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Abstract
In this paper, we develop a hybrid system for pair language
recognition using Gaussian mixture model (GMM) supervector
connecting to support vector machine (SVM). The adaptation
of relevance factor in maximum a posteriori (MAP) adaptation
of GMM from universal background model (UBM) is studied.
In conventional MAP, relevance factor is empirically given by
a constant value. It has been proven that the relevance factor
can be dependent to the particular application. We use the rel-
evance factor to control the degree of influence from the ob-
served training data for more effectiveness. In order to design
a robust pair language recognition system, we develop a hybrid
scheme by using separate-training Bhattacharyya-based kernels
with the adaptive relevance factor applied. The pair language
recognition system is verified on National Institute of Standards
and Technology (NIST) language recognition evaluation (LRE)
2011 task. Experiments show the improvement of the perfor-
mance brought by the proposed scheme.
Index Terms: maximum a posteriori, supervector, Gaussian
mixture model, support vector machine

1. Introduction
Language recognition is a speech signal processing to recognize
the language of a spoken utterance. The pair language recogni-
tion is to detect the language type in the context of a fixed pair
of languages. Given a segment of speech and a specified lan-
guage pair, i.e., two of the possible target languages of interest,
the task is to decide which of these two languages is in fact spo-
ken in the given segment. The techniques include the acoustic
and phonotactic modelings. The parallel-phone recognition fol-
lowed by language modeling (PPR-LM) [1] is a classic phono-
tactic approach using phone tokenistic statistics; while Gaussian
mixture model (GMM) related technique is the typical acoustic
method. Recently, GMM supervector has been found to achieve
state-of-the-art performance in this area.

In this paper, we study on GMM supervector and focus on
pair language recognition. GMM supervector SVM is one of
the most popular acoustic modeling approaches for its reliable
performance [2]. A GMM language model can be trained by
using maximum a posteriori (MAP) estimation from a univer-
sal background model (UBM) [3]. The UBM is usually ob-
tained through expectation-maximization (EM) algorithm from
a background dataset covering a sufficiently wide range of lan-
guages, speakers, sessions and channels. In MAP, the relevance
factor is indirectly affect how much new data could be absorbed
to update the parameters (i.e., weight, mean, covariance) of a
model. It has been proven that the relevance factor can also

be optimized by the particular training data [4]. Conventional
MAP does not specify the relevance factor in a systematic man-
ner; in other words, the relevance factor is usually set empiri-
cally. Most of researchers like to use an appropriate fix value
in place of the data-dependent value. In the GMM-UBM sys-
tem, the relevance factor is not so sensitive due to the nature of
generative modeling [5] and therefore can be fixed. In GMM-
SVM language recognition system, a GMM supervector is used
to represent the language property of an utterance and serves as
an input vector to the SVM. Since SVM works in a discrimina-
tive manner [6], the relevance factor could sensitively affect the
position, which represents a language, in the supervector space.
It is necessary to mitigate the variation of database so that su-
pervectors can well manifest the saliency of language charac-
teristics.

Since we discuss the GMM supervector rather than the
GMM probability, the solution of the recognition problem can
be sought in the supervector domain. Actually, the supervector
deduced from the MAP criterion can be also derived in super-
vector domain through the probabilistic analysis [4]. In [7], we
shew the effectiveness of the adaptation of the relevance factor
to the duration of the utterance. In this paper, we develop the
pair language recognition system in connection with the adap-
tive relevance factor.

In the SVM framework, we need to define a kernel to com-
pare supervectors for classification. For pair language recogni-
tion, we choose two ways to perform the recognition: one-to-
all core-to-pair modeling and one-to-one pair modeling. The
two ways are merged into a hybrid system. We propose a sep-
arated training scheme for both Bhattacharyya-based mean and
covariance kernels [8]. In the hybrid system, we consider the
combination of the mean supervector and covariance supervec-
tor. The validity of the data-dependent relevance factor will be
investigated by using the pair language recognition system on
the NIST LRE 2011 30-second task [9].

In the remainder of the paper, we describe the conventional
MAP for GMM in section 2. We introduce the relevance fac-
tor for MAP estimation in section 3. We develop a hybrid pair
language recognition system in section 4.1. The performance
evaluation is reported in section 5. We summarize the paper in
section 6.

2. MAP for Language Recognition
Given UBM model

u = {ω̄i, m̄i, Σ̄i; i = 1, 2, ..., C} (1)
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we have the corresponding language-dependent GMM,

λ = {ωi,mi,Σi; i = 1, 2, ..., C} (2)

where mi, Σi, ωi, (i = 1, ..., C) are respectively the mean vec-
tor, the covariance matrix, and the weight of the ith Gaussian
component. The UBM is trained with EM algorithm using a
large dataset covering different languages, channels and speak-
ers to form a language-independent model [5].

For the MAP adaptation to λ, prior probability, P (λ),
should be given λ. With the MAP criterion, λ is selected such
that it maximizes the a posteriori probability,

λ = arg max
λ

P (λ|X) = arg max
λ

[
f(X|λ)g(λ)

]
(3)

where X = [x1, x2, · · · , xκ] is the sequence of feature vectors
used to train the GMM, λ; x is a J-dimensional feature vector;
and κ is the number of feature vectors. As a result of (3), the
mean parameters of the ith Gaussian are adapted as follows [5],

mi = αiΞ̌i + (1− αi)m̄i (4)

where Ξi is the first order sufficient statistics. αi is the data-
dependent adaptation coefficients, which is given by

αi =
Ni

Ni + γi
(5)

The relevance factor γi is the parameter in the normal-Wishart
density as which the Gaussian parameters are modeled. How-
ever, in conventional MAP, the relevance factor is given as a
fixed value, and the occupation rate Ni is theoretically given by

Ni =

κ∑
t=1

ωip(xt|mi,Σi)∑C
l=1 ωlp(xt|ml,Σl)

(6)

where p(·) denotes probabilistic function.
Using a data-dependent adaptation coefficient allows a

mixture-dependent adaptation of parameters. If a mixture com-
ponent has a low occupation rate Ni of new data, then αi → 0
causing the deemphasis of the new parameters. For mixture
components with high probabilistic counts, αi → 1, causing
the use of the new language-dependent parameters. It is ob-
viously found that the relevance factor is a way of controlling
how much new data should be observed in a mixture before the
new parameters begin replacing the old parameters. Thus, this
approach should be robust to sparse training data.

3. Relevance Factor of MAP
MAP can be used to estimate the parameters of the probabilis-
tic distribution. When conventional MAP method is applied for
GMM parameter estimation, its relevance factor is considered
as fixed value, which is believed not to be an optimal solu-
tion. To meet the realistic requirement of the GMM-supervector
based description for language recognition, we have to analyze
the influence to the relevance factor and to provide a proper so-
lution in the MAP algorithm. In this session, we will show the
relationship between the relevance factor and the statistics of
the training data.

3.1. Determination of relevance factor

We observed that the supervector deduced from the MAP cri-
terion can be also derived in supervector domain through the
probabilistic analysis. We analyze the MAP algorithm from

the GMM-supervector perspective. In language recognition, the
GMM-supervector is usually generated from UBM to represent
the language characteristics according to the related utterances.
Here we define the supervector as a concatenation of mean vec-
tors from a GMM. Assume m represents the UBM supervector
and also assume GMM-supervector m(λ) can be constructed
by a language independent vector m̄ and a language dependent
vector m̃(λ) = Φz(λ), where Φ denotes a transition matrix re-
flecting some feature of generalized training database and vec-
tor z(λ) is related to certain attributes of the particular language.
We have

m(λ) = m̄ + Φz(λ) (7)
It is reasonable to assume that Gaussian components in a GMM
are independent each other; and further assumption is that the
language-dependent vector z(λ) is of the standard normal dis-
tribution ℵ(z(λ)|0, I), and Φ is a block diagonal matrix with
each block being of dimension J ×J , hence the mean vector of
the ith Gaussian component can be given by

mi(λ) = m̄i + Φizi(λ) (8)

the natural logarithm of the conditional likelihood function of
an observed feature vector x given the attribute z(λ) is shown
below

logP (X|z, λ) = Θ + Ω(z(λ)) (9)
where Θ accounts for all terms unrelated to z(λ)

Θ =

C∑
i=1

Ni log
1

(2π)J/2|Σi|1/2
− tr(Σ−1S) (10)

where tr(·) denotes the trace of matrix, Σ is a CJ × CJ diag-
onal covariance matrix whose diagonal blocks are Σi. Ω(z(λ))
encompasses all terms related to z(λ), i.e.

Ω(z(λ)) = z∗(λ)Φ∗Σ−1Ξ− 1

2
z∗(λ)Φ∗NΣ−1Φz(λ) (11)

actually the occupation rate N and the first order statistics Ξ

depend on λ, and Ξ =

 Ξ1

. . .
ΞC

where Ξi =
∑κ
t=1(xt−mi);

and S is the second order statistics. As a result, the posterior
distribution of the vector z(λ) given the observed variable x
can be approximated by

P (z|X, λ) ∝ P (X|z, λ)P (z) ∝ exp(−1

2
(β − z)∗ζ(λ)(β − z))

(12)

where β = ζ−1(λ)Φ∗Σ−1Ξ, and ζ(λ) = I + Φ∗Σ−1NΦ, and
I denotes identity matrix. This equation means: E{z|X} = β,
and Cov{z|X} = ζ−1(λ), where E denotes the expectation
operator. We have

m̂ = E[m(λ)] = m̄ + (γ +N)−1Ξ(λ,m) (13)

Comparing with the conventional MAP, (13) shows that the
relevance factor γ can be estimated by using Φ and Σ, i.e.
γ = Φ−2Σ. Φ can be estimated by computing the expectation-
maximization (EM) algorithm as follows: The M-step for Φ is
given by

Φ = ΞE
[
z∗(λ)

]
(NE

[
z(λ)z∗(λ)

]
)−1 (14)

and the E-step is

E{z(λ)} = [I + Φ∗Σ−1NΦ]−1Φ∗Σ−1Ξ (15)

E{z∗(λ)z(λ)} = [I + Φ∗Σ−1NΦ]−1 + E{z(λ)}2 (16)
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3.2. An adaptive relevance factor for MAP

The idea of MAP estimation for GMM was presented in [3].
The primary purpose of the MAP is to estimate the probability
density function of a certain group of the data given a prior dis-
tribution. It is reasonable that for insufficient data the reliability
is low so the value of α in (5) is small and the estimated GMM
should be close to the UBM. When the data becomes sufficient,
the reliability of the sufficient statistics is high so the value of α
in (5) is large, so that the estimated GMM should be displaced
further from the UBM. This is reflected by equations (4) and
(5). Thus, when applying MAP to derive GMM supervector, to
assure the reliability of the estimated model, the GMM super-
vector should be close to the UBM supervector when the feature
data is insufficient, and vice versa.

However, in language recognition, usually GMM supervec-
tor is purposely used to represent the language of the utterance.
It is generated from a universal language which is represented
by the UBM supervector. This requires the distance from the
universal language to the particular language does not vary with
the length of the utterance. In other words, the GMM supervec-
tor is required to stably represent the characteristics of the par-
ticular language regardless of length of the utterance spoken. In
short, ideally, each utterance with the same language is expected
to give the same GMM supervector regardless of the duration of
the utterance. In this way, the supervectors can stably represent
the language without being affected by the duration of an ut-
terance. Therefore, we propose an adaptive relevance factor as
follows

r̆
(ρ)
i = r

(ρ)
i ϕ(κ)

= r
(ρ)
i {ϕ(κ0) +

ϕ′(κ0)

1!
(κ− κ0) +

ϕ′′(κ0)

2!
(κ− κ0)2 + · · · }

(17)
where ϕ is infinitely differentiable in a neighborhood of κ0

which can be approximated with the average size of the utter-
ances. According to (6), when κ increases, the probabilistic
count Ni increases. Take the expectation of the Ni, we have

E(Ni) = E(

κ∑
t=1

ωif(xt|mi,Σi)∑M
j=1 ωjf(xt|mj ,Σj)

) ∝ κ (18)

where E is the expectation operator. If we chose ϕ(κ) ≈ θ0κ
by ignoring the high order polynomial terms we can arrive at

E(α̌i) ∝
E(Ni)

E(Ni) + θ0κΦ−2
i Σi

−→ constant vector (19)

where θ0 is a constant value which can be obtained from the
known database. It means the expectation of α can be stable
when we have the relevance factor r̆(m)

i as follows

γ̆i ≈ θ0κΦ−2
i Σi (20)

This ensures that the distance measure between the GMM su-
pervector and UBM supervector is not seriously affected by the
length of the adaptation utterance.

4. Hybrid Pair Language Recognition
System

In this paper, we develop a hybrid pair language recognition
system using Bhattacharyya-based kernel. The particular con-
struction of the system is illustrated in Fig. 1.

We use two strategies for SVM modeling for pair language
recognition. First, we use core-to-pair modeling. This is done
by generating η target models for target languages followed by
pair-language measure. In the target model phase, the score is
computed to form score vector according to the target model
sequence. Each dimension of the score vector indicates the log
likelihood of a target language for the given test segment. The
language pair score is obtained by forming the log likelihood ra-
tio between pair of languages. To this end, the component clas-
sifiers are trained to model and discriminate one language from
the others (i.e., one-vs-all), among η = 24 language classes. The
Gaussian backend is trained for each component classifier (η
Gaussians with tied covariance matrices, which lead to the so-
called linear backend) using development dataset for training
score collection [10]. The result from the above calibration and
fusion step is the η-dimensional log-likelihood vector

s(t) = [s1(t), s2(t), · · · , sη(t)]T ; (21)

where each element sn(t) in the score vector indicates the log-
likelihood of the nth language class given the t-th test segment.
Language pair scores can therefore be obtained by forming the
log-likelihood ratio between pair of languages, according to
Bayes’ rule, as follows

Spair(Li, Lj , t) = log p(Xt/Li)−log p(Xt/Lj) = si(t)−sj(t)
(22)

The second strategy is called as pair-modeling where the
components classifiers are trained to model directly the lan-
guage pair. For η = 24, the number of languages pairs are
η(η − 1)/2 = 276. The final score are obtained by adding
the scores of the two sets (the first based on the one-vs-all and
the second based one-vs-one modeling strategies as described
above) with equal weights 1

4.1. Bhattacharyya-based GMM-SVM kernel

While the conventional GMM-supervector is the stacked nor-
malized mean vectors of the GMM, we extend the concept of
the GMM-supervector with its element being a certain function,
g, of the mean, covariance and weight. The process for generat-
ing the generalized GMM-supervector is summarized in Fig. 2.
The GMM-supervector is formed by concatenating the function
vector g(mi,Σi, ωi) of the Gaussian components, i.e.,

G =



g(m1,Σ1, ω1)
g(m2,Σ2, ω2)

...
g(mi,Σi, ωi)

...
g(mC ,ΣC , ωC)


(23)

We refer to g(mi,Σi, ωi) as the ith subvector of the GMM-
supervector. In this way, the generalized GMM-supervector
maps a speech utterance to a high-dimensional vector.

In our previous work [8], we derived an Bhattacharyya-

1Equal weights are used since the scores are ’properly’ calibrated
log-likehood ratio, and both subsystems are equally important.
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based distance between two GMMs as follows

ΨBhatt (pa||pb)

=
1

8

C∑
i=1

{[(Σ(a)
i + Σ̄i

2

)− 1
2
(m(a)

i − m̄i)
]T

[(Σ(b)
i + Σ̄i

2

)− 1
2
(m(b)

i − m̄i)
]}

+
1

2

M∑
i=1

tr
[(Σ(a)

i + Σ̄i
2

) 1
2
(Σ(a)

i )
− 1

2

(Σ(b)
i + Σ̄i

2

) 1
2
(Σ(b)

i )
− 1

2

]
+

M∑
i=1

ln
{ 1√

ω(a)
i ω

(b)
i

}
− M

2

(24)

Obviously, the distance is composed of two terms, i.e. the
mean statistical dissimilarity and the covariance statistical dis-
similarity. In order to avoid the unnecessary cross effect of the
parameters, we consider that the mean statistical dissimilarity
only carries the first-order of the adaptation data information
with the mean vectors and the covariance statistical dissimilar-
ity carries the second-order of new data information with the co-
variance matrices. Usually, the first term can be applied solely;
we can assume that the covariance is not adapted and only ex-
ploit the mean information in the equation. By combining the
two terms in (24), we arrive at the following kernel in practice

KBhatt (Xa,Xb)

=

C∑
i=1

{[1

2

(
Σ̄i
)− 1

2
(m(a)

i − m̄i)
]T [1

2

(
Σ̄i
)− 1

2
(m(b)

i − m̄i)
]}

+

C∑
i=1

tr
[(Σ(a)

i + Σ̄i
2

) 1
2
(Σ(a)

i )
− 1

2

(Σ(b)
i + Σ̄i

2

) 1
2
(Σ(b)

i )
− 1

2

]
(25)

Considering the compensation effect benefited from the dif-
ferent database we develop the separated systems with the mean
and covariance respective. We have the mean supervector that
contains only mean variables.

KBhatt-mean (Xa,Xb)

=

C∑
i=1

{[1

2

(
Σ̄i
)− 1

2
(m(a)

i − m̄i)
]T [1

2

(
Σ̄i
)− 1

2
(m(b)

i − m̄i)
]}

(26)
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And the covariance vector containing the covariance term only.

KBhatt-cov (Xa,Xb)

=

C∑
i=1

tr
[(Σ(a)

i + Σ̄i
2

) 1
2
(Σ(a)

i )
− 1

2

(Σ(b)
i + Σ̄i

2

) 1
2
(Σ(b)

i )
− 1

2

]
(27)

4.2. Support vector machine

Since each element of the GMM-supervector is Gaussian dis-
tributed, with the Bayesian minimum risk criterion the kernel
scoring can be obtained by

Γcost(X) =

L∑
l=1

αltlKGMM-Sup (Xl,X) + d

=
( L∑
l=1

αltlS
(Xl)

)T
S(X) + d

=wTS(X) + d

(28)

where tl is the target value of +1 or -1 corresponding to the
target class or non-target class, Xl is actually a sequence of
feature vectors of utterance l. αl > 0 is the weight of the vector
Xl so that

∑L
l=1 αltl = 0. d is a bias parameter independent of

the observed sequence. S denotes supervector, here it represents
the support vector.

Given a set of linearly separable two-class data, there are
many possible solutions. An SVM is a binary linear classifier
represented by a hyperplane separator. The separator is selected
by maximizing the distance between the hyperplane and the
closest training vectors. By introducing SVM, the Xl|l=1,...,L

are selected from the training data and called the support vectors
since they support the hyperplanes on both sides of the margin,
and w is for the linear combination of the support vectors. The
support vectors are obtained by a quadratic optimization [11]
[12]. With the trained model represented by parameters w and
d, the cost value in (28) is used as the score during recognition.

4.3. Nuisance attribute projection

In our pair language recognition system, NAP [13] [14] for
channel compensation is used, it is applied to all GMM-
supervectors. In language recognition, a commonly known phe-
nomenon is that same language may be spoken with different
microphones, different channel conditions and different envi-
ronment backgrounds. NAP is used to reduce the session vari-
ability in the same language group by projecting it out based on
eigen-decomposition. This is done by removing the subspace
that causes the variability. It makes the GMM distribution dis-
tance more accurately reflect between-language distances. For
a kernel K(pa, pb) = [S(a)]T [S(b)], NAP constructs a new ker-
nel by

KNAP (pa, pb) = [(I− vvT )(S(a))]T [(I− vvT )S(b)]

= [PS(a)]T [PS(b)]
(29)

where v is a matrix of eigenvectors estimated from within-class
covariance matrix. The eigenvector matrix v is an orthonormal
principal matrix with its rank set to a specified NAP-rank, cor-
responding to the NAP-rank largest eigenvalues. P is called as
the projection matrix, and I denotes the identity matrix. In our
experiment, the procedure used to estimate the NAP matrix is
described as follow

1. Extract supervector for each language to group a set of
supervectors;

2. Separate the set of supervector with the same language
into several subgroups;

3. compute the mean of the supervectors for each subgroup;

4. Subtract the supervectors by the mean corresponding to
each subgroup, so that language variability is removed;

5. Collect all the mean-removed supervectors to form a big
matrix Ω where the intersession variability remains;

6. Do the eigen-decomposition of ΩΩT ; so that v is ob-
tained.

The projection matrix P is separately trained for each kernel by
using the utterances selected from language recognition training
database.

5. Performance Evaluation
Language recognition performance is measured for each target
language pair. For each pair (L1 ↔ L2), the miss probabilities
for L1 and for L2 over all segments in either language will each
be determined. In addition, these probabilities are to be com-
bined into a single number that represents the cost performance
of a language recognition system for distinguishing the two lan-
guages, according to an application motivated cost model.

We adopt NIST LRE 2011 [9] 30-second task to evalu-
ate the performance of our pair language recognition system.
The LRE 2011 evaluation emphasizes the language pair con-
dition. It involves both conversational telephone speech (CTS)
and broadcast narrow-band speech (BNBS), generally involving
people telephoning into the broadcast studio. Multiple broad-
cast sources are included. The performance will be evaluated
over a set of trials. Trials consist of a test segment along with
a specified target language pair. The full set of trials consist of
all combinations of an evaluation test segment and a target lan-
guage pair. Thus if η is the number of target languages, each test
segment is used for η×(η−1)/2 trials. An overall performance
measure for each system will be computed as an average cost for
those target language pairs presenting the greatest challenge to
the system. For each duration, a systems overall performance
measure will be based on the η target language pairs for which
the minimum cost operating points for 30-second segments are
greatest.

We use MFCC SDC with 56 and 80 dimensionality ob-
tained with configurations of 7-1-3-7 and 10-2-3-7, respectively.
These are then fused via a score fusion together with other com-
ponent classifiers. For the 56-dim SDC, the UBM contains
512 mixtures. For the 80-dim SDC, the UBM consists of 1024
Gaussian mixtures. In addition to the mean vector, the covari-
ance supervector is formed by concatenating the covariances,
as detailed. NAP was applied on the supervectors for channel
compensation. The NAP rank is selected to 70 for the GMM-
supervector with GMM 1024 with 80 dimension SDC. These
are then fused via score fusion together with other component
classifiers.

In order to cover the variability of NIST-LRE evaluation
data, our training data consist of two major partitions: Broad-
cast Narrow-Band Speech (BNBS) data and Conversational
Telephone Speech (CTS). This dataset includes recordings from
CallFriend, OHSU, previous NIST-LRE evaluations (96, 03, 05
and 07), OGI22, VOA (provided by NIST and additional down-
load) and other BNBS data downloaded from different sources.
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Table 1: The comparison of the pair language recognition sys-
tems using core-to-pair modeling in terms of EER and mini-
mum detection cost for LRE 2011 30s task

LRE 2011, 30s, N-top average EER min. Cost × 100

Bhatt56:arf, core2pair 13.35 % 12.58
Bhatt80:rf=0.25, core2pair 12.92 % 12.02
Bhatt80:rf=8, core2pair 12.10 % 11.48
Bhatt80:rf=32, core2pair 13.80 % 13.65
Bhatt80:arf, core2pair 11.89 % 10.41

Table 2: The comparison of the pair language recognition sys-
tems using pair modeling in terms of EER and minimum detec-
tion cost for LRE 2011 30s task

LRE 2011, 30s, N-top average EER min. Cost × 100

Bhatt56:arf, pair 14.18 % 13.36
Bhatt80:rf=0.25, pair 13.83 % 13.14
Bhatt80:rf=8, pair 13.64 % 12.69
Bhatt80:rf=32, pair 14.65 % 14.08
Bhatt80:arf, pair 12.75 % 12.07

We use two different strategies to arrive at the final lan-
guage pair scoring. In the experiment, we compare different
Bhattacharyya-based GMM-SVM systems, and especial focus
on the progress of each stage in the hybrid pair language recog-
nition system. We name the Bhattacharyya-based system with
GMM-1024 and 80 dimension of SDC feature as ’Bhatt80’ or
’BhattCov80’ for mean (26) or covariance (27) kernel. ’Bhat-
tall80’ denotes the combination of both mean and covariance
kernels at score level. and the one with GMM-512 and 56 di-
mension of SDC as ’Bhatt56’; the system with adaptive rele-
vance factor is denotes by ’arf’; and the fixed relevance factor
with value k is denoted by ’rf=k’ (for instance, when k=8, it
is denoted by ’rf = 8’). We use ’core2pair’ to denote core-to-
pair modeling, and ’pair’ denotes the pair modeling. The EERs
and detection costs listed in tables 1 and 2 give a comparison be-
tween fixed relevance factor and adaptive relevance factor based
on core-to-pair modeling and pair modeling respectively. It can
be seen that the adaptive relevance factor brings better perfor-
mance than fixed ones. Besides the different relevance factor
comparison, comparing the first and last lines in the two ta-
bles shows that GMM 1024 with 80 dimension SDC gives more
effectiveness than GMM 512 with 56 dimension SDC does.
Obviously, the phenomenon that the higher dimension feature
achieves a higher performance is simply due to more informa-
tion introduced into the supervector. The above observation can
be also viewed from Figs 3 and 4.

The results given in table 3 show the progressive situation
in different stages of the hybrid system. Figs 5, 6 and 7 show
the same observation in terms of top-η average minimum detec-
tion cost for the hybrid pair language recognition system. The
improvement in each stage is apparent.

Table 3: The combination of mean and covariance results in
score level as well as the final fusion of the combined core-
to-pair modeling and the combined pair modeling in the hybrid
pair language recognition system in terms of EER and minimum
detection cost on LRE 2011 30s evaluation platform

LRE 2011, 30s, N-top average EER min. Cost × 100

Bhatt80:arf, core2pair 11.89 % 10.41
BhattCov80:arf, core2pair 20.36 % 19.00
Bhattall80, arf, core2pair 10.78 % 10.00

Bhatt80:arf, pair 12.75 % 12.07
BhattCov80:arf, pair 23.81 % 22.72
Bhattall80, arf, pair 12.30 % 11.43

Fusion: Bhattall80(core + pair) 10.08 % 9.02
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Figure 3: comparison the top-η detection cost between different
Bhattacharyya systems with the core-to-pair modeling.
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Figure 4: comparison the top-η detection cost between different
Bhattacharyya systems with the pair modeling.

6. Summary
We have developed a hybrid Bhattacharyya-based GMM-SVM
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Figure 5: Complementary of the mean and covariance kernels
with core-to-pair modeling.
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Figure 6: Complementary of the mean and covariance kernels
with pair modeling.
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Figure 7: Fusion of the core-to-pair modeling and pair modeling
systems.

system for pair language recognition. It can be viewed from the
experiment that the higher dimension feature can surely reach
a higher performance, since there are more information cap-
tured into the supervector. In GMM-SVM language recogni-
tion system, a GMM supervector is used to represent the lan-
guage property of a speech segment (or utterance) and serves
as an input vector to the SVM. This requires the elimination of
the negative effect of the database variation in order to mani-
fest the saliency of the language characteristics. We described
the data-dependent relevance factor of MAP in supervector do-
main and introduced the adaptive relevance factor for GMM.
We investigated the effectiveness of the adapted relevance fac-
tor as compared to the fixed relevance factor on the pair lan-
guage recognition platform. Moreover, the improvement after
the merge of mean supervector and covariance supervector is
obvious. It is also observed that the core-to-pair modeling has
a great complementarity with the pair modeling. In a word, it
has been shown that the developed hybrid pair language recog-
nition system gives very effective performance. The efficacy of
the adaptive relevance factor as well as the hybrid pair language
recognition system is shown by using the Bhattacharyya-based
SVM kernel on the LRE 2011 30-second task.

7. References
[1] M. Zissman, “Comparison of four approaches to auto-

matic language identification of telephone speech,” IEEE
Trans. Speech Audio Process., vol. 4, no. 1, pp. 31-44,
1996.

[2] P. A. Torres-Carrasquillo, E. Singer, M. A. Kohler, R.
J. Greene, D. A. Reynolds, and J. R. Deller Jr., “Ap-
proaches to language identification using Gaussian mix-
ture models and shifted delta cepstral features,” Int. Conf.
on Spoken Lang. Process., pp. 89-92, 2002.

[3] J. L. Gauvain and C-H. Lee, “Maximum a posteriori es-
timation for multivariate Gaussian mixture observations
of Markov chains,” IEEE Trans. Speech Audio Process.,
vol. 2, pp. 291-298, 1994.

[4] P. Kenny, “Joint Factor Analysis of Speaker and Session
Variability : Theory and Algorithms,” CRIM, Montreal,
Technical Report, CRIM-06/08-13, 2005.

[5] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker
verification using adapted Gaussian mixture models,”
Digit. Signal Process., vol. 10, pp. 19-41, 2000.

[6] W. M. Campbell, E. Singer, P. A. Torres-Carrasquillo,
and D. A. Reynolds, “Language Recognition with Sup-
port Vector Machines,” Proc. Odyssey: The Speaker and
Lang. Recog. Workshop Toledo, pp. 41-44, 2004.

[7] C. H. You, H. Li, and K. A. Lee, “A GMM-supervector
approach to language recognition with adaptive rele-
vance factor,” 18th Europ. Signal Process. Conf., EU-
SIPCO, pp. 1993-1997, Aalborg, Aug. 2010.

[8] C. H. You, K. A. Lee and H. Li, “GMM-SVM Ker-
nel with a Bhattacharyya-Based Distance for Speaker
Recognition,” IEEE Trans. Audio, Speech and Lang. Pro-
cess., vol 18, no. 6, pp. 1300-1312, Aug. 2010.

[9] http://www.itl.nist.gov/iad/mig/tests/lre/2011/
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