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Abstract 

This paper presents asymmetric-shaped tapers (or windows) 
for speaker recognition. Symmetric tapers (e.g., hamming), 
having the linear phase property and longer time delay, are 
widely used for short-time analysis of speech signals. Since 
human speech perception is relatively insensitive to short-time 
phase distortion, the linearity constraint on phase can be 
removed without any adverse effects. Use of asymmetric 
tapers, having better magnitude response and shorter time 
delay, in speaker recognition can lead to a better recognition 
performance. Speaker verification results on the telephone and 
microphone speech of the latest NIST 2010 SRE corpus show 
that the asymmetric-shaped tapers perform better than the 
symmetric hamming window.  

1. Introduction 

The Mel frequency cepstral coefficients (MFCC) features are 
the most dominantly used in speaker recognition systems.  
MFCC processing of a speech signal begins with pre-
processing (including DC removal and pre-emphasis, typically 
using a first-order high-pass filter). Short-time Fourier 
Transform (STFT) analysis is performed using a finite 
duration (20-30 ms) symmetric-shaped single taper (e.g., 
Hamming)/multi-taper technique to estimate the power 
spectrum of the signal, and triangular Mel frequency 
integration is performed for auditory spectral analysis. The 
logarithmic nonlinearity stage follows, and the final static 
features are obtained through the use of a Discrete Cosine 
Transform (DCT). Therefore, accuracy of the MFCC features 
depends on the accuracy of the power spectral estimate. Under 
matched conditions, MFCC features perform well but under 
mismatched environments (i.e., different training and testing 
environments due to channel, handset, additive background 
noise and reverberation), the performance severely 
deteriorates. The reason for this is that the direct spectral 
estimate used in MFCC feature computation gets affected by 
factors (additive distortion, reverberation etc.) causing 
mismatched environments. In this paper, for better and robust 
(to noise distortions) estimation of the signal power spectrum, 
and hence better and robust MFCC features, we replace the 
symmetric Hamming taper by an asymmetric-shaped taper 
assuming that this will bring improvement in speaker 
verification performance.   
 
Various tapers have been proposed in the literature for better 
spectral estimation of the signal [1]. Most speaker recognition 
systems use symmetric tapers, such as Hamming or Hann, 
because of their ease of implementation and linear phase  

property. Symmetry implies potential drawbacks like longer 
time delay and frequency response limitations [2]. Phase 
information is completely disregarded in recognition systems, 
so, there is no apparent reason for using symmetric tapers. 
Removal of the symmetry constraint therefore allows 
asymmetric tapers to have some better properties such as 
shorter time delay (important for coding but less important for 
recognition) and better and robust frequency response. Some 
low delay speech coders, e.g., ITU-T G.729 [4], use an 
asymmetric analysis taper. Asymmetric tapers, designed by 
solving a more complex minimax approximation problem, 
have also successfully been applied in speech recognition [2], 
but not in speaker recognition. In this paper we use two 
asymmetric-shaped tapers, the ITU-T G.729 Hamming Cosine 
window [4] and the asymmetric form of the double dynamic 
range (DDR) Hamming window [3], for speaker recognition.  
The DDR Hamming window was proposed in [3] for higher 
lag autocorrelation spectrum estimation. For performance 
evaluation, we use the latest NIST 2010 SRE benchmark data 
with a state-of-the-art i-vector configuration [5-7]. 
     

2. Standard Tapers 

For short-time analysis of speech signals, most speaker/speech 
recognition systems use standard symmetric-shaped tapers 
such as Hamming or Hann. These tapers have a linear phase 
property and a particular shape of magnitude response [2]. 
Symmetric tapers have a closed-form expression and are easily 
computable, but these tapers provide poor magnitude response 
under mismatched conditions. Also these tapers have larger 
time delay. Relaxation of the linear phase constraint can 
therefore lead to asymmetric tapers with better magnitude 
response, both in matched and mismatched environments, and 
a shorter time delay.  Since the Hamming taper is the most 
popular in speaker/speech recognition, in this paper we will 
use this taper for performance comparison, with the 
asymmetric tapers to be discussed in the next section.  
 

3. Asymmetric-shaped Tapers 

 
We present two asymmetric tapers in this section, one used in 
[4] for low delay speech coding and the other based on a DDR 
Hamming taper proposed in [3], for performance evaluation 
and comparison with the symmetric Hamming taper, in the 
context of speaker verification. The asymmetric-shaped taper 
used in the ITU-T G.729 coder [4] is given by: 
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where N is the window length, n is the time index, 
5
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and .R LN N N= − With 0.08,α = the asymmetrical taper, given 

by (1), consists of the first half of a traditional Hamming 
window taking up LN samples, followed by a cosine window 

of length RN . We denote this taper in this paper as 

asymwind1. 
Another form of asymmetric taper can be derived from the 
DDR (double dynamic range) Hamming taper, used in the 
HASE (higher lag autocorrelation spectrum estimation) 
method [3], as follows: 

( ) ddr
asym2

( ), ( / 2) ( / 2)
1

0, otherwise

w n c N n c N
w N n

− < ≤ +
− + = 


 

where c is the parameter used to shift the peak position of 
( )ddrw n , N is the frame length, ( )ddrw n  is the DDR hamming 

window computed from a N/2-length Hamming window in the 
following way [3]: 
 

• Calculate a biased autocorrelation sequence of 
length N-1 having a maximum at the zero-th lag in 
the centre from a Hamming window of length N/2. 

• The desired DDR window of length N is found by 
padding one zero at the end of the autocorrelation 
sequence. 

 
Various steps for construction of N-length DDR hamming 
taper from a hamming window is also presented in Fig. 1. 
Since the DDR window is constructed from a Hamming 
window and has dynamic range (86 dB) twice the dynamic 
range of a Hamming window (43 dB), it is called a DDR 
Hamming window.  
Here we use c = 55. This asymmetric taper will be denoted as 
asymwind2.  
 

( )ddrw n

 

Figure 1: Block diagram showing various steps for the 
construction of DDR hamming taper. 

Fig. 2 presents a time and frequency domain comparison of the 
Hamming and asymmetric tapers asymwind1 & asymwind2 for 
frame length N = 200 samples. It is observed from fig. 2(b) 
that both the asymwind1 and asymwind2 have wider mainlobe 
widths and higher attenuation in the sidelobes than the 
Hamming taper.  

Asymmetric tapers also result in shorter time delay [2], which 
is important for coding but not important for the recognition 
task alone. 
Figs. 3 (a) & (b) show a comparison of the taper influence on 
the estimated power spectrum of a signal consisting of two 
equal and unequal pure tones, respectively.  Larger 
suppression in the sidelobes (can be obtained by widening the 
mainlobe width) and rapidly decaying height of sidelobes are 
important for speech recognition performance [2]. Since both 
the speaker and speech recognition share the same front-end, 
the same will be true for speaker recognition as well. 
 

 
(a) 
 

 
(b) 

Figure 2: Comparison of symmetric Hamming and 
asymmetric tapers in (a) the time domain, (b) the 
frequency domain (magnitude response in dB). 

  
(a) 
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(b)  

Figure 3: Comparison of taper influence on the estimated 
power spectrum of a simple two-tone signal when both 
tones have (a) equal amplitude, (b) unequal amplitude. 

4. Experiments and Results 

 
4.1. Experimental setup 
 
We conducted experiments on the extended core-core 
condition of the NIST 2010 SRE extended list. The 
performance of the asymmetric tapers was evaluated 
using following the evaluation metrics: the Equal Error 
Rate (EER), the old normalized minimum detection cost 
function (DCFOld) and the new normalized minimum 
detection cost function (DCFNew). DCFOld and DCFNew 

correspond to the evaluation metric for the NIST SRE in 
2008 and 2010, respectively.  
 
4.1.1 Feature Extraction & UBM training 
 
We use 20-MFCC features (including log-energy) augmented 
with their delta and double delta coefficients, making 60-
dimensional MFCC feature vectors. The analysis frame length 
is 25 ms with a frame shift of 10 ms. Silence frames are 
removed using the VAD labels. After that we apply short-time 
Gaussianization, which uses a 300-frame sliding window, to 
normalize the features. We train a gender-independent, full-
covariance Universal Background Model (UBM) with 2048-
component Gaussian Mixture Models (GMMs). NIST SRE 
2004 and 2005 telephone data were used for training the 
UBM. 
 
4.1.2 Training and extraction of i-vectors 
 
Our 800-dimensional gender-independent i-vector extractor 
was trained using the following data: LDC release of 
Switchboard II - phase 2 and phase 3, Switchboard Cellular - 
part 1 and part 2, Fisher data, NIST SRE 2004 and 2005 
telephone data, NIST SRE 2005 and 2005 microphone data 
and NIST SRE 2008 interview development microphone data. 
Linear Discriminant Analysis (LDA) is used to reduce the 
dimension of the i-vectors (from 800 to 200) to handle 
telephone speech as well microphone speech. An optimal 
reduced dimension of 200 is determined empirically [7]. 

The length of the i-vectors is normalized to gaussianize the 
distribution of the i-vectors. For more details about the i-
vector extractor, see [5-7]. 
 
4.1.3 Training the PLDA model 
 
We train two Probabilistic Linear Discriminant Analysis 
(PLDA) models, one for the males and another for the females. 
These models were trained using all the telephone and 
microphone training i-vectors; then we combine these PLDA 
models to form a mixture of PLDA models in i-vector space 
[7].  
 
4.2 Results 
 
Speaker verification results are reported for five evaluation 
conditions corresponding to det conditions 1-5 in the 
evaluation plan [8]. Figures 3 and 4 depict the speech 
spectrograms for Hamming, asymwind1 and asymwind2 tapers 
under clean and additive noise conditions (white Gaussian 
noise, SNR = 5 dB), respectively. It is observed from the 
plotted spectrograms that, in clean condition, the asymmetric 
tapers do not distort the speech signal and under additive noise 
condition, compared to the hamming taper, asymmetric tapers 
show substantially lower noise in the spectrograms. 
Tables 1-3 present the EERs, the minDCFOld and the 
minDCFNew, respectively, for the Hamming and asymmetric 
tapers. Fig. 6 presents a comparison of speaker verification 
accuracy of the symmetric Hamming and asymmetric tapers 
using DET (detection error trade-off) curves. It is observed 
from fig. 6 and from tables 1-3 that the asymmetric-shaped 
tapers performed better than the symmetric Hamming taper in 
the most of the det conditions, except in det1, det3 and det4 
conditions for the male trials. Compared to the baseline 
Hamming taper, asymwind1 provides an average relative 
improvement (female-male & det1-det5) of 9.78%, 14.8%, and 
5.32% in EER, minDCFOld and minDCFNew, respectively, 
whereas asymwind2 provides an average relative improvement 
of 9.6%, 8.86%, and 2.86% in EER, minDCFOld and 
minDCFNew, respectively, compared to the baseline.  
Robustness of asymmetric tapers, under additive noise 
environments, has been shown in [2], in the context of speech 
recognition. We did speech recognition experiments under 
additive noise distortion on AURORA-2 corpus and verified 
that asymmetric tapers provide better word accuracy than the 
Hamming taper, specifically in low SNR conditions. We 
expect that this will be true for speaker recognition as well. 
 
4.2.1 Performance evaluation under additive noise 
 
In order to evaluate the performance of the asymmetric tapers 
under additive noise environments, in the context of i-vector 
speaker verification, speech signals (test data only) are 
degraded with babble noise with a signal-to-noise ratio of 5 
dB. I-vectors from the noise test data are extracted using the i-
vector extractor, mentioned in section 4.1, that is trained with 
the clean training data. We train the Gaussian PLDA models 
using the clean training i-vectors and verification task is 
performed with the noisy i-vectors.   
Tables 4-6 present the EERs, the minDCFOld and the 
minDCFNew, respectively, for the Hamming and asymmetric 
tapers, when the test signals are degraded with the babble 
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noise (SNR = 5 dB).  Experimental results in babble  noise 
condition show that asymmetric tapers are more robust to 
additive noise than the symmetric hamming window. 
 

   
(a) 
 

     
(b) 

 

 
(c) 
 

 
(d) 

Figure 4: Comparison of speech spectrograms: (a) clean 
speech, (b) symmetric Hamming taper, (c) asymmetric 
taper asymwind1, and (d) asymmetric taper asymwind2. 

 
(a) 
 

   
(b) 

  
(c) 

  
(d) 

Figure 5: Comparison of speech spectrograms: (a) noisy 
speech (white 5 dB), (b) symmetric Hamming taper, (c) 
asymmetric taper asymwind1, and (d) asymmetric taper 
asymwind2. 
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(a) 

 
(b) 

 
(c) 
 

 
(d) 

 
(e) 

Figure 6: Effect of different feature tapers to speaker 
verification accuracy: (a) det1, (b) det2, (c) det3, (d) 
det4, and (e) det5. All features are extracted using 60-
dimensional MFCC features, but the windowing 
methods vary. Asymmetric tapers seem to perform 
better in all det conditions. For this experiment we 
train a UBM with 2048-mixture components and the i-
vectors are reduced to a dimension of 200 from 800. 

Table 1: Male and female (det1-det5) speaker 
verification results for symmetric and asymmetric 
tapers measured by EER. For each row the best EER is 
in boldface. For this experiment we train a UBM using 
2048-mixture components and the i-vectors are 
reduced to a dimension of 200. 

EER (%) 

  Hamm 
Asym- 
wind1 

Asym- 
wind2 

det1 1.8 1.6  1.46 Female 
det2 3.9 3.06 3.55 

260



det4 4.0 2.85  2.73 
det3 2.6 2.04 2.20 
det5 2.5  2.15 2.31 
det1 1.0 1.18  1.10 
det2 2.0 1.95 2.04 
det4 1.8 1.53  1.64 
det3 2.5 2.16  2.26 

Male 

det5 1.8 2.02 1.67 

Table 2: Male and female (det1-det5) speaker 
verification results for symmetric and asymmetric 
tapers measured by minDCFOld. For each row the best 
minDCFOld is in boldface. For this experiment we train 
a UBM using 2048-mixture components and the i-
vectors are reduced to a dimension of 200. 

minDCFOld 

  Hamm 
Asym-
wind1 

Asym-
wind2 

det1 0.088 0.07  0.076 
det2 0.19 0.16  0.17 
det4 0.18 0.13 0.14 
det3 0.13 0.10 0.11 

Female 

det5 0.12 0.11 0.12 
det1 0.045  0.045 0.048 
det2 0.097  0.085 0.093 
det4 0.079 0.062 0.075 
det3 0.11 0.095  0.097 

Male 

det5 0.096 0.088 0.089 

Table 3: Male and female (det1-det5) speaker 
verification results for symmetric and asymmetric 
tapers measured by minDCFNew. For each row the best 
minDCFNew is in boldface. For this experiment we 
train a UBM using 2048-mixture components and the 
i-vectors are reduced to a dimension of 200. 

minDCFNew 

  Hamm 
Asym-
wind1 

Asym-
wind2 

det1 0.30 0.26  0.25 
det2 0.54 0.49 0.52 
det4 0.52 0.39  0.43 
det3 0.41 0.37  0.38 

Female 

det5 0.39 0.35 0.38 
det1 0.18 0.20 0.19 
det2 0.37  0.34 0.35 
det4 0.25 0.26 0.27 
det3 0.37 0.40  0.40 

Male 

det5 0.32 0.29 0.31 

Table 4: Male and female (det1-det5) speaker 
verification results under additive noise condition 
(babble noise, SNR = 5 dB) for symmetric and 
asymmetric tapers measured by EER. For each row the 
best EER is in boldface. For this experiment we train a 
UBM using 2048-mixture components and the i-
vectors are reduced to a dimension of 200. 

EER (%) 

  Hamm 
Asym- 
wind1 

Asym- 
wind2 

Female det1 2.73 2.66 2.83 
 det2 8.15 7.78 8.1 
 det4 4.12 3.48 3.48 
 det3 3.20 2.88 3.20 
 det5 2.60 2.35  2.4 

Male det1 1.90 1.9 1.82 
 det2 6.15 6.2 6.15 
 det4 2.37 2.19 2.43 
 det3 2.90 2.91 2.90 
 det5 2.07 1.97 1.73 

Table 5: Male and female (det1-det5) speaker 
verification results under additive noise condition 
(babble noise, SNR = 5 dB) for symmetric and 
asymmetric tapers measured by minDCFOld. For each 
row the best minDCFOld is in boldface. For this 
experiment we train a UBM using 2048-mixture 
components and the i-vectors are reduced to a 
dimension of 200. 

minDCFOld 

  Hamm 
Asym-
wind1 

Asym-
wind2 

Female det1  0.13 0.12 0.13 
 det2 0.37 0.36 0.37 
 det4 0.19 0.17 0.17 
 det3 0.17 0.15 0.17 
 det5 0.130 0.12 0.12 

Male det1 0.088 0.087 0.087 
 det2  0.26 0.27 0.27 
 det4 0.13 0.11 0.13 
 det3 0.14 0.14 0.14 
 det5 0.099 0.094 0.095 

 

Table 6: Male and female (det1-det5) speaker 
verification results under additive noise condition 
(babble noise, SNR = 5 dB) for symmetric and 
asymmetric tapers measured by minDCFNew. For each 
row the best minDCFNew is in boldface. For this 
experiment we train a UBM using 2048-mixture 
components and the i-vectors are reduced to a 
dimension of 200. 

minDCFNew 

  Hamm 
Asym-
wind1 

Asym-
wind2 

Female det1 0.43 0.42 0.39 
 det2 0.78 0.76 0.77 
 det4 0.56 0.50 0.51 
 det3 0.58 0.52 0.55 
 det5 0.40 0.35 0.36 

Male det1 0.34 0.35 0.36 
 det2 0.71 0.69 0.69 
 det4 0.45 0.43 0.44 
 det3 0.56 0.60 0.61 
 det5 0.33 0.31 0.31 
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5. Conclusions 

In this paper we incorporated two asymmetric-shaped tapers 
in the MFCC feature extraction process and compared their 
performances in the context of i-vector speaker verification. 
Experimental results under clean and noisy environments 
indicate that the asymmetric tapers outperformed the 
symmetric Hamming taper. Asymmetric tapers are found to be 
robust to additive noise. The largest relative improvements 
over the baseline were observed for conditions involving 
female trials.  
Our future work includes the development of a generalized 
method to construct asymmetric taper from the existing 
symmetric tapers.  

6. References 

[1] J.G. Proakis, D.G. Manolakis, Digital Signal Processing: 
Principles, Algorithms and Applications, 3rd edition, 
Prentice Hall, New York, 2000. 

[2] R. Rozman, D.M. Kodek, “Using asymmetric windows in 
automatic speech recognition.” Speech Comm., vol. 49, 
pp. 268-276, Jan 2007. 

[3] B. Shannon, K.K. Paliwal, “Feature extraction from 
higher-lag autocorrelation coefficients for robust speech 
recognition,” Speech Comm., vol. 48, pp. 1458–1485, 
August 2006. 

[4] ITU-T, Geneva, Recommendation G.729, Coding of 
Speech at 8 kbit/s Using Conjugate-Structure Algebraic-
Code-Excited Linear-Prediction (CS-ACELP), Mar. 
1996. 

[5] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. 
Ouellet, “Front-end factor analysis for speaker 
verification,” IEEE Trans. on Audio, Speech and 
Language Processing, vol. 19, No. 4, pp. 788-798, May, 
2011.  

[6] P. Kenny, “Bayesian speaker verification with heavy 
tailed priors,” Proceedings of the Odyssey Speaker and 
Language Recognition Workshop, Brno, Czech Republic, 
Jun. 2010. 

[7] M. Senoussaoui, P. Kenny, N. Brummer, E. de Villiers, 
and P. Dumouchel, ‘‘Mixture of PLDA models in I-
vector space for gender independent speaker 
recognition,’’ Proceedings of INTERSPEECH 2011, 
Florence, Italy, August 2011. 

[8] National Institute of Standards and Technology, NIST 
Speaker Recognition Evaluation, 
http://www.itl.nist.gov/iad/mig/tests/sre/. 

 

262




