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Abstract 

Voice biometrics for user authentication is a task in which the 

object is to perform convenient, robust and secure 

authentication of speakers. Recently we have investigated the 

use of state-of-the-art text-independent and text-dependent 

speaker verification technology for user authentication and 

obtained satisfactory results within a framework of a proof of 

technology. However, the use we have made of a quite large 

development set limits the practical potential of our system. In 

this work we investigate the ability to build an accurate user 

authentication system with the limitation of having a small 

development set. 

1. Introduction 

With the rapid growth of mobile internet and smart phones, 

security shortcomings of mobile software and mobile data 

communication have shifted the focus to strong authentication. 

Recent advances in voice biometrics offer great potential for 

strong authentication in mobile environments using voice. 

This is of particular interest in the financial and banking 

industry, where financial institutes are looking for ways to 

offer mobile customers flexible and easy authentication while 

maintaining security and significantly reducing fraudulent 

usage. 

Recently, a work [1] has been done at IBM within the 

framework of a proof of technology (POT) which was 

performed on data collected by the Wells Fargo (WF) bank. 

The focus of the POT was mainly the evaluation of three text-

dependent authentication scenarios. For the best 

authentication scenario an Equal Error Rate (EER) of 0.6 was 

obtained (using a global 10-digit string) for the channel 

matched condition.  

However, for many other potential customer engagements 

the WF POT setup is unrealistic. The development dataset 

used in the WF POT consisted of 200 recorded speakers with 

4 sessions per speaker. A more realistic development set was 

therefore specified which consists of publicly available text 

independent (NIST) development data and a reduced text 

dependent development set consisting of 100 speakers from 

the WF-POT corpus with only a single session per speaker. 

In this paper we present our efforts for building a state-of-

the-art text dependent system using the reduced development 

set specified above. 

The remainder of this paper is organized as follows: 

Section 2 describes the datasets. Section 3 describes our 

speaker verification systems. Section 4 describes our 

approach for building our speaker verification systems using a 

reduced development set. Section 5 presents the results for the 

individual and fused systems. Finally, Section 6 concludes. 

2. Datasets 

2.1. Authentication conditions 

In the context of text dependent user authentication we defined 

three different authentication conditions.  In the first 

authentication condition named global, a common text is used 

for both enrollment and verification. In the second condition 

named speaker a user (speaker) dependent password is used 

for both enrollment and verification. The third condition 

named prompted is a condition in which during the 

verification stage the user is instructed to speak a prompted 

text. Enrollment for the prompted condition uses speech 

corresponding to text different than the prompted verification 

text.  

The global condition has the advantage of potentially 

having development data with the same common text. The 

speaker condition has the advantage of high rejection rates for 

imposters who do not know the password. However, in our 

experiments we assume that the imposters do know the 

passwords. The prompted condition has the advantage of 

robustness to recorded speech attacks compared to the global 

and speaker conditions.  

For a proof of technology the WF bank collected data 

from 750 of its employees. For the global condition the WF 

dataset consists of several common texts. In this work we 

report results on a single common 10 digit string. For the 

speaker condition, the dataset consists of four speaker 

dependent passwords, each one used by a quarter of the 

speakers. However, in order to focus on the scenario of a 

knowledgeable impostor, we report results for four globally 

spoken texts which are 10 digit strings. The difference 

between our global condition experiments and our speaker 

condition experiments (besides the different choice of digit 

strings) is that for the speaker condition we assume that 

development data which contains the chosen digit strings is 

unavailable. For the prompted condition the WF dataset 

contains an 8-digit string for verification. 

2.2. The WF corpus 

The WF corpus consists of 750 speakers which are then 

partitioned into a development dataset (200 speakers) and an 

evaluation dataset (550 speakers). Each speaker has 2 sessions 

using a landline phone and 2 sessions using a cellular phone. 

The data collection was accomplished over a period of 4 

weeks. Table 1 describes the datasets used for the different 

conditions. Each session consists of 3 repetitions for each 

global password and 3 repetitions for each speaker password. 

We use all 3 repetitions for global and speaker enrollment, 

and only a single repetition for verification for all 
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authentication scenarios. In all of our experiments we use only 

same gender trials though the identity of the gender is not 

assumed to be known by the system. We denote the WF-POT 

development set by WFF. 

Table 1. Lists of the spoken items used for 

development, enrollment and verification by the 

different authentication conditions in the WF 

evaluation. n1-n9 denote 9 distinct 10-digit phone 

numbers. 

Condition Development  

  spoken 

items 

Enroll 

spoken 

items 

Eval  

 spoken 

items 

Global 0123456789 

Speaker 

1st subset 
n6 

Speaker 

2nd subset 
n7 

Speaker 

3rd subset 
n8 

Speaker 

4th subset 

0123456789 

n1-n5 

n9 

Prompted 
n1-n6 

0123456789 

n1, n4 
25703580 

 

2.3. Standard telephony development set 

We use the following standard conversational telephony 

datasets: Switchboard-II, NIST 2004, 2005 and 2006 speaker 

recognition evaluations (SREs). We denote this development 

set by NIST. 

2.4. Reduced development dataset 

A subset of the WF-POT development set was created by 

selecting 100 speakers randomly. For 50 of these speakers a 

single landline session was selected for each speaker. For the 

other 50 speakers, a single cellular-phone session was 

selected. In total, the reduced development set consists of 100 

sessions.  We denote the reduced development set by WFR.  

3. Speaker verification systems 

In this section we describe the four speaker verification 

systems we use in conjunction, and our fused system. 

3.1. JFA-based system 

Our Joint Factor Analysis (JFA)-based system is inspired by 

the theory described thoroughly in [2]. A detailed description 

of our implementation can be found in [3]. Differently from 

the standard implementation, we use the following two 

variants to better cope with short and asymmetric sessions 

(enrollment longer than test).  

First we use a robust scoring function (Equation 1) which 

gives an average relative error reduction of 8% for our text 

dependent scenarios. 
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In Equation 1 sE denotes the centered and compensated 

supervector for the enrollment session 

 

EEE DzVys +=  and 

sT denotes the centered compensated supervector for the test 

session mUxFNs TTTT −−−−−−−−====
−−−−1

. V, D and U stand for the 

speaker, common and channel JFA hyper-parametric matrices, 

yE and zE are point estimates for the speaker and common 

factors for the enrollment session, xT is a point estimate for 

the channel factors for the test session, FT is a vector 

consisting of the first order statistics for the test session, and 

NE and NT are the zero order statistics for the enrollment and 

test sessions correspondingly, arranged in matrices as 

explained in [3]. Finally, m stands for the UBM (Universal 

Background Model) supervector, and ∑ is a block matrix with 

covariance matrices from the UBM on the diagonal. 

Our second deviation from standard JFA is the use of an 

asymmetric combination of forward and reverse scores using 

a simple weighting scheme. The weighed fusion method 

enables us to gain from reverse scoring even when test 

sessions are shorter than the enrollment session (the WF POT 

typical scenario). 

Our JFA-based system was built using 12,711 sessions 

from Switchboard-II, NIST 2004 SRE and NIST 2006 SRE. 

The reason we did not use the WF POT development data is 

that when doing that, we observed only a small improvement 

compared to using the standard conversational telephony data. 

The only use we made of the WF POT development data is 

for ZT-score normalization. 

3.2. I-vector-based system 

Our i-vector-based system [4] is inspired by the work 

described in [5]. We use standard i-vector extraction with 

length normalization followed by LDA (Linear Discriminant 

Analysis) and WCCN (Within Class Covariance 

Normalization). We use cosine-based similarity scoring and 

normalize using ZT-norm which we found to be slightly 

superior to s-norm in our setup. The development data used 

for system building is identical to the data we use for JFA 

building. 

3.3. GMM-NAP-based system 

Our GMM-NAP system inspired by [6] is described in detail 

in [1]. Our GMM-NAP system deviates from the standard by 

the following modifications.  

3.3.1. Two-wire NAP 

In [7, 8] we discovered that removing dominant components 

of the inter-speaker variability subspace in addition to 

removing the intra-speaker inter-session variability subspace 

improves speaker recognition accuracy not only for 2-wire 

data (for which this method was originally designed) but also 

for regular 4-wire data. This variant named 2-wire-NAP is 

therefore part of our baseline GMM-NAP system and led to a 

relative reduction of 6% in EER on the WF POT. 

3.3.2. Text dependent UBM & NAP projection 

Contrary to the JFA and i-vector frameworks, NAP requires 

smaller quantities of development data to properly estimate the 

hyper-parameters (UBM and NAP projection). In [1] it was 

found that estimating text-dependent UBM and NAP from the 
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WF-POT development set led to a relative reduction of 37% in 

EER. 

3.3.3. Geometric mean comparison kernel  

Contrary to [1], we now use the kernel introduced in [9] for 

scoring a pair of sessions: 

(((( )))) (((( )))) (((( )))) TnTnE

t

EGM mIImTEC ⊗⊗⊗⊗ΣΣΣΣ⊗⊗⊗⊗====
−−−− 21121 //, λλλλλλλλ           (2) 

where E and T stand for the enrollment and test sessions,  mE 

and mT are the corresponding concatenated GMM means, λE 

and λT are the corresponding concatenated GMM weights, ∑ 

is a block matrix with covariance matrices from the UBM on 

the diagonal, n is the feature vector dimension, and ⊗⊗⊗⊗  is the 

Kronecker  product. 

3.4. HMM-NAP-based system  

The HMM-NAP-based system is an extension of the GMM-

NAP system in the sense that instead of using a UBM to 

parameterize audio sessions into GMM-supervectors, a 

speaker-independent (SI) Hidden Markov Model (HMM) is 

used to parameterize audio sessions into HMM-supervectors. 

The other components of the GMM-NAP system (feature 

extraction, 2-wire-NAP estimation and compensation, dot-

product scoring and ZT-normalization) are used identically in 

the HMM-NAP framework. 

We use our HMM-NAP system for the global 

authentication condition (shared password) only.  For a given 

shared password a SI-HMM is trained using all repetitions of 

the shared password in the development data. The SI-HMM is 

then used to parameterize all the repetitions of the shared 

password in the development, train and test datasets. We use 

only the Gaussian means of the different HMM states (with a 

similar normalization as done for the GMM-NAP system) for 

supervector creation. 

3.5. Fused system  

We combine the scores of the JFA, i-vector, GMM-NAP and 

HMM-NAP (for the global condition) into a single fused 

system. The scores are combined using a weighted average 

which assigns a double weight for systems which are 

significantly more accurate. 

4. Speaker verification using a reduced 

development dataset  

Our JFA and i-vector based systems use the WF-POT 

development data for score normalization only. The effect of 

the reduction in text dependent development data is therefore 

limited to a modest degradation in accuracy due to less 

accurate score normalization.  

Our NAP-based systems are affected significantly by the 

reduction in text dependent development data. Not only that 

the amount of data used to train the UBM (or SI-HMM), 

estimate the NAP projection and estimate the ZT-norm 

statistics is reduced, but more severely the ability to capture 

intersession variability from the development data is 

significantly reduced because intersession variability can no 

longer be isolated from other variabilities such a speaker 

variability.  

In the following subsections we report our efforts for 

building our NAP-based system with the reduced text 

dependent development data. 

4.1. Building the GMM-NAP system with the reduced 

development dataset WFR 

4.1.1. UBM training 

We investigate two options. The first one is training the UBM 

using NIST which is large enough but does not match the 

evaluation text. The second option is training the UBM using 

WFR.  

4.1.2. NAP estimation 

WFR is inappropriate for estimation a standard NAP 

projection because it does not contain multi-session speakers. 

Our first option is to estimate the NAP projection from NIST.  

The second option is to estimate the NAP projection from 

WFR by using the common speaker subspace (CSS) 

compensation method introduced in [7]. According to this 

method, a CSS is estimated from a large set of sessions using 

kernel-PCA. The CSS is removed from the sessions thus 

producing sessions located in the speaker unique subspace 

(SUS). The SUS is supposed to consist of information that is 

not common to many speaker (otherwise it would be captured 

by the CSS) and therefore should be appropriate for speaker 

discriminating. According to [7] CSS removal was almost as 

good as using standard NAP compensation. Using the GMM 

supervector framework, the CSS removal method is 

equivalent to NAP compensation with the NAP projection 

estimated by applying PCA analysis to the pooled 

supervectors from the entire development set (without use of 

speaker label). 

A third option is to use both the NAP projection estimated 

from NIST and CSS-removal estimated from WFR to 

compensate both subspaces. 

4.2. Building the HMM-NAP system with the reduced 

development dataset WFR 

4.2.1. SI-HMM training 

The SI-HMM is text dependent. Therefore, we only train the 

SI-HMM using WFR.  

4.2.2. NAP estimation 

Contrary to the GMM-NAP framework, the NAP projection is 

text-dependent. Therefore, the only option is to estimate it 

from WFR using the CSS compensation method. 

4.2.3. fNAP  

In order to make use of the text independent development set 

(NIST), the fNAP [10] method is used for channel 

compensation in the feature domain. This can be either done 

exclusively or in conjunction with NAP compensation 

(estimated from WFR). 

5. Results  

5.1. JFA & i-vector based results 
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Tables 2 and 3 present a comparison of the JFA and i-vector 

based systems using either the full or the reduced 

development sets.  The results for the channel matched 

condition are reported in Table 2, and the results for the 

channel mismatched condition are reported in Table 3. The 

relative EER increase due to the reduction of the development 

set used to estimate ZT statistics (from 800 sessions to 100 

sessions) is 20% in average for the matched condition and 

13% for the mismatched condition. 

Table 2. A comparison of the JFA and i-vector 

systems using the full (in bold) and reduced 

development sets. Target trials are channel matched. 

Results are in EER. 

System Global Speaker Prompted 

JFA WFF 1.25 1.76 5.13 

JFA WFR 1.55 2.13 6.33 

i-vector WFF 1.69 2.19 5.44 

i-vector WFR 2.03 2.81 5.89 

 

Table 3. A comparison of the JFA and i-vector 

systems using the full (in bold) and reduced 

development sets. Target trials are channel 

mismatched. Results are in EER. 

System Global Speaker Prompted 

JFA WFF 3.57 4.48 10.99 

JFA WFR 4.06 5.17 11.72 

i-vector WFF 4.71 5.78 11.06 

i-vector WFR 5.41 6.82 11.85 

 

5.2. GMM-NAP-based results 

Tables 4 and 5 present a comparison of the different GMM-

NAP system builds described in Section 4.  The results for the 

channel matched condition are reported in Table 4, and the 

results for the channel mismatched condition are reported in 

Table 5.  

Table 6 presents a comparison of the mean relative EER 

degradation for the different system builds. In general, 

training both the UBM and the NAP projection on the NIST 

data was found to be the worst policy and resulted in an 

average relative increase of 37% in EER, compared to using 

the whole WF development dataset. 

Training the UBM on the WF reduced development set 

and estimating the NAP projection from the NIST 

development set was found to be better (especially for the 

mismatched condition), and so was training both the UBM 

and the NAP projection on the WF reduced dataset (using 

CSS removal) (especially for the matched condition). The 

combined method of training a UBM on the WF reduced 

dataset and applying both a NAP projection estimated on 

NIST data and CSS removal estimated from the WF reduced 

dataset was found to be best. 

Using the combined method, the following results were 

obtained. For the global condition the relative EER increase 

due to the reduction of the development set is around 40% for 

both channel matched and mismatched conditions. For the 

speaker and prompted conditions the relative EER increase 

due to the reduction of the development set is around 5% for 

the channel matched condition, and around 20% for the 

channel mismatched condition.  The reason we get a larger 

degradation for the global condition is that the global 

condition benefits mostly from text matching development 

data. 

Table 4. EERs for the proposed GMM-NAP methods 

using the full (in bold) and reduced development sets. 

Target trials are channel matched. 

GMM-NAP system 

UBM NAP ZT 

Global Speaker Prompted 

WFF 0.83 1.54 4.39 

NIST 1.83 3.11 5.95 

NIST 1.28 1.88 4.65 

WFR 1.24 1.78 4.44 
WFR 

  WFR+ 

NIST 

WFR 

1.17 1.65 4.55 

 

Table 5. EERs for the proposed GMM-NAP methods 

using the full (in bold) and reduced development sets. 

Target trials are channel mismatched. 

GMM-NAP system 

UBM NAP ZT 

Global Speaker Prompted 

WFF 2.33 4.15 9.22 

NIST 4.39 7.49 12.22 

NIST 3.66 5.40 11.47 

WFR 4.33 5.74 12.94 
WFR 

  WFR+ 

NIST 

WFR 

3.40 5.04 11.32 

 

Table 6. A list of the mean degradation for the 

proposed GMM-NAP methods compared to using the 

full (in bold) development set.  

GMM-NAP system Mean EER rel. increase (in %) 

UBM NAP ZT Matched Mismatched 

WFF  - 

NIST 38 35 

NIST 13 24 

WFR 9 32 
WFR 

  WFR+ 

NIST 

WFR 

8 21 

 

5.3. HMM-NAP-based results 

Table 7 presents a comparison of the different HMM-NAP 

system builds described in Section 4. It can be seen that 

estimating the NAP projection on the WF reduced dataset 

(using CSS removal) outperformed using fNAP estimated on 

the NIST development data. The combination of both was 

found to be best and results in a relative increase of 33% and 

66% in EER for the channel matched and channel 

mismatched conditions respectively. 

In order to better understand the sources for degradation, 

we ran some more experiments trying to isolate the 

degradation due to the use of a reduced development set for 

the SI-HMM training, NAP estimation and ZT-score 
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normalization. The results are reported in Table 8. We can see 

that most of the degradation is due to the inappropriate 

estimation of the NAP projection.  

 

Table 7. EERs for the proposed HMM-NAP-based 

methods for the global condition using the full (in 

bold) and reduced development sets.  

HMM-NAP system  

SI-HMM NAP ZT 

Matched 

channel 

Mismatched 

channel 

WFF 0.84 1.98 

WFR 1.17 3.46 

fNAP 1.35 3.74 WFR 
WFR+ 

fNAP 

WFR 

1.12 3.28 

 

Table 8. An analysis of the sources of degradation for 

our proposed HMM-NAP-based method for the global 

condition using the reduced development set. Results 

are in EER. 

HMM-NAP system  

SI-HMM NAP ZT 

Matched 

channel 

Mismatched 

channel 

  0.84 1.98 
WFF 

WFR 0.90  2.32  

WFF 1.09 3.18 WFR WFR+ 

fNAP WFR 1.12 3.28 

 

5.4. Fused system results 

Tables 9 and 10 present a comparison of the fused system 

using the full and reduced development set.  The average 

relative EER increase due to the use of a reduced 

development set is 20%. 

Table 9. A comparison of the fused system using the 

full and reduced development sets. Target trials are 

channel matched. Results are in EER. 

Condition Fused 

full  

dev. set 

Fused 

reduced 

dev. Set 

Relative 

degradation 

(in %) 

Global  0.56 0.66 18 

Speaker 0.85 0.97 14 

Prompted  2.48  3.05  23  

 

Table 10. A comparison of the fused system using the 

full and reduced development sets. Target trials are 

channel mismatched. Results are in EER. 

Condition Fused 

full  

dev. set 

Fused 

reduced 

dev. set 

Relative 

degradation 

(in %) 

Global  1.56 1.97 26 

Speaker 2.87 3.24 13 

Prompted  6.41 7.87 23 

6. Conclusions 

In this work we have explored the possibility of building our 

text dependent speaker verification systems on a small text 

dependent development set consisting of only 100 sessions 

(from 100 distinct speakers). We have managed to obtain a 

relatively small degradation in accuracy (20% relative increase 

in EER) compared to when using the full development set (a 

total of 800 sessions from 200 speakers). 

Our JFA and i-vector based systems do not make a strong 

use of text dependent development data anyway (except for 

score normalization). We intend to change that in the future.  

Our NAP-based systems are totally dependent on text-

dependent development data. Regarding the UBM, SI-HMM 

and score normalization, the reduced developments set was 

found to be sufficient (though not ideal) because they lack of 

a need for a multiplicity of sessions per speaker in the 

development set.  

NAP estimation is inherently dependent on the 

availability of a multiplicity of sessions per speaker in the 

development set. We therefore replace the conventional NAP 

estimation method with a combination of the following two 

compensation methods. First, NAP estimated from a standard 

text independent dataset (NIST) is applied directly by the 

GMM-NAP system or indirectly (using fNAP [10]) by the 

HMM-NAP system. Second, common speaker subspace 

removal (CSS) [7] estimated from the small text dependent 

development set is applied by both the GMM-NAP and 

HMM-NAP system. 

Efficient use of available text-dependent development 

data proves to be important for obtaining high accuracy in 

text dependent speaker verification. We plan to improve our 

use of such data, especially for the JFA and i-vector based 

systems.   
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