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Abstract
The NIST speaker recognition evaluation (SRE) featured mi-
crophone data in the 2005-2010 evaluations. The preprocess-
ing and use of this data has typically been performed with tele-
phone bandwidth and quantization. Although this approach is
viable, it ignores the richer properties of the microphone data—
multiple channels, high-rate sampling, linear encoding, ambient
noise properties, etc. In this paper, we explore alternate choices
of preprocessing and examine their effects on speaker recogni-
tion performance. Specifically, we consider the effects of quan-
tization, sampling rate, enhancment, and two-channel speech
activity detection. Experiments on the NIST 2010 SRE inter-
view microphone corpus demonstrate that performance can be
dramatically improved with a different preprocessing chain.

1. Introduction
The 2005-2010 NIST SREs have had microphone data in a vari-
ety of formats. In the 2005 and 2006 evaluations, recordings of
one side of a telephone conversation were made from multiple
microphone channels at 48 kHz, downsampled to 8 kHz, and
µ-law quantization was applied. In these recordings, co-talker
interference was minimal and typically speech activity detec-
tion (SAD) could be performed with one (microphone) side of
the conversation. In the 2008 and 2010 evaluations, the con-
versational microphone task was kept, and, in addition, an in-
person interview task was added. The interview process intro-
duced the problem of speaker diarization of the recording. In
2008, only one channel was provided, so diarization was per-
formed with either NIST provided two-side SAD or ASR tran-
scripts. In 2010, a noise masked version of the interviewer’s
lapel microphone recording was available and paired with the
interviewee’s recording. The continuing paradigm changes of
the style and preprocessing impacted system performance and
were not systematically examined.

Systems have evolved considerably since the original 2006
NIST SRE, so the effect of preprocessing on recent state-of-
the-art systems is important to understand. For the purposes
of this paper, we selected two of the MIT Lincoln Laboratory
systems which are representative of performance—the inner-
product discriminant function (IPDF) system and an iVector
system. The IPDF system (or more precisely IPDF-KL) is based
on a KL-divergence between adapted GMM UBM models; de-
tails can be found in [1, 2, 3]. The iVector system is a Wiener-
filter based approach [4] based on the work of Dehak [5].
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For the purposes of this paper, our goal was to understand
the basic trends in system performance under a variety of mi-
crophone preprocessing conditions:

• Resampling from 16 kHz to 8 kHz and mu-law quanti-
zation

• Speech enhancement of data
• Speech activity detection (SAD)
• Methods for diarization

Although we used systems that had a complete suite of pro-
cessing techniques—channel subspace compensation, z-, t-, s-
norm, etc.—we did not attempt to produce the absolute best per-
formance results. One difficulty is that preprocessing changes
require extensive hyperparameter retraining and have a long ex-
perimental cycle. Another difficulty is that only limited data at
higher rates (16 kHz) was available for hyperparameter train-
ing (including UBM, subspaces, and cohorts). Therefore, the
results in this paper should be interpreted in terms of relative
performance and trends.

We first examine the effects of bandwidth on accuracy of
the speaker recognition system. We contrast NIST/LDC pre-
processing (8 kHz, µ-law) with alternate techniques that are less
destructive. We demonstrate that dramatically improved perfor-
mance is possible.

For speech enhancement, we look at the interplay between
SAD, subspace compensation (NAP, TV, Wiener), and speech
enhancement. We break-out via experiments the impact that
speech enhancement has on SAD and features. Through exper-
iments we show that enhancement methods are providing gains
in multiple areas.

For diarization, we consider alternate methods of two-
channel SAD rather than the standard technique of using
automatic speech recognition (ASR) transcripts. We de-
scribe a frequency-dependent method that uses two-side inter-
viewer/interviewee recordings to perform SAD.

In summary, we provide a baseline set of experiments that
demonstrate the nuances of processing microphone data. We
show that the richness of microphone data leads to alternate pro-
cessing methods not typically considered for telephone data. In
many situations, this alternate processing has a simple form and
can be applied to achieve substantial calibration and accuracy
improvements on NIST microphone data.

2. Recognition Systems
For our experiments, we used two systems from our NIST 2010
SRE submission [6]. We describe the top-level approaches in
the following subsections.
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2.1. IPDF-KL system

Inner product discriminant functions (IPDFs) are described
in [2, 3]. We use a comparison function from the IPDF frame-
work based on approximations to the KL divergence between
two GMMs [1, 3]. For a sequence of feature vectors from a
speaker i, we adapt a gender-independent 512 mixture GMM
UBM using a relevance factor of 0.01 for the means and an ML
estimate of the mixture weights. The adaptation yields new pa-
rameters which we stack into a parameter vector, ai.

The IPDF-KL inner product, CGM , is given by

CGM (ai,aj) = (mi−m)t(λ
1/2
i ⊗In)Σ−1(λ

1/2
j ⊗In)(mj−m)

(1)
where mi and mj are the adapted means, m is the vector of
stacked UBM means, Σ is the block diagonal matrix of UBM
covariances, ⊗ is the Kronecker product, In is the identity ma-
trix of size n, and λi and λj are diagonal matrices of adapted
mixture weights.

For compensation, weighted NAP (WNAP) [7] was used.
Weighting was based on the number of frames of speech in the
nuisance training space. WNAP used a fixed matrix multiply.

To obtain scores, we applied gender independent WNAP
to both enroll and verification mean parameter vectors. The
WNAP corank was fixed at 64. We then scored using the CGM
kernel. Both Z- and T-Norm were applied.

2.2. iVector System

The iVector system is a variant of the total variability system
first proposed by [8] and with refinements from [5]. However
in this implementation we use the Wiener filtering approach pre-
sented in [4].

The iVectors are formed with the following equation:

ẑ = UTtot(Σtot + Σn)−1(x̄−mo) (2)

where Σtot is the total variation that may be seen across all
observations (within-class and across-class). PCA modeling is
used in forming total variation covariance Σtot = UTtotUtot. A
diagonal covariance Σn is used to model the observation noise.
The vector x̄ are the observed supervectors with noise and mo

is the supervector of the universal background model.
Equation 2 can be interpreted as projection from a Wiener

filtered supervector down to the low-dimensional iVector, ẑ.
The dimension of the supervector is 81920. The dimension of
the iVectors are 400.

The system used a gender-independent UBM with 2048
Gaussians. Total variability matrices consisting of 400 eigen-
vectors trained on gender independent training data. Scoring
is performed using WCCN followed by cosine scoring in the
iVector space [8]. S-norm was used for score normalization.

2.3. Features

For front-end features, we used a standard MIT LL processing
chain for microphone data [6]. Input speech is pre-processed
with wide-band noise reduction and tone removal. Speech ac-
tivity detection was performed in two stages. For interview
speech, the first stage performed is an “and” of the ASR tran-
scipts “not”-interviewer segments with a GMM-based SAD sys-
tem to produce a waveform with interviewee-only speech. For
conversational speech, only GMM SAD is used. In the second
stage, an energy-based SAD (non-aggressive) was used to elim-
inate the remaining non-speech frames. MFCCs are extracted
every 10 ms using a 25 ms Hamming window. Delta coeffi-
cients are found. The MFCCs and deltas are stacked to form

feature vectors. Both RASTA and 0/1 feature normalization
are applied to the feature vectors. A total of 40 features is avail-
able at 8 kHz bandwidth. For 16 kHz bandwidth, the number
of filter banks and cepstra is increased and correspondingly the
number of features is 58. The iVector system and IPDF use all
available features.

3. Experiments with Sampling Rate and
Quantization

3.1. Experimental Setup

Recently, NIST has made available microphone data at 16 kHz
for the NIST 2010 SRE. In this section, we consider the effect of
the higher sampling rate, conversion to 8 kHz linear, and µ-law
on system performance.

Given the large breadth of our experiments, we focused
only on a small part of the NIST 2010 SRE. Experiments were
limited to short-interview train, short-interview test trials. For
all experiments, we limited trials to the NIST SRE 2010 list.
Evaluation of systems was done using condition 2—the cross-
microphone case. For male speakers, the test set had 691
speaker models with 1,068 true trials and 38,241 false trials.
For female speakers, the test set had 829 speaker models with
1,335 true trials and 46,086 false trials. Performance measures
were EER and old minimum DCF (oldDCF) from 2008 and
prior NIST SREs.

3.2. Data selection

Several sets of data at higher rates were available for experi-
ments:

• The NIST supplied 16 kHz linear-PCM SRE 2010 mi-
crophone data.

• LDC data from the original Mixer conversational micro-
phone data from SRE 2005 and SRE 2006 sampled at
48 kHz using linear PCM encoding (full 24 kHz band-
width).

We note that the 48 kHz data is somewhat challenging to use.
The data has original file names and must be mapped to NIST
evaluation data using keys. The data is “raw”; that is, the con-
versations are not duration limited to the standard 5 minutes.
Also, the time offsets NIST used for extracting speech segments
for the evaluations were not readily available. For our experi-
ments, we used all of the 48 kHz data corresponding to the SRE
2005 and 2006 data set and eliminated the problematic channel
5 recordings. This selection resulted in approximately 4800 ut-
terances with 83 male speakers and 98 female speakers for hy-
perparameter training (including z- and t-norm cohorts).

3.3. Data processing

To match the rates of the NIST supplied 2010 data (16 kHz)
and the original NIST SRE 2010 data (8 kHz), resampling of
all of the speech data to both 8 kHz and 16 kHz was performed
using multistage multirate methods [9]. All filters were linear-
phase FIR and odd length. For downsampling from 48 kHz
to 8 kHz, a two stage down-by-3, down-by-2 setup was used.
To reduce computation, an interpolated FIR filter design was
used. The two-stage filters were length 41 and 621, respectively.
Stop-band attenuation was approximately 80 dB to eliminate
aliasing; the pass band was approximately 0 to 3800 Hz. For the
conversion from 16 kHz to 8 kHz, a length 421 filter was used.
Stop-band attenuation and passband specs were the same as the
48 kHz system. For conversion to 16 kHz, a similar design was
produced with double the bandwith (0-7600 Hz).
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To avoid issues with quantization, all rate conversion was
performed in floating point. Signals were gain normalized to
have maximum absolute value of 32766 and then quantized to
linear 16-bit PCM.

3.4. Quantization and Rate Conversion Results

Our first set of experiments focused on 8 kHz data in both µ-law
and linear PCM format. We compared the performance of IPDF
and iVector systems and a simple linear fusion (equal weighted)
with multiple configurations. Only SRE 2010 evaluation (not
extended) trials were scored. Results are shown in Table 1.

Table 1: Performance of systems on 8 kHz data with linear and
µ-law quantization applied to NIST SRE 2010 short-interview
train and test, condition 2.

Hyper- Eval IPDF iVector Fuse
params EER/oldDCF EER/oldDCF EER/oldDCF
µ-law µ-law 6.62/0.303 5.78/0.295 5.37/0.250
µ-law linear 5.12/0.249 5.08/0.278 4.33/0.215
linear linear 4.45/0.217 4.12/0.224 3.54/0.180

In the table, hyperparameters indicates the quantization
type of the data used for training the UBM, subspaces, trans-
forms, and cohorts. Quantization for the NIST SRE Eval10
data (both enroll and verify) is given in the Eval column. Re-
sults show that a 30% reduction in error rate can be achieved by
switching to linear quantization.

3.5. Sampling Rate Results

We applied the same methodology used for building the 8 kHz
linear system to the 16 kHz linear system. Results are shown in
Table 2. In the table, the rate column indicates the sampling rate
for the hyperparameter training, cohorts, and NIST SRE 2010
enroll/verify. All results use linear PCM encoding. In the table,
we have broken out results by gender.

The table shows several interesting results. First, there is a
big absolute male/female performance gap for systems at 8 kHz.
This absolute gap is reduced when the sampling rate is increased
to 16 kHz. Second, there is a substantial reduction in error rates
when using an all 16 kHz system as compared to an 8 kHz sys-
tem.

Table 2: Performance of systems on 8 kHz and 16 kHz data
with linear PCM encoding applied to NIST SRE 2010 short-
interview train and test, condition 2.

Rate Sex IPDF iVector Fuse
EER/oldDCF EER/oldDCF EER/oldDCF

8 kHz M 1.87/0.106 2.81/0.155 1.69/0.088
8 kHz F 6.14/0.302 5.09/0.272 5.02/0.250
8 kHz All 4.45/0.217 4.12/0.224 3.54/0.180

16 kHz M 1.03/0.060 1.31/0.068 0.66/0.044
16 kHz F 3.00/0.150 2.02/0.116 1.87/0.116
16 kHz All 2.12/0.110 1.62/0.096 1.33/0.085

3.5.1. Analysis

Somewhat surprisingly, both quantization and sampling rates
substantially impact system performance. More future work
is needed to understand the exact mechanism for degradation
of performance. For instance, for µ-law quantization, the sys-
tems may be impacted if no gain normalization is applied be-
fore quantization. Alternatively, the quantization or resampling
methods may be the degrading factor.

The improvement of error rates at higher sampling rates is
quite compelling. The result clearly shows that current sys-

tems can (and probably should) take advantage of more band-
width if available in an application; i.e., substantial performance
improvements are possible. In addition, the dramatic drop in
error rate for female speakers is worth investigation, since a
male/female gap at telephone bandwidth has been problematic
in many systems.

Another interesting area of exploration is to understand how
to build a better 16 kHz system. The availability of more high-
rate data would be a key enabler to this process. Also, dealing
with additional non-speech artifacts (e.g., breath noise is more
apparent) could improve performance. Finally, feature extrac-
tion tuned for 16 kHz for MFCCs might be of interest. The
resulting optimized 16 kHz would provide a good benchmark
for 8 kHz systems.

4. Effects of Speech Enhancement
Enhancement has been a feature of the MIT LL system since
the first microphone data appeared in the NIST evaluation in
2005 [10]. The use of enhancement has been motivated by the
presence of tones and wide-band noise in the NIST data. In
this section, we review the techniques for enhancement and re-
cent modifications to the algorithms to increase efficiency. The
combination of tone-suppression and wide-band noise reduc-
tion systems is denoted as the noise preprocessing (NPP) sys-
tem. We explore the role of enhancement in SAD and feature
processing. Experiments demonstrate where gains in perfor-
mance are achieved and the efficacy of enhancement.

4.1. Steady Tone Suppression

Current methods of steady tone suppression using comb filters
or short-time analysis/synthesis are inadequate for the closely
spaced and inharmonic tones with low SNR observed in the
data. The method we apply in this paper strives to address the
limitations of other methods by using a very long analysis win-
dow to exploit the coherent integration of the Fourier transform.
An important aspect of this tone reduction method is that it in-
troduces little amplitude and phase distortion in the surrounding
signal, thus preserving components of the signal important for
recognition by humans or machines. The steps in the technique,
which provides high frequency resolution and robustness, are as
follows:

1. The audio input is windowed using an 8-second long
Hamming window, and its Fourier transform is com-
puted.

2. The magnitude spectrum is whitened by subtracting a
smoothed version of the original.

3. Tones are detected by applying a threshold to the
whitened spectrum and at each tone a Gaussian-shaped
template with a 4-Hz bandwidth is subtracted from the
magnitude. The tone reduction threshold is fixed relative
to the mean whitened spectrum.

4. The resulting spectrum is inverted and a complete speech
signal estimate is obtained through an overlap-and-add
reconstruction with neighboring 8-second segments.

Computational time for the algorithm is about 0.01 times
real time. Figure 1 shows an example of the various algorithmic
steps in detection. The red spectral curve provides the spectral
average that is divided out of the composite measured spectrum.
After this spectral normalization, the interfering tones stand out
from the resulting uniform background and a threshold is set for
tone detection relative to the mean of the whitened spectrum.
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Figure 1: Illustration of steps in tone suppression: (top panel)
Smooth spectral estimate superimposed on original spectrum;
(middle panel) Whitened magnitude spectrum obtained by re-
moving smooth spectrum; (bottom panel) Detected tones rela-
tive to whitened spectrum via a detection threshold.

4.2. Wideband Noise Reduction

Standard noise suppression algorithms can distort dynamic
speech-signal characteristics, such as transient plosives, for-
mant motion, and vowel onsets which may be essential in con-
tributing to distinguishing speech and speaker characteristics.
In this paper, we use an adaptive Wiener-filter approach di-
rected toward preserving the dynamic components of a speech
signal while effectively reducing noise [11, 12]. A distinguish-
ing property of the approach is an estimate of the speech spec-
trum, as well as a possibly time-varying background spectrum,
required by the Wiener filter, using a measure of spectral change
that allows robust and rapid adaptation of the filter to speech
and background events. The approach reduces speech distor-
tion in Wiener filtering by making the time constants that con-
trol smoothing of the speech and background spectra a time-
varying parameter. In particular, time constants are selected so
that little temporal smoothing is introduced in rapidly-changing
regions and increased smoothing is performed in more station-
ary regions. Our measure of spectral change is provided by
a dynamically-smoothed spectral derivative [11, 12]. The ap-
proach is consistent with temporally shaping noise to fall within
certain regions of least perceptual sensitivity [11].

An important component of the system is a speech activ-
ity detector that guides the time constants in speech-spectral
smoothing for the adaptive suppression, as well as time con-
stants in smoothing a possibly time-varying background spec-
tral estimate during non-speech regions. The detector is a
highly-sensitive, yet robust, multi-band detector. The method
works by modeling the per frame energy distribution (in the log
domain) of different frequency bands as a weighted sum of two
Gaussian distributions. The lower of the two Gaussian means is
an estimate of the background noise level, the higher mean is an
estimate of the signal level, and the ratio of the two is the SNR.
We then normalize the log energy in each band by the mean and
variance of the lower Gaussian. This normalization allows the
signal in low-energy bands to contribute to a detection statis-
tic, responsive to low-energy regions of unvoiced speech. The
detector threshold is set by fitting two Gaussians to the detec-
tor statistic and then finding a point between the two Gaussian
means where the Gaussians cross. If they do not cross the mid-
point between the two Gaussians is used. The detector statistic

Figure 2: Wiener filter with adaptive estimation of speech and
background spectra using a spectral derivative measurement and
speech activity detection. Time-varying background spectrum
is estimated similarly to the speech spectrum.

Figure 3: Enhancement of cut from NIST 2006 conversa-
tional microphone utterance, pabt.sph (channel B): (top) Origi-
nal; (middle) Tone suppression; (bottom) Tone suppression and
wide-band noise reduction. The duration of the cut above is 2.5
seconds. The frequency range of the spectogram is 4 kHz.

is a sum of the energy across all bands, weighted by the SNR in
each band.

The algorithm steps can thus be summarized as:

1. Detect speech or background in each frame using multi-
band energy.

2. Estimate the speech signal spectrum by smoothing the
enhanced output of the adaptive Wiener filter.

3. Obtain signal change measure, given by a spectral
derivative, for controlling smoothing constants in (2).

4. Estimate background spectrum in non-speech regions
also with adaptive smoothing using (3).

The entire wideband noise suppression system is shown in Fig-
ure 2.

With respect to computation, we have sped up the origi-
nal version of the algorithm [11, 12] by modifying internal al-
gorithm parameters such as frame rate (10ms from 1ms) and
DFT length (256 from 1024) for spectral analysis, and associ-
ated smoothing constants, bringing computation to 0.009 times
real time. This faster version of the wideband noise reduction
algorithm was tested in our current MIT LL SRE system and
found to slightly improve performance over prior versions [10].

183



4.3. Example from the NIST Corpora

Figure 3 shows an example of enhancement of a cut from a
NIST utterance. Mid- and high-frequency tones are reduced
in the middle panel, while the bottom panel shows the noise
suppression from the adaptive Wiener filter.

4.4. Experiments and Analysis

For our initial experiments, we used the experimental setup
from Section 3 (8 kHz µ-law). For our second set of experi-
ments, we considered the effect of adding SRE 2008 data to hy-
perparameter training. We used approximately 13,000 record-
ings from the 2008 NIST SRE (and followon releases) along
with the NIST SRE 2005/2006 data for training UBMs and
subspace/Wiener-filter parameters. We used 3000 randomly
chosen utterances from NIST SRE 2008 per gender augmented
with the NIST 2005/2006 data for z- and t-norm.

Tables 3 and 4 present the results of the noise preprocessing
on the front-end system. Table 3 uses only data from micro-
phones in SRE 2005 and 2006 to train hyperparameters (with
the same lists as in Section 3). Table 4 uses additional data from
SRE 2008 to created a more matched situation for hyperparam-
eter training (the setup of microphones in NIST SRE 2008 and
2010 was similar).

We clearly see that NPP gives the largest gains when used
both in SAD and feature processing. However, it is interesting
to see that noise preprocessing also gives gains when only used
exclusively in SAD or feature generation. For both the IPDF
and iVector systems the NPP gave larger gains when applies
only to feature processing as compared to being applied only to
SAD. This trend indicates the logical conclusion that the most
important criterion for better speaker recogniton is an improved
clean spectral estimate.

Finally, we note that adding additional 2008 data improves
performance for both the IPDF and iVector systems. The re-
sults show that even with more matched hyperparameter train-
ing, NPP still provides performance improvements.

5. Using Two-Channel Processing for
Microphone SAD

5.1. A Statistical Approach to Two-Channel SAD

In this section, we present a solution to speech activity detection
for the two-channel microphone interview paradigm used in the
NIST SRE 2008 and 2010 speaker recognition evaluations. In
this framework, the speaker of interest, referred to as channel
A, is recorded using a far-field microphone. For SAD purposes,
a near-field microphone channel from the interviewer is pro-
vided, which we refer as channel B. The goal of two-channel
SAD for this scenario is to extract active speech frames from
channel A, while squelching those frames which are corrupted
by interviewer leakage.

During previous NIST SRE evaluations, ASR transcripts
were provided from a near-field interviewee channel. The use of
ASR transcripts, however, does not represent a realistic solution
for the two-channel interview framework since it requires ora-
cle knowledge of the close-talking (high SNR) recorded inter-
viewer and interviewee channels. Here, we propose a solution
that overcomes this requirement.

We assume a two-state speech activity model with additive
background noise, given by

HA,0 : YA,k = NA,k (3)
HA,1 : YA,k = XA,k +NA,k

where YA,k, XA,k, and NA,k represent DFT coefficients for
channel A of observed speech, clean speech, and noise, respec-
tively, and where k denotes frequency channel index. Also, let
YA = {YA,1, . . . , YA,M}, where M is the number of chan-
nels used during short-time spectral analysis. A corresponding
model with appropriate terms is defined for channel B.

Note that XA,k refers to any speech present in channel
A, and may be due to interviewee and/or interviewer. How-
ever, due to the relative proximities of the microphones to ei-
ther speaker, the interviewee speech can generally be expected
to appear with a greater amplitude than that of the interviewer.
Conversely, in channel B, the interviewer can be expected to
appear with a greater amplitude than the interviewee.

As in [13] and [14], we assume real and imaginary DFT
components of speech and noise to be independent and nor-
mally distributed with variances σ2

X,A (k) and σ2
N,A (k) for

channel A, and σ2
X,B (k) and σ2

N,B (k) for channel B. We de-
fine the a priori and a posteriori SNRs, respectively, as

γA,k =
|YA,k|2

σ2
N,A (k)

, ξA,k =
σ2
X,A (k)

σ2
N,A (k)

(4)

and

γB,k =
|YB,k|2

σ2
N,B (k)

, ξB,k =
σ2
X,B (k)

σ2
N,B (k)

. (5)

In our implementation, the a priori SNR is approximated using
the decision-directed approach from [13], and noise estimation
is performed according to [15]

To determine the probability of active interviewee speech in
channel A which is uncorrupted by interviewer speech, we use
as a cost function the joint probability distribution

L (YA,YB) = p (HA,1,HB,0|YA,YB) (6)
= p (HA,1|YA) p (HB,0|YB)

=
`
1 + Λ (YA)−1´−1

(1 + Λ (YB))−1

where the likelihood ratio can be derived using (1)-(3) from [14]

Λ (YA) =

„
P (HA,1)

1− P (HA,1)

«M MY
k=1

p (YA,k|HA,1)

p (YA,k|HA,0)

=

„
P (HA,1)

1− P (HA,1)

«M MY
k=1

1

1 + ξA,k
exp

„
γA,kξA,k
1 + ξA,k

«
.

Due to numerical issues, products of probabilities are deter-
mined in the log domain.

In our system, the cost function in (6) is generalized as

L (YA,YB) = p (HA,1|YA)λ p (HB,0|YB)1−λ

=
`
1 + Λ (YA)−1´−λ (1 + Λ (YB))λ−1
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Table 3: Performance of systems when comparing noise preprocessing (NPP) effects during feature processing and speech activity
detection (SAD) for condition 2 on NIST SRE 2010 short interview train and test data. Hyperparameters and cohorts are trained using
NIST 2005 and 2006 data.

SAD Feature IPDF iVector Fuse
Processing Processing EER/oldDCF EER/oldDCF EER/oldDCF

no NPP no NPP 8.36/0.373 7.37/0.386 7.12/0.323
NPP no NPP 7.91/0.343 6.82/0.349 6.53/0.293

no NPP NPP 6.87/0.317 6.53/0.328 5.62/0.270
NPP NPP 6.62/0.303 5.78/0.295 5.37/0.250

Table 4: Performance of systems when comparing noise preprocessing (NPP) effects during feature processing and speech activity
detection (SAD) for condition 2 on NIST SRE 2010 short interview train and test data. Hyperparameters and cohorts are trained using
NIST 2005, 2006, and 2008 data.

SAD Feature IPDF iVector Fuse
Processing Processing EER/oldDCF EER/oldDCF EER/oldDCF

no NPP no NPP 8.32/0.330 5.95/0.274 6.24/0.262
NPP no NPP 7.03/0.285 5.04/0.244 5.20/0.225

no NPP NPP 6.28/0.273 4.70/0.237 4.66/0.211
NPP NPP 5.33/0.244 3.83/0.201 3.91/0.183

Table 5: Performance of Systems when comparing two-channel
speech activity detection (SAD) techniques for condition 2 on
NIST SRE 2010 short interview train and test data.

Two-Channel IPDF iVector Fuse
SAD EER/oldDCF EER/oldDCF EER/oldDCF
ASR 5.33/0.244 3.83/0.201 3.91/0.183

Proposed 4.66/0.200 4.33/0.206 3.70/0.165

where the parameter λ allows control over the relative weight
of each channel. This leads to the SAD decision rule

L (YA,YB)

(HA,1,HB,0)
>
<

¬ (HA,1,HB,0)

η.

In our system, the parameters λ and η, along with the prior prob-
abilities of active speech, are empirically optimized for speaker
recognition performance.

5.2. Experimental Results for Two-Channel Microphone
Speech

To assess the effectiveness of the proposed two-channel SAD,
we applied it to condition 2 on NIST SRE 2010 short interview
train and test data. The expanded hyperparameter training and
zt-norm lists using the combined 2005/2006/2008 data set were
used as in Section 4.

Results for the proposed SAD along with those using ASR
transcripts are provided in Table 5. We see that the new pro-
posed SAD works better than the ASR transcript approach for
the IPDF system. No gains were achieved for the iVector sys-
tem. Fusion results in a modest gain over the baseline sys-
tem. Overall, we have achieved the goal of creating a SAD
system which is independent of unrealistic ASR transcripts and
achieves comparable fused performance.

6. Conclusions
We explored multiple issues in the pre-processing of micro-
phone speech data for the NIST SREs–sampling, quantization,

enhancement, and SAD. For sampling and quantization, we
clearly showed that retaining as much information about the
signal as possible resulted in substantial improvements in per-
formance. For enhancement, we showed that improvments oc-
cur in both feature and SAD processing. Finally, we demon-
strated that the standard “oracle” ASR SAD for the interview
data could be replaced by a 2-channel SAD which was not only
realistic but outperformed the oracle condition.

Additional work on more detailed qualitative understanding
of the results will be pursued. Also, promising improvements
from new methods (e.g., SAD) can be incorporated into future
systems. Both of these efforts should yield improved baseline
systems and point to alternate directions for pre-processing in
future NIST evaluations.
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