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Abstract

This work extends the mean shift algorithm from the observa-
tion space to the manifolds of parametric models that are formed
by exponential families. We show how the Kullback-Leibler di-
vergence and its dual define the corresponding affine connec-
tion and propose a method for incorporating the uncertainty in
estimating the parameters. Experiments are carried out for the
problem of speaker clustering, using both single Gaussians and
i-vectors.

1. Introduction
Mean shift (MS) is a nonparametric clustering algorithm that
has become a milestone in several areas of computer vision and
image processing, [1]. Its main strengths are the mild assump-
tions that are required about the shapes of the clusters and the
automatic estimation of their cardinality, [2]. It does so by find-
ing the modes of the nonparametrically estimated density func-
tion and assigning each observation according to the basin of
attraction of each mode.
What restricts us though from applying the MS to more general
problems is the use of the (squared) Euclidean distance into the
kernel. There are several tasks where either the observations or
the parameters we use to encode them do not lie on <d and fol-
low a non-Euclidean geometry. The subset of these problems
that the paper deals with is the broad class of exponential fami-
lies. Consider for example objects that are usually parametrized
via histograms. In such cases, the objects lie on the manifold of
multinomial distributions, which has at least two well-known
geometries; those that are determined by the two Kullback-
Leibler (KL) divergences, [3], [4]. Other approaches to make
the MS algorithm applicable to manifolds may be found in [5]
and [6]. Contrary to these approaches, we utilize the intrinsic
structures of statistical manifolds and rely on the well-known
KL divergences, instead of geodesics.
A first version of this paper was presented in [7]. The method is
enhanced using MAP-estimation and a more precise mathemat-
ical derivation. The rest of the paper is organized as follows. In
Sect. 2, the baseline MS algorithm is reviewed, along with the
fundamental properties of exponential families. In Sect. 3, the
proposed set-up is demonstrated, including the proposed ker-
nels and the smoothing term. In Sect. 4, the proposed algorithm
is derived, while a set of experiments is given in Sect. 5.

2. Preliminaries
2.1. The baseline mean shift algorithm

Let us first review the baseline mean shift algorithm. Consider a
set of observations denoted by X = {x(i)}Ni=1, x(i) ∈ <d that
have been generated by an unknown density f(x). A nonpara-
metric estimate f̂(x) of f(x) is given by the following formula

f̂h,k(x) =
ck,d
Nhd

N∑
i=1

k

(∥∥∥x− x(i)

h

∥∥∥2) , (1)

where k(·) the functional form of the unnormalized kernel, ck,d
the inverse normalizing constant for unitary bandwidth, and h
the bandwidth which controls the amount of smoothing. Note
that h may vary with i, leading to the variable-bandwidth MS
algorithm, [8].
The MS algorithm aims to assign the observations to clusters
using a simple heuristic idea. It estimates the modes of the un-
known density by setting the gradient of (1) with respect to x
equal to zero. The gradient is as follows

∇f̂h,k(x) =
2ck,d
Nhd+2

N∑
i=1

(x(i) − x)g

(∥∥∥x− x(i)

h

∥∥∥2) , (2)

where g(x) = −k′(x) and x =
∥∥∥x−x(i)

h

∥∥∥2. Note that g(x) =
1
2
k(x) if the normal kernel

kN (x) = exp

(
−1

2
x

)
(3)

is deployed. By placing the differential kernel g(x) in (2) and
rearranging some terms, we end-up with the following expres-
sion

∇̂fh,k(x) =
2cg,d
h2cg,d

f̂h,g(x)mh,g(x), (4)

where the two terms are as follows,

f̂h,g(x) =
2cg,d
Nhd+2

N∑
i=1

g

(∥∥∥x(i) − x

h

∥∥∥2) (5)

and

mh,g(x) =

∑N
i=1 x(i)g

(∥∥∥x(i)−x
h

∥∥∥2)
∑N
i=1 g

(∥∥∥x(i)−x
h

∥∥∥2) − x. (6)
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The term mh,g(x) is the mean shift vector i.e. the main re-
sult of the analysis. It points to the direction of maximum in-
crease of f̂h,K(x), given its current position x. As (6) shows,
the next position is a simple weighted average of the observa-
tions {x(i)}Ni=1, with the ith weight being equal to the prox-
imity between x(i) the current position x, measured with the
kernel profile g(x).
The MS algorithm is as follows. For each observation i =
1, 2 . . . , N set j = 0, xj ← x(i)

1. calculate mh,G(xj)

2. set xj+1 ← xj + mh,G(xj)

3. if ‖xj+1 − xj‖ < ε goto 4; else j ← j + 1 and goto 1.

4. store x̃(i) = xj+1.

The matrix Xc = [x
(1)
c ,x

(2)
c , . . . ,x

(N)
c ] contains the points

that each observation converged. We only need to group those
points having identical values, or more realistically those that
the one-by-one distances do not exceed a small threshold ε.

2.2. Exponential families and their fundamental properties

Exponential families are a broad class of distributions Fψ with
certain appealing properties that allow us to treat them in a uni-
fied framework. Let us assume a d-dimensional observation
vector x = [x1, x2, . . . , xd]

T lying in some space X ⊆ <d.
Let also t(x) = {tα(x)}nα=1 be a set of functions tα : X 7→ <,
known as sufficient statistics. Finally, let θ ∈ Θ ⊆ <n the vec-
tor that contains the natural of canonical parameters, by which
the distribution is parametrized. The probability density func-
tion (p.d.f.) pψ of the distribution Fψ is expressed as follows

pψ(x;θ) = exp(〈θ, t(x)〉 − ψ(θ)), (7)

where 〈·, ·〉 denotes dot-product. We emphasize that the p.d.f.
in (7) is expressed with respect to (w.r.t.) an appropriate base
measure dν (not necessarily the Lebesgue dx), such that for any
measurable set S, P [x ∈ S] =

∫
S
pψ(x;θ)ν(dx), [9].

An exponential family is regular if Θ is an open set, and its
representation is minimal if there is no nonzero vector a ∈ <n
which makes 〈a, t(x)〉 a constant.
The function ψ(·) : Θ 7→ <

ψ(θ) = log

∫
X

exp(〈θ, t(x)〉)ν(dx) (8)

is called the log partition function and ensures that pψ is nor-
malizable, i.e.

∫
X exp(〈θ, t(x)〉 − ψ(θ))ν(dx) = 1. The log

partition is strictly convex in Θ and therefore Θ is a convex
convex set. Furthermore, Θ and ψ(·) admit a dual space and
function, respectively. First, we define the dual space of Θ via
by the gradient of ψ(θ), i.e. η(θ) = ∇θψ(θ)|θ . The dual
parameters η ∈ H ⊆ <n are termed expectation parameters,
since η(θ) = Eθ[t(x)], where Eθ[g(x)] is the expectation op-
erator. The dual function is defined as

φ(η(θ)) = Eθ[log pψ(x;θ)], (9)

i.e. is simply the negative entropy of pψ(·;θ). The inverse
mapping H 7→ Θ is defined via the gradient of φ(·), i.e.
θ(η) = ∇ηφ(η)|η .
Let us denote by dψ(θ‖θ′) = dφ(η‖η′) the Kullback-Leibler

divergence, defined as dψ(θ‖θ′) = Eθ
[
log

pψ(x;θ)

pψ(x;θ′)

]
. For ex-

ponential families, it can be expressed as follows

dψ(θ‖θ′) = ψ(θ′)− ψ(θ)−
〈
θ′ − θ,η

〉
. (10)

Since ψ(·) is strictly convex in Θ, the n × n matrix G(θ) =
∇2
θψ(θ)|θ is positive definite and equals to Fisher Information

Matrix (FIM), defined as follows

Gθ(θ) = −Eθ
[
∇2
θ log pψ(x;θ)

]
. (11)

The role of Gθ(θ) and its dual Gη(η(θ)) = Gθ(θ)−1 is fun-
damental in statistics (e.g. Cramer-Rao bound, Jeffreys prior)
and information geometry. In the latter field, the FIM can be
used as the metric tensor of the Riemannian manifold of prob-
ability distributions, and enables us to define lengths, angles,
volume elements and covariant derivatives.

3. Estimating the density function
In this section, we propose a framework to estimate underly-
ing p.d.f. over which the mean shift algorithm will operate.
Like the original algorithm, the p.d.f. is expressed nonparamet-
rically, by a weighted summation of N kernel (or kernel-like)
functions, one for each object. The squared distances will be re-
placed by KL divergences, while the kernels will be replaced by
prior density functions that are used in the Bayesian statistical
framework.

3.1. The kernel-like functions

Let us assume that we are given a set of N object {p(i)}Ni=1,
where p = pψ(·,θ), all belonging to the same exponential fam-
ily defined by ψ(·). We should emphasize that the choice of
parametrization is arbitrary. Let ϕ ∈ Φ ⊆ <n. For the multi-
variate Normal distribution, we may considerϕ = (µ,Σ) or we
may express these objects e.g. with the expectation parameters
{p(i)η }Ni=1. The parametrization over which the MS algorithm
will operate is completely determined by the choice of the di-
vergence.
Like the original MS algorithm, we start by expressing the em-
pirical density

femp(ϕ) =
1

N

N∑
i=1

δ(ϕ,ϕ(i)) (12)

on an arbitrary parametrization, say ϕ ∈ Φ. The empirical
density should be smoothed by using a kernel, or a kernel-like
function, since KL divergences are not symmetric in general.
Let us introduce the following family of kernel-like functions

Πα(ϕ;ϕ0, λ) = exp(−λDα(pϕ‖p0)). (13)

This family is parametrized by α = {−1,+1} which defines
the divergence function as follows

α =

{
−1 : Kullback-Leibler
+1 : swapped Kullback-Leibler (14)

to be compatible with the α-divergence discussed in [3]. We
should emphasize that the kernel-functions in (13) are unnor-
malized densities, expressed w.r.t. the natural volume element
dV =

√
g(ϕ)dϕ, where g(ϕ) = |Gϕ(ϕ)|, [10]. Finally, let

ξα(ϕ0, λ) =
∫
V

Πα(ϕ;ϕ0, λ)dV be the normalizer of (13).
In Bayesian terms, (λ,ϕ0) correspond to the hyperparameters
of the distribution, with λ being the (not necessarily integer)
number of virtual observations and ϕ0 the centering parameter.
The two extreme cases where λ = 0 and λ→ +∞ correspond
to the Jeffreys (i.e noninformative) prior on ϕ and to a point
mass concentrated at ϕ0, respectively. The case where α = +1
corresponds to the familiar conjugate (to the likelihood function
pψ(·;ϕ)) prior, while α = −1 to the entropic prior, studied in
[10].
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3.2. Taking into account the uncertainty in the estimates

Treating {p(i)}Ni=1 as point masses is in line with the original
algorithm, where we begin by smoothing the empirical distri-
bution with a kernel. However, there are cases where {p(i)}Ni=1

are not directly observable, but are rather being estimated based
on a finite amount of observations. In such cases, we work
as follows. Let us first consider the conjugate case α = +1
and let ϕ̂(i) = ϕ(t̄(Xi)) denote the ML estimate of ϕ(i)

given a sample Xi = {x(i,j)}nij=1 expressed in an arbitrary ϕ-
parametrization. Due to the conjugacy to the likelihood, the
density of the form of Π+1(ϕ; ϕ̂(i), λ(i)), with λ(i) = ni is the
posterior of θ, using a flat (i.e. Jeffreys) prior. To incorporate
our prior knowledge in the estimation, we attach an informative
prior to ϕ(i), using a set of n0 virtual observations having ex-
pectation parameters equal to η0. In this case, the ML estimate
will be replaced by ϕ̃(i), defined as follows

ϕ̃(i) = ϕ

(
1

ni + n0
(nit̄(Xi) + n0η0)

)
, (15)

i.e. the weighted barycenter of t̄(Xi) and η0, expressed in the
ϕ-coordinates, or simply p̃(i) in the coordinate-free notation.
Hence, instead of the empirical distribution (i.e. a summation
of delta functions) we begin with a mixture of posterior distri-
butions, each centered at p̃(i). Note that a more general notation
would include different number of virtual observations per pa-
rameter, as in the case of Gaussian - inverse Gamma conjugate
priors attached to (µ, σ2).
However, the mixture of posteriors, despite of not being a mix-

Figure 1: An example from the 3-dimensional multinomial fam-
ily. The objects lie on the 2-simplex, the density is estimated
using the α = +1 kernel, namely the Dirichlet density, while
the overall p.d.f. is depicted in the logarithmic scale using the
heat colormap. The black markers show the set of {p̃(i)}Ni=1

while the white curves are their trajectories until they converge
to their mode.

ture of delta functions (due to the finite sample sizes), still re-
quires further smoothing in order to be regarded as an approx-
imation to the underlying p.d.f. of {p(i)}Ni=1. This is because
we assume that {ni}Ni=1 → +∞ is equivalent to the original
algorithm, assuming objects in <d and the use of euclidean ge-
ometry. Note, therefore, that the proposed method does not as-
sume that the estimates of two or more objects that belong to
the same class converge asymptotically to the same point. On
the contrary, a nonparametric discrepancy is allowed, in order
to capture several other types of intra-class variability, that is
discussed in more details in Sect. 4.2.
To apply this further smoothing, let ñi = ni + n0 and λ0

be the upper bound of the precision, i.e. the inverse squared
bandwidth. By adding the inverse precision λ−1

0 to the inverse
precision of the posterior ñ−1

i , we end-up with λ̃(i) = λ0ñi
λ0+ñi

.
Therefore, the overall smoothed estimate of the underlying den-
sity will take the following expression

f̃α(p) =
1

N

N∑
i=1

ξα(p̃(i), λ̃(i))
−1

Πα

(
p; p̃(i), λ̃(i)

)
. (16)

Note that the ML estimate f̂α(p) is fully recovered by f̃α(p)

when no uncertainty is assumed in estimating {p(i)}Ni=1, i.e.
when ni →∞, i = 1, . . . , N .

4. The proposed mean shift algorithm
Having covered much of the theoretical background and the
proposed method for estimating f̃α(p), we demonstrate here
how to adapt the MS algorithm to be compatible to our prob-
lem.

4.1. Deriving the mean shift iteration

The necessary condition for p to be a mode is to satisfy
∇f̃α(p) = 0, i.e. to have zero gradient. Due to linearity we
obtain

1

N

N∑
i=1

∇θ
[
ξα(p̃(i), λ̃(i))

−1
Πα

(
p; p̃(i), λ̃(i)

)]
= 0. (17)

Therefore, we obtain

1

N

N∑
i=1

ξα(p̃(i), λ̃(i))
−1

Πα

(
p; p̃(i), λ̃(i)

)
(18)

×
[
−λ̃(i)∇θDα(p‖p̃(i))

]
= 0

Let us consider the α = ±1 cases. For α = +1, we obtain

∇θD+1(p‖p̃(i)) = η − η̃(i) (19)

where η and η̃(i) are shorthands to η (p) and η
(
p̃(i)
)

, respec-
tively. Therefore, the MS iteration for the α = +1 case is as
follows

η ← η + mλ0,+1, (20)
where

mλ0,+1(p) =

∑N
i=1 η̃

(i)w
(i)
λ0,+1(p)∑N

i=1 w
(i)
λ0,+1(p)

− η (21)

and

w
(i)
λ0,+1(p) = λ̃(i)ξ+1(p̃(i), λ̃(i))

−1
Π+1

(
p; p̃(i), λ̃(i)

)
. (22)

For the α = −1 case we obtain

∇θD−1(p‖p̃(i)) = Gθ(θ)
[
θ − θ̃(i)

]
. (23)

Therefore, the MS iteration is as follows

θ ← θ + mλ0,−1, (24)

where θ and θ̃(i) are shorthands for θ (p) and θ
(
p̃(i)
)

, respec-
tively. Moreover,

mλ0,−1(p) =

∑N
i=1 θ̃

(i)w
(i)
λ0,−1(p)∑N

i=1 w
(i)
λ0,−1(p)

− θ (25)
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and

w
(i)
λ0,−1(p) = λ̃(i)ξ−1(p̃(i), λ̃(i))

−1
Π−1

(
p; p̃(i), λ̃(i)

)
. (26)

Note that in order to derive (25) we used the fact that Gθ(θ)
is positive-definite and therefore we may multiply both sides of
an equation by its inverse. Note that if λ̃(i) is below a critical
value, ξα(p̃(i), λ̃(i)) → +∞. In such cases the normalizer can
be omitted from the equations, and proceed with unnormalized
kernels, as in [5]. An example of the proposed MS algorithm is
illustrated in Fig. 1, for the 3-dimensional multinomial family,
while an example on the bivariate normal is depicted in 2.

4.2. Discusion

A key issue that may cause misconceptions is the use of a para-
metric interpretation of the objects {p(i)}Ni=1 within a nonpara-
metric algorithm. We should reemphasize though that the term
nonparametric can be misleading, since it only refers to mod-
els that allow the number of parameters grow with the number
of observations in a linear (e.g. kernel density estimates) or
sublinear rate (e.g. Dirichlet process mixture models). On the
contrary, what we propose is the use of a parametric descriptor
for each object - which we further demand to be an exponential
family. As an example, consider the following Normal-Inverse
Wishart hierarchical model

(µk,Σk) ∼ NIW(µ0,Σ0, α0) (27)

(µ(i),Σ(i)) ∼ Pnp(µk,Σk) (28)

{x(j)
i }

ni
j=1 ∼ N (µ(i),Σ(i)) (29)

where Pnp(µk,Σk) a non-parametric distribution with condi-
tions of the first two moments. This model does assume that the
data of the ith object {x(j)

i }
ni
j=1 is sampled from a parametric

model φ(i) = (µ(i),Σ(i)). However, by adding an interme-
diate layer that introduces a nonparametric discrepancy, it al-
lows the class-conditional distribution to vary across objects of
the ith class around (µk,Σk) instead of being fixed. This dis-
crepancy allows us to consider cases where classes may exhibit
smooth, yet arbitrary shapes on the space of parametric distribu-
tions, caused by one or more types of variability (e.g. channel
variability, [11]) and underlines the rationale for the proposed
algorithm and its wide applicability. Several other methods
used either ignore this hierarchical underline structure and ap-
ply heuristics rules to compensate for their simplifications (like
the artificial boosting of the penalty term of complexity criteria
like BIC) or deploy a parametric discrepancy distribution (e.g. a
conjugate prior), even in cases where the data does not support
such an assumption, [12].
A further misconception may be caused by the use of the pro-
posed kernels. We should emphasize that in the same way the
use of a Gaussian kernel in the original MS does not imply any
assumption about the gaussianity of the class-conditional densi-
ties of the observations, the use of e.g. a conjugate prior as a ker-
nel does not imply any assumption about the class-conditional
densities of the objects. They are deployed in order to smooth
the empirical distribution and not to model class-conditional
densities.
In cases where the objects are too complex to be modeled ac-
curately by an exponential family, one may consider mixtures
models, e.g. a Gaussian mixture model. To make mixture mod-
els applicable for the proposed algorithm, one should estimate
their parameters and latent variables Zi = {z(i,j)}nij=1 using
a MAP-adaptation scheme. A prior distribution should first

be estimated using enrollment data, including both the prior of
each of the components and the prior for the weights (typically
Dirichlet), and apply MAP-EM to estimate {p̃i}Ni=1 and the la-
tent variables. Then, one may notice that the complete-data
likelihood of mixture models belongs to an exponential family,
iff the likelihood of the components belongs to an exponential
family as well, [3]. Note that in the mixture case, the use of
MAP-estimates is required not only for its robustness, but also
in order to establish a fixed association between mixture com-
ponents of two or more objects. Finally, we emphasize that the
use of the complete-data likelihood (by treating the estimates of
the latent variables as observable) is one of the building blocks
of recent state-of-the-art speaker recognition, [11].

Figure 2: A two-dimensional example that depicts how the pro-
posed algorithm successfully discovers the true partitioning of
N = 45 Gaussian objects into K = 9 clusters, using the
α = +1 configuration. The objects are plotted via their cor-
responding ellipse, the color corresponds to the cluster label,
while the estimated mode of each cluster is illustrated using
bold-dashed line.

5. Experiments
We examine the strength of our algorithm with respect to the
problem of speaker clustering, using the ESTER benchmark,
[12]. The ESTER consists of 32 Broadcast News shows
extracted from several French Radio channels, and is divided
into the development (14 shows) and the test set (18 shows).
The features are 18-dimensional static MFCC (100Hz frame
rate, augmented by the log-energy, while c0 is discarded). An
HMM with 128-component GMMs for each audio macro class
is used in order to classify the frames into speech, silence,
music and speech over music. A BIC-based speaker change
detector is then applied on the stream. Finally, we evaluate the
system using two different models. One where each speech
segment is described via a single Gaussian distributions with
a full covariance matrix and a second one using i-vectors,
[11]. All user-defined parameters are tuned based on the
development set.

5.1. Diarization using single Gaussian distributions

We compare our algorithm against the baseline ∆BIC-based
Agglomerative Hierarchical Clustering (AHC), described in

327



[13], up to the Viterbi resegmentation stage. To score the meth-
ods, the official Diarization Error Rate (DER, %) metric is used.
The metric is defined as the Hamming distance between the es-
timated and the reference clustering, plus the False Alarm (FA)
and Missed Detection (MD) error rates.
Note that the expectation and the natural parameters for the
Multivariate Gaussian distribution are as follows

η =
(
µ, Σ + µµT

)
, θ =

(
Σ−1µ, −1

2
Σ−1

)
, (30)

where (µ,Σ) denote mean and covariance matrix, respectively.

Figure 3: Estimated number of speakers vs. DER(%) for vary-
ing λ0, on the ESTER development set. Blue curve: AHC with
∆BIC. Green curve: MS algorithm with α = +1. Red curve:
MS algorithm with α = −1. The vertical line indicates the
overall number of speakers in the set. The curves are drawn for
various values of λ0. For the AHC algorithm, λ0 corresponds
to the artificial boosting of the penalty term.

As Fig. 3 illustrates, the proposed algorithm has better perfor-
mance compared to the baseline AHC, especially when consid-
ering the joint DER - ENS metric score. Moreover, the MS with
α = +1 showed increased performance compared to α = −1.
The best results for both sets can be found in Table 1. Note
that by applying Viterbi resegmentation to the best MS config-
uration, the DER attained 13.29% on the test set, compared to
15.37% using the ∆BIC-based AHC. The results of the offi-
cial ESTER evaluation are given in [12] and show that the pro-
posed method is second, only behind the LIMSI GMM-UBM
approach that scored 11.5%. Finally, we should note that the
original MS algorithm, that is MS with only the mean values
as parameters, scored an 18.62% DER. This rather poor score
clearly demonstrates the need to extend it to more general non-
Euclidean manifolds, that encode e.g. second order statistical
information as well.
After tuning on the development set, we use n0 = 130 (that
corresponds to 1.3s duration), and center the prior of the covari-
ance matrix equal to 0.75 of the averaged covariance per file, es-
timated on the development set. We observed that ML estimates
work better when estimating the mean values, and therefore the
results are derived using a flat prior over the means. The op-
timal λ0 was found to be equal to 1.2 and 1.3 for α = +1
and α = −1, respectively. Since both λ0 are below the crit-
ical value that makes Πα(·; ·, ·) normalizable, the normalizers
ξα(·, ·) were excluded from our equations. Note that even in
cases where {ni}Ni=1 � λ0, the method still captures the infor-
mation about sample sizes through the use of MAP-estimates.
Finally, the objects (segments of speech in our case) required
between 3 and 7 MS iteration to attain convergence.

Table 1: Minimum Overall Speaker Diarization Error Rate (%)
for the two ESTER sets, using Gaussians

ESTER-DEV ESTER-TEST
AHC, ∆BIC 15.76 16.28
MS, α = +1 13.12 14.51
MS, α = −1 13.79 14.66

FA Rate 0.3 0.6
MD Rate 0.9 1.2

5.2. Diarization using i-vectors

We trained a gender-independent GMM UBM containing 512
Gaussians, using ESTER phase-II for enrollment data (about
100 hours overall duration). We use a gender independent i-
vector extractor of dimension 400, trained on the same set. Cep-
stral mean subtraction is applied, using sliding windows. The
i-vectrors are preprocessed using Linear Discriminant Analysis
(LDA), and the dimensionality reduces to 200. Finally, Within-
Class Covariance Normalization (WCCN) is applied.
What is interesting with i-vectors is the fact that they lie on the
unit-sphere. Therefore, the corresponding exponential family
is the Von Mises-Fisher distribution. The distribution retains
the structure of the Euclidean distance, and uses a measure that
places non-zero probability mass only to the surface of the unit
sphere, [3]. Therefore, the two connection coincide with each
other, like in the Euclidean case.
The algorithm is very similar to the original MS algorithm. The
only difference is the fact that after each iteration, the new po-
sition is forced to lie on the surface by dividing by the norm.
Moreover, since i-vectors are by themselves MAP estimates,
there is no need to define any explicit center for the prior. How-
ever, the size of the segments is used in order the define the
bandwidths, that converge to λ0 as {ni}Ni=1 grow. In fact, we
use an extra parameter 0 < r < 1 to define λ̃(i) as follows

λ̃(i) =
n(i)rλ0

n(i)r + λ0
, (31)

This can be explained by the fact that mfcc are not i.i.d., but ex-
hibit strong autocorrelation. Thus, n(i)r may be considered as
the effective sample size of the ith speech segment. Moreover,
since λ0 � {ni}Ni=1, r allows us to encode the uncertainty in
the estimates.
The algorithm is compare to a hierarchical clustering one, that
used a fixed threshold to decide whether two segments should
be merged or not. After merging, the new cluster is defined as
the weighted average of the i-vectors in <d, and then projected
onto the unit sphere. The weights are proportional to the sizes
of the segments.
The results are demonstrated in Table 2, and show that the AHC
outperformed MS by a small margin. We are planning to en-
hance the results by using standard non-parametric approaches,
with the variable-bandwidth MS being the most prominent one.

6. Conclusion and future work
This paper proposed an extension of the MS algorithm for expo-
nential families. We showed how the core idea of the algorithm
can be applied to the particular manifolds and how the choice
of the KL divergence determines the affine coordinates for each
case. An extension to deal with objects that are not directly ob-
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Table 2: Minimum Overall Speaker Diarization Error Rate (%)
for the two ESTER sets, using i-vectors

ESTER-DEV ESTER-TEST
AHC 10.12 12.18
MS 11.42 13.71

FA Rate 0.3 0.6
MD Rate 0.9 1.2

servable is also given.
Our future work includes a variety of directions, such as the use
of other kernel-like functions and divergences (e.g. Hellinger
distance, α = 0), the adaptation of methods that automatically
estimate the tuning parameter λ0, as well as further experiments
on several other machine learning tasks.
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