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Abstract 

Recently, i-vector based technology can provide good performance 

in language recognition (LRE). From the viewpoint of information 

theory, i-vectors derived from different acoustic features can 

contain more useful and complementary language information. In 

this paper, we propose an effective complementary combination for 

two kinds of i-vectors. One is derived from the commonly used 

short-term spectral shifted delta cepstral (SDC) and the other from 

a novel spectro-temporal time-frequency cepstrum (TFC). In order 

to overcome the curse of dimension and to remove the redundant 

information in the combined i-vectors, we use principal component 

analysis (PCA) and linear discriminant analysis (LDA) and 

evaluate their performances, respectively. For classification, cosine 

distance scoring (CDS) and support vector machine (SVM) are 

applied to the new combined i-vectors. The experiments are 

performed on the NIST LRE 2009 dataset, and the results show 

that the proposed method can effectively improve the better 

performance than baseline by EER reducing 1% for 30 s duration 

and 2.3% for both 10 s and 3 s. 

Index Terms— i-vector combination, SDC, TFC, PCA, LDA, 

language recognition 

1. Introduction 

Language recognition (LRE) refers to automatically recognize the 

language from a speech utterance. It has applications in many areas, 

such as multi-lingual speech-related services, information security, 

etc. 

Over the past years, the well-performed systems developed in 

LRE can be simply classified as the phonotactic systems and the 

acoustic systems. The former ones typically focus on the phones 

and the frequency of the phone sequences observed in each target 

language, while the latter ones mainly base on the spectral 

characteristics of each language. Generally speaking, many of the 

acoustic LRE systems are founded on the same algorithms  as the 

speaker recognition (SRE) systems, such as Gaussian mixture 

models (GMM) [1], support vector machines (SVM) [2], joint 

factor analysis (JFA) [3], etc. On the other hand, many well-

performed technologies in SRE can always show the identically 

excellent performance in LRE [4]. Recently, i-vector based 

technology can provide the better performance than JFA in SRE 

[4], and many researches have reported this advantage in LRE [5, 

6]. In i-vector based systems, the fixed length low-dimension i-

vectors are extracted by estimating the latent variables from each 

utterance based on the factor analysis algorithm like JFA and then 

used to be the inputs for the classifier. 

In the meanwhile, it has been proved yet that different 

acoustic features can reflect complementary discriminant 

information of languages. In addition, it has large influence on the 

performance of classifier. Even though various high-level or other 

features have been studied, acoustic features based on spectrum 

still outperform the others very well and are the most widely used 

in practice. In LRE, shifted delta cepstral (SDC) and time-

frequency cepstrum TFC [8] have been considered as two effective 

and complementary well-performed acoustic features. 

From the viewpoint of information theory, complementary use 

of i-vectors derived from different acoustic features can also 

contain more useful discriminant information. In this paper, we  

explore more about the complementary combination method in i-

vector level. At first, multiple complementary i-vectors extracted 

from different acoustic features are simply concatenated to be a 

new higher-dimensional vector. Then, in order to avoid the high 

dimension and redundant information, unsupervised principal 

component analysis (PCA) and supervised linear discriminant 

analysis (LDA) are used respectively and their performances are 

evaluated. Before i-vector extraction, the feature-domain channel 

compensation such as fLFA [9] will be applied to the acoustic 

features for better performance. Low-dimensional new i-vectors 

after PCA or LDA also make it easy for various classifiers with 

avoiding the curse of dimensionality. 

 In this paper, we model with two classifiers: cosine distance 

scoring (CDS) and support vector machines (SVM), which are 

both widely used in i-vector based SRE system [4] with low 

complexity.  

The remainder of this paper is organized as follows: In section 

2, the proposed combination method in i-vector level is introduced 

and then two classifiers CDS and SVM are briefly described in 

section 3. Experimental setup is present and the results are showed 

in section 4. Finally, we summarize the experimental results and 

give conclusion in section 5. 

2. Combination method in i-vector level 

2.1. Acoustic feature extraction 

In this work, we used two acoustic complementary features 

extracted from the basic features. The first one is the 56-

dimension shifted delta cepstral (SDC) derived from the 13-

dimension perceptual linear predictive (PLP) feature. Then the 
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SDC coefficients concatenated with a popular 7-1-3-7 scheme are 

obtained. 

The second one is the 55-demension time frequency cepstrum 

(TFC) [8] from the 13-dimension Mel-frequency cepstral 

coefficients (MFCC). This feature is obtained by performing a 

temporal discrete cosine transform (DCT) on the cepstrum matrix 

and selecting the transformed elements in a zigzag scan order. 

Vocal tract length normalization (VTLN) and relative spectral 

(RASTA) filtering are applied during PLP and MFCC basic feature 

extraction. In addition, both of the two acoustic features are 

compensated by fLFA to provide a better performance. 

2.2. Combination method in i-vector level 

At first, we extract two kinds of i-vectors from both two acoustic 

features. The concept of i-vector are motivated by the JFA, in 

which both speaker and intersession subspaces are modeled  

separately, while i-vector method models all the important 

variability in the same low dimensional subspace named total 

variability space for using the useful information in channel 

subspace. Hence, the estimation of low rank rectangular total 

variability space is much more like the eigenvoice adaptation in 

JFA [9].  

Like in i-vector based SRE system, we suppose the language-

dependent and channel-dependent GMM supervector adapted 

from universal background model for a given utterance in i-vector 

based LRE can also be modeled as follows: 

M m T                                            (1) 

where m  is the language-independent and channel-independent 

component of the mean supervector (usually from UBM mean), 

T is a matrix of bases spanning the subspace covering both 

language- and session-specific variability in the super-vector 

space, and   is a standard normally distributed latent variable. 

For each utterance, the final i-vector is the maximum a posteriori 

(MAP) point estimate of the latent variable . More about i-

vector extraction procedure are detailed in [9]. LDA and within 

class covariance normalization (WCCN) [4] are applied to the i-

vector based LRE system. 

        After i-vectors are extracted, we firstly simply concatenate 

the multiple i-vectors to a new high-dimension i-vector. Then, in 

order to reduce the dimension and to remove the useless 

information, we then apply the unsupervised PCA, supervised 

LDA to the concatenated i-vector, and evaluate the performance 

respectively.  

3. Classifier 

3.1. Cosine distance scoring 

In i-vector based speaker recognition system, the cosine distance 

scoring [4] has been proved the fastest and most efficient method, 

which directly uses the value of the cosine kernel between the 

target language i-vector and the test i-vector as a decision score. 

Following this way, we apply this modeling and scoring method in 

i-vector based LRE system as follow: 
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In (2), the lang   can be obtained by lots of train segments 

and 
test  be obtained by a single segments. The value of this 

kernel is directly used as the final scoring. By CDS, no target 

language enrollment is required, so it can make the modeling and 

scoring faster and less complex than other modeling methods. 

3.2. Support vector machine 

Support vector machine is a powerful supervised binary classifier 

that has been efficiently adopted in speaker recognition and 

language recognition [2]. The target of this classifier is to model 

the decision boundary between two classes as a separating hyper 

plane from a set of supervised data examples defined 

by
1 1 1 1{( , ), ( , ),..., ( , )}N NX x y x y x y . Through labeling the 

positive examples ( 1)iy    and the negative 

examples ( 1)iy   , the linear separating hyper plane can be 

obtained by solving the function as follow: 
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Where x is an input vector and ( , ; 1 )i b i N   are the SVM 

parameters obtained during the training. The cosine kernel ( , )K    

that we adopted in this work is as the same as the (2). 

4. Experimental setup 

4.1. Experimental data 

The training data used in our experiments include two classes: 

conversational telephone speech data (CTS) and broadcast news 

data (BN). The CTS dataset includes the data from multiple 

corpora such as the OGI, CallFriend, CallHome, and OHSU. The 

BN dataset includes the data from VOAs supplied by NIST or 

downloaded from the Internet. All these data are pooled together 

and selected randomly to be the training corpus. The evaluation 

data come from NIST LRE09 dataset [10], which contains 23 

target languages and three duration conditions of 3s, 10s and 30s. 

In our experiments, all data in train set are used to train the 

1024-mixture UBM and the dimension of total variability space 

was set to 400 as in [4]. After processing of LDA+WCCN, the 

dimension of raw i-vector can reduce to 200 also as in [4]. Our 

experimental results show in closed-set pooled error equal rate 

(EER) without backend processing. At the end, we compare out 

combination method with the LLR fusion in score level. 

 4.2. Evaluation of combination in i-vector level  

4.2.1. Performance of i-vector based LRE baseline systems 

We first evaluate the performance of two kinds of baseline 

systems, respectively by CDS and by SVM. Each kind of baseline 

system also includes two sub systems, which are using i-vector 

derived from SDC and using i-vector derived from TFC 

respectively. The results in Table 1 and Table 2 show that using 

TFC with CDS classifier can provide the best performance in all 

four baseline systems. 
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Table 1. The performance (in EER) of two i-vector based LRE 

baseline systems by CDS 

EER 

(%) 

i-vec 

(SDC) 

i-vec 

(TFC) 

30 s 4.11 4.00 

10 s 8.58 8.57 

3 s 18.80 18.80 

Table 2. The performance (in EER) of two i-vector based LRE 

baseline systems by SVM 

EER 

(%) 

i-vec 

(SDC) 

i-vec 

(TFC) 

30 s 5.57 5.30 

10 s 11.30 9.84 

3 s 23.07 19.92 

 4.2.2. Performance of i-vector simply concatenate method  

Next, we evaluate the proposed i-vector simple concatenation 

method by both CDS and SVM classifiers. The results are shown 

in Table 3 and Table 4. 

With the comparison of the results showed in Table 2 and 

Table 3, we can see that no matter using which kind of classifiers, 

the simple concatenation of two i-vectors can always provide the 

better performance than baselines, respectively. In our 

experiments, the two raw i-vectors are 200-dimension respectively, 

and the concatenated i-vector is 400-dimension. It is shown that 

the CDS classier performs much better than the SVM classifier. 

This result is consistent with the result in [4].  

Table 3. The performance of i-vector concatenation by CDS  

EER 

(%) 

i-vec 

(SDC) 

i-vec 

(TFC) 

i-vec 

(concatenation) 

30 s 4.11 4.00 3.62 

10 s 8.58 8.57 7.66 

3 s 18.80 18.80 17.30 

Table 4. The performance of i-vector concatenation by SVM 

EER 

(%) 

i-vec 

(SDC) 

i-vec 

(TFC) 

i-vec 

(concatenation) 

30 s 5.57 5.30 4.58 

10 s 11.30 9.84 9.29 

3 s 23.07 19.92 19.90 

4.2.3. Performance of i-vector combination using PCA 

We evaluate the performance of i-vector combination after using 

the unsupervised PCA to reduce the dimension to 260 with 

accounting for 95% of the variance by both two CDS and SVM. 

The results are shown in Table 5 and Table 6. We can see that 

PCA not only reduce the dimensionality of combined i-vectors, 

but also improve the performance slightly, especially for CDS 

classifier. The reason for this may be that PCA can make the 

language i-vectors become more discriminative. 

Table 5. The performance comparison of combination method 

before and after using PCA by CDS 

EER 

(%) 

i-vec 

(concatenation) 

i-vec 

(using PCA) 

30 s 3.62 3.32 

10 s 7.66 7.45 

3 s 17.30 17.29 

Table 6. The performance comparison of combination method 

before and after using PCA by SVM 

EER 

(%) 

i-vec 

(concatenation) 

i-vec 

(using PCA) 

30 s 4.58 4.58 

10 s 9.29 9.29 

3 s 19.90 19.88 

4.2.4. Performance of i-vector combination using LDA 

By using the supervised LDA to reduce the concatenated 

dimension, the raw 400 dimensions can reduce to 22 dimensions. 

The results are present in Table 7 and Table 8. We can see that the 

good performances of both two classifiers are still keeping. And 

the CDS classifier can provide the better performance.  

Table 7. The performance comparison of combination method 

before and after using LDA by CDS 

EER 

(%) 

i-vec 

(concatenation) 

i-vec 

(using LDA) 

30s 3.62 3.11 

10s 7.66 6.83 

3s 17.30 16.50 
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Figure.1. Performance of baseline systems and improved best 

system by CDS 

Figure.1 and Figure.2 show the DET curves of two kinds of 

baseline systems in Table 1, and Table 2, and the improved 

systems in column 3 in Table 7 and in column 3 in Table 8. It 

shows that performance of the best-performed i-vector based CDS 

system proposed in this paper can reduce 1% in EER 
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corresponding to the baseline i-vector systems for 30 s and 2.3% 

in EER for 10 s and 3 s. 

Table 8. The performance comparison of combination method 

before and after using LDA by SVM 

EER 

(%) 

i-vec 

(concatenation) 

i-vec 

(using LDA) 

30s 4.58 4.58 

10s 9.29 9.29 

3s 19.90 19.76 
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Figure.2. Performance of baseline systems and the best-

improved system by SVM 

4.2.5. Comparison with fusion in score level 

For comparison with fusion in score level, we use the LLR to 

do the fusion by the scores in column 1 and 2 in Table 3 with the 

focal multiclass toolkit [10] and compare its performance with the 

scores in column 3 in Table 7 both after the score calibration. The 

results in Table 9 show that combination method in i-vector level 

with the score calibration can also provide the better performance 

than the fusion in score level. The reason for this may be that the 

combination in i-vector level can make use of the more 

discriminative information interweaving in the i-vector levels, 

while for the score-level fusion the information is already reduced 

to the single scores. 

Table 9. The performance comparison of the best combination 

in i-vector level with the fusion in score level 

EER 

(%) 

fusion  

in score level 

combination 

in i-vector level 

30s 2.74 2.63 

10s 6.29 6.29 

3s 16.42 16.37 

5. Conclusion 

In this paper, we propose an effective complementary combination 

method in i-vector level for providing the better performance in 

LRE. PCA and LDA are  used to reduce the high dimension and to 

remove the abundant information. Both CDS and SVM are applied 

to model the new combined i-vectors. The experimental results in 

NIST LRE2009 dataset show that the proposed complementary 

combination method in i-vector level can offer the better 

performance than fusion in score level. The performance of best 

system proposed in this paper can reduce 1% in EER than the 

relative baseline systems for 30 s duration and 2.3% in EER for 10 

s and 3 s. 
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