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Abstract
The degradation in performance of a typical speaker verification
system in noisy environments can be attributed to the mis-match
in the features derived from clean training and noisy test con-
ditions. The mis-match is severe in low-energy regions of the
signal where noise dominates the speech signal. A robust fea-
ture extraction scheme should focus on the high-energy peaks
in the time-frequency region. In this paper, we develop a signal
analysis technique which attempts to model these high-energy
peaks using two-dimensional (2-D) autoregressive (AR) mod-
els. The first AR model of the sub-band Hilbert envelopes is de-
rived using frequency domain linear prediction (FDLP). Then,
these all-pole envelopes from each sub-band are converted to
short-term energy estimates and the energy values across vari-
ous sub-bands are used as a sampled power spectral estimate for
the second AR model. The output prediction coefficients from
the second AR model are converted to cepstral coefficients and
are used for speaker recognition. Experiments are performed
using noisy versions of NIST 2010 speaker recognition evalua-
tion (SRE) data with the state-of-art speaker recognition system.
In these experiments, the proposed features provide significant
improvements compared to baseline MFCC features (relative
improvements of30%). We also experiment on a large data-
set of IARPA NIST 2011 speaker recognition challenge, where
the 2-D AR model provides noticeable improvements (relative
improvements of15− 20%).

1. Introduction
Speaker recognition in noisy environments continues to be a
challenging problem mainly due to the mis-match in speech
data from training and test. One common solution to overcome
this mis-match is the use of multi-condition training [1] where
the speaker models are trained using data from the target do-
main. However, in a realistic scenario it is not always possi-
ble to obtain reasonable amounts of training data from all types
of noisy and reverberant environments for training the speaker
models. Therefore, there is a need to attain noise robustness ei-
ther at the front-end signal analysis or at the statistical speaker
models. In this paper, we address the robustness issues in fea-
ture extraction.

Various techniques like spectral subtraction [2], Wiener fil-
tering [3] and missing data reconstruction [4] have been pro-
posed for noisy speech recognition scenarios. Feature compen-
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sation techniques have also been used in the past for speaker
verification systems (for example, feature warping [5], RASTA
processing [6] and cepstral mean subtraction (CMS) [7]). How-
ever, the mel frequency cepstral coefficients (MFCC) [8] with
mean and variance normalization or feature warping continue to
represent the common front-end analysis scheme in state-of-art
speaker recognition systems.

When speech is corrupted with additive noise, the valleys
in the sub-band envelopes are filled with noise. Even with mod-
erate amounts of noise, the low-energy regions are substantially
modified and cause acoustic mis-match with the clean training
data. Thus, a robust feature extraction scheme must rely on
the high energy regions in the spectro-temporal plane. In gen-
eral, an autoregressive (AR) modeling approach represents high
energy regions with good modeling accuracy [9, 10]. One di-
mensional AR modeling of signal spectra is widely used for fea-
ture extraction of speech [11]. In the past, one dimensional AR
modeling of Hilbert envelopes have also been used for speaker
verification [12]. 2-D AR modeling was originally proposed
for speech recognition by alternating the AR models between
spectral and temporal domains [13].

In this paper, we propose a feature extraction technique
based on two-dimensional (2-D) spectro-temporal AR models.
The initial model is the temporal AR model based on frequency
domain linear prediction [14, 15]. The FDLP model is derived
by the application of linear prediction on the discrete cosine
transform (DCT) of the sub-band speech signal. We use an ini-
tial sub-band decomposition of96 sub-bands in a linear scale.
The sub-band FDLP envelopes are integrated in short-term seg-
ments to obtain sub-band energy estimates. In each short-term
frame, the energy values across the sub-bands form a sampled
power spectral density (PSD) estimate. The inverse Fourier
transform of this PSD provides autocorrelations which are used
for the spectral AR model. The prediction coefficients from the
second AR model are converted to cepstral coefficients using
the cepstral recursion [16]. These cepstral parameters are used
as features for speaker recognition.

Experiments are performed on core conditions of NIST
2010 SRE data [17]. The speaker recognition system is
based on Gaussian mixture model-universal background model
(GMM-UBM). We use factor analysis methods on the GMM
supervectors [18] with i-vector probabilistic linear discriminant
analysis (PLDA) for score computation [19]. In order to deter-
mine the noise robustness of the speaker recognition, we use
data from condition2 (interview mic-training with interview
mic-testing) of SRE 2010 data added with various noise types
and signal-to-noise rations. The choice of condition 2 is mo-
tivated in part by the potential application of speaker recogni-
tion technologies on handheld devices with distant microphones
in noisy environments. In these experiments, the proposed 2-
D AR model provides considerable improvements compared to
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Figure 1:Illustration of AR modeling in time and frequency domain - (a) a portion of voiced speech, (b) power spectrum, (c) AR model
of power spectrum obtained from TDLP, (d) Hilbert envelope and (e) AR model of Hilbert envelope using FDLP.

the conventional MFCC system (relative improvements of about
30%).

We also measure the performance of these speaker verifi-
cation systems on a large data-set from IARPA BEST evalua-
tion challenge 2011 [20]. The speech data in these evaluations
contain a wide variety of intrinsic variabilities (within speaker
variations like vocal effort), extrinsic variabilities (include dif-
ferences in room acoustics, noise level, sensor differences and
speech coding) and parameter variabilities (variations to differ-
ent languages, aging factors etc). In these evaluations, the pro-
posed 2-D model outperforms the MFCC system in most of the
testing conditions (relative improvements of15− 20%).

The rest of the paper is organized as follows. In Sec. 2,
we outline the linear prediction approaches in the spectral and
temporal domain. Sec. 3 details the proposed feature extraction
scheme using 2-D AR model. Sec. 4 describes our experimental
setup used for the NIST 2010 SRE. The results of these evalua-
tions are reported in Sec. 5. Sec. 6 describes the speaker recog-
nition experiments using the IARPA BEST database. In Sec. 7,
we conclude with a brief discussion of the proposed front-end.

2. AR Modeling in Time and Frequency

2.1. Spectral AR model - TDLP

Spectral AR modeling has been widely used in speech and audio
signal processing for about four decades now [9, 10]. Letx[n]
denote the input signal forn = 0, ... , N − 1. The time domain
LP model is to identify the set of coefficientsaj , j = 1, ... , p
such that

∑p

j=1
ajx[n− j] approximatesx[n] in a least square

sense [9], wherep denotes the model order.

Let rx[τ ] denote the autocorrelation sequence for time do-

main signalx[n] with lagτ ranging from−N + 1, ... , N − 1.

rx[τ ] =
1

N

N−1
∑

n=|τ |
x[n]x[n− |τ |] (1)

Let x̂[n] denote the zero-padded signalx̂[n] = x[n], n =
0, .., N−1 andx̂[n] = 0, for n = N, .., 2N−1. The relation
between the power spectrum of the zero-padded signalPx[k] =

|X̂[k]|2 and the autocorrelationrx[τ ] is given by,

Px[k] = F
[

rx[τ ]
]

(2)

whereX̂[k] is the discrete Fourier transform (DFT) of the sig-
nal x̂[n] for k = 0, ... , 2N − 1. This relation is used in the AR
modeling of the power spectrum of the signal [10]. Time do-
main linear prediction (TDLP) refers to the use of time domain
autocorrelation sequence to solve the linear prediction problem.
The optimal set ofaj along with the variance of prediction error
G anda0 = 1 provides an AR model of the power spectrum,

P̂x[k] =
G

|
∑j=p

j=0
aje−i2πjk|2

(3)

An illustration of AR model of power spectrum obtained from
TDLP is shown in Fig. 1, where we plot the original power spec-
trum in (b) for a250 ms portion of speech signal in (a). The
TDLP approximation of the power spectrum in shown in Fig. 1
(c). We use a model order of40.

2.2. Temporal AR model - FDLP

Linear prediction in the spectral domain was first proposed by
Kumaresan [14]. The analog signal theory is used for develop-
ing the concept and the extension of the solution for a discrete-
sample case is provided. This was reformulated by Athineos
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Figure 2:Block schematic of the proposed feature extraction using 2-D AR modeling.

and Ellis [15] using matrix notations and the connection with
DCT sequence is established. In this paper, we derive the
discrete-time relations underlying the FDLP model without us-
ing matrix notations. We begin with the definition of analytic
signal (AS). Then, we show the Fourier transform relation be-
tween the squared magnitude of AS, a.k.a. Hilbert envelope and
the autocorrelation of DCT signal. This would mean that linear
prediction in DCT domain can be used for AR modeling of the
Hilbert envelope of the signal.

In a discrete-time case, an “analytic” signal (AS)xa[n] can
be defined using the following procedure [21]-

1. Compute the N-point DFT sequenceX[k]

2. Find the N-point DFT of the AS as,

Xa[k] =



















X[0] for k = 0

2X[k] for 1 ≤ k ≤ N
2
− 1

X[N
2
] for k = N

2

0 for N

2
+ 1 ≤ k ≤ N

(4)

3. Compute the inverse DFT ofXa[k] to obtainxa[n]

We assume that the discrete-time sequencex[n] has a zero-
mean property in time and frequency domains, i.e.,X[0] =
0 andx[0] = 0 respectively. This assumption is made so as
to give a direct correspondence between the DCT of the signal
and DFT. Further, these assumptions are mild and can be easily
achieved by appending a zero in the time-domain and removing
the mean of the signal.

The type-I odd DCTy[k] of a signal fork = 0, ... , N − 1
is defined as [23]

y[k] = 4

N−1
∑

n=0

cn,kx[n] cos
(2πnk

M

)

(5)

where the constantsM = 2N − 1, cn,k = 1 for n, k > 0 and
cn,k = 1

2
for n, k = 0 andcn,k = 1√

2
for the values ofn, k,

where only one of the index is0. The DCT defined by Eq. 5 is
a scaled version of the original orthogonal DCT with a factor of
2
√
M .

We also define the even-symmetrized versionq[n] of the
input signal,

q[n] =

{

x[n] for n = 0 , .., N − 1

x[M − n] for n = N, ... ,M − 1
(6)

A important property ofq[n] is that it has a real spectrum given
by,

Q[k] = 2

N−1
∑

n=0

x[n] cos
(2πnk

M

)

(7)

for k = 0, ... ,M − 1.
For signals with the zero-mean property in time and fre-

quency domains, we can infer from Eq. 5 and Eq. 7 that,

y[k] = 2Q[k] (8)

for k = 0, ... , N − 1. Let ŷ denote the zero-padded DCT
with ŷ[k] = y[k] for k = 0, ... , N − 1 and ŷ[k] = 0 for
k = N, ... ,M−1. From the definition of Fourier transform of
the analytic signal in Eq. 4, and using the definition of the even
symmetric signal in Eq. 6, we find that,

Qa[k] = ŷ[k] (9)

for k = 0, ... ,M − 1. This says that the AS spectrum of the
even-symmetric signal is equal to the zero-padded DCT signal.
In other words, the inverse DFT of the zero-padded DCT signal
is the even-symmetric AS. Since the auto-correlation of signal
x[n] is related to the power spectrum|X̂[k]|2 (Eq. 2), we can
obtain a similar relation to the auto-correlation of the DCT se-
quence.

The auto-correlation of the DCT is signal defined as (simi-
lar to Eq. 1),

ry[τ ] =
1

N

N−1
∑

k=|τ |
y[k]y[k − |τ |] (10)

From Eq. 9, the inverse DFT of zero-padded DCT signalŷ[k] is
the AS of the even-symmetric signal. It can be shown that,

ry[τ ] =
1

N

M−1
∑

n=0

|qa[n]|2e−j 2πnτ

M (11)
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Figure 3:Comparing mel spectrogram with 2-D AR model spectrogram - (a) a portion of clean speech, (b) a portion of noisy speech
(babble noise at 10 dB), (c) Mel spectrogram of clean speech, (d) Mel spectrogram of noisy speech (e) 2-D AR model spectrogram of
clean speech and (f) 2-D AR model spectrogram of noisy speech.

i.e., the auto-correlation of the DCT signal and the squared mag-
nitude of the AS (Hilbert envelope) of the even-symmetric sig-
nal are Fourier transform pairs. This is exactly dual to the re-
lation in Eq. 2. In other words, we have established that AR
modeling of Hilbert envelope can be achieved by linear predic-
tion of DCT components. The AR modeling property of FDLP
is illustrated in Fig. 1 where we plot the discrete time Hilbert
envelope of the signal in (d) and the FDLP envelope in (e) us-
ing a model order of40. As seen in this figure, the temporal
AR model provided by FDLP is dual to the spectral AR model
provided by TDLP.

3. 2-D AR Modeling
The block schematic for the proposed feature extraction is
shown in Fig. 2. Long segments of the input speech signal (10s
of non-overlapping windows) are transformed to the frequency
domain using a DCT [12]. The full-band DCT signal is win-
dowed into a set of96 linear sub-bands in the frequency range
of 125-3800 Hz [22]. This choice of10s windows with96 sub-
bands was obtained using speaker recognition experiments on
NIST-2008 SRE [12]. In each sub-band, linear prediction is ap-
plied on the sub-band DCT components to estimate an all-pole
representation of Hilbert envelope. We use a model order of30
poles per sub-band per second. At the output of this stage we
obtain the temporal AR model. The FDLP envelopes in each
sub-band are integrated in short-term frames (25ms with a shift
of 10ms). The output of the integration process provides an es-
timate of the power spectrum of signal in the short-term frame
level. The frequency resolution of this power spectrum is equal
to the initial sub-band decomposition of96 bands.

The power spectral estimates from the short-term integra-
tion are inverse Fourier transformed to obtain an autocorrelation
sequence. This autocorrelation sequence is used for TDLP with
a model order of12 in order to derive13 cepstral coefficients.
The TDLP model provides an all-pole approximation of the96
point short-term power spectrum. The output LP parameters of
this AR model are transformed to13 dimensional cepstral co-
efficients using the standard cepstral recursion [16]. Delta and
acceleration coefficients are extracted to obtain39 dimensional
features which are used for speaker recognition.

In Fig. 3, we show the spectrographic representation of
clean and noisy speech (babble noise at 10dB) using the mel-
spectrogram as well as the 2-D AR model based spectrogram.
As shown in this figure, the conventional mel-spectrogram is
modified significantly due to the presence of additive noise
(Fig. 3 (c) and (d)) which will cause a mis-match between the
clean training and noisy test conditions. The 2-D AR model
spectrogram is relatively more robust compared to Mel spectro-
gram ((Fig. 3 (e) and (f)). When features are derived from 2-D
AR model, the mis-match between clean and noisy conditions
is reduced.

4. Experimental Setup
We use a GMM-UBM based speaker verification system [24].
The input speech features are feature warped [5] and gender de-
pendent GMMs with1024 mixture components are trained on
the development data. The development data set consists of a
combination of audio from the NIST 2004 speaker recognition
database, the Switchboard II Phase 3 corpora, the NIST 2006
speaker recognition database, and the NIST08 interview devel-
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Table 1: EER (%) and False Alarm (%) at 10% Miss Rate (Miss10) in parantheses for core evaluation conditions in NIST 2010 SRE.

Cond. MFCC-baseline 2-D AR Feat.
1. Int.mic - Int.mic-same-mic. 2.1 (0.1) 1.8 (0.1)
2. Int.mic - Int.mic-diff.-mic. 3.0 (0.5) 2.7 (0.3)

3. Int.mic - Phn.call-tel 3.8 (0.9) 3.8 (0.9)
4. Int.mic - Phn.call-mic 3.4 (0.5 ) 2.9 (0.3)

5. Phn.call - Phn.call-diff.-tel 2.9 (0.5) 3.6 (0.9)
6. Phn-call - Phn.call-high-vocal-effort-tel 4.5 (1.5) 5.3 (2.5)
7. Phn-call - Phn.call-high-vocal-effort-mic 7.6 (4.9) 4.6 (1.9)
8. Phn-call - Phn.call-low-vocal-effort-tel 1.9 (0.2) 2.9 (0.6)
9. Phn-call - Phn.call-low-vocal-effort-mic 1.8 (0.1) 1.5 (0.1)

Table 2: EER (%) and False Alarm (%) at 10% Miss Rate
(Miss10) in parantheses for condition2.

Noise SNR (dB) MFCC-baseline 2-D AR Feat.

Babble

20 3.8 (0.8) 3.3 (0.5)
15 4.8 (1.6) 4.0 (0.8)
10 7.2 (4.5) 5.9 (2.6)
5 12.0 (15.2) 10.3 (10.6)

Exhall

20 3.7 (0.8) 3.1 (0.5)
15 4.3 (1.3) 3.7 (0.7)
10 5.9 (2.9) 5.1 (1.6)
5 9.4 (8.7) 7.9 (5.7)

Restaurant

20 3.6 (0.8) 3.2 (0.5)
15 4.3 (1.3) 3.8 (0.8)
10 6.0 (2.9) 5.2 (1.9)
5 9.4 (8.8) 8.4 (6.5)

opment set. There are4324 male recordings and5461 female
recordings in development set.

Once the UBM is trained, the mixture component means
are MAP adapted and concatenated to form supervectors. We
use the i-vector based factor analysis technique [18] on these
supervectors in a gender dependent manner. For the factor anal-
ysis training, we use the development data from Switchboard II,
Phases 2 and 3; Switchboard Cellular, Parts 1 and 2, NIST04-
05 and extended NIST08 far-field data. There are17130 male
recordings and21320 female recordings in this sub-space train-
ing set. Gender specific i-vectors of450 dimensions are ex-
tracted and these are used to train a PLDA system [19]. The
output scores are obtained using a250 dimensional PLDA sub-
space for each gender.

5. Results on NIST 2010 SRE
The proposed features are used to evaluate the core conditions
of the NIST 2010 speaker recognition evaluation (SRE) [17].
We do not apply any front-end processing like Wiener filtering
on any of these techniques. There are9 conditions in the NIST
2010 which are described in Table 1. The baseline features con-
sist of39 dimensional MFCC features [8] containing13 cepstral
coefficients, their delta and acceleration components. These
features are computed on25ms frames of speech signal with
a shift of10ms. We use37 Mel-filters in the frequency range of
125-3800 Hz for the baseline features.

The performance metric used is the EER (%) and the false-
alarm rate at a miss-rate of10 % (Miss10). The Miss10 is an
useful metric for variety of applications in which a low false-

alarm rate is desired. The speaker recognition results for the
baseline system as well as the proposed 2-D AR features is
shown in Table 1. From these results, it can be seen that the
proposed 2-D features provides good improvements in mis-
matched far-field microphone conditions like Cond. 1,2 7 and
9). In these conditions the modeling of high-energy regions
in time-frequency domain is beneficial. However, the base-
line MFCC system performs well in telephone channel matched
conditions (Cond. 5, 6 and 8). The degradation in Cond. 5, 6
and 8 may be attributed to narrow sub-band (96) analysis [12],
where the corresponding temporal envelopes have lower reso-
lution compared to a wide-band analysis.

For evaluating the robustness of these features in noisy con-
ditions, the test data for Cond-2 is corrupted using (a) babble
noise, (b) exhibition hall noise, and (c) restaurant noise from
the NOISEX-92 database, each resulting in speech at 5, 10, 15
and 20 dB SNR. These noises are added at various SNRs using
the FaNT tool [25]. The generation of the noisy version of the
test data is done using the setup described in [26]. The choice of
condition-2 is motivated in part by speaker recognition applica-
tions in far-field noisy environments. Further, the IARPA BEST
evaluation [20] also targets noisy data recorded using interview
microphone. Condition-2 has the highest number of trials in
the NIST 2010 SRE evaluation with2.8M trials and it contains
2402 enrollment recordings and7203 test recordings. Enroll-
ment data is the NIST 2010 clean speech data and voice-activity
decisions provided by NIST are used in these experiments. For
these noisy speaker recognition experiments, the GMM-UBM,
i-vector and the PLDA sub-spaces trained from the development
data are used without any modification.

The results of noisy speaker recognition experiments is
shown in Table. 2. The results of the proposed features are
consistently better than the baseline feature for all noise types
and signal-to-noise-ratios. On the average, the proposed fea-
tures provide about35 % relative Miss10 improvement over
the baseline MFCC system. These improvements are mainly
due to the robust representation of the high energy regions by
two dimensional AR modeling. When the signal is distorted by
noise, these peaks are relatively well preserved and therefore the
speaker recognition system based on these features outperforms
the MFCC baseline system.

6. Results on BEST 2011 Challenge

The speaker verification systems outlined in the previous sec-
tion are used for a speaker verification task using the IARPA
BEST 2011 data [20]. The database contains83198 record-
ings (25822 enrollment utterances and57376 test utterances)
with a wide-variety of intrinsic and extrinsic variabilities like
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Table 3: False Alarm (%) at 10% Miss Rate (Miss10) for evaluation conditionsin IARPA BEST 2011 task.

Cond. MFCC-baseline 2-D AR Feat.
1. Int.mic - Int.mic-noisy. 15.5 11.3
2. Int.mic - Phn-call-mic 3.7 2.8
3. Int.mic - Phn.call-tel 3.3 2.8

4. Phn-call-mic - Phn.call-mic 7.4 6.7
5. Phn.call-mic - Phn.call-tel 7.5 6.3
6. Phn.call-tel - Phn.call-tel 1.3 1.8

language, age, noise and reverberation. There are38M trials
which are split into various conditions as shown in Table 3.
Condition 1 contains majority of the trials (20M trials) recorded
using interview microphone data with varying amounts of addi-
tive noise and artificial reverberation. We use the GMM-UBM
and factor analysis models trained using the development data
(Sec. 4) for these experiments. For these speaker recognition
experiments, we use the automatic voice activity decision ob-
tained using multi-layer-perceptrons [27].

The performance (Miss10)1 for the baseline MFCC system
is compared with proposed features in Table 3. In these exper-
iments, the proposed features provide noticeable improvements
for all conditions except the matched telephone scenario (Cond.
6). On the average, the proposed features provide improvements
of about18% in the Miss10 metric relative to the baseline sys-
tem.

7. Summary
In this paper, we have proposed a two-dimensional autoregres-
sive model for robust speaker recognition. An initial tempo-
ral AR model is derived from long segments of the speech sig-
nal. This model provides Hilbert envelopes of sub-band speech
which are integrated in short-term frames to obtain power spec-
tral estimates. These estimates are used for a spectral AR mod-
eling process and the output prediction coefficients are con-
verted to cepstral parameters for speaker recognition. These
features can be regarded as Linear Prediction Cepstral Coef-
ficients (LPCC) obtained using FDLP based energy estimates.
Various experiments are performed with noisy test data on NIST
2010 SRE where the proposed features provide significant im-
provements. These results are also validated using a large
speaker recognition dataset from BEST. The results are promis-
ing and encourage us to pursue the problem of joint 2-D AR
modeling instead of a separable time and frequency linear pre-
diction schemes adopted in this paper.
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