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Abstract
Probabilistic modeling is the most successful approach widely
used in speaker recognition either for modeling the speakers in
GMM-UBM structure or by serving as a prior in secondary-
level feature extraction to form i-vectors. In this paper, we
introduce exemplar-based sparse representation and sparse dis-
crimination for closed-set speaker identification in a noisy liv-
ing room from very short speech segments each of 2 seconds
length on average. Large spectro-temporal contexts in mel-
frequency band energy domain are used to build dictionary of
all speakers and decomposing the observed noisy speech, the
sparse activations are extracted as features for modeling stage.
Sparse discriminant analysis is employed to learn sparse dis-
criminative directions for classification stage. Experiments on
the recently developed computational hearing in multi source
environments (CHiME) corpus demonstrate excellent perfor-
mance of the proposed approach specially in low-SNR. The
speaker identification results are also reported for baseline text-
independent GMM-UBM and text-dependent HMM.

1. Introduction
Speaker recognition robustness in adverse condition has been
investigated widely in recent years [1, 2, 3, 4, 5, 6]. There
are quite a number of factors affecting the automatic speaker
recognition performance including channel/session variability
and noise/reverberation. In real-world applications dealing with
mismatched condition is inevitable and any type of mismatch
between training and test session will potentially result in de-
graded performance. Based on the type of the data in national
institute of standards and technology (NIST) speaker recog-
nition evaluations [7], the researchers in speaker recognition
field have successfully developed techniques to deal with ses-
sion/channel variability [1, 2, 3].

Although the state-of-the-art algorithms’ sensitivity to un-
seen channel or session variability are partially mitigated, they
are highly vulnerable to additive noise and reverberant environ-
ment [8, 5]. It has also been shown that even the performance of
the state-of-the-art speaker recognition systems degrades sub-
stantially when limited speech is available in testing phase [9].
Although there are recent studies to handle reverberation and
additive noise in feature [6] and model domain [4, 5] for speaker
recognition systems, the compensation techniques with respect
to noise and reverberation for speaker recognition systems are
still an open question.

Multi-condition training entails including noisy samples of
original data in the training phase to have parallel models for
each speaker in different noise/SNR conditions. This tech-
nique has been shown to be an effective way of handling noisy

condition specially when the expected noise type in test phase
has already been observed in training phase [10, 4]. Train-
ing the speaker models with multi-conditioned noisy speaker
models by incorporating missing feature principals has been
studied for GMM-UBM based speaker recognition which pro-
vides considerable performance improvement over the models
only trained with clean data [4]. GMM-UBM system has also
shown an average 85% identification accuracy on GRID cor-
pus (speech+speech mixture) when a mixed-UBM and multi-
conditioned GMMs are utilized [11]. Multi-condition training
for Gaussian PLDA-based speaker recognition on a subset of
NIST SRE’10 interview data is shown to be an effective ap-
proach to handle additive noise and reverberation [5].

There are many speech enhancement algorithms proposed
for robust automatic speech recognition (ASR), most of them
relying on the assumption that the additive noise is a stationary
process which is not always true for real-world applications.
Minimum statistics [12], improved minima controlled recursive
averaging [13], MMSE spectral amplitude estimator [14] and
log-spectral amplitude estimator [15] are examples of these al-
gorithms which essentially fail in non-stationary noise tracking
and produce undesirable artifacts yet to be captured by recogni-
tion system during training phase [16]. Although there are more
robust speech enhancement algorithms proposed to handle non-
stationary reverberant scenarios [17, 18, 16], it is outside of the
focus of this paper to investigate the effect of speech enhance-
ment algorithms on speaker recognition performance.

Sparse representations have recently gained attention in
speaker recognition [19, 20, 21, 22, 23]. An over-complete
dictionary of speakers’ GMM mean supervectors [24] can be
utilized and then by finding the sparse activations for a test
utterance, the identity inference build upon the activations
[19, 20, 21]. Promising results have been reported by repre-
senting an utterance with its i-vector [3] instead of GMM mean
supervector in an over-complete dictionary for speaker verifica-
tion [22]. The i-vectors can also be computed subject to spar-
sity [23]. Exemplar-based sparse representation of speech sig-
nal has recently been found also useful in speech enhancement
and speech recognition [25, 26].

In this work, we investigate whether an appropriate sparse
representation can be used in the task of speaker recognition
to improve robustness in dealing with additive noise. Specifi-
cally, we propose exemplar-based sparse representation, which
can satisfactorily handle additive noise in speech recognition
[26], for a closed-set speaker identification task. The differ-
ence with existing works in speaker recognition is that the dic-
tionary is made by utilizing mel-frequency band energies in a
large spectro-temporal context (25 frames) called exemplars.
The dictionary elements are selected in such a way to be repre-
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sentative of specific acoustic events. A set of noise exemplars is
also included to allow coping with additive noises. The sparse
activations are estimated to minimize the reconstruction error
for the observation. In this work the activations are averaged
over the utterance to make the secondary-feature for classifi-
cation. Next these secondary-features are mapped onto sparse
discriminant directions [27] followed by a dot-scoring for clas-
sification. The contribution of the current study is to intro-
duce the exemplar-based sparse representation framework for
speaker recognition and utilize sparse discriminant analysis to
find speaker discriminant directions.

2. Sparse Representation and
Discrimination

Speech and speaker recognition are two different tasks, still
sharing many of their challenges and potential solutions. The
fundamental problem is to construct a model of speech, and
to match the observation to the model. In speech recognition,
the speaking and pronunciation styles of different speakers can
vary significantly. Therefore it has been found beneficial to
train models for each speaker individually whenever possible.
Meanwhile, the speaker-dependent models can also be used for
speaker recognition by detecting the model best matching to the
observed speech.

Recently, it has been demonstrated how speech can be mod-
eled as a linear combination of long spectro-temporal segments,
also known as speech atoms [25]. In the context of speech
and speaker recognition, the sparse model based on spectro-
temporal atoms has two major benefits. First, its inherent capa-
bility to model additive noise makes it suitable for recognition
in adverse environments. Second, given enough atoms from
multiple speakers, it can often capture both the phonetic con-
tent and the speaker identity of observations. The long tempo-
ral context of atoms is able to capture spectro-temporal patterns
characteristic to words and speakers, which would not be possi-
ble using only momentary frame spectra.

It has been shown previously how to employ speech and
noise atoms sampled directly from training material or the con-
text to perform noise robust speech recognition [25, 28]. Atoms
acquired this way are known as exemplars, and the approach
as a whole is dubbed exemplar-based sparse classification.
Whereas earlier work has mostly focused on recognizing speech
using a single speaker’s dictionary at a time, here the same ap-
proach is used with an important difference that we maintain
a basis of all speakers’ exemplars and utilize this dictionary in
factorizing the observed utterance. Ideally, the exemplars from
the speaker that originates the observed utterance will be acti-
vated.

2.1. Exemplar-based sparse representation

Let us denote the spectral magnitudes calculated in B mel-
frequency bands in a sequence of T frames and reshaped into
a vector, by y. Fig. 1 shows the formation of a speech obser-
vation vector y for a single window. We can represent noisy
speech observations as an additive combination of speech and
noise atoms. Given an exemplar dictionary or basis of similarly
vectorized speech and noise atoms as

j (j = 1, . . . , J) and an
k

(k = 1, . . . ,K), we can model the observation as

y ≈
J∑

j=1

as
jx

s
j +

K∑
k=1

an
kx

n
k , (1)

Figure 1: The formation of observation vectors: After con-
verting an utterance to spectrogram representation Y with Tutt

spectral amplitudes mapped to B mel-bands energies, a window
of consecutive T frames are concatenated to form the observa-
tion window vector y.

where the scalars xs
j and xn

k define the activation weights for
each speech and noise atom, respectively (L = J + K is the
total number of exemplars). If we concatenate all the atom vec-
tors as columns of a basis matrix A and the activations into a
vector x, the same model takes a matrix form y ≈ Ax.

By finding a close approximation to actual y while mini-
mizing the number of active atoms, we can construct a sparse
representation, which often manages to reveal the most likely
atomic components contributing to the observed mixture. If the
signals are modeled in a domain which can be considered addi-
tive, it is also beneficial to enforce a non-negativity constraint on
the weights. Consequently, the problem of finding either basis
vectors a, activations x, or both is known as non-negative ma-
trix factorization and the modeling technique is often referred
to as sparse coding [29].

2.2. Convolutive spectral factorization

The model given in Equation (1) produces a length L activa-
tion vector for a single observation window. As utterances are
generally longer than window length T , the whole observation
spectrogram Y (B×Tutt) is modeled in W = Tutt−T +1 over-
lapping windows with a step of one frame. In earlier work, two
different methods have been presented for handling the tem-
poral continuity [26, 28]. Both produce an L × W activation
matrix X, each its columns representing activations in a single
observation window.

In this work we use an algorithm referred to as non-negative
matrix deconvolution (NMD), where all activations are used
jointly for estimating the utterance spectrogram. The estimated
spectrogram Ŷ is modeled convolutively as

Ŷ =

T∑
t=1

At

→(t−1)

X , (2)

where each At is a B × L matrix containing the tth frame

of all atom spectrograms, and
→
(·) shifts columns right within

a L×Tutt matrix. The cost function to be minimized consists of
Kullback-Leibler divergence for spectral distance between the
observation and its estimate, and weighted l1-norm penalty for
nonzero activations to enforce sparsity in the solution. The it-
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Figure 2: Forming a sparse identity s-vector from an input utterance. Every observation window activation is calculated with subject
to sparsity to have y ≈ Ax. The activations x are averaged over time to make s-vector.

erative update rules used to acquire X and other details of the
factorization procedure can be found in [28, 30]. The activa-
tion matrix is averaged over window indices to form an s-vector
(L × 1) representing the atoms activated in the utterance. A
schematic diagram of the process of converting an utterance to
a fixed-dimension sparse vector s is shown in Fig. 2.

2.3. Sparse Discriminant Directions

It has been found very useful to classify low-dimensional i-
vectors with LDA, probabilistic LDA [31, 32], and recently
source normalized LDA [33]. However, it is known that when
the number of predictor variables (feature dimension d) is much
higher than the number of observations N , the conventional
LDA algorithm fails [34]. Since the s-vector sparse represen-
tation is high-dimensional (d is number of exemplars here) we
need to find an appropriate way of classification. Probabilistic
LDA works on the assumption of Gaussian distribution for in-
put vectors and models the data generation by the summation
of speaker-dependent term, µ + Fhi considering I speakers
and an utterance dependent term Gwim + ϵim with M utter-
ances for speaker i [31]. The overall mean of the training vec-
tors is denoted by µ and the matrices F and G are composed
of basis for between-speaker and within-speaker subspaces, re-
spectively. The hi and wim are positioning the input vector
in between-speaker and within-speaker subspaces, respectively
and ϵim is a Gaussian residual error term.

The LDA projection matrix is formed by first making
an eigen-analysis on between-speaker (Sb) and within-speaker
(Sw) covariance matrices and then using a subset of eigenvec-
tors, υj having the largest eigenvalues. Considering K speak-
ers, the eigenvectors in LDA are found using the Fisher’s crite-
rion to find directions that maximize the between-speaker sepa-

ration while keeping the within-speaker variation small;

argmaxυjυ
T
j Sbυj (3)

with subject to orthogonality constraint

υT
l Swυj =

{
0 l ̸= j
1 l = j

, j = 1, . . . ,K − 1 (4)

Penalized discriminant analysis (PDA) was proposed in [34] to
account for d ≫ N condition. Sparse discriminant analysis
(SDA) is recently proposed with the same principals of PDA to
work with high dimensional sparse data while providing sparse
eigenvectors in the solution [27]. The SDA essentially entails
penalizing Sw to be Sw+λ2Ω where Ω is a penalty function in-
troduced in [34] to take care of d ≫ N condition and changing
the eigenvector selection criterion as

argmaxυjυ
T
j Sbυj − λ1||υj ||1 (5)

to produce eigenvectors with p non-zero values [27]. λ1 and
λ2 are optimization parameters and the optimization to find
the sparse discriminant directions is performed with elastic net
[35]. The elastic net is particularly favored over lasso-based
optimization [36] in case when the feature dimension is much
bigger than the number of observations.

3. Experiments
We perform text-constrained closed-set speaker identification to
evaluate the performance of the proposed system. HMM-based
text-dependent speaker recognition and GMM-UBM based
text-independent speaker recognition are employed as the base-
line methods for performance comparison. In addition to sim-
ple manipulation of exemplar activations, we employ PLDA and
SDA to model the sparse exemplar activations.
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Figure 3: CHiME corpus sentences grammatical structure

3.1. Database description

For performance evaluation, we conducted our experiments on
the PASCAL computational hearing in multi source environ-
ments (CHiME) speech separation and recognition challenge
dataset [37]. The CHiME evaluation data is derived from con-
volving the clean speech signals (extracted from the GRID
audio-visual corpus [38]) with real room impulse response to
simulate the reverberant environment as well as adding wide
range of noise sources collected from a living room at different
locations. The GRID corpus consists of 34,000 distinct utter-
ances from 34 speakers (18 males and 16 females) and as it
is shown in Fig. 3 the sentences follow a unique grammatical
structure each composed of a combination of as six word com-
mands: verb, color, preposition, letter, digit and coda (e.g., “bin
white at p nine soon”). The keywords emphasized for speech
intelligibility or recognition task in challenge are the items in
position 4 and 5 referring to letter and digit, respectively. The
possible letters are 25 English alphabet letters and finally the
digits are selected from 0 to 9.

The CHiME dataset is sub-divided into three parts: train-
ing, development and test sets. For each speaker, 500 clean (re-
verberated) utterances are provided for training purposes. Each
of development and test sets are composed of 600 utterances
mixed at six SNR levels ranging from −6dB to 9dB. The noise
contamination was done by challenge organizers which the de-
tails can be found in [37]. The SNR levels encountered in devel-
opment and test sets are expected to be representative of real-
world situation except the fact that it is not accounting for the
Lombard effect. It should be noted that noise types are differ-
ent across different SNR-levels. The sentences were originally
stereophonic and sampled at 48kHz and provided also in 16kHz
format. The recognizers in this work use single-channel signals
by averaging the two channels together in waveforms and we
use 16 kHz data in our experiments. Summing two channels
is equivalent to a delay-and-sum beamformer where no delay
estimation is employed. All the analysis is performed on rever-
berated speech as a straightforward approach for considering
the effect of reverberation in modeling.

3.2. Experimental protocol

The training set is used to train speaker models, while the devel-
opment and test sets are used to report the system performance
in terms of the speech enhancement, speech recognition, and in
this paper speaker recognition accuracy. Here we are using the
speakers’ training material to build up speaker models. The de-
velopment set is used to tune the PLDA and SDA parameters.
The tuned system is then tested on unseen test set to evaluate
the generalization capability of trained model. The criterion
for optimizing the system performance on development set is
considered as the identification accuracy over all SNR ranges in
development set. This ensures us that the recognizer parameters
are not optimized for a specific condition.

Table 1: ASR results for key-word recognition accuracy in per-
cent on unprocessed mixture (no speech enhancement applied)
on CHiME corpus.

SNRs
9dB 6dB 3dB 0dB −3dB −6dB

Development set 83.1 73.8 64.0 49.1 36.7 31.1
Test set 83.8 74.3 62.4 48.3 37.4 31.6

3.3. Text-Dependent HMM

Since the setup of the CHiME corpus is text constrained, the
first baseline approach is selected to be a text-dependent HMM
approach where basically speaker-dependent HMMs are trained
for speech recognition. We take the baseline recognizer sup-
plied by the CHiME challenge organizers [37] and instead of
decoding the observed utterance with only the known speaker
model, we let all the speaker-dependent HMMs decode the
observation and identify the speaker as the one who provides
highest log-likelihood. The words are modeled as whole-word
HMMs with a left-to-right model topology with no skips over
states and 7 Gaussian mixtures per state with diagonal covari-
ance matrices [37]. Considering 2 states per phoneme the num-
ber of states for each word is given as:

4 states: at by in a b c d e f g h i j k l m n o p q r s t u v x y z
one two three eight

6 states: bin lay place set blue green red white with four five
six nine now please soon

8 states: again zero

10 states: seven

This leads to overall number of 250 states in the HMM struc-
ture. Speaker-dependent HMMs are trained by first estimating
a set of speaker independent HMMs as the starting point, and
then performing 4 more iterations of EM training using the 500
training utterances for each speaker. The HMMs are trained
using reverberant signals without any noise and there is nei-
ther adaptation to noisy signals nor multi-conditional training.
For HTK the training and test scripts provided for the CHiME
challenge were used [37]. The features are cepstral mean nor-
malized MFCCs which include 12 base coefficients plus energy,
concatenated with delta and acceleration features.

We report the ASR results averaged on development set in
Table 1 to show the key-word recognition performance of the
baseline HMM for detecting color and letter.

3.4. Text-Independent GMM-UBM

Although the speaker recognition task in context of CHiME
corpus is a text-constrained, in addition to HMM-based
approach we have also evaluated a baseline text-independent
GMM-UBM approach [39] as our second benchmark method.
To this end, using the same MFCC features as HMM-based
approach we pooled all the target speakers training data to
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Figure 4: Forming an atom template for a single phonetic state. Training data spectrogram segments, where the target state appears, are
placed in a B × T window with the target state in the middle. A bin-wise median is taken over instances to model the state spectrum
and its context with a single template.

make a 512 Gaussian UBM and then use each speakers 500
training segments to make a maximum a posteriori estimation
for each speaker’s GMM model.

3.5. Exemplar-based approach

Setting up the exemplar-based system, all the audio was con-
verted into spectral magnitudes in 40 mel bands (B) at a tempo-
ral resolution of 25 ms frame length and 10 ms frame shift. The
observation window length T was set to 25 frames (265 ms). A
250-atom speech basis was generated for each speaker by con-
structing spectrogram templates for the 250 speech states in the
system.

For each state in turn, the spectrograms of all instances of
the speaker’s training utterances containing the target state were
gathered together. Using forced alignment information from
the CHiME HTK models (as described in section 3.3), spectro-
grams of the target state and its immediate neighborhood were
placed in a B × T window with the target state in the middle.
Thereafter a bin-wise median was taken over all instances to
construct a spectro-temporal template of the state and its typi-
cal context. The process is visualized in Figure 4.

By repeating the procedure for all states and speakers, an
8500-atom (250 atoms × 34 speakers) combined speech basis
was acquired. The speaker-specific atoms were estimated us-
ing 300 out of 500 available files in training set per speaker. In
addition, 250 noise atoms were extracted adaptively from the
local noise context of the utterance to be recognized as in [26].
All in all, the speech and noise atoms formed an L = 8750
atom dictionary. The spectral bands of both basis and utterance
features were re-weighted using a band-normalizing curve ac-
quired from speech training material. Individual atoms were
normalized to unitary Euclidean norm over their whole spectro-
gram content. Thereafter the development and test utterances
were factorised as described in Section 2.2, and s-vectors were
averaged from the activation matrices.

Four speaker identification system are built based on em-

ploying s-vectors as their input for classification. The speaker
identification error rates for these four approaches along with
two baseline systems are presented in Table 2. Since the ac-
tivation data are sparse, conventional LDA cannot be applied
directly to classify them. Extracting 200 sparse representation
s-vectors for the remaining 200 training files per speaker, we
first clip them to have only 8500 speaker-specific activations,
then length normalize and finally employ PLDA and SDA to
find the most discriminant directions.

Exemplar-based simple manipulation In simple manipula-
tion of the activation vectors, since we already know
which activations are corresponding to speakers’ exem-
plars in dictionary, we can average over activations for
the exemplars for a specific speaker to get the first no-
modeling score for each speaker.

Exemplar-based + dot-scoring We utilize the speaker-
specific exemplars and by averaging them make an
average sparse representation for each speaker. Ap-
plying a simple inner product ⟨s1, s2⟩, dubbed as
“dot-scoring”, between speakers’ average sparse repre-
sentation and test s-vector will generate the recognition
score.

Exemplar-based PLDA The PLDA dimensions optimizing
the overall performance on development set was found
to be 33 eigen-voices and 1 eigen-channels. This is an
interesting observation because increasing the number of
eigen-channels would improve the recognition on clean
and slightly noisy conditions but ruins out the noisy con-
dition performance.

Exemplar-based + SDA + dot-scoring After projecting the
200 s-vectors on sparse directions for each speaker, we
take the average of them to present the speaker identity
vector. A recognition score is defined as a dot-scoring
of projected test s-vector and speakers’ identity vectors.
The penalty function Ω for penalizing the within-class
covaraince matrix in SDA is set to identity matrix which
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Table 2: Speaker identification error rate (in percent) comparison of different systems. The identification errors are measured on
CHiME corpus development and test set for each SNR utilizing 600 utterances each of average 2 seconds length.

Development
SNR Clean 9dB 6dB 3dB 0dB −3dB −6dB

HMM 0.3 1.7 6.7 17.8 33.8 51.8 62.8
GMM-UBM 0.3 4.7 6.7 15.8 23.8 30.2 37.7

Exemplar-based simple manipulation 0.5 1.2 2.0 2.7 8.3 16.5 32.7
Exemplar-based + dot-scoring 1.2 1.5 1.5 4.0 7.8 12.0 23.3

Exemplar-based PLDA 0.2 0.7 1.0 2.3 7.7 16.0 34.2
Exemplar-based + SDA + dot-scoring 0.3 0.5 0.7 1.7 3.2 8.2 17.3

Test
HMM 2.0 6.8 16.8 41.2 56.7 67.3

GMM-UBM - 2.2 8.2 14.7 26.3 35.3 43.7
Exemplar-based simple manipulation - 1.0 2.0 3.7 7.7 14.8 34.8

Exemplar-based + dot-scoring - 1.7 2.5 3.5 7.0 10.3 22.7
Exemplar-based PLDA - 0.5 0.8 2.3 8.3 14.5 33.7

Exemplar-based + SDA + dot-scoring - 0.2 0.7 1.3 4.5 5.7 17.5

corresponds to a ridge regression scenario. The parame-
ter λ2 is set to 0.01 meaning that by adding a small num-
ber to the diagonal of the wihtin-class covariance matrix
it gets full rank and that takes care of the d ≫ N con-
dition. We have optimized on whole development set
the number of non-zero elements for sparse discriminant
direction in SDA by fixing the number of discriminant
directions to be 33. Te optimal number of non-zero ele-
ments was found to be 500.

3.6. Results and Discussion

The speaker identification performance of baseline systems
along with proposed exemplar-based approach are presented in
Table 2. It is observed that baseline systems only show a rea-
sonable performance on the clean and slightly noisy (SNR=
9dB) conditions and the performance drops substantially for
SNR< 9dB. The GMM-UBM system shows more robust be-
havior in low SNRs compared to text-dependent HMM system.
The HMM-based system performance decline in noisy condi-
tions for speaker identification is much bigger than for speech
recognition. It yet remains to be investigated if applying speech
enhancement algorithms, which most of the time increase the
ASR performance, will translate to improved speaker recogni-
tion accuracy.

The simple manipulation of s-vectors in development and
test set (without any training) provides much better speaker
identification results than baseline systems for SNR≤ 9dB.
This great improvement is a result of inherent capability of
exemplar-based approach to capture long spectro-temporal con-
text and careful design of the system which compresses speaker-
specific information into s-vectors. Although the exemplar-
based system utilizes the noise exemplars in estimating the ac-
tivations (baseline HMM and GMM-UBM system do not incor-
porate noise information in modeling), the small performance
difference between development and test sets reveals that this
representation is indeed robust to unseen noise conditions. Em-
ploying dot-scoring directly on s-vectors to calculate the recog-
nition score provides reduced error in SNR≤ 0dB. This phe-
nomenon can be described as the noisy speech can activate the
exemplars in a different way than they are activated in clean
speech and hence by using average s-vector of each speaker,
the more relevant activations are emphasized in dot-scoring.

By employing a modeling approach on s-vector domain
both PLDA and SDA bring extra performance improvement
over simple manipulation of s-vectors. The PLDA essentially

helps in SNR> 0dB which is a result of optimizing the discrim-
inative directions to the clean data. The performance gain in
the order of magnitude for SDA-based approach in SNR≤ 0dB
enlightens the suitability of sparse discriminative directions for
projecting the s-vectors. Employing McNemars’ statistical test,
it is found out that all the results for SNR≤ 6dB for exemplar-
based approach are significantly different than of baseline sys-
tems. It is again a topic for further research if finding sparse
discriminant directions is only helpful in handling sparse data
or can be useful also in dealing with information rich i-vectors.

4. Conclusions
A new approach for closed-set speaker identification based on
exemplar-based representation and sparse discrimination is pro-
posed. Evaluating on recently developed CHiME corpus we
have found the proposed system outperforming the baseline
GMM-UBM and HMM based systems with a large margin.
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