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Abstract
Robustness due to mismatched train/test conditions is one of the
biggest challenges facing speaker recognition today, with trans-
mission channel/handset and additive noise distortion being the
most prominent factors. One limitation of the recent speaker
recognition systems is that they are based on a latent factor
analysis modeling of the GMM mean super-vectors alone. Mo-
tivated by the covariance structure of cepstral features, in this
study, we develop a factor analysis model in the acoustic fea-
ture space instead of the super-vector domain. The proposed
technique computes a mixture dependent feature dimensional-
ity reduction transform and is directly applied to the first order
Baum-Welch statistics for effective integration with a conven-
tional i-vector-PLDA system. Experimental results on the tele-
phone trials of the NIST SRE 2010 demonstrate the superiority
of the proposed scheme.

1. Introduction
Mismatch between training and test conditions represent one
of the most challenging problems faced by speaker recognition
researchers today. There can be different sources of mismatch
present including: transmission channel differences [1], handset
variability, background noise, session variability due to physical
stress [2], non-stationarity environment [3], different levels of
vocal effort or spontaneity of speech, to name a few.

Various compensation strategies have been proposed in the
past to reduce unwanted variability between training and test ut-
terances, while retaining the speaker identity information. The
current trend of the state-of-the-art speaker recognition system
is to model acoustic features with Gaussian Mixture Models
(GMM) [4], use utterance dependent adapted GMM [4] mean
super-vectors [5] as features representing speech segments, and
model the super-vectors using various latent factor analysis
techniques [1, 6, 7]. In [8], the aim was to identify the speaker
and channel dependent subspaces, termed Eigenvoice [6] and
Eigenchannel [1], in the super-vector domain. In [1], speaker
and channel variabilities were jointly modeled. With the intro-
duction of i-vectors [7], research trend shifted towards directly
applying compensation techniques on these lower dimensional
features representing a speech segment. In simple terms, the

∗This project was funded by AFRL through a subcontract to RADC
Inc. under FA8750-09-C-0067, and partially by the University of Texas
at Dallas from the Distinguished University Chair in Telecommunica-
tions Engineering held by J. Hansen. Approved for Public Release;
Distribution Unlimited: 88ABW-2012-0701, 13-Feb-2012

i-vector scheme utilizes a factor analysis framework [6, 9] to
perform dimensionality reduction on the super-vectors while re-
taining important speaker discriminant information. This lower
dimensional i-vector representation enabled the development of
fully Bayesian techniques [10, 11] using a single model to rep-
resent the speaker and channel variability.

From the success of Bayesian modeling of i-vectors [10,
11], it is clear that including more speaker discriminant in-
formation in the i-vector is the key to achieving better perfor-
mance. Often higher dimensional i-vectors are extracted [12]
to achieve this goal. Another way of improving speaker dis-
criminant ability of an i-vector can be by suppressing speaker
irrelevant/nuisance components from it. In this study, diverting
our attention from the super-vectors, we attempt to model the
acoustic features using a factor analysis framework, and thereby
aim to reduce nuisance components in this domain.

Acoustic factor analysis has been previously explored in
the areas of speech recognition, speech production modeling,
etc. [13, 14]. In the speaker recognition community, this av-
enue has been somewhat unexplored from the popular belief
that cepstral feature coefficients can be modeled sufficiently
well by a diagonal covariance GMM model. However, full
covariance GMM models have shown to provide advantage in
speaker recognition system performance in recent studies [11],
confirming the fact that there are speaker discriminatory infor-
mation in the covariance structure of the acoustic features. Also,
in [15], it was shown that the first few directions obtained by the
Eigen-decomposition of the feature covariance matrix is mostly
speaker dependent, while other directions are phoneme depen-
dent, indicating that speaker relevant information lies in a lower
dimensional subspace of the acoustic features. These facts de-
mand a closer investigation of latent factor analysis modeling
in the acoustic feature space and develop strategies to possibly
represent speaker dependent information more compactly in the
current speaker recognition frame-work.

2. Proposed method
In this section we propose a factor analysis model of acoustic
features using a mixture of probabilistic principal component
analyzers (PPCA) [9] and discuss its integration within an i-
vector system framework.

2.1. Motivation

Our intuition is that the acoustic features currently used in
speaker recognition systems can be represented by a lower di-
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Figure 1: Analysis of the full covariance matrix of a UBM mixture trained using 60-dimensional MFCC feature (20 static+∆+∆∆).
(a) A 3-D surface plot of the covariance matrix showing high values in the diagonal and significant off-diagonal values indicating
correlation among different feature coefficients. (b) Sorted Eigenvalues of the same covariance matrix demonstrating that most of the
energy is accounted for by in the first few dimensions.

mensional subspace retaining necessary speaker discriminant
information [15]. To test this hypothesis, we train a 1024 mix-
ture full covariance Universal Background Model (UBM) using
60 dimensional Mel Frequency Cepstral Coefficient (MFCC)
features on a large background speech data set (details on fea-
tures and data are given in Sec. 3.1 and 3.2, respectively).
From an arbitrary component of this UBM, the covariance ma-
trix and distribution of its Eigenvalues is shown in Fig. 1. From
Fig. 1(a) it is clear that the full covariance matrix, while shows
strong diagonal terms, has significant non-zero off-diagonal el-
ements. This indicates that the feature coefficients are not fully
uncorrelated. Furthermore, Fig. 1(b) shows the sorted Eigen-
values of the same covariance matrix indicating that most of
it’s energy are accounted for by the first few dimensions only.
This shows that the acoustic space is indeed lower dimensional
and features can thus be further compacted by removing some
nuisance dimensions, while retaining speaker dependent infor-
mation.

2.2. Acoustic Factor Analysis (AFA)

Let X = {xn|n = 1 · · ·N} be the collection of all feature
vectors from the development set. Using a PPCA based factor
analysis model, x can be represented by,

x = Wy + µ+ ε. (1)

Here, x represents the d × 1 dimensional feature vector ob-
tained from X , W is a d × q low rank factor loading matrix
that represents q < d bases spanning the subspace with impor-
tant variability in the feature space, and µ is the d × 1 mean
vector of x. The latent variable vector y ∼ N (0, I), termed
acoustic factors, is of dimension q × 1 and ε ∼ N (0, σ2I) is
an isotropic noise vector modeling the residual variance. In this
PPCA model, the feature vectors are also normally distributed
such that, x ∼ N (µ, σ2I + WWT ).

This model of the acoustic features, however, is not so-
phisticated enough to capture the variations caused by different
phonemes uttered by multiple speakers in distinct noisy or chan-
nel degraded conditions and thus a mixture of PPCA (MPPCA)
models is required. In the MPPCA framework, a combination

of PPCA models are used such that,

p(x) =

M∑
i=1

wip(x|i), and (2)

p(x|i) = N (µi, σ
2
i I + WiW

T
i ) (3)

where µi, Wi and σi represent the mean vector, factor loading
matrix, and noise variance for the i-th PPCA model, respec-
tively. Our aim is to formulate a dimensionality reduction of
acoustic features using this mixture model.

2.3. Feature dimensionality reduction

An MPPCA model can be conveniently extracted from a GMM
trained using the Expectation-Maximization (EM) algorithm
[9]. Thus we utilize a full covariance UBM to derive the MP-
PCA model. To obtain the proposed feature dimensionality re-
duction transform, we proceed as follows:

2.3.1. Universal Background Model

First, a full covariance UBM model, λ0, is trained on the devel-
opment dataset X = {xn|n = 1 · · ·N}, given by,

p(x|λ0) =

M∑
i=1

wiN (µi,Σi) (4)

where wi represents the mixture weights, M is the total num-
ber of mixtures, µi are the mean vectors and Σi are the full
covariance matrices.

2.3.2. Noise estimation

Set the value of q, which defines the number of principal axes
we would like to select. In other words, we assume the lower
d − q dimensions of the features are not important. Using this
value of q, we find the noise variance for the i-th mixture as,

σ2
i =

1

d− q

d∑
j=q+1

λj (5)
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where λq+1 · · ·λd are the smallest eigenvalues of Σi. Thus, σ2
i

is the average variance lost per discarded dimension.

2.3.3. Compute the factor loading matrix

The maximum likelihood estimation of the factor loading ma-
trix Wi of the i-th mixture of the PPCA model in (2) is given
by,

Wi = U(i)
q (Λ(i)

q − σ2
i I)1/2R (6)

where U
(i)
q is a d × q matrix whose columns are the q leading

eigenvectors of Σi, Λ
(i)
q is a diagonal matrix that contains the

corresponding q eigenvalues, and R is a q× q arbitrary orthog-
onal rotation matrix (In this work, we set R = I).

2.3.4. Compute latent factors

For the i-th PPCA model, the dimensionality reduced version
of xn can be obtained from the posterior mean of y as:

E{y|xn, i} = 〈y(i)
n 〉 = M−1

i WT
i (xn − µi) (7)

where
Mi = (σ2

i I + WT
i Wi). (8)

Thus, we are essentially using 〈y(i)
n 〉 as a mixture dependent

transformed acoustic feature, instead of the original vectors xn.

2.4. Integration within the i-vector system

After feature extraction and UBM training, the first step of train-
ing a total variability matrix/i-vector extraction is estimating
the zero and first order Baum-Welch statistics. These statistics
are computed from acoustic features with respect to the UBM
model. Instead using the dimensionality reduction as a fron-
end processing and then retraining the UBM, as in case of PCA
or Heteroscedastic Linear Discriminant Analysis (HLDA) [8],
we apply our feature transformation directly on the first order
statistics. This also eliminates the premature alignment of xn

to a specific mixture and thus utilizes the full potential of the
probabilistic model. For an utterance S, the zero order statistics
is extracted as,

NS(i) =
∑
n∈S

γi(n),where γi(n) = p(i|xn). (9)

Using the proposed scheme, the first order statistics FS(i), is
extracted using the dimensionality reduced feature vectors in
the corresponding mixtures instead of the acoustic features.

FS(i) =
∑
n∈S

γi(n)〈y(i)
n 〉 =

∑
n∈S

γi(n)M−1
i WT

i (xn − µi)

= M−1
i WT

i

∑
n∈S

γi(n)(xn − µi) (10)

As expected, this is simply a transformed version of the central-
ized first order statistics [12]. From Eq. (7), it can be shown that
for the Gaussian component i, the transformed features 〈y(i)

n 〉
follow a normal distribution with zero mean and diagonal co-
variance matrix of I−σ2

i Λ
(i)−1

q . The derivation is given below.

Let zn = 〈y(i)
n 〉 indicate the transformed feature vector

conditioned on the i-th mixture component. Dropping the sub-

scripts i, we have the mean vector of zn,

µzn = E{〈yn〉}
= E{M−1WT (xn − µ)} = 0

and its covariance matrix,

Σzn = E{znzn
T } − µznµzn

T

= M−1WTE{(xn − µ)(xn − µ)T }WM−T

= M−1WTΣWM−T . (11)

From (8), we substitute the value of W from (6) and obtain,

M = σ2I + WTW

= σ2I + (Λq − σ2I)T/2Uq
TUq(Λq − σ2I)1/2

= σ2I + (Λq − σ2I) = Λq. (12)

Here, we use R = I and utilize the fact that all the matrices are
diagonal and thus symmetric. Substituting the value of M from
(12), W from (6), and using the relation Uq

TΣUq = Λq , in
(11) we have,

Σzn = Λq
−1(Λq − σ2I)T/2Λq(Λq − σ2I)1/2Λq

−T

= (Λq − σ2I)Λq
−T

= I− σ2Λq
−1. (13)

Since the posterior means of the acoustic factors yn is used
as mixture dependent features, the the UBM λ0 is replaced by
a transformed UBM model λAFA

0 , that follows the distribution
of zn. Even though it is not strictly a correct expression, for
convenience, we write the new UBM equation as,

p(z|λAFA
0 ) =

M∑
i=1

wiN (0, I− σ2
i Λ(i)

q

−1
). (14)

This is similar to the approach in [12], when UBM is normal-
ized to zero means and identity covariance matrices. However,
in [12] the goal was to simplify the i-vector system procedure
while in this work, we are performing feature transformation
and dimensionality reduction. The proposed normalization of
the UBM should not be interpreted such that (14) refers to a
GMM model for which all the mean vectors are zero and thus
the mixtures are on top of each other. Eq. (14) simply indicates
how the UBM parameters should be modified. The posterior
probabilities of the mixture i are calculated using the original
feature vectors xn and UBM λ0, not zn and UBM λAFA

0 . The
rest of the i-vector system procedure exactly follow the conven-
tional approach, except: (i) feature dimension is now q instead
of d and (ii) UBM model is λAFA

0 instead of λ0.

3. Experiments
We perform our experiments on the male trials of NIST SRE
2010 telephone train/test condition (condition 5, normal vocal
effort). Different blocks of the baseline system implementation
and the details of the proposed scheme is described below.

3.1. Feature Extraction

For voice activity detection (VAD), a phoneme recognizer [16]
and energy based scheme is used. A 60-dimension feature vec-
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tor (19 MFCC +Energy+∆+∆∆) is extracted, using a 25 ms
analysis window with 10 ms shift and filtered by feature warp-
ing using a 3-s sliding window [17].

3.2. UBM Training

A gender dependent full-covariance UBM with 1024 mixtures
were trained on utterances selected from Switchboard II Phase
2 and 3, Switchboard Cellular Part 1 and 2, and the NIST 2004,
2005, 2006 SRE enrollment data. We used the HTK toolkit for
training with 15 iterations per mixture split. The main diagonal
of the full covariances were floored to 10−5 using the -v option
in HTK HERest toolkit.

3.3. Acoustic Factor Analysis

For three different runs, we set the AFA parameter q to 54, 48
and 42, to reduce feature dimensionality from d = 60 to q.
For each value of q, the procedure from Sec. 2.3 is followed
to compute the transformation matrices for each mixture of the
UBM. No transformation was used in the baseline system.

3.4. Total variability modeling

For the total variability (TV) matrix training, the UBM training
dataset is utilized. i-vector dimension was set to 400. All i-
vectors are first whitened and then length normalized [18]. Five
iterations were used for the EM training.

3.5. Channel Compensation and Scoring

A Gaussian probabilistic linear discriminant analysis (PLDA)
model with a full-covariance noise process is used for session
variability compensation and scoring [18]1. In this generative
model, an R dimensional i-Vector ws extracted from a speech
utterance s is expressed as:

ws = w0 + Φβ + n (15)

where w0 is an R × 1 speaker independent mean vector, Φ is
the R × NEV rectangular matrix representing a basis for the
speaker-specific subspace/eigenvoices, β is an NEV × 1 latent
vector having a standard normal distribution, and n is theR×1
random vector representing the full covariance residual noise.
The only model parameter here is the number of eigenvoices
NEV , that is the number of columns in the matrix Φ. I-vectors
extracted from the UBM dataset is once again used for PLDA
training.

4. Results
Here, we vary the number of Eigenvoices NEV , in the PLDA
model from 50 to 300 in 50 step increments. The performance
metrics used are %EER, normalized minimum Detection Cost
Function (DCF) proposed in NIST SRE 2008 (MinDCFold) [19]
and NIST SRE 2010 (MinDCFnew) [20]. The results are sum-
marized in Fig. 2 and Table 1.

From the results we observe that for all values of q and
NEV , the proposed system performs significantly better than
the baseline system. For q = 48 and NEV = 100 we achieve

1We would like to thank Daniel Garcia-Romero from Univer-
sity of Maryland for providing us with the Gaussian PLDA software
(https://sites.google.com/site/dgromeroweb/software).
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Figure 2: Performance comparison between proposed AFA
and baseline i-vector system with respect to (a) %EER, (b)
MinDCFold and (c) MinDCFnew for different Eigenvoice sizes.

the best EER performance of 2.15%. For NEV = 200 and q =
48, the proposed scheme achieves 20.35%, 17.97% and 9.16%
relative improvement in EER, MinDCFold and MinDCFnew, re-
spectively, compared to baseline. This indicates that the pro-
posed transformation in the acoustic features was successfully
able to reduce some nuisance directions in the feature space pro-
ducing i-vectors with better speaker discriminating ability. We
observed that using a smaller value of q starts degrading the sys-
tem performance. Simple equal-weight linear fusion of baseline
and multiple AFA systems results in further performance gain,
as shown in Table 2, reaching the best EER of 1.94%. In this
fusion, the only calibration performed is mean and variance nor-
malization to (0,1) for the individual sub-systems.

5. Conclusions
In this study, we have proposed an alternate modeling technique
to address and compensate for transmission channel mismatch
in speaker recognition. We have developed a dimensionality re-
duction transform for acoustic features using a factor analysis
model derived from a full-covariance UBM. Instead of apply-
ing as a front-end processing, the proposed transform has been
integrated within an i-vector speaker recognition framework.
Experimental results have demonstrated the superiority of the
proposed scheme compared to the baseline i-vector system.
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