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Abstract

Speech data for NIST speaker recognition evaluations has
traditionally been distributed in compressed, telephone
quality form, even for microphone data that was origi-
nally recorded at higher quality. We evaluate the effect
that improved audio quality has for speaker verification
performance, using a recently released full-bandwidth
version of microphone data from the SRE2010 evalua-
tion. Remarkably, we find substantially improved results
even though the underlying speaker recognition models
remain based on a telephone-band feature front end. For
a cepstral GMM system we show improvements purely
from the elimination of lossy (µlaw) coding and more ef-
fective noise reduction filtering at the full bandwidth. We
also find that higher-level speaker recognition systems
can benefit from better ASR quality enabled by the im-
proved audio quality. Specifically, we show that a speech
recognizer trained on full-bandwidth, distant-microphone
meeting speech data yields reduced speaker verification
error for speaker models based on MLLR features and
word-N-gram features.

1. Introduction

Much of the progress in speaker recognition has been
driven by annual or biannual open technology evaluations
administered by the U.S. National Institute of Standards
and Technology (NIST) [1, 2]. Historically, the data for
these Speaker Recognition Evaluations (SREs) has been
collected as conversations over the telephone. Starting
in 2005, a relatively small number of trials involved tele-
phone calls where one side was also recorded over mi-
crophones [3], and the two most recent evaluations (2008
and 2010) made use of substantial amounts of data from
a new genre: one-on-one interviews in an office setting
and recorded by a variety of microphones and at different
distances from the speaker [4]. However, even though
these microphone recordings were originally digitized at
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higher sampling rates, they continued to be delivered to
system developers in telephone quality: downsampled to
8 kHz and encoded in lossy 8-bitµlaw. Presumably, this
was done to lessen the burden on developers to deal with
bandwidth and coding mismatch, since much of the back-
ground training data continued to be drawn from tele-
phone sources. (A secondary consideration, at least when
disk space was at a higher premium, might have been that
the 8-bit coding cut storage requirements for the data in
half.)

This historical perspective, and the greater empha-
sis in recent evaluations on nontelephone data, raises the
question: how much benefit could be derived from having
SRE data available at its full bandwidth, without lossy en-
coding? Inspection of SRE data showed thatµlaw coding
is especially problematic for low-energy speech, such as
might be found with distant microphone recordings, since
µlaw effectively only uses a few bits to encode small am-
plitudes.

After the 2008 evaluation, for unrelated reasons, we
obtained a wide-band version of the interview subset of
the evaluation data, and ran preliminary experiments (re-
ported at the SRE2010 workshop in Brno) showing that
our systems could benefit substantially from use of the
higher audio quality, and argued for a change in SRE
practice so that, in the future, participants would re-
ceive microphone data in 16-bit PCM encoding, sampled
at least at 16 kHz. Recently, NIST has re-released the
SRE2010 microphone data in this form, allowing us to
validate the earlier results using the most recent evalua-
tion data and the full SRE2010 extended trial set.

In this paper, we summarize the results on SRE2008
data, and report the effect of audio encoding and at-
tendant changes in automatic speech recognition (ASR)
quality on a subset of our evaluation systems on the full-
band SRE2010 data. The results again show substantial
benefits for the performance of speaker verification sys-
tems, both standard cepstral systems and those systems
based on higher-level information derived from ASR.
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Table 1: SRE2008-based development set statistics

Train-test condition Target trials Impostor trials
short-short.int-int.mic-mic 33,743 1,108,882
short-long.int-int.mic-mic 10,234 336,437
long-short.int-int.mic-mic 32,248 1,054,592
long-long.int-int.mic-mic 9,774 319,956

2. Method

2.1. Data and error metrics

We used two datasets for our experiments. The first, older
one is a development set assembled from SRE2008 data.
A set of 82 interview speakers (48 females and 34 males)
was held out from the SRE2008 trial definition to be used
for training the systems. These were all speakers from
the interview conditions, some from the original set, oth-
ers from the “follow-on” set distributed after SRE2008.
A development test set was then created using the re-
maining SRE2008 data. For each original condition from
SRE2008 an extended set was created by pairing every
available model against every available test sample (ex-
cept when the model and the test sample used data from
the same original recording session). No additional mod-
els were created and only samples originally used for test-
ing were used for testing in the extended set. The follow-
on test data was added to all the interview conditions.

We had access to full-band versions only for the
SRE2008 interview recordings, not the phonecall-over-
microphone and (by definition) the phonecall-over-
telephone recordings. Consequently, for the SRE2008
dataset, we report only on the interview-interview test
condition, aggregating over two sample lengths: “short”
(3 minutes) and “long” (8 minutes). Long interview
waveforms from SRE2008 were truncated to 8 minutes
to match the long interview samples in SRE2010. The
resulting number of trials is shown in Table 1. This is
the dataset we reported on at the SRE2010 workshop in
Brno.

The second dataset was the re-released interview and
phonecall-over-microphonedata from SRE2010, evaluat-
ing on the “extended” trial set. The evaluation conditions
were defined based on phonecall versus interview genre,
vocal effort, and according to whether the same micro-
phone was used in training and test. Table 2 summarizes
the evaluation set and conditions.

We report results for three metrics: the traditional
equal error rate (EER), which constrains false alarm and
miss error rates to be the same, the old (pre-2010) de-
tection cost function (oDCF), which weighs false alarm
errors as ten times as costly as miss errors, and the new
(2010) detection cost function (nDCF), which weighs
false alarm errors as 1000 times more costly than miss er-

rors. Old and new DCF values are scaled to make chance
error rate equal to 1.

2.2. Waveform coding versions

The baseline waveform coding condition was that used
by NIST. Interview and microphone data was downsam-
pled (by NIST) to 8 kHz and 8-bitµlaw encoded, a lossy
compressive coding commonly employed for telephone
data. We call this the “8k-ulaw” version of the data.

For SRE2008 data we prepared two additional con-
ditions. The 16 kHz Mixer-5 waveforms were cut to the
same segments as used in SRE2008, and converted from
FLAC to 16-bit PCM encoding. This yielded the “16k”
version of the data. In addition, we downsampled this
version to 8 kHz using thesox “polyphase” algorithm.
Unlike NIST, we did not apply compressive coding and
left the data in 16-bit PCM format. We call this the “8k”
version of the data.

For SRE2010 date we compared only the “8k-ulaw”
and the “16k” version of the data, both obtained directly
from NIST.

2.3. Waveform preprocessing

All interview and microphone waveforms were noise-
filtered with the Qualcomm-ICSI-OGI Aurora system im-
plementation of a Wiener filter [5]. The goal of this step
is to reduce ambient stationary noise picked up by the dis-
tant microphones. This implementation finds nonspeech
regions using a neural-net classifier to estimate the noise
spectrum. Appropriately trained versions of the filter are
applicable to 8 kHz and 16 kHz waveforms. Following
Wiener filtering, nonspeech regions are eliminated using
a two-class HMM decoder, trained on telephone speech.
We also used ASR output made available by NIST to
eliminate regions with interviewer speech, to minimize
crosstalk into the interviewee [6]. To avoid confounding
our analyses with the effect of different waveform seg-
mentations, we used the exact same segmentation points
(namely, those used in the 8k-ulaw-based system for
SRE2010) in all waveform versions. It is likely that the
speech/nonspeech detection step would have benefited
from the expanded bandwidth, but we did not want to
introduce this additional variable into our comparisons.

2.4. Baseline verification system

As a baseline speaker verification system we chose the
cepstral GMM-JFA subsystem in SRI’s SRE2010 eval-
uation submission [6]. The cepstral GMM (Gaussian
mixture model) system uses a 300-3300 Hz bandwidth
front end consisting of 24 Mel filters to compute 20
cepstral coefficients with cepstral mean subtraction, and
their delta and double delta coefficients, producing a 60-
dimensional feature vector. The feature vectors are mod-
eled by a 1024-component gender-independent GMM.
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Table 2: SRE2010 evaluation set statistics, numbered
according to NIST conditions. int = interview, mic =
phonecall-over-microphone, nve = normal vocal effort,
lve = low voc. eff., hve = high voc. eff. Conditions 1
and 2 were defined according to whether the microphone
types in training and test where the same or different.

Train-test condition Target trials Impostor trials
01.int-int.same-mic 4,304 795,995
02.int-int.diff-mic 15,084 2,789,534
04.int-nve.mic-mic 3,637 756,775
07.nve-hve.mic-mic 359 82,551
09.nve-lve.mic-mic 290 70,500

The background GMM is trained using data from the
2004 and 2005 SRE and 2008 held-out interview data.
Joint factor analysis (JFA) [7] is performed on mean
supervector with speaker, channel and diagonal factors.
Speaker factors are trained with 2004 and 2005 SRE
data with additional data from the Switchboard-II cor-
pus. Channel factors are obtained separately for tele-
phone (phonecall and microphone) data and interview
data. The two factors are combined to form single-
channel factor matrix. The diagonal term is trained on
the same data as the speaker factors. Scores are gen-
erated using asymmetrical scoring of subspace-adapted
mean supervectors. The resulting scores are normalized
using gender-dependent ZTnorm.

It is important to note that the Mel-cepstrum front end
of the GMM-JFA system was configured for telephone
data for all our experiments. This means that after all
waveform processing, the front end effectively downsam-
ples all 16 kHz data to 8 kHz. Otherwise, we would have
had to deal with bandwidth mismatch in speaker mod-
eling, a challenging research topic that was outside the
scope of the present study. As a further expedient, we did
not retrain the JFA (eigenspeakers and eigenchannels) in
the model, simply retaining them from the 8k-ulaw ver-
sion of the system.

2.5. Speech recognition systems

Beyond the cepstral baseline system, we also wanted
to investigate waveform coding effects on higher-level
speaker verification systems, specifically those based on
ASR. We used two versions of SRI’s conversational
speech recognition system. The baseline version was
the ASR system used in SRE2008 and SRE2010 and de-
scribed in [6]. This system uses acoustic models trained
exclusively on telephone speech, and runs in two recog-
nition passes, for purposes of unsupervised adaptation.
Microphone and telephone data use the same speech rec-
ognizer, although microphone data is first Wiener-filtered
as described above. This system yields a word error rate
(WER) of 28.8% on a hand-transcribed sample of SRE06

microphone data.
On 16k waveforms, a second ASR system was also

tested. It is similar to the baseline system in structure
and modeling algorithms employed, but uses a combi-
nation of 8 kHz and 16 kHz acoustic models, trained on
both near-field and distant-microphone meeting record-
ings, with telephone and broadcast news data used as
background training, respectively. The system represents
the first two decoding passes of the SRI-ICSI meeting
recognizer fielded in the NIST 2007 Rich Transcription
(RT) evaluation [8].

We do not have transcribed SRE wide-band data on
which to test the WER of the wide-band recognition sys-
tem. When measured on meeting data (the single distant-
microphone RT-07 conference meeting set), the two-pass
telephone recognizer achieves 50.2% WER, the first pass
of the meeting recognizer 42.3%, and the second pass of
the meeting system 36.1%. On the SRE2010 interview
data, we found that the meeting system recognized about
21% more word tokens than the telephone ASR system.
This is a good indication of better ASR quality since
our recognizer tends to delete, rather than misrecognize,
words in mismatched conditions.

2.6. ASR-based verification systems

The second speaker modeling approach tested was a
system based on maximum likelihood linear regression
(MLLR) adaptation transforms modeled by support vec-
tor machines (SVMs) [9]. This system used a percep-
tual linear prediction (PLP) front end, with SVM fea-
tures consisting of MLLR transforms specific to 8 phone
classes and two gender-specific reference models (16
transforms in total), and nuisance attribute projection [10]
for session variability compensation. This is the same
MLLR subsystem as used in our evaluation system [6],
but with ZT score normalization left out, to expedite ex-
perimentation and because it contributed little to perfor-
mance.

As for the baseline system, we avoid issues of band-
width mismatch by always employing 8 kHz acoustic
models for MLLR feature estimation. However, the
MLLR estimation can benefit from more accurate ASR
hypotheses resulting from a wide-band ASR system. In
fact, we tested three sets of ASR hypotheses: first-pass
output from telephone ASR, first-pass output from meet-
ing ASR, and second-pass output from meeting ASR. We
did not find benefits from using second-pass telephone
ASR for MLLR estimation. Note that the second pass
of the meeting ASR system uses a 16 kHz front end,
and gives about 15% relative WER reduction on meet-
ing speech (RT 2007 single distant microphone condi-
tion) compared to the first pass, which is based on 8 kHz
acoustic models.

A third verification system uses word N-gram fre-
quency features, modeling the speakers’ idiolects as pro-
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posed by [11]. It employs rank-normalized relative N-
gram frequencies as features for SVM speaker models
(for details see [6]). These speaker models are entirely
based on ASR hypotheses, so we evaluate the system
based on the different ASR systems described above. We
always use the final (second pass) word hypotheses of the
respective recognition system.

3. Experiments and Results

3.1. Cepstral system performance

We first evaluate the cepstral system on various wave-
form versions of the SRE2008 data. Table 3 shows the
results and relative improvements over the baseline wave-
form condition (8k-ulaw).

The results show an overall error reduction on the or-
der of 12% to 14% relative, depending on the metric used.
The bulk of the gain comes from the dropping ofµlaw
coding, while a smaller share (2% relative) is the result
of the higher sampling rate. It is worth remembering that
the cepstral front end always operates at the lower, 8 kHz
sampling rate. However, the noise filtering in preprocess-
ing can take advantage of the expanded bandwidth, pre-
sumably by doing a better job at noise spectrum estima-
tion.

Next, we compare 8k-ulaw and 16k waveforms only
on the SRE2010 extended trial set, for all conditions in-
volving microphones in training and test. Results are
given in Table 5. The error reductions are smaller than
on the development set, but are consistently positive. On
conditions involving normal vocal effort, nDCF is re-
duced by about 7% and oDCF by about 7% to 10%. The
conditions involving high and low vocal effort show some
very large EER reductions, but the number of trials is very
small. Still, it is suggestive that low-vocal-effort EER
is reduced by 50%, given thatµlaw coding is especially
lossy at low amplitudes.

3.2. ASR-based system performance

Table 6 shows results for the various SRE2010 conditions
for the MLLR-SVM system on SRE2010 data. For 16k
waveforms, the meeting ASR system is employed, us-
ing either first- or second-pass hypotheses. Error reduc-
tions are generally around 15% relative for nDCF, 23%
for oDCF, and around 20% for EER (with some outliers
in conditions with low trial counts). Unlike that previ-
ously found for the telephone ASR system, the MLLR
feature performance improves consistently when output
from the second recognition pass is used. As for the cep-
stral system, we see an especially large EER reduction
for the low-vocal effort condition.

Table 4 shows results for the word N-gram SVM sys-
tem, comparing the 8k-ulaw baseline to the meeting-ASR
based system run on 16k waveforms (both systems use
second-pass ASR hypotheses). Note that only oDCF and

EER results are given, as the word N-gram system gives
nDCF values close to chance (1.0) for all conditions. The
improvements from 16k waveform processing are much
smaller than seen earlier, typically just a few percent rel-
ative. Still, the fact that the improvements are consis-
tently positive shows that high quality audio and better
ASR helps this system, too.

4. Conclusions and Further Work

We have shown that speaker verification on NIST mi-
crophone data (phonecall or the new interview genre)
can benefit greatly from use of wide-band, lossless audio
encoding, contrary to historical practice for NIST SRE
data. This is true even without changing the bandwidth
of cepstral feature extraction, and can be credited sim-
ply to the elimination of lossy coding and better noise
filtering at the 16 kHz sampling rate. In addition, ASR-
based speaker models, such as those based on MLLR and
word N-gram features, get an additional boost from bet-
ter ASR. While there is no SRE-like ASR training data,
we found that a recognizer trained on distant microphone
meeting recordings gives much improved results com-
pared to a telephone speech recognizer.

We expect the availability of high-quality audio for
future SREs to spur new advances in the field. Note
that our experiments were suboptimal in that much of the
older microphone data (from SRE05, SRE06, and the in-
terview data released prior to SRE08) is still not available
in wide-band form and could therefore yield further gains
when models are properly retrained. The experiments
reported here suggest various lines of future work. We
have not yet evaluated the effect of better audio coding
on other key elements of our SRE system, such as speech
activity detection, cepstral GMM-JFA systems based on
PLP, and prosodic speaker models [6]. It will be inter-
esting to see what the overall improvement is after updat-
ing and combining all these systems. A more challeng-
ing, and ultimately interesting, question is what can be
done to model the expanded audio bands in the cepstral
feature space, while dealing with the issue of bandwidth
mismatch between telephone and microphone data.
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Table 3: Cepstral GMM-JFA system performance on SRE2008 data, pooled over all interview-interview conditions. %chg
refers to relative error reduction compared to the 8k-ulaw baseline.

Waveform nDCF %chg oDCF %chg EER %chg
8k-ulaw .3300 - .0506 - .8140 -
8k .3030 8.18 .0443 12.45 .7105 12.71
16k .2920 11.52 .0434 14.23 .6977 14.29

Table 4: Word N-gram system performance on SRE2010 data, by evaluation condition
Condition oDCF EER

8k- 16k %chg 8k- 16k %chg
ulaw ulaw

01.int-int.same-mic .929 .920 0.94 29.2 28.3 2.94
02.int-int.diff-mic .946 .929 1.79 31.7 29.4 7.17
04.int-nve.mic-mic .942 .931 1.10 29.6 28.8 2.69
07.nve-hve.mic-mic .868 .841 3.13 24.5 24.5 0.00
09.nve-lve.mic-mic .887 .819 7.65 23.8 23.1 2.90

Table 5: Cepstral GMM-JFA system performance on SRE2010 data, by evaluation condition
Condition nDCF oDCF EER

8k-ulaw 16k %chg 8k-ulaw 16k %chg 8k-ulaw 16k %chg
01.int-int.same-mic .4440 .4110 7.43 .0877 .0820 6.50 1.9284 1.8587 3.61
02.int-int.diff-mic .5200 .4810 7.50 .1313 .1183 9.90 3.0894 2.7314 11.59
04.int-nve.mic-mic .3900 .3610 7.44 .1074 .0970 9.68 2.2271 2.1721 2.47
07.nve-hve.mic-mic .9020 .8700 3.55 .2381 .2045 14.11 4.7354 3.6212 23.53
09.nve-lve.mic-mic .2980 .2010 32.55 .0575 .0502 12.70 1.3793 0.6897 50.00

Table 6: MLLR-SVM system performance on SRE2010 data, by evaluation condition. 16k(1) refers to the use of meeting
ASR first-pass output, 16k(2) to second-pass output. %chg refers to 16k(2) error reduction over the 8k-ulaw baseline.

Condition nDCF oDCF EER
8k-ulaw 16k(1) 16k(2) %chg 8k-ulaw 16k(1) 16k(2) %chg 8k-ulaw 16k(1) 16k(2) %chg

01.int-int.same-mic .5180 .4650 .4310 16.80 .2183 .1895 .1702 22.03 6.1338 5.3439 4.9954 18.56
02.int-int.diff-mic .6500 .5620 .5370 17.38 .3259 .2687 .2494 23.47 9.6526 7.8427 7.3389 23.97
04.int-nve.mic-mic .4940 .4620 .4260 13.77 .2181 .1840 .1677 23.11 6.2139 5.3066 4.8117 22.57
07.nve-hve.mic-mic .8330 .8440 .7950 4.56 .3367 .3180 .2968 11.85 7.7994 8.0780 7.2423 7.14
09.nve-lve.mic-mic .2660 .2600 .2970 -11.65 .1024 .0750 .0755 26.27 3.4483 3.1034 2.4138 30.00
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