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Abstract

This paper proposes a framework for spectral enhancement of
reverberant speech based on inversion of the modulation trans-
fer function. All-pole modeling of modulation spectra of clean
and degraded speech are utilized to derive the linear prediction
inverse modulation transfer function (LP-IMTF) solution as a
low-order IIR filter in the modulation envelope domain. By con-
sidering spectral estimation under speech presence uncertainty,
speech presence probabilities are derived for the case of rever-
beration. Aside from enhancement, the LP-IMTF framework
allows for blind estimation of reverberation time by extract-
ing a minimum phase approximation of the short-time spectral
channel impulse response. The proposed speech enhancement
method is used as a front-end processing step for speaker recog-
nition . When applied to the microphone condition of the NIST-
SRE 2010 with artificially added reverberation, the proposed
spectral enhancement method yields significant improvements
across a variety of performance metrics.

1. Introduction
When observed in an enclosed environment, speech signals will
generally experience distortion due to reverberation, which is
caused by multi-path propagation of sound from source to sen-
sor. Human intelligibility was been widely shown to degrade in
the presence of reverberation [1], as has the performance of au-
tomated speech systems such as automatic speech recognition
(ASR) and speaker recognition [2]. It is therefore of interest to
enhance spectra of reverberant speech.

The concept of the modulation transfer function (MTF) is
introduced by Houtgast and Steeneken in [1] to characterize the
acoustic channel encountered when observing speech within an
enclosed space. Specifically, they explore the effect of reverber-
ation on the modulation index of the intensity envelope for an
input signal, and the resulting effect on speech intelligibility.

In [3], Langhans and Strube aim to suppress acoustic distor-
tion by inverting the magnitude of the MTF in order to reshape
the modulation spectrum of degraded speech. The inverse mod-
ulation transfer function (IMTF) filter has since been explored
as a means by which to suppress the effects of adverse acoustic
environments on speech signals, thereby improving perceptual
quality of resynthesized speech. In [4]-[6], modulation filters
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are designed to invert an exponentially decaying model of the
acoustic channel impulse response. In [7]-[11], the authors de-
sign data-driven modulation filters according to the minimum
mean-square error (MMSE) criterion. While improvements in
perceptual quality are observed in these cases, the studies re-
quire oracle information regarding the room impulse response.

In this paper, we propose a method for spectral enhance-
ment of reverberant speech based on inversion of the modula-
tion transfer function. We discuss the MTF, and its behavior for
speech with convolutional distortion. We utilize all-pole mod-
eling of modulation spectra of clean and degraded speech to
derive the LP-IMTF filter, and implement it as a low-order IIR
filter in the modulation envelope domain. The proposed method
adapts to current acoustic conditions and therefore does not re-
quire oracle knowledge of the room impulse response. To im-
prove reverberation suppression within inactive time-frequency
speech regions, we explore spectral estimation under speech
presence uncertainty, and derive speech presence probabilities
for the case of reverberation. Although the proposed spectral
enhancement method is applicable to a variety of applications,
in this study it is applied as a pre-processing step for speaker
recognition of reverberant speech.

Inferring the severity of acoustic distortion in an observed
speech signal is useful for many applications. Whereas estima-
tion of signal-to-noise ratio for additive background noise has
been widely studied, eg. [12], blind estimation of reverberation
time remains an important topic. In [13] and [14], reverberation
time is estimated by locating abrupt stops in speech and analyz-
ing decay rates in short-time subband energy envelopes. In [15],
the authors present a data-driven system using a support vector
machine. In this paper, we present a method for blind estimation
of reverberation time based on the LP-IMTF framework. Us-
ing linear prediction of short-time spectral energy envelopes, a
minimum phase approximation of the short-time spectral chan-
nel impulse response is determined, from which the reverbera-
tion decay time can be extracted. Blind estimation of reverber-
ation time can utilized for designing condition-adaptive speaker
recognition systems, which is a topic of future work.

This paper is organized as follows. In Sec. 2, the LP-IMTF
filtering framework is proposed, and spectral estimation under
speech uncertainty is discussed. Sec. 3 presents blind estima-
tion of reverberation time. Sec. 4 includes experimental results
for speaker recognition of reverberant speech. Finally, conclu-
sions and future work are provided in Sec. 5.
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2. The Linear Prediction Inverse
Modulation Transfer Function (LP-IMTF)

Filter

2.1. The Modulation Envelope Domain

A discrete speech signal observed in a reverberant environment
can be expressed as

y (n) =
∞
X

l=0

h (l) x (n− l) (1)

wherex (n) is the underlying clean speech andh (n) is the
causal room impulse response. Short-time spectral analysis
of y (n) reveals channel-specific trajectories of spectral mag-
nitudes along time, i.e. modulation envelopes. When applying
short-time spectral analysis, the relationship from (1) becomes
difficult to express mathematically, and instead short-time spec-
tra are approximated as [3],[9]

|Yk (m)| =

∞
X

l=0

|Hk (l)| |Xk (m− l)| (2)

whereXk (m) andYk (m) denote the short-time Fourier trans-
forms (STFTs) ofx (n) andy (n), respectively.Hk (m) char-
acterizes the inter-frame effect of reverberation, and1 ≤ k ≤
Nch andm ≥ 0 refer to the channel and time index, respec-
tively. In this study, we assume thatHk (0)=1. From (2),
the effect of reverberation along short-time spectral envelopes
is modeled as a channel-wise convolution. To capture the
“smeared” nature typically observed in spectrograms of rever-
berant speech,|Hk (m) | is generally defined as a causal low-
pass envelope. The decay rate of|Hk (m) | is then related to re-
verberation time, which is commonly measured ast60, i.e. the
time required forh (n) to attenuate by60 dB. It should be noted
that there exist a multitude of parameters which can be used to
characterize room impulse responses. However, throughout this
study we utilizet60 to efficiently summarize the severity of re-
verberation.

2.2. The Modulation Spectral Domain

In the case of mild reverberation, when the room impulse re-
sponse is short in duration relative to the short-time analysis
window, (2) can be reduced to|Yk (m) | ≈ |Hk (0) ||Xk (m) |,
which has been used to motivate frame-based compensation
techniques such as cepstral mean and variance normalization
(CMVN) [16]. However, for reverberation which is more se-
vere, distortion in (2) is a function of past short-time spectra,
and frame-based algorithms may not be effective. To compen-
sate for such effects, we look to leverage the inter-frame rela-
tionships of speech via the modulation spectrum and obtain an
enhanced short-time spectrum,|X̂k (m) |.

The modulation spectrum is the frequency decomposition
of an energy envelope extracted from a subband signal [17]. In
this study, we define the modulation spectrum as

MY,k (ω) =

∞
X

m=−∞

|Yk (m)| exp (−jωm) (3)

with analogous terms defined forXk (m) andHk (m). Using
(2) and (3), the modulation spectrum ofYk (m) becomes

MY,k (ω) =

∞
X

m=−∞

∞
X

l=0

|Hk (l) ||Xk (m− l) | exp (−jωm)

=
∞
X

l=0

|Hk (l)| exp (−jωl)

×
∞
X

m=−∞

|Xk (m− l)| exp (−jω (m− l))

=MH,k (ω)MX,k (ω) (4)

revealing reverberation to induce a multiplicative distortion in
the modulation spectral domain.

2.3. The LP-IMTF Filter

As proposed by Langhans and Strube in [3], the modulation
spectrum of a degraded signal can be reshaped by inverse filter-
ing the MTF. We aim to design an IMTF filter,Fk (ω), whose
magnitude frequency response is given by

|Fk (ω)| = |MH,k (ω)|−1 =

˛

˛

˛

˛

MX,k (ω)

MY,k (ω)

˛

˛

˛

˛

(5)

Here, knowledge regarding|MY,k (ω) | can be extracted from
the observed speech signal, whereas the underlying|MX,k (ω) |
is unknown and must be learned from training data. We pro-
pose to use all-pole models of these modulation spectra during
implementation of the IMTF filter. The motivation for this is
three-fold:

• All-pole modeling provides smooth spectral transitions
within modulation spectra, avoiding rapid fluctuations
generally encountered when using large DFTs. This is
especially important when determining the ratio of mod-
ulation spectra, as in (5), since small values in the de-
nominator can yield large fluctuations in the resulting
IMTF filter.

• All-pole modeling allows for modulation behavior to be
summarized by a small set of linear prediction coeffi-
cients. |MX,k (ω) | can then be efficiently trained as a
small number of parameters.

• All-pole modeling allows for efficient implementation of
the IMTF filter in the modulation envelope domain as a
low-order IIR filter, as will be shown in (9)-(10). This
avoids explicit transformation into the modulation spec-
tral domain.

The all-pole modulation spectrum of degraded speech is de-
termined by analyzing the normalized modulation envelope au-
tocorrelation functionrY,k (τ ), defined as

rY,k (τ ) =
E{|Yk (m)| |Yk (m+ τ )|}

E{|Yk (m)|2}
(6)

which is estimated from the short-time spectra of the ob-
served speech signal. Normalized autocorrelation coefficients
are used in (6) since long-term average channel gains can con-
tain speaker-specific information important for speaker recogni-
tion, and should therefore not affect the IMTF filter shape. Dur-
ing implementation, normalized autocorrelation coefficients for
channelk can be estimated using a neighborhood of frequency
channels
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Figure 1: Gain-normalized all-pole modulation spectra of ex-
ample speech in the presence of reverberation of varying de-
gree, for the frequency channel with center frequency1500 Hz,
and forP=6

rY,k (τ ) =

PNr

l=−Nr

PT

n=1 |Yk+l (n)| |Yk+l (n+ τ )|
PNr

l=−Nr

PT

n=1 |Yk+l (n)|2
(7)

whereT denotes the number of frames, andNr controls the
amount of inter-channel smoothing. The use of information
from adjacent channels avoids discontinuous behavior of the
LP-IMTF filter with respect to frequency channel. Additionally,
it allows normalized autocorrelation coefficients to be estimated
reliably for shorter observed utterances. Note that summation
indices in (7) are restricted by lower and upper channel limits.

From rY,k (τ ), the linear prediction coefficientsaY,k (l)
and gainσY,k are extracted, yielding the all-pole model

|MY,k (ω)|2 ≈
σ2
Y,k

˛

˛

˛
1 −

PP

l=1 aY,k (l) exp (−jωl)
˛

˛

˛

2
(8)

whereP is the prediction order. Analogous terms (rX,k (τ ),
aX,k (l), andσX,k) are defined for the clean modulation spec-
trum, and determined similarly, althoughrX,k (τ ) is learned
from training data.

As discussed in Sec. 2.2, the presence of reverberation can
be expected to affect the shape of|MY,k (ω) |. Fig. 1 provides
gain-normalized all-pole modulation spectra of example speech
in the presence of reverberation of varying degree, for the ex-
ample frequency channel with center frequency1500 Hz, and
for P=6. In this example, reverberation is added artificially to
microphone interview speech from the 2010 NIST-SRE, using
room impulse responses from [18]. It can be observed in Fig.

1 as the acoustic severity increases, modulation spectra become
increasingly low-pass.

Applying all-pole modulation spectra to (5) results in the
proposed LP-IMTF filter

|Fk (ω)| =

˛

˛

˛

˛

˛

˛

σX,k

“

1 −
PP

l=1 aY,k (l) exp (−jωl)
”

σY,k

“

1 −
PP

l=1 aX,k (l) exp (−jωl)
”

˛

˛

˛

˛

˛

˛

(9)
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Figure 2: Proposed IMTF filters for example speech in the pres-
ence of reverberation of varying degree, for the frequency chan-
nel with center frequency1500 Hz, and forP=6

Fig. 2 illustrates the magnitude frequency response of the LP-
IMTF filter obtained for example speech in reverberation of
varying degree. It can be observed that the LP-IMTF solu-
tion is a bandpass filter in the modulation spectrum. Further, as
the acoustic severity increases, the LP-IMTF filter exhibits in-
creasing filter depth. Fig. 3 provides an illustrative example for
the behavior of the LP-IMTF filter across short-time frequency
channels, for a reverberation time of0.91 seconds. The band-
width of the LP-IMTF filter is observed to generally increase
for higher frequency channels, with maximum filter depth at
lower frequency channels. It is interesting to note that the fre-
quency responses illustrated in Fig. 2 are consistent with studies
on the relative importance of modulation frequencies for human
speech perception [19], and automated speech applications [20],
[21].

Since (5) does not account for phase, there exists multiple
solutionsFk (ω) which adhere to this constraint. One such so-
lution can be efficiently implemented by applying the inverse
DTFT to the expression within the magnitude operator of (9),
yielding a low-order IIR filter in the modulation envelope do-
main. Further, this solution is guaranteed to be minimum phase,
and can therefore be expected to match the causal nature of re-
verberation in the short-time spectral domain. The solution is
given by

˛

˛

˛X̂k (m)
˛

˛

˛ =
σX,k

σY,k

 

|Yk (m)| −

P
X

l=1

aY,k (l) |Yk (m− l)|

!

+
P
X

l=1

aX,k (l)
˛

˛

˛
X̂k (m− l)

˛

˛

˛
(10)

Each frequency band of the observed short-time spectra is fil-
tered with (10) to obtain enhanced spectral components.

To guarantee non-negativity in (10), processed spectral val-
ues must be floored. Spectral flooring, however, may result in
undesirable nonlinear effects, which can be reduced by apply-
ing gain smoothing along time index and/or frequency chan-
nel. Traditional speech enhancement approaches designed to

189



Modulation Frequency (Hz)

F
re

qu
en

cy
 (

H
z)

 

 

100.010.01.00.1

4000

3000

2000

1000

0 −6

−4

−2

0

2

4

dB

Figure 3: The proposed IMTF filter for example speech in the
presence of reverberation witht60=0.91 sec, and forP=6

combat additive noise often apply gain smoothing along time.
However, in the case of reverberation suppression, such post-
processing often reintroduces reverberant characteristics of the
original degraded speech. This follows since spectral smooth-
ing along time is mathematically similar to the short-time spec-
tral reverberation model given by (2). In this study, we therefore
apply gain smoothing along frequency channels.

It is of interest to note the connection between the LP-IMTF
filter and the well-known RASTA filter, which is proposed in
[22] as a front-end processing step for robust ASR or speech
enhancement. The RASTA filter serves as an empirically-tuned
IIR bandpass filter in the modulation spectral domain, designed
to compensate for reverberation and slowly-varying additive
noise components. When used for enhancement, the filter is ap-
plied to standard short-time spectra. As previously discussed,
the LP-IMTF filter adapts to observed acoustic conditions by
determining the ratio of all-pole models of modulation spec-
tra. The RASTA filter can be interpreted as a specific instance
of the LP-IMTF solution. In this interpretation, the frequency
response of the RASTA filter can be decomposed into underly-
ing all-pole modulation spectra of clean and observed speech.
Comparison with LP-IMTF filters determined for a set of room
impulse responses with varying reverberation times shows the
RASTA filter to roughly correspond to a specific LP-IMTF so-
lution with t60=0.8.

2.4. Spectral Estimation Under Speech Presence Uncer-
tainty

Spectral enhancement presented in Sec. 2.3 is designed under
the assumption that active speech is present throughout time
and frequency, and may therefore underattenuate reverberation
within time-frequency segments of inactive speech. In this
section, we apply speech presence probabilities (SPPs) during
modulation filtering to improve spectral enhancement. Simi-
lar to [23] and [24], we assume an underlying two-state model
whereinH0 andH1 correspond to inactive and active speech,
respectively

H0 : |Yk (m)| =

∞
X

l=1

|Hk (l)| |Xk (m− l)| (11)

H1 : |Yk (m)| = |Xk (m)| +
∞
X

l=1

|Hk (l)| |Xk (m− l)|

We assume complex DFT coefficients of clean speech and re-
verberation to be Gaussian distributed, so that spectral magni-
tudes follow Rayleigh distributions

p
“

|Yk (m)|
˛

˛

˛H0

”

=
2 |Yk (m)|

σ2
R,k (m)

exp

 

−
|Yk (m)|2

σ2
R,k (m)

!

(12)

p
“

|Yk (m)|
˛

˛

˛
H1

”

=
2 |Yk (m)|

σ2
X,k (m) + σ2

R,k (m)

× exp

 

−
|Yk (m)|2

σ2
X,k (m) + σ2

R,k (m)

!

where

σ
2
X,k (m) = E

˘

|Xk (m)|2
¯

(13)

σ
2
R,k (m) = E

(

˛

˛

˛

∞
X

l=1

|Hk (l)| |Xk (m− l)|
˛

˛

˛

2

)

We define thea posteriorianda priori signal-to-reverberation
(SRR) ratios, respectively, as

ζk (m) =
|Yk (m)|2

σ2
R,k (m)

, ψk (m) =
σ2
X,k (m)

σ2
R,k (m)

(14)

Given the previously discussed two-state model, the spec-
tral estimate provided by (10) can be interpreted as being con-
ditioned onH1. Conversely, in the case ofH0, we assume the
spectral magnitude of clean speech to be zero, leading to

˛

˛

˛
X̂k (m)

˛

˛

˛
⇐ P

“

H1

˛

˛

˛
|Yk (m)|

” ˛

˛

˛
X̂k (m)

˛

˛

˛
(15)

Bayes’ rule allows the posterior probability of speech presence
of individual time-frequency components to be expressed as

P
“

H1

˛

˛

˛
|Yk (m)|

”

=
Λ(|Yk (m)|)

1 + Λ (|Yk (m)|)
(16)

where the likelihood ratio can be derived using (12) and (14)

Λ (|Yk (m)|) =
P (H1)

1 − P (H1)

P
“

|Yk (m)|
˛

˛

˛
H1

”

P
“

|Yk (m)|
˛

˛

˛
H0

” (17)

=
P (H1)

1 − P (H1)

exp
“

ζk(n)ψk(n)
1+ψk(n)

”

1 + ψk (n)

Here,P (H1) denotes the prior probability of active speech.
Note thatζk (m) represents an instantaneous value, and can

be approximated by applying power spectral subtraction to (2),
resulting in

ζk (m) ≈
|Yk (m)|2

max



|Yk (m)|2 −
˛

˛

˛
X̂k (m)

˛

˛

˛

2

, 0

ff (18)
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In speech enhancement systems designed to target additive
noise, techniques for estimating thea priori SNR, such as the
decision-directed method from [24], often incorporate a large
degree of temporal smoothing in order to reduce musical arti-
facts. However, as previously discussed, such smoothing often
reintroduces reverberation, and we instead use

ψk (m) = max {ζk (m) − 1, 0} (19)

which is similar to the spectral subtraction methods presented
in [25]. The likelihood ratio from (17) then reduces to

Λ (|Yk (m)|) =
P (H1)

1 − P (H1)

exp (ζk (m) − 1)

ζk (m)
(20)

Using (20) and (16) with (15) yields LP-IMTF filtered spectra
under speech presence uncertainty.

For realistic applications, speaker recognition may be per-
formed on noisy reverberant speech, for which (2) can be gen-
eralized as

|Yk (m)| =
∞
X

l=0

|Hk (l)| |Xk (m− l)| + |Dk (m)| (21)

where|Dk (m)| denotes additive noise. In such cases, speech
enhancement designed for additive noise (such as [24]) can ini-
tially be applied, followed by the proposed method of spectral
enhancement. Thus, it is not necessary to implement simulta-
neous noise and reverberation suppression.

3. Blind Estimation of Reverberation Time
For many applications it can be useful to estimate reverberation
time from an observed speech signal. For example, knowledge
regarding the level of reverberation can be leveraged to imple-
ment condition-adaptive speaker recognition systems. In this
section, we propose a method for blind estimation of reverbera-
tion time based on the LP-IMTF filtering framework.

From (5) and (8), an approximation can be derived for the
modulation spectrum of reverberation in the short-time spectral
domain

˛

˛

˛
M̂H,k (ω)

˛

˛

˛
=

˛

˛

˛

˛

˛

˛

σY,k

“

1 −
PP

l=1 aX,k (l) exp (−jωl)
”

σX,k

“

1 −
PP

l=1 aY,k (l) exp (−jωl)
”

˛

˛

˛

˛

˛

˛

(22)
Applying the inverse DTFT to the expression within the abso-
lute value operator in (22) yields the difference equation for the
minimum-phase estimate of the observed acoustic channel im-
pulse response

˛

˛

˛
Ĥk (m)

˛

˛

˛
=
σY,k

σX,k

 

δ (m) −
P
X

l=1

aX,k (l) δ (m− l)

!

+

P
X

l=1

aY,k (l)
˛

˛

˛Ĥk (m− l)
˛

˛

˛ (23)

whereδ (m) denotes the Kronecker delta function.
Using (23), the60 dB reverberation time for channelk can

be approximated as
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Figure 4: Acoustic channel impulse responses for example
speech with various degrees of reverberation. Note that the esti-
matedt60, as determined by (24), corresponds to the right-most
intersection of the impulse response with the−60 dB cutoff.

t60,k = max
m

m

fw
, such that:20 log10

˛

˛

˛Ĥk (m)
˛

˛

˛ ≥ −60 (24)

wherefw is the windowing rate used during short-time spectral
analysis. Although frequency channel-dependent reverberation
times may be of interest for certain applications, others may
only require a single metric for the overall acoustic severity. To
determine an overall reverberation time, we use modulation en-
velope autocorrelation coefficients which have been averaged
with respect to frequency channel, i.e. using (7) withNr=Nch.
Fig. 4 illustrates acoustic channel impulse responses for exam-
ple speech with various degrees of reverberation. It can be ob-
served that the general decay rate of the impulse responses de-
creases as the acoustic severity increases. Further, when (24) is
applied, which corresponds to the right-most intersection of the
impulse response with the−60 dB cutoff, the estimatedt60’s
are close to their corresponding true values.

4. Experimental Results
To assess the effectiveness of the LP-IMTF filtering framework,
enhancement was applied as front-end processing to the MIT
Lincoln Laboratory Joint Factor Analysis (JFA) speaker recog-
nition system (see [26] for details). Experiments were con-
ducted on a subset of interview microphone data from condi-
tion 2 of the 2010 NIST-SRE corpus. SAD was performed us-
ing a channel-wise SNR measure to include active interviewee
speech frames but squelch leakage from the interviewer. The
subset of data used included both male and female speakers,
with 6.2 K targets and1.7 M non-targets. Simulated room im-
pulse responses were obtained from [18] for a range oft60’s,
and reverberation was artificially added to test cuts. Note that
reverberation was not added during enrollment.

Table 1 provides objective quality measures for enhanced
speech using the proposed LP-IMTF framework. Enhance-
ment was applied to three minutes of speech from the TIMIT
database, artificially reverberated with room impulse responses
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Table 2: Speaker recognition results on reverberant speech using the proposed LP-IMTF filtering framework, pooled across uniformly
distributed reverberation times of0.24, 0.37, 0.61, and0.99 sec. Reverberation was artificially added using room impulse responses
from [18]. Results are provided forEER,DCF , andCllr, along with relative improvements of each.

Algorithm EER (%) Rel. Imp. (%) DCF (×103) Rel. Imp. (%) Cllr Rel. Imp. (%)

Clean 5.89 − 3.73 − 0.240 −
Baseline 12.79 − 6.08 − 0.733 −
LP-IMTF 11.16 23.6 5.52 23.8 0.461 55.2

LP-IMTF + SPP 10.93 27.0 5.49 25.1 0.453 56.8

Table 1: Speech enhancement results on reverberant speech us-
ing the proposed LP-IMTF filtering framework. Reverberation
was artificially added using room impulse responses from [18].

t60 (seconds)
Algorithm 0.24 0.37 0.61 0.99

SD (×102)
Baseline 0.71 1.46 3.12 9.66
LP-IMTF 0.48 0.81 1.55 4.00

LP-IMTF + SPP 0.44 0.68 1.19 2.78

LSD
Baseline 0.99 1.85 2.93 5.24
LP-IMTF 0.68 1.04 1.59 3.04

LP-IMTF + SPP 0.64 0.93 1.34 2.47

PESQ
Baseline 2.61 2.25 2.01 1.76
LP-IMTF 2.73 2.40 2.18 1.88

LP-IMTF + SPP 2.74 2.43 2.20 1.92
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Figure 5: Speaker recognition results on reverberant speechus-
ing the proposed LP-IMTF framework. Reverberation was arti-
ficially added using room impulse responses from [18].

from [18]. Results are reported for mean spectral distor-
tion (SD), mean log-spectral distortion (LSD), and PESQ [27].
Here, the baseline system refers to unprocessed reverberant
speech signals. It can be observed that the LP-IMTF filtering
framework yields significantly increased speech quality with re-
spect to the reported metrics. Use of speech presence probabil-
ities (SPP) provides further improvements.

Fig. 5 provides speaker recognition results on reverberant
speech using the proposed LP-IMTF filtering framework. Re-
sults are provided in terms of equal error rate (EER) and the
log-likelihood ratio cost (Cllr) [28]. Fig. 5 shows the LP-IMTF
filter to yield significantly improved speaker recognition results
across performance metrics. Spectral estimation under speech
presence uncertainty provides further improvements in the more
severe conditions.

Table 2 provides speaker recognition results using the pro-
posed reverberation suppression method as a front-end process-
ing step, pooled across reverberant conditions by assuming uni-
form distribution of the four RIRs used in Table 1. Results are
provided in terms of EER, the 2008 NIST-SRE decision cost
function (DCF), andCllr. It should be noted that the 2010
NIST-SRE DCF was not reported since it involves a low tar-
get trial prior probability which may not be informative for se-
vere acoustic environments. It can be observed in Table 2 that
front-end reverberation suppression provides significant perfor-
mance gains, resulting in27% and57% relative improvements
for EER andCllr, respectively.

5. Conclusions
This paper has proposed a method for spectral enhancement of
reverberant speech based on inversion of the modulation trans-
fer function. The LP-IMTF filter utilizes all-pole models of
modulation spectra of clean and degraded speech to derive the
LP-IMTF solution as a low-order IIR modulation filter. By con-
sidering spectral estimation under speech presence uncertainty,
speech presence probabilities are derived for the case of rever-
beration. This paper proposed a method for blind estimation of
reverberation time based on the LP-IMTF framework, by ex-
tracting a minimum phase approximation of the acoustic chan-
nel impulse response. When applied to speaker recognition of
reverberant speech, the proposed system yields significant im-
provements across a variety of performance metrics.

Future work includes leveraging blind estimation of rever-
beration time to design condition-adaptive speaker recognition
systems. Further, proposed methods can be applied other state-
of-the-art speaker recognition systems, such as that from [29].
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