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Abstract
In recent work on both generative and discriminative score to
log-likelihood-ratio calibration, it was shown that linear trans-
forms give good accuracy only for a limited range of operat-
ing points. Moreover, these methods required tailoring of the
calibration training objective functions in order to target the
desired region of best accuracy. Here, we generalize the lin-
ear recipes to non-linear ones. We experiment with a non-
linear, non-parametric, discriminative PAV solution, as well as
parametric, generative, maximum-likelihood solutions that use
Gaussian, Student’s T and normal-inverse-Gaussian score dis-
tributions. Experiments on NIST SRE’12 scores suggest that
the non-linear methods provide wider ranges of optimal accu-
racy and can be trained without having to resort to objective
function tailoring.

1. Introduction
In our recent work on score calibration for speaker recognition,
we employed linear score-to-log-likelihood-ratio transforms,
the parameters of which were trained via generative [1, 2], or
discriminative [3] methods. In both cases, we noticed that a lin-
ear transform could not calibrate well everywhere over a wide
range of operating points. This meant we had to choose in
which operating region we wanted calibration to work best,
by tailoring the training objective function. In both genera-
tive and discriminative cases, this was achieved (essentially)
by artificially weighting the importance of target and non-
target trials in the training data. In [1], we used a weighted
maximum-likelihood criterion, while in [3], a variety of differ-
ent calibration-sensitive discriminative objective functions were
explored.

While these strategies both resulted in good calibration in
the targeted operating region, it also gave poorer calibration in
other operating regions. In this paper, we explore the possibility
of using more general, non-linear calibration transforms, with
the hope that (i) they can give good calibration over a wider
range of operating points and (ii) they can be trained without
having to resort to specially tailored objective functions.

In what follows, we recapitulate our generative and discrim-
inative linear calibration strategies, and then introduce several
non-linear strategies. All of these are compared experimentally
on scores from SRE’12.

2. Calibration
We briefly summarize the calibration problem and some of its
solutions.

We consider a speaker recognizer that, when given speech
input, outputs a raw score. The score should help to decide
which of two hypotheses, known as target and non-target is
true. The speech input has two parts, the enrollment speech and

the test speech. The target hypothesis says the test speech is of
the same speaker as the enrollment. The non-target hypothesis
says the speakers are different.

In order to be able to use the recognizer to make cost-
effective decisions, we can calibrate the recognizer scores, to
give us log-likelihood-ratios (LLRs) [4]. Calibration transforms
a score, s, as:

s→ log
P (s|H1, B)

P (s|H2, B)
(1)

where the likelihoods are conditioned on H1, the target hypoth-
esis, or H2, the non-target hypothesis. The likelihoods are fur-
ther conditioned on some background information, B, which
may include generative or discriminative score modelling as-
sumptions, model parameters, or data. If B includes model
parameters rather than data, the calibration method is known
as a plug-in method. If instead, B contains data rather than
parameters, the method is known as fully Bayesian. In this pa-
per, we shall work with plug-in methods, which perform well
in situations where a large amount of training data is available,
which is the case here. See [2] for an analysis of the relation-
ship between plug-in and fully Bayesian solutions and [5] for an
example where fully Bayesian calibration outperforms plug-in
calibration when very little training is available.

2.1. Generative calibration

For training our parametric generative models, we shall use two
flavours of maximum-likelihood (ML) criterion. Let T and N
respectively denote the sets of target and non-target scores avail-
able for training. The plain ML criterion is:∑

s∈T

logP (s|H1, λ) +
∑
s∈N

logP (s|H2, λ) (2)

which is to be maximized w.r.t. λ, the calibration parameters.
We use λ to jointly denote the parameters of both target and
non-target score distributions. In some cases, the parameters for
the two distributions will be independent, so that λ = (λ1, λ2),
but in other cases, some of the parameters may be shared be-
tween the two distributions.

The weighted ML criterion is:

α

T

∑
s∈T

logP (s|H1, λ) +
1− α
N

∑
s∈N

logP (s|H2, λ) (3)

where T is number of targets, N is number of non-targets, and
0 < α < 1 is a user-supplied relative weighting for targets
vs non-targets. Notice that if α = T

T+N
, then the two criteria

are equivalent. In [1], we did linear calibration, which required
weighted ML, which has the disadvantage that α has to be cho-
sen appropriately. In this paper, we experiment with more gen-
eral calibration models that can be trained with plain ML.
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2.2. Discriminative calibration

For parametric discriminative calibration, we choose a calibra-
tion function, denoted ` = f(s, λ), which maps scores, s, to
LLRs, `. The parameters are trained by minimizing, w.r.t. λ, a
criterion of the form:

α

T

∑
s∈T

C (f(s, λ), H1) +
1− α
N

∑
s∈N

C (f(s, λ), H2) (4)

where C(`,Hi) is a special cost function known as a proper
scoring rule [3]. Here α fulfils a similar function as in the
weighted ML criterion. For the results reported here, we choose
a linear calibration transform, so that f(s, λ) = As+B, where
λ = (A,B), while for C we use the logarithmic proper scoring
rule, which is equivalent to logistic regression—see [3, 6] for
more details.

For non-parametric discriminative calibration, the calibra-
tion function ` = f(s) does not depend on a small number of
parameters. Instead, it is allowed to vary freely within the class
of all monotonic rising functions from R to R. It turns out that
this class of functions is general enough that it does not matter
any more which proper scoring rule is used, or what the value
of α is. A calibration function can be found which simultane-
ously minimizes the discriminative criterion for all proper scor-
ing rules and all values of α, see [7, 8]. Moreover, an efficient
algorithm, known as pool-adjacent-violators (PAV),1 exists to
find the calibration function [9].

3. Evaluating goodness of calibration
Our experimental setup is the same as in [2]. We performed
all our calibration experiments on scores from a single speaker
recognizer (an i-vector PLDA system), which was part of the
ABC submission [10] to the NIST SRE’12 speaker recognition
evaluation [11].

We trained our calibration parameters on a large develop-
ment set, having multiple microphone and telephone speech
segments of male speakers from SRE’04, ’05, ’06, ’08 and ’10.
This gave about 42 million scores, of which 0.07% were targets,
for calibration training.

We tested the goodness of these calibrators on male speak-
ers from the NIST SRE’12 extended trial set [11], where we
pooled all 5 common evaluation conditions, giving about 9 mil-
lion trials, of which 0.1% were targets.

For evaluation of goodness of calibration, we shall use
normalized Bayes error-rate plots [12, 7]. In these plots, we
compute the error-rate that results when Bayes decisions are
made by thresholding the to-be-evaluated LLR scores at the
minimum-expected cost Bayes threshold. The x-axis represents
the operating point in the form of prior log odds, and the y-axis
represents normalized Bayes-error rate:

y =
pPmiss(θ) + (1− p)Pfa(θ)

min(p, 1− p) (5)

where p = 1
1+exp(−x) is a synthetic target prior, while Pmiss(θ)

and Pfa(θ) are miss and false-alarm rates obtained when thresh-
olding LLRs at the theoretically optimal Bayes threshold, θ =
−x. The normalization factor, min(p, 1−p) is the Bayes error-
rate of a default recognizer that makes Bayes decisions based
on the prior, p, alone. The y-axis can also be interpreted as the
well-known detection cost function (DCF) metric of the NIST

1PAV is also known as isotonic regression.

Speaker Recognition Evaluation (SRE) series, provided the cost
coefficients are set to unity. In addition to the actual Bayes
error-rate, y, every plot will also display the minimum error-
rate, y′, which can be obtained at the empirically optimal deci-
sion threshold at every operating point:

y′ =
minθ pPmiss(θ) + (1− p)Pfa(θ)

min(p, 1− p) (6)

Again, y′ corresponds to min-DCF of the NIST SRE series. In
all plots, y′ will be displayed as a dashed black line.

To keep error-rates meaningful, we respect Doddinton’s
Rule of 30 [13], by choosing the range of the x-axis so that
there are always at least 30 errors of each kind (misses and
false-alarms), at the empirically optimal threshold—see the dis-
cussions in [12, 7].

4. Linear calibrations
We summarize and compare our previous linear calibration so-
lutions of both generative and discriminative flavours. Both
need prior-weighting to target the desired operating region.

4.1. Generative: Gaussians with shared variance

We repeat the calibration method of [1]. We let λ = (µ1, µ2, v)
and we assign Gaussian score distributions of the form:

P (s|Hi, λ) = N (s|µi, v) (7)

where the µi are hypothesis-conditional means, but where the
variance, v, is shared. This gives a linear calibration transform.
To train λ, we use the weighted ML criterion (3). The maximiz-
ing parameters have simple, closed-form solutions—see [1] for
details.

Figure 1 shows the calibration performance for the cases
α = T

T+N
= 0.0007, α = 1

2
and α = 0.92. It is clear

that good performance can be obtained locally by adjusting
α. Note the agreement between α (the training parameter) and
p = 1

1+e−x (the evaluation parameter). If α � 1, then perfor-
mance is good for p� 1, (on the negative x-axis). Conversely,
if α ≈ 1, then performance is good for p ≈ 1 (on the posi-
tive x-axis). Unfortunately, tuning for good performance in one
place, causes higher error-rates elsewhere.

4.2. Discriminative: logistic regression

We repeat the linear logistic regression calibration of [3],
trained with the weighted criterion (4). In figure 2 we show
performance for weightings α = T

T+N
= 0.0007, α = 1

2
and

α = 0.92. The same conclusions hold as in the generative case,
except that performance near x = 0 is better and is less sensi-
tive to α on the positive x-axis.

The green plot in figure 5 shows the linear logistic regres-
sion calibration transform for α = 1/1000.

5. Non-linear calibrations
Now we introduce the new work in this paper, namely several
non-linear calibration strategies, none of which need objective
function tailoring.
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Figure 1: Accuracy of common-variance Gaussian calibration,
using various values of ML weighting, α.
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Figure 2: Accuracy of weighted logistic regression, with vari-
ous values of weighting, α.

5.1. Non-linear, discriminative: PAV

The result of applying PAV calibration2 is shown in figure 3.
There is only one solution, because there are no weighting pa-
rameters to tune. Very good calibration is obtained everywhere,
except in the extreme left. The PAV calibration is optimal on
the training data (for which indeed DCF equals min-DCF ev-
erywhere), but on the independent evaluation data (shown) cali-
bration can be sub-optimal. We attribute the problem in the left
to overtraining in this region, where there may not be enough
false-alarms in the training data, relative to the rich choice of
monotonic calibration functions.

The red plot in figure 5 shows the PAV calibration trans-
form.

2A MATLAB implementation is available in the BOSARIS Toolkit
at sites.google.com/site/bosaristoolkit.
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Figure 3: Accuracy of non-parametric, discriminative PAV cal-
ibration.

5.2. Non-linear, generative: Gaussian distributions

We obtain a non-linear (quadratic) calibration function by al-
lowing separate variances for targets and non-targets, so that
λ = (µ1, v1, µ2, v2) and:

P (s|Hi, λ) = N (s|µi, vi) (8)

We now use the plain ML criterion (2). The ML parameters
have independent, closed-form solutions. The target parameters
are:

µ1 =
1

T

∑
s∈T

s, v1 =
1

T

∑
s∈T

(s− µ1)
2 (9)

and similar for non-targets. The accuracy is shown as the red
plot in figure 4. The blue plot in figure 5 shows the (quadratic)
Gaussian calibration transform.

5.3. Non-linear, generative: T-distributions

We generalize the Gaussian solution by adopting Student’s T
(or just T) distributions [14]. Whereas the Gaussian distribution
has two parameters (location and scale), the T distribution has
three: location, scale and degrees of freedom (d.o.f.). If the
d.o.f. is large, the T distribution approaches the Gaussian. For
small d.o.f., the distribution has heavy tails.

Using independent distributions for targets and non-targets,
the total number of parameters for this calibration model is 6
(3 each). Closed-form solutions for the ML parameters do not
exist. One way to obtain an ML solution involves designing an
EM-algorithm, based on a hidden scale variable associated with
every score—see [15] for a similar EM-algorithm. However, we
found our EM-algorithm was slow and prone to get stuck in sad-
dle points, or other sub-optimal areas of small gradient. Instead,
we found that direct, quasi-Newton numerical optimization, in
our case BFGS [16], was reliable and much faster.

Since the basic BFGS algorithm that we used is an uncon-
strained optimizer3 and the scale and d.o.f. parameters are con-
strained to be positive, we needed to reparametrize those pa-
rameters via some suitable transform from R to the positive re-
als. We tested squaring and exponentiation. The former worked
well, the latter not at all.

3Modified versions of BFGS exist that can handle constraints.
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The accuracy is shown in the green plot in figure 4. The ma-
genta plot in figure 5 shows the T-distribution calibration trans-
form.

5.4. Non-linear, generative: NIG-distributions

Finally, we generalize the Gaussian even futher, to a four-
parameter family known as the normal-inverse-Gaussian (NIG)
distribution [17]. The four parameters encode location, scale,
skewness and tail weight. Using independent NIG parameters
for targets and non-targets, the total number of parameters is 8.

Although the ML solution may be sought via an EM-
algorithm [17], we did not try it, preferring as before, direct
optimization. In this case, however, we found that BFGS got
stuck in saddle points. BFGS does not even know when it is
in a saddle point, because it makes use of a positive-definite
approximation to the Hessian.4

Next, we tried the more powerful trust-region-Newton al-
gorithm [16, 18], which uses the true Hessian of the objec-
tive function. We computed the Hessian using the Pearlmut-
ter trick [19] and complex-step algorithmic differentiation [20].
The first problem was that the Hessian computation took too
long to perform over 42 million scores, because the NIG den-
sity requires the evaluation of Bessel functions [17]. This was
solved by using (for non-targets) small (1%) randomly selected
samples of the scores for the Hessian computation, but still us-
ing all the data for function value and gradient [21].

The second problem was that this algorithm still got stuck
in saddle points. Simply trying to escape saddle points along
the gradient did not help. What worked was to escape along the
direction of the most negative curvature.5

The accuracy of the NIG solution is shown as the blue plot
in figure 4. Of the three generative non-linear calibration mod-
els, the NIG variant performs best on this data. We would how-
ever hesitate to recommend it before testing it on several other
data sets. A disadvantage of the NIG solution is that it requires
working with Bessel functions, which can be tricky and slow.

The black plot in figure 5 shows the NIG calibration trans-
form. Figure 6 shows the NIG probability densities (green)
compared to histograms of the scores.

5.5. Discussion

Comparing Gaussian, T and NIG accuracies in figure 4, the
main differences are at operating points on the extreme left. It
is perhaps surprising that the T-distribution (3 parameters), does
worse than the Gaussian (2 parameters) and the NIG (4 parame-
ters). One would expect that the more flexible T should be able
to model the data more closely than the Gaussian, while being
more immune to overtraining than the NIG.

We speculate that this behaviour can be explained as fol-
lows. The Gaussian does not have the ability to accurately
model the tails of the distributions and effectively ignores the
tails. The T distribution has more flexible tail modelling ca-
pability, but being symmetric, it has to treat left and right tails
the same. Effectively it will be compensating for skewness by
making the tails thicker and this causes the observed inaccuracy.
The NIG has an additional skewness parameter, so it does not

4In numerical optimization, it is customary to minimize the objective
function. In this case we minimize the negative likelihood. Minima
have positive-definite Hessians (matrix of 2nd-order partial derivatives),
but saddle points have Hessians with eigenvalues of mixed sign.

5This is along the eigenvector corresponding to the most negative
eigenvalue of the Hessian.

have to use tail thickness to model skewness and can therefore
model both tails more accurately.

It should also be mentioned that this data suffers from mild
dataset shift [22] (changes in score distributions between train-
ing and evaluation) and this complicates explanations of the ob-
served accuracy.
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Figure 4: Accuracy of generative solutions: Gaussian, T and
NIG distributions.
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Figure 5: Comparison of score-to-LLR calibration transform
functions.

6. Conclusion
We have shown that linear score-to-LLR calibration transfor-
mations struggle to give optimal accuracy over a wide range of
operating points. If they are used, their training objective func-
tions must be tailored to the desired operating region.

More flexible, non-linear calibrations can remain accurate
over a wider range of operating points, while being trained with
standard criteria that do not need to be tuned.

The danger remains, as always, that more flexible recogniz-
ers can be more easily overtrained. In future work, we would
like to investigate fully Bayesian methods as a safeguard against
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Figure 6: The maximum-likelihoood NIG solution, compared
to normalized histograms of target and non-target scores.

overtraining—see [5], our first work in this direction, where we
give a Bayesian solution for Gaussian score models.

We would also like to explore the richer calibration mod-
els introduced here, for the problem of unsupervised calibra-
tion [2].
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