channel conditions, or for mixed channel conditions.
Even the most accurate SID systems, if left un-calibrated or cal-
ibrated without regard for trial conditions, require a variety of
condition-specific thresholds if optimal decisions are required
within each condition.

Techniques developed to cope with varying conditions,
such as calibration with metadata using Discriminative Prob-
abilistic Linear Discriminant Analysis (DPLDA), incorporate
information regarding conditions into the calibration parame-
ters [1]. Information such as predicted gender, language and
channel can be extracted via Universal Audio Characterization
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(UAC) [1] and represented as a low-dimensional vector of class
posteriors. These dynamic calibration methods attempt to adjust
the calibration shift and scale according to conditions observed
in the trial. As shown in this work, calibration with metadata
fails to adapt well to a score space not well covered during train-
ing.

The objective of this work was to investigate methods of
calibrating scores such that a single threshold could be defined
for multiple trial conditions to optimize the desired operating
point. For this initial study, we focused on calibrating scores
to minimize the calibration loss, computed as the difference be-
tween the actual cost and the minimum cost, across a set of
14 distinct conditions in a data set supplied by the Federal Bu-
reau of Investigation (FBI). For this, we focused on an operating
point where misses and false alarms are weighted equally.

2. Universal Audio Characterization

Universal Audio Characterization (UAC) is a technique that at-
tempts to represent the conditions of a speech signal in terms
of a small dimension vector of class posteriors. Previous work
has shown improved calibration performance when taking into
account these class posteriors [1, 2].

We utilize a Gaussian Backend (GB) to extract metadata in
which each class of interest is modeled using a single Gaussian.
I-vectors are used as input with corresponding output being a
vector of likelihoods for each class (in the case of calibration
with metadata, these likelihoods are log-normalized to obtain
posteriors assuming equal priors for all classes). We use a GB
for each category in which discrimination is useful (for instance,
language or channel) after which we concatenate UAC vectors
for each audio file.

3. Existing Calibration Methods

The process of calibration transforms scores to log-likelihood
ratios (LLR). This in turn allows identification scores in isola-
tion to be meaningfully interpreted. Common to all calibration
techniques is the need to learn a set of calibration parameters
(typically a scale and shift) from a development set. The devel-
opment set contains both target and impostor scores represen-
tative of the conditions expected to be encountered during end
use of the system.

Calibration methods considered in this work include sim-
ple logistic regression [3] and calibration with metadata which
takes into consideration metadata extracted via UAC [1] and
calibrates scores using DPLDA [4]. Alternate techniques in-
clude Neural Networks and SVMs [5], where their application
in the context of heavily-degraded speech has been effective.
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3.1. Logistic Regression (Global) Calibration

Perhaps the most commonly used calibration technique in the
field of SID is Logistic Regression [3]. A calibration model
(shift and scale) is learned using linear logistic regression from
a large pool of trials deemed to be representative of the end-use
conditions. In many cases, a single model is trained using all
development data. This approach optimizes calibration glob-
ally for all conditions in the development data. The resulting
parameters, though, might not be optimal when performance
is computed for each condition separately, especially for con-
ditions not seen during training. To overcome this problem, a
separate logistic regression model can be trained for each con-
dition, optimizing calibration for each of them, but this requires
prior knowledge of the conditions. Furthermore, conditions not
seen during training of the calibration model cannot be handled
in this case.

3.2. Calibration with metadata

Global calibration using metadata takes into account meta- or
side-information extracted from each side of the trial to de-
termine the best shift for the trial score. In practice, this is
achieved using Universal Audio Characterization [1] and sub-
sequent Discriminative Probabilistic Linear Discriminant Anal-
ysis (DPLDA) [4]. Specifically, the score s is converted to a log
likelihood ratio using,

L = β+αs+mtΛme+mtΓmt+meΓme+(me+mt)c

where mt and me are the UAC vectors for test and enrollment,
respectively, and the parameters β, α, Λ, Γ and c are jointly are
learned by minimizing a cross-entropy objective. Here, it can
be seen that the shift required to convert the scores into LLRs
depends on the UAC vectors.

Metadata-based calibration attempts to be robust to unseen
conditions by assuming such conditions can be made of con-
ditions that were observed during training (i.e., a segment spo-
ken in a noisy and reverberant environment for which no train-
ing data was available may appear 80% noisy and 20% rever-
berant to a system that was trained with noisy and reverberant
speech as separate classes). Limitations of side-information and
the subsequent DPLDA model include unpredictability when
salient acoustic and voice conditions not modeled a priori are
present in the trials. Although able to cope with multiple trial
conditions, calibration with metadata struggles to accommodate
unknown trial conditions (as demonstrated in Section 7).

4. Trial-Based Calibration
In forensic speaker verification, conditions of each side of the
trial are first determined by the forensic expert. The expert then
attempts to locate calibration data that closely matches the trial
conditions from which target and impostor trials can be made1.
These trials provide probability distributions of target and im-
postor trials, which are then used to calibrate the score to a log
likelihood ratio using Bayes theory.

To address the issue of mismatch between calibration data
and evaluation data in an automated manner, we propose an
approach motivated by forensic experts in SID. Termed Trial-
Based Calibration (TBC), the approach is based on standard

1In reality, finding datasets that closely represent the acoustic con-
ditions of a forensic trial is difficult and often not possible. This differs
from most speaker recognition research in which databases of largely
homogeneous conditions are in ample supply.

Figure 1: Flow diagram of Trial-based Calibration (TBC).

calibration training technique used in global calibration (logis-
tic regression), however, the decision regarding the selection of
data from which to learn calibration parameters is postponed
until trial time. At this point, conditions of both sides of the
trial can be extracted via UAC and used to select a small sub-
set of highly relevant calibration data to produce trial-specific
calibration parameters.

Selection of calibration training data first involves extract-
ing UAC vectors, mt and me from each side of the trial. These
vectors are then rank-normalized into m̂t and m̂e using the
UAC vectors Mc extracted from the entire candidate calibra-
tion set. Rank normalization replaces each value in a vector
with their relative position when sorted against the same vector
component in the normalization set. The rank values are then
scaled to the range [0, 1]. The candidate calibration set UAC
vectors Mc are also rank normalized against themselves to ob-
tain M̂c. The Euclidean distance between a rank-normalized
trial UAC vector and each vector in M̂c is used as a measure of
relevance between candidate calibration segments and the cor-
responding trial side. This sorting or ranking of calibration seg-
ments can be performed independently for both m̂t and m̂e.
Finally, for the purpose of learning the trial-dependent calibra-
tion model, target and impostor trial scores are selected from
a pre-computed score matrix made up of the exhaustive set of
trials from the candidate calibration set. Selection from this ma-
trix is performed by sorting rows (or columns) according to the
relevance measures of M̂c with respect to m̂t and the alter-
nate axis sorted by relevance to m̂e. This results in the most
representative scores in the upper-left corner of the matrix. In
this work we select for calibration training the N ×M matrix
of scores from the upper-left corner such that at least 1000 tar-
get trials exist. In this selection, segments pertaining only to
impostor trials are discarded to prevent easy cross-database tri-
als from biasing calibration. Calibration parameters are learned
through simple logistic regression using this small, highly rele-
vant calibration dataset with which the trial score is transformed
(calibrated). Figure 1 depicts the TBC process.

One of the major shortfalls of the metadata-based calibra-
tion approach is the reduction in system identification perfor-
mance after calibration for conditions in which very few or no
trials were observed during training. The proposed TBC ap-
proach is expected to provide additional robustness in these
cases due to the selection of the closest set of segments to
the trial sides and enforcing a minimum number of target trial
scores from which to learn parameters. In the instance of trial



21

Table 1: 14 Condition Evaluation Corpus sourced from Pan-
Arabic (PA), CrossInt (CI) NoTel (NT), LASR and NIST99.

Cond. Chan(s) Lang(s) # Spks Source
Corpora

01 Mic Arabic 240 PA
02 Mic Arabic 422 PA, LASR
03 Mic Cross 179 LASR
04 Tel English 225 NIST99
05 Tel English 467 LASR, NT,

NIST99
06 Tel Cross 597 CI, LASR
07 Cell English 62 NT
08 Cell Cross 460 CI
09 Mic, Tel English 645 CI, LASR
10 Mic, Tel Cross 768 CI, LASR
11 Mic, Cell English 460 CI, LASR
12 Mic, Cell Cross 632 CI
13 Mic, Cell English 51 NT
14 Mic, Cell Cross 460 CI

conditions being completely absent from the candidate calibra-
tion segments, the selection of the TBC calibration set could
be seen as an improvement on random (and therefore the stan-
dard linear regression model) as the most relevant segments are
selected via ranking.

5. Data Sets
5.1. Evaluation Data

The evaluation corpus was supplied by the Federal Bureau of
Investigation (FBI) and consists of 14 distinct conditions in-
cluding same/cross channel and same/cross language trials from
5856 unique segments. Table 1 details these conditions, the cor-
pora from which they were sourced and the number of speak-
ers involved. The total number of trials exceeds 2.8 million.
Note that when reporting results, comparisons for conditions 07
and 13 will have limited statistical significance due to the lim-
ited speaker count. The source data in Table 1 contains both
matched and cross language trials. The second language of all
cross-language trials is English. First language (L1) trials for
the LASR corpus [6], are in Korean, Spanish and Arabic. For
the CrossInt corpus, first language trials are in several of the
languages of India, depending on what the first language of the
participant was, including Hindi, Gujarati, Bengali, Marathi,
Tamil, Kannada and Telugu. The NoTel corpus [7] contains
telephone recordings from naturally noisy locations in Indian
accented English. Both the NoTel and CrossInt corpora were
collected by Appen for speaker recognition research, while the
LASR corpus was collected by BAE Systems. This set of cor-
pora were selected for calibration research in order to represent
a very wide range of different conditions, collection sources,
environments, languages and channels.

5.2. Calibration Data

Matched Data: A small collection of 1503 segments from the
NIST and Fisher corpora of speech data was assembled as an
initial held-out dataset.

Data was chosen with the goal of matching or approx-
imating conditions in the FBI provided corpus, although it
was not possible to represent certain trial conditions (cross-

Table 2: Characteristics of the Matched Dataset.
Lang. #Seg #Spkr Chan(s) Source

Corpora

Arabic 214 32 tel, mic SRE
English 753 336 tel, mic SRE
Hindi 165 52 tel SRE

Korean 69 17 tel SRE
Spanish 302 63 tel, mic SRE

Table 3: Characteristics of the Large Variability Dataset.

Lang. #Seg #Spkr Chan(s) Source
Corpora

Arabic 45 6 tel SRE,RATS
Chinese 48 8 tel SRE

Dari 74 13 tel RATS
Pashto 160 25 tel RATS
Urdu 136 21 tel RATS
Other 73 20 tel SRE,RATS

English 902 89 tel, clean /
noisy /

reverb mic

SRE

language) and languages. Both telephone and microphone
channels were represented with speakers in most languages of-
fering cross-channel trials. Table 2 details the characteristics
of this data. The segments provided 10736 target trials and 2.1
million impostor trials from which calibration parameters could
be learned.

Large Variability Data: This dataset was collected to have a
wide range of conditions and sources without regard for the con-
ditions and channels in the FBI dataset. The intention here was
to develop a general calibration set suitable for use in a deployed
system where data variability will be higher than in research
corpora. This will provide a means of measuring robustness to
imperfectly matched conditions.

Data was sourced from NIST SRE corpora, clean data from
the DARPA RATS SID task [8] (trimmed to 120 seconds of
audio), and artificially reverberated and noisy NIST SRE data.
This data was split into a calibration set of 1468 segments and
the remaining 7k segments used for training the UAC extractor
(disjoint sets were found to work better for all calibration tech-
niques). There were 12930 target trials and 2.1 million impostor
trials from the calibration set. Table 3 details the various condi-
tions and languages in these datasets. Languages listed as other
include Farsi, Hindi, Russian, Spanish, Thai, and Vietnamese.

6. Experimental Protocol
The system evaluated in this work was a gender-independent
MFCC system consisting of fast, noise-robust voice activity
detection [2], a 2048 Gaussian Universal Background Model
(UBM), 600 dimensional i-vector subspace and 200D reduc-
tion of i-vectors via Linear Discriminant Analysis (LDA) before
scoring with a gender-independent Probabilistic Linear Dis-
criminative Analysis (PLDA) model [9]. Clean speech train-
ing data was sourced from the PRISM data set [10] with PLDA
being additionally exposed to noisy and reverberant data [11].

System performance or accuracy is measured in terms of
EER. Calibration performance is measured in terms of cost of



22

Figure 2: Cross-validation approach used in Sections 7.1
and 7.2 to highlight the benefits of Metadata calibration in the
ideal scenario of matched evaluation and calibration data.

the likelihood ratio (Cllr), and calibration loss (Closs). Cllr [12]
provides an indication of how well scores are calibrated across
all operating points along a Detection Error Tradeoff (DET)
curve [13]. In contrast, Closs provides an indication of how
miscalibrated the system was at a particular operating point. For
this work, the calibration goal is equal costs for miss and false
alarm errors. Closs is calculated as the difference between the
minimum cost (assuming perfect calibration) and actual cost.
Note that Cllr is a more stringent metric and is not always cor-
related with Closs. For all metrics, a low value is desired.

7. Results
This section details the evaluation of different calibration ap-
proaches and draws conclusions on how effectively they ac-
complish the goals of this work. Throughout this section, the
calibration data varies from closely matched to unmatched with
regard to the evaluation data. The purpose of this is to contrast
those calibration techniques that are dependent on knowing the
evaluation conditions and those that are robust to unseen and
highly varied conditions; the latter being the goal of this work.

7.1. On the use of metadata for calibration

This section commences with an ideal scenario in which evalu-
ation and calibration training data come from the same source.
To this end, we run cross-validation experiments. Specifically,
the evaluation data was split into two subsets based on speaker
label. Cross-evaluations were conducted in which subset A was
used to train the calibration models for the evaluation of sub-
set B and vice versa before calibrated scores were pooled and
metrics were evaluated. This process is depicted in Figure 2.

The aim of using matched data in this section is to illus-
trate the full potential of calibration with metadata by ensuring
accurate extraction of class posteriors and allowing the effec-
tiveness of each UAC class to be determined prior to evaluation
on mismatched calibration data in the following sections.

Initial experiments were aimed at determining how useful
UAC and DPLDA were in mitigating miscalibration in the eval-
uation dataset. Table 4 details the different classes of UAC
evaluated and the relative improvement in Cllr that each pro-
vided over global calibration when averaged across the 14 con-
ditions. The combination of both language and channel classes
was found to be most effective. The last row in the table in-
dicates the gain that could be achieved with perfect UAC by
calibrating each condition using data specific to that condition
(i.e., 14 calibration models were used). These results indicate
that, in the matched scenario, calibration with metadata is very
effective.

Table 4: Comparing the relative Closs improvement of calibra-
tion with metadata over global calibration with different UAC
classes when using evaluation data for calibration via cross-
validation.

UAC Class(es) Rel. Closs Improvement

SNR 1%
Channel 13%
Language 40%
Language+Channel 44%
Language+Channel+SNR 32%
Condition-Specific Calibration 42%

Table 5: Comparing the use of eval or matched data (cross-
validated) for UAC model and calibration model training.

Cal.
type

UAC
set

Cal.
set

Avg.
Cllr

Avg.
Closs

Avg.
EER

Global - eval .243 .048 4.49%
Metadata eval eval .225 .027 4.85%

Global - matched .511 .205 4.60%
Metadata matched eval .243 .041 4.55%
Metadata eval matched .502 .080 10.59%
Metadata matched matched 8.17 .101 26.51%

7.2. Calibration using unseen but matched data

The matched data was collected to include similar conditions to
the evaluation dataset based on language and channel labels. In
this section, we analyze the impact of using this external data in-
stead of the highly matched evaluation data for training the UAC
extractor, the calibration model or both components. Table 5 de-
tails results from these comparisons. It can be observed that us-
ing SRE data for the UAC extractor still benefits metadata-based
calibration as long as the calibration model training data is well
matched (evaluation data). Whenever matched data is used for
calibration model training, calibration performance improves.
This is particularly the case for calibration when matched data
is used for training of both components.

Several conclusions can be drawn from these results. The
calibration performance is very sensitive to the data used to
train the metadata-based calibration model. Despite the selec-
tion of SRE data that contain conditions similar to the evalua-
tion data, the SRE data does not represent non-English cross-
channel trials or cross-language trials, and does not contain
all of the languages represented in the evaluation data. Given
that global calibration with similar data was preferred over the
metadata-based alternative when similar data was used for both
UAC extractor and model training, this highlights a deficiency
in metadata-based calibration to adequately accommodate un-
seen conditions. At worst, one would expect performance on
par with global calibration.

7.3. Trial-Based Calibration (TBC)

The proposed TBC was motivated by the approach taken by
forensic experts when performing SID. Specifically, the choice
of data used to calibrate a trial score is delayed until conditions
of both side of the trial are known. Following the procedure
detailed in Section 4, we calibrated all 2.8 million scores from
the evaluation set using TBC. Figure 3 compares the Cllr and
Closs for global and TB calibration for each of the 14 condi-
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Table 6: Comparing global, metadata-based and TBC calibration techniques using the large variability data.

Cond. Global Cal. Metadata-based Cal. Trial-based Cal.
Cllr Closs EER (%) Cllr Closs EER (%) Cllr Closs EER (%)

01 .70 .40 1.25 .71 .35 1.71 .19 .09 0.85
02 .50 .29 0.95 .49 .24 1.90 .13 .05 0.95
03 .12 .03 1.68 .15 .02 3.35 .09 .01 1.12
04 .07 .01 1.33 .08 .02 1.33 .08 .00 1.33
05 .06 .01 0.86 .08 .01 1.93 .06 .00 1.29
06 .28 .08 4.36 .28 .01 6.70 .19 .01 3.67
07 .41 .21 4.84 .32 .03 8.36 .21 .01 4.84
08 .54 .23 6.52 .55 .04 13.26 .30 .01 6.74
09 .36 .16 2.97 .22 .03 4.65 .17 .04 3.11
10 .35 .06 7.29 .42 .02 10.55 .29 .01 6.25
11 .52 .19 6.95 .47 .01 12.59 .31 .00 7.38
12 .37 .05 8.26 .58 .05 14.22 .41 .06 8.07
13 .43 .10 9.80 .61 .07 13.73 .44 .09 7.90
14 .32 .06 7.39 .64 .09 12.61 .35 .02 7.39

Avg. .36 .13 4.60 .40 .07 7.63 .23 .03 4.35

(a) Cllr

(b) Closs

Figure 3: Illustrating Cllr and Closs improvements from TBC
over global calibration when using matched data for calibration.

tions. Significant improvements of 20% and 35% in Cllr and
Closs, respectively, were observed on average across the con-
ditions. Additionally, the average EER across conditions fell
from 4.60% to 4.35%. These results indicate that TBC can more
readily adapt to unseen conditions than metadata-based calibra-
tion and provide better-calibrated scores for making identifica-
tion decisions across various conditions.

7.4. Unseen, Large Variability Data

The large variability data set was collected without regard to
the conditions of the evaluation data with the intention of mea-
suring the robustness of techniques to unseen evaluation con-
ditions. This dataset was used in the evaluation of global cal-
ibration, metadata-based calibration and TBC, with the latter
two utilizing UAC vectors. The UAC classes in this instance
were extracted as language (seven classes in Table 3), channel
(tel,mic), and degradation (clean, noisy, reverberated) as these
were the most well represented classes in the calibration dataset.
Results are detailed in Table 6. Compared to global calibration,
calibration with metadata maintains Cllr on par with global cal-
ibration for conditions 01–11 but struggles with difficult con-
ditions of 12–14. Closs improves using metadata-based cali-
bration with the average Closs dropping from 0.13 to 0.07. This
comes at a cost to accuracy with a doubling of EER in some con-
ditions. This cost can be interpreted as the system being able to
calibrate scores well by forcing the distribution of scores into a
form that improves calibration, but reduces separability of target
and impostor trial scores. TBC on the other hand, significantly
improves calibration performance on the straightforward condi-
tions (conditions 01 and 02), and does not reduce performance
in very difficult calibration conditions. The Closs through TBC
is significantly reduced from 0.13 to 0.03 over global calibra-
tion. As found in the previous section, the EER of the system
also improved through calibration using TBC.

Figure 4 illustrates the threshold stability of the above tech-
niques around the operating point with equal costs (approximate
threshold of 0.0). The improved threshold stability offered by
TBC over global and metadata-based calibration is clear from
these plots.
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(a) Global

(b) Metadata-based

(c) TBC

Figure 4: Illustrating the distribution of target and impostor tri-
als (blue and red respectively) and the thresholds (yellow lines)
for all 14 conditions at the operating point of equal cost when
using the large variability data for UAC and calibration train-
ing. The tighter grouping of thresholds around 0.0 of TBC
over Global and Metadata-based techniques is indicative of im-
proved threshold stability across conditions.

8. Conclusion
We presented a novel approach to calibration that delays the
learning of calibration parameters until conditions of both sides
of the trial are known. Basic approaches to calibration were
shown to work well with data taken from the same corpus as the
evaluation set (cross validation results on the evaluation data),
however this scenario is not realistic. Using data from a data set
conditioned to the characteristics of the evaluation data showed
current state-of-the-art approaches (global and metadata-based
calibration) were heavily dependent on having observed con-
ditions during training. We proposed trial-based calibration
(TBC) to address these issues. TBC dynamically adapts the
data used to produce calibrations dependent on the conditions
of the trial. That is, it removes the need to make assumptions
about the evaluation scenario by waiting until trial-time where
conditions can be properly accommodated. TBC reduced cal-
ibration loss and cost functions while maintaining accuracy of
the SID system. The use of a diverse calibration set (the large
variability dataset) was particularly beneficial in this adaptive
technique when dealing with the variety of conditions in the
evaluation data.

Calibrating millions of trials using TBC requires consider-
able computation since each trial takes several seconds to se-
lect data and train a corresponding calibration model. Future
work will consider methods of the reducing this complexity us-
ing closed-form training [14] and prediction of appropriate cal-
ibration model parameters based on the UAC vectors. Methods
of measuring the quality of selected calibration data for a given
trial will also be investigated.
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