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Abstract
Speaker verification performance is adversely affected by

mismatches between training and testing data in intrinsic vari-
ations. This paper explores how recent technologies focused
on modeling the total variability behave in addressing the ef-
fects of intrinsic variation in speaker verification. The effects
of intrinsic variation are investigated from six aspects including
speaking style, speaking rate, speaking volume, emotional state,
physical status, and speaking language. The speaker and ses-
sion variability are modeled with the i-vector framework in the
total variability space and the cosine similarity is used as the fi-
nal decision score in the i-vector based speaker verification sys-
tem. Intrinsic variations are compensated in the i-vector frame-
work with a variety of techniques, specifically Linear Discrim-
inant Analysis (LDA), Within-Class Covariance Normalization
(WCCN) and Nuisance Attribute Projection (NAP). Experi-
ments in the intrinsic corpus show that speaker volume has dra-
matic effects on the results of speaker verification systems and
whisper speech brings the largest degradation of speaker veri-
fication performance. The best results are obtained by i-vector
modeling with the combined compensation of LDA and WCCN
in the i-vector based systems. Compared to the GMM-UBM
based system, around 36.76% relative improvement in Equal
Error Rate (EER) is obtained in the i-Vector+LDA+WCCN sys-
tem.

1. Introduction
Performances of speaker verification systems are adversely af-
fected by extrinsic variability such as mismatched channels and
environmental noise, and intrinsic variability associated with
factors from the speaker such as speaking style, emotion, speech
volume, state of health and so on. Significant progress has been
made in recent years to address the effects of extrinsic variabil-
ity with a variety of model domain approaches, including eigen-
channel compensation [1], joint factor analysis [2] [3] and total
variability modeling [4]. A few effective techniques such as
feature warping [5], short-time Gaussianization [6] and feature
mapping [7] are also proposed in the feature domain to address
the problems caused by multi-channels and noise.

Compared to the significant progress in solving extrinsic
variation problems, a limited amount of research has been done
to address problems caused by intrinsic variation for speaker
verification in recent years. Shriberg studied the effects of vo-
cal effort and speaking style in GMM-UBM based speaker ver-
ification systems in [8] and found that vocal effort level has a
dramatic effect on speaker verification performance. Studies in
[9] demonstrate that the performances of the traditional GMM-
UBM based speaker verification systems decline sharply due

to the effects of device, language and environmental mismatch.
Studies in [10] [11] show an important influence of the emo-
tional state upon text-independent speaker recognition. Score
normalization is used in [12] for speaking-style variation robust
speaker recognition.

The i-vector approach has been successfully applied in [13]
to model both speaker and channel variability as state-of-the-art
technology. The supervectors from utterances are projected to
i-vectors, which represent the hidden variables of speaker and
channel factors in the low-dimensional total variability space.
The cosine distance score is used to measure the similarity be-
tween the enrollment and testing utterances to make the final
decision for speaker verification. It is indicated in [14] that tech-
niques originally designed for channel compensation are indeed
modeling the intrinsic variation represented in the data.

In this paper, we intend to study the effects of intrinsic vari-
ation using an i-vector approach from six aspects: speaking
style, speaking rate, speaking volume, emotional state, phys-
ical status and speaking language. An intrinsic variation cor-
pus is designed to support our study on the effects of a variety
of intrinsic variations, including reading, fast, slow, loud, soft,
whispered, angry, happy, denasalized, mumbled, and English.
A GMM-UBM based speaker verification system is used as the
baseline system in measuring speaker verification performance.
Several i-vector based speaker verification systems are built up
to address the effects of intrinsic variation for robust speaker
verification. A variety of compensation techniques, including
LDA, WCCN and NAP are applied to improve speaker discrim-
ination in the intrinsic variation corpus.

This paper is organized as follows. The intrinsic variation
corpus used in our experiments is described in the section 2.
In section 3, we will introduce the i-vector framework for the
intrinsic variation modeling and a variety of intersession com-
pensation techniques, including LDA, WCCN and NAP. Exper-
imental setup is described in section 4 and results on the intrin-
sic variation corpus are discussed in section 5. Finally, section
6 concludes the paper.

2. Intrinsic Variation Corpus
An intrinsic variation corpus has been designed and collected
to study the effects of intrinsic variation in speaker verification.
The extrinsic factors such as mismatched channels and environ-
mental noise are excluded in the intrinsic variation corpus de-
sign. Effects of voice change due to aging process are also out
of research domain in this paper. In the following sections, we
will introduce twelve intrinsic variation forms from six aspects
of common intrinsic variations and describe the speech data and
recording conditions in the intrinsic variation corpus.
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2.1. Intrinsic Variation Forms

Considering that various kinds of intrinsic variations exist in re-
alistic scenarios, the intrinsic variation corpus is designed from
six different aspects including speaking style, speaking rate,
speaking volume, emotional state, physical status and speaking
language. The six intrinsic factors are considered separately and
each variation form can be represented by a six dimension tuple
of form <style, rate, volume, emotion, physical, language>.

To obtain different forms of intrinsic variation, we define
the intrinsic variation form of the neutral spontaneous speech at
normal rate and volume in Chinese as the base form. Taking into
account the six factors of intrinsic variation described above,
eleven different variation forms are derived from the base form.
Figure 1 shows the derivation process of the eleven variation
forms, which are simply noted as reading, fast, slow, loud, soft,
whispered, angry, happy, denasalized, mumbled, and English,
respectively. Including the base form, referred to as sponta-
neous, a total of twelve intrinsic variation forms are obtained
for the design of the intrinsic variation corpus.
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Figure 1: Derivation process of the twelve intrinsic variation
forms.

The eleven derivation forms are obtained from the spon-
taneous base form by changing just one dimension of the six
aspects while the other aspects remains unchanged. Since the
emotional state is closely connected with the speech rate and
volume, the six aspects are not absolutely independent for each
other.

2.2. Speech Data and Recording Conditions

For the intrinsic variation corpus, we collected speech data from
110 (46 males and 64 females) native Chinese-speaking univer-
sity students whose ages ranged from 18 to 29 years old. Given
the 12 intrinsic variation forms described above, each subject
speaks with each variation form for about 3 minutes. Utterances
with 12 variation forms from 110 subjects are recorded with a
sample rate of 8k, a resolution of 8 bits and mono channel into
the intrinsic variation corpus for the study of effects of intrinsic
variation on robust speaker verification.

The whole recording process was completed in a quiet of-
fice acoustically insolated from the surrounding environment.
Each subject spoke with a wireless headset in the office and the
speech data was then transmitted and recorded into a laptop in
another room, where staff operated the recording software. The
separated environments help the subject to focus on their speak-
ing process with different variation forms and avoid distractions
caused by the recording staff. This recording condition envi-
ronment ensures that the effects of channels and environmental

noise are minimal and that the collected speech data can be used
to analyze the effects of the intrinsic variation for speaker ver-
ification. More details about the intrinsic variation corpus can
be found in [15].

3. i-Vector Framework for Intrinsic
Variation Modeling

The i-vector framework has been successfully used to model the
speaker and channel factors for speaker verification. Based on
the assumption that intersession compensation techniques orig-
inally designed for channel compensation can indeed model the
intrinsic variation, the i-vector framework is used to model the
speaker variability and intrinsic variation with a variety of inter-
session compensation techniques. In the following sections, we
will discuss the total variability modeling and several intrinsic
variation compensation techniques including LDA, WCCN and
NAP.

3.1. Total Variability

A total variability space is defined to model the speaker and ses-
sion variability simultaneously in the i-vector framework. The
total variability modeling assumes that an utterance can be rep-
resented by the speaker- and session-dependent Gaussian Mix-
ture Model (GMM) supervector defined by the following equa-
tion

M = m+ Tw (1)

where m is the speaker- and session-independent supervector
which can be obtained by the Universal Background Model
(UBM) training, T is rectangular matrix of low rank represent-
ing the total variability space and w represents the total variabil-
ity factors and is referred to as the identity vector or i-vector.
The i-vector model can be seen as a method of factor analy-
sis which projects a speech utterance into the low-dimensional
total variability space. After the i-vectors are obtained, the pro-
cess of compensation and scoring becomes considerably more
computationally efficient in the i-vector space compared to the
supervector space.

The i-vector w, used to model the speaker and session vari-
ability stands for the hidden variables of the total factors, which
have a standard normal distribution N(0, I). In order to extract
the i-vector w, the Baum-Welch statistics need to be calculated
for a given speech utterance with the UBM composed of C Mix-
ture components defined in the feature space of dimension F .
The Baum-Welch zero order statistics N and first order statis-
tics F are defined for a given speaker s and acoustic features
{x1, x2 · · ·xL} for each mixture component c by the following
equations:

Nc(s) =

L∑
t=1

γt(c) (2)

Fc(s) =

L∑
t=1

γt(c)xt (3)

where c = 1, 2, · · · , C is the Gaussian component index and
γt(c) corresponds to the posterior possibility of components c
generating the acoustic feature xt. The first order Baum-Welch
statistics are then centered by the following equation

F̃c(s) =
L∑

t=1

γt(c)(xt −mc) (4)
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where mc is the mean vector of UBM component c. Given an
utterance, the corresponding i-vector w is can be calculated in
the following equation

w = (I + TtΣ−1N(s)T)−1TtΣ−1F̃(s) (5)

where I is the CF ∗ CF identity matrix, N(s) is the CF ∗
CF diagonal matrix composed of F blocks of Nc(s)I(c =
1, 2, · · · , C) and Σ is the UBM diagonal covariance matrix of
dimension CF ∗ CF . The supervector F̃(s) is formed by con-
catenating the centered first order statistics.

3.2. Cosine Similarity Scoring

After i-vectors from utterances are obtained in the low dimen-
sional total variability space, cosine distance score is used to
measure the similarity between the enrollment and testing ut-
terances for making the speaker verification decision. Given
the target speaker i-vector wtarget from known speaker and the
testing i-vector wtest from unknown speaker, the cosine dis-
tance score between them is defined by the following equation

score(wtarget, wtest) =
⟨wtarget, wtest⟩
∥wtarget∥ ∥wtest∥

(6)

Since the magnitude of the i-vector is easily affected by the ses-
sion variability, only the angle between the target and testing
i-vectors is used as the decision score in the scoring process to
improve the robustness of the i-vector system while the factor
of the i-vector magnitude is not considered.

3.3. Intrinsic Variation Compensation

Extracted i-vectors in their raw forms are not optimized for
speaker discrimination due to the effects of intrinsic variation.
After the low-dimensional i-vectors are obtained in the total
variability space, it is straight forward and computationally
efficient to apply intrinsic variation compensation techniques
to the i-vectors prior to classification. A number of existing
approaches borrowed from SVM speaker verification such as
LDA, WCCN and NAP are used as the intersession compensa-
tion techniques to remove the nuisance effects.

3.3.1. Linear Discriminant Analysis

LDA is widely used in the field of pattern recognition as a tech-
nique for dimension reduction. In order to compensate for the
intersession variability, LDA is used in the context of the i-
vector framework to enhance discrimination between i-vectors
of different speakers. LDA aims to find a reduced set of axes
that minimize the within-speaker variability observed in the i-
vectors while simultaneously maximizing the between-speaker
variability. This is accomplished by defining a projection ma-
trix A formed as the subset of the eigenvectors of the general
eigenvalue equation as follows:

SBv = λSW v (7)

where the between speaker covariance matrix SB and the within
speaker covariance matrix SW are respectively defined as

SB =

S∑
s=1

(µs − µ)(µs − µ)t (8)

SW =
S∑

s=1

1

Ns

Ns∑
i=1

(wi,s − µs)(wi,s − µs)
t (9)

Here, µs = 1
Ns

Ns∑
i=1

wi,s is the mean of i-vectors for speaker s,

S is the number of speakers, and Ns is the number of utterances
for each speaker s. The speaker population mean vector µ is
equal to the zero vector due to the factor analysis assumption
that the i-vectors have a standard distribution N(0, I).

After the projection matrix A is obtained from LDA, the
new cosine distance scoring between two i-vectors w1 and w2

is calculated as

score(w1, w2) =
(Atw1)

t
(Atw2)√

(Atw1)
t
(Atw1)

√
(Atw2)

t
(Atw2)

(10)

3.3.2. Within Class Covariance Normalization

WCCN was introduced by Andrew Hatch in [16] and has been
successfully applied in SVM modeling based on linear separa-
tion between target speaker and imposters using a one-versus-
all decision. The idea behind WCCN is to deemphasize the di-
rection of high intra-speaker variability in i-vector comparisons
by scaling the total variability space inversely proportional to an
estimate of the within-class covariance matrix. We assume that
all utterances from the same speaker belong to one class and the
within-class covariance matrix computed over all the imposters
in the training background as follows

W =
1

S

S∑
s=1

1

Ns

Ns∑
i=1

(wi,s − µs)(wi,s − µs)
t (11)

The number of speakers is S, each speaker provides Ns utter-

ances in the training data and µs = 1
Ns

Ns∑
i=1

wi,s is the mean

of i-vectors for speaker s. The i-vectors are normalized by the
inverse of the within-speaker covariance matrix, which is equiv-
alent to scaling the i-vector space with the projection matrix B
which can obtained through Cholesky decomposition of the in-
verse of the within-speaker covariance matrix as follows

W−1 = BBt (12)

The new version of cosine distance scoring by WCCN is
given by the following equation

score(w1, w2) =
w1

tW−1w2√
w1

tW−1w1

√
w2

tW−1w2

(13)

where w1 and w2 are the total i-vectors and W is the within-
class covariance matrix.

While the WCCN approach focuses on attenuating dimen-
sions of high within-class variability, it can also remove infor-
mation about the between-class variability contained within the
attenuated dimensions. In order to alleviate this problem with
the WCCN approach, we can firstly use LDA to project the
i-vectors into a new subspace that minimizes the within-class
variance and maximizes the between-class variance and then
apply WCCN to the transformed i-vectors to improve the clas-
sification performance.

3.3.3. Nuisance Attribute Projection

The nuisance attribute projection algorithm is presented in [17]
to address the effects of variability directly in the SVM kernel.
The NAP approach accomplishes this by performing projection
in a similar manner to WCCN. However, NAP attempts to find
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an appropriate projection matrix to remove the nuisance direc-
tion rather than weighting the i-vector dimensions by WCCN.
The NAP transformation matrix has the form

P = I − VVt (14)

where I is the identity matrix and V is a rectangular matrix of
low rank which can be obtained by taking the top k eigenvectors
having the best eigenvalues of the same within-class covariance
matrix as defined in Equation 11.

Given two i-vectors w1 and w2, the cosine similarity based
on the NAP matrix is given as follows

score(w1, w2) =
(Pw1)

t(Pw2)√
(Pw1)

t(Pw1)
√

(Pw2)
t(Pw2)

(15)

4. Experimental Setup
Experiments are performed in the intrinsic variation corpus and
a NIST SRE-like task is created to study the effects of intrin-
sic variations. GMM-UBM based speaker verification system
is chosen as the baseline system and four i-vector based sys-
tems, namely i-Vector+LDA, i-Vector+WCCN, i-Vector+NAP
and i-Vector+LDA+WCCN are built up to address intrinsic vari-
ations.

4.1. Experiment data

The intrinsic variation corpus introduced in section 2 is used in
our experiments for the intrinsic variation robust speaker verifi-
cation. The duration of each enrollment utterance and testing ut-
terance is about 18 seconds. Table 1 presents the data partitions
in the intrinsic variation corpus. The gender independent UBM
for the GMM-UBM baseline system and i-vector based speaker
verification systems is trained using data from 30 speakers (15
males and 15 females) lasting for 18 hours with all 12 intrin-
sic variations. The total variability space matrix is trained with
data from another group of 30 speakers, of the same total dura-
tion and gender proportion. Speech data with 12 intrinsic vari-
ations from 20 speakers is used to train the projection matrixes
of LDA, WCCN and NAP for the intrinsic variation compensa-
tion. The testing data set is composed of 2400 utterances with
12 intrinsic variations from 20 speakers (10 males and 10 fe-
males).

Table 1: Data partitions in the intrinsic variation corpus

Function Source Description

UBM traing data 30 speakers 18 hours
12 variation forms

Training data used for 30 speakers 18 hours
total variability space 12 variation forms

Training data used for 20 speakers 12 hours
LDA,WCCN and NAP 12 variation forms

Testing data 20 speakers 2400 utterances
12 variation forms

Mel Frequency Cepstral Coefficients (MFCC) with 32ms
window length and 16ms frame rate are extracted as features to
be modeled in the speaker verification systems in our experi-
ments. The MFCC features are composed of 12 cepstral coeffi-
cients and energy, adding derivation of first and second order to
produce 39 dimensional feature vectors.

4.2. Task and Performance Measure

A NIST SRE-like task is created in the intrinsic variation corpus
to investigate the performances of different speaker verification
systems with a variety of intrinsic conditions. Each recording of
the subject is used as an enrollment utterance to train the target
speaker model. In the testing process, all the other recordings
of the same subject are used to create target trials and all record-
ings of the other subjects are used to create imposter trials. The
content of each recording are different from each other to ensure
that the speaker verification task is text-independent.

The performance of a speaker verification system is usually
measured by false acceptance rate (FAR) and false rejection rate
(FRR). False acceptance occurs when the system incorrectly ac-
cepts an imposter and false rejection occurs when the system in-
correctly rejects the target speaker. With different score thresh-
old settings, FAR and FRR are presented in the DET plot and
the equal error rate (EER) is obtained when FAR equals FRR.
The EER and DET curve are used to measure the performances
of speaker verification systems in our experiments.

4.3. System Description

4.3.1. GMM-UBM Baseline System

The baseline system is based on the GMM-UBM model
paradigm in which a speaker model of Gaussian mixture model
(GMM) is adapted from a universal background model (UBM)
with the adaption of Maximum a posteriori (MAP). GMM is
used for modeling the probability density function of a multi-
dimensional feature vector. Given a speech feature vector x,
the probability density of x in a Gaussian mixture model λ can
be defined as

P (x|λ) =
M∑
i=1

ωig(x, µi,Σi) (16)

where there is the additional constraint of
M∑
i=1

ωi = 1 and

g(x, µi,Σi) is the probability density function of single Gaus-
sian model with mean vector µi and variance matrix Σi.

The decision score is calculated by testing the candidate
speech utterance U against the adapted target speaker model
and the UBM in the following equation

S(U) = logP (U |λTAR)− logP (U |λUBM ) (17)

where λTAR is the target speaker model and λUBM is the uni-
versal background model. Speaker verification is achieved by
comparing the decision score against a threshold with the result
of acceptance or rejection.

The gender independent UBM used in the baseline sys-
tem is composed of 512 Gaussian mixtures. Given the en-
rollment utterance with duration about 18 seconds, the target
speaker model is obtained by adapting the UBM with the MAP
approach. Utterances with the same duration from unknown
speaker are evaluated by the UBM and target speaker model
in the testing process and the likelihood ratio score obtained in
Equation 17 is used to compare with the threshold to make the
final verification decision.

4.3.2. i-Vector based Speaker Verification Systems

Four i-vector based speaker verification systems, namely
i-Vector+LDA, i-Vector+WCCN, i-Vector+NAP and i-
Vector+LDA+WCCN are built up to address the effects of the
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intrinsic variation in our experiments. A gender independent
UBM with 512 gaussian mixtures is trained to be used as the
speaker and session independent model in the i-vector based
speaker verification systems. The i-vector w is made of 200
total factors defined in the total variability space. The total
variability matrix T is trained using speech data with the 12
intrinsic variations from 30 speakers.

After i-vectors are obtained in the total variability space,
several techniques including LDA, WCCN and NAP are ap-
plied to the i-vectors to compensate for the intrinsic variations.
Speech data from 20 speakers with duration of 12 hours are used
as the developing data set to train the LDA projection matrix A,
WCCN projection matrix B and NAP projection matrix P. The
LDA projection matrix A is composed of the 25 best eigenvec-
tors from the Equation 7. The WCCN transformation matrix B
is obtained with the Cholesky decomposition in Equation 12.
The NAP projection matrix P is calculated in Equation 15 in
which matrix V is composed of top 100 eigenvectors having the
best eigenvalues of the whin-class covariance matrix. Following
the LDA compensation method, WCCN is used to further com-
pensate for intrinsic variability in the i-Vector+LDA+WCCN
system. After the compensated i-vectors are obtained from en-
rollment and testing utterances, the cosine similarity is used as
the decision score for speaker verification.

5. Experimental Results and Discussion
In the following experiments, we investigated the effects of in-
trinsic variation in matched and mismatched conditions. A vari-
ety of techniques including LDA, WCCN and NAP are applied
in the i-vector framework to compensate for intrinsic variation.
Performances of i-vector based systems in the intrinsic corpus
and effects of different intrinsic variations on speaker verifica-
tion performances are presented in the following sections.

5.1. Performances of i-vector based systems in intrinsic
variation conditions

The GMM-UBM based system is used as the baseline
system. Performances of four i-vector based systems,
namely i-Vector+LDA, i-Vector+WCCN, i-Vector+NAP and i-
Vector+LDA+WCCN are investigated in the intrinsic variation
corpus in our experiments. The speaker verification perfor-
mances are investigated for each enrollment condition by test-

ing the speaker verification systems using utterances with all
the twelve variation forms. The experiments are performed on
2400 utterances from 20 speakers for each enrollment condi-
tion. There are 12 conditions in the intrinsic variations and ev-
ery subject has 10 utterances for each condition. For each sub-
ject, 1 utterance of the enrollment condition is used for training
and the other 119 utterances are used to create target trials. All
the 2280 utterances from the other subjects are used to create
imposter trials. The training and testing procedures are repeated
10 times by choosing another enrollment utterance with the en-
rollment condition.

Table 2 presents the speaker verification results obtained in
the GMM-UBM baseline system and four i-vector based sys-
tems. The best results of the five speaker verification systems
are formatted in bold for each row. It is obvious that i-vector
based systems outperform the GMM-UBM based system in
modeling intrinsic variation for each enrollment condition. The
whisper enrollment condition causes the largest degradation of
performance for each speaker verification system. The signifi-
cant improvement of EER in the whisper enrollment condition
is still very impressive from 46.93% in the GMM-UBM based
system to 25.88% in the i-Vector+LDA+WCCN system.

For all the enrollment conditions, the overall EERs are
calculated for each speaker verification system and the results
are presented in Table 3. Significant relative improvements of
EER around 21.89%, 27.65%, 23.32% and 36.76% are obtained
respectively in the i-vector based systems of i-Vector+LDA,
i-Vector+WCCN, i-Vector+NAP and i-Vector+LDA+WCCN
compared to the GMM-UBM baseline system. Figure 2 shows
the corresponding DET curve for the speaker verification sys-
tems. It is obvious that the best results are obtained with the
combination of LDA and WCCN for the intrinsic variation com-
pensation. These results demonstrate the effectiveness of i-
vector framework in modeling intrinsic variations.

5.2. Effects of intrinsic variation in matched and mis-
matched conditions between training and testing

We study the effects of intrinsic variation on speaker verifica-
tion performances in matched and mismatched conditions be-
tween enrollment and testing. Each subject has 10 utterances
for each variation form. In order to evaluate the performances
of speaker verification systems in matched conditions, 1 utter-

Table 2: EERs(%) for each enrollment condition when testing is done by using utterances with all the twelve variation forms.

Speech Variation Variation Form GMM-UBM i-Vector+LDA i-Vector+WCCN i-Vector+NAP i-Vector+LDA+WCCN

Base Case Spontaneous 21.39 18.66 14.41 16.89 13.57

Speaking Style Reading 25.13 20.25 17.39 20.46 14.92

Speaking Volume

Loud 27.10 20.08 21.22 19.96 17.06
Soft 31.51 22.69 17.82 20.63 16.68
Whispered 46.93 32.69 33.24 32.02 25.88

Speaking Rate
Fast 27.49 23.19 20.80 22.52 19.92
Slow 23.03 19.58 19.12 18.15 16.93

Emotional State
Angry 26.60 23.28 21.43 23.36 19.41
Happy 23.49 18.49 16.43 18.24 15.42

Physical Status
Denasalized 20.71 17.94 16.39 19.75 14.41
Mumbled 22.52 18.49 16.34 18.07 15.25

Speaking Language English 18.57 18.24 15.55 18.49 14.83
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Table 3: Performances of i-vector based systems

System EER(%) Relative Reduction(%)

GMM-UBM(baseline) 27.33
i-Vector+LDA 21.35 21.89
i-Vector+WCCN 19.78 27.65
i-Vector+NAP 20.96 23.32
i-Vector+LDA+WCCN 17.29 36.76
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Figure 2: DET curve for GMM-UBM based system and four
i-vector based systems.

ance is used for enrollment while the other 9 utterances are used
for target trials. 190 utterances from other 19 speakers are used
for imposter trials. The enrollment and testing procedure is re-
peated 10 times for each subject by choosing another enroll-
ment utterance. The effects of mismatched conditions are in-
vestigated with the same procedure in the GMM-UBM system
and i-Vector+LDA+WCCN system except that 119 utterances
and 2280 utterances with mismatched variation forms are used
for target trials and imposter trails, respectively.

The results of matched and mismatched conditions are pre-
sented in figure 3 which shows the EERs obtained in the GMM-
UBM system and the i-Vector+LDA+WCCN system for each
enrollment form. It is noted that mismatches between train-
ing and testing data in intrinsic variations cause sharp degrada-
tion in speaker verification performance. Effects of low volume
level are more obvious than that of other variations in matched
conditions with EER 13.89% and 17.22% for soft and whis-
per condition respectively in the GMM-UBM system. The i-
Vector+LAD+WCCN system is much more robust for the ef-
fects of low vocal effects with EER 3.89% and 6.11% in the
corresponding conditions.

The i-Vector+LDA+WCCN system performs much better
than the GMM-UBM system for each enrollment form in mis-
matched conditions. The effect of speech volume is the most
significant in all the variations. The speaker verification perfor-
mance declines sharply when the speech volume level becomes
lower. The worst performance results are obtained in the whis-
per situation with EER 46.93% in the GMM-UBM system and
EER 25.88% in the i-Vector+LDA+WCCN system. Consider-
ing the speaking rate, slow rate utterances bring better perfor-
mance with EER 16.93% compared to fast rate utterances with
EER 19.92% in the i-Vector+LDA+WCCN system. In emo-
tional conditions, the angry state with EER 19.41% presents
more difficult situation than the happy state with EER 15.42%
in the i-Vector+LDA+WCCN system when they are used for
enrollment.

Figure 3: Comparison of EERs between the GMM-UBM baseline system and i-Vector+LDA+WCCN system in matched and mis-
matched conditions between enrollment and testing.
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5.3. Effects of spontaneous and whisper conditions on
speaker verification performances

In this paper, the base speech form is defined as the form of
neutral spontaneous speech at normal rate and volume in Chi-
nese, which is the most general way that people speak. We use
the spontaneous utterances for enrollment and investigate the ef-
fects of the twelve variations by testing speaker verification sys-
tems in each variation condition. The experiments are accom-
plished in the GMM-UBM system and i-vector based systems
including i-Vector+LDA, i-Vector+WCCN, i-Vector+NAP and
i-Vector+LDA+WCCN. These speaker verification systems are
tested with 10 target trials and 190 imposter trials for each test-
ing condition. The training and testing procedure is repeated 10
times by choosing another enrollment utterance with the spon-
taneous condition for each subject.

As the whisper condition causes the most significant degra-
dation in speaker verification performance, we intend to study
the effects of whispering as an enrollment condition when test-
ing condition changes in the twelve variation forms. The exper-
iment process is the same with the above experiment except that
we use whisper utterances for the enrollment phase.

The results of spontaneous and whisper utterances for en-

rollment are presented respectively in Table 4 and Table 5. The
best results are formatted in bold for each row. It is obvious that
speaker verification performances with spontaneous utterances
for enrollment are much better than that with whisper condi-
tion. It is demonstrated that WCCN performs better than LDA
and NAP for the compensation of intrinsic variations. Table 4
shows that the best result, with EER 1.67%, is obtained in the
i-Vector+WCCN system when both enrollment and testing con-
dition is spontaneous. The whisper testing data brings the worst
performance with EER 24.00% of the i-Vector+LDA+WCCN
system in the twelve testing conditions. The effects of speaking
rate, speaking volume, and emotional state are more obvious
than physical status and speaking language.

When whisper utterances are used for enrollment, the per-
formances of speaker verification systems declines sharply. The
only exception to that is when testing data uses whisper ut-
terances, giving an EER of 5.00% in the i-Vector+WCCN
system. Table 5 shows that the i-vector based systems per-
form much better than the GMM-UBM based system in the
whisper conditions and the best results are obtained in the i-
Vector+LDA+WCCN system for each mismatched form of test-
ing data. Since the whisper condition is very different from the
other variation forms in acoustic characteristics, feature com-

Table 4: EERs(%) for each testing condition when spontaneous utterances are used for enrollment.

Speech Variation Variation Form GMM-UBM i-Vector+LDA i-Vector+WCCN i-Vector+NAP i-Vector+LDA+WCCN

Base Case Spontaneous 3.33 7.78 1.67 6.67 4.44

Speaking Style Reading 13.00 14.00 8.50 12.50 11.00

Speaking Volume

Loud 27.00 14.00 14.50 14.00 12.50
Soft 16.50 17.00 10.00 15.00 11.50
Whispered 35.00 37.00 29.00 32.50 24.00

Speaking Rate
Fast 15.00 23.00 15.00 18.50 14.00
Slow 28.00 15.50 16.00 16.00 14.00

Emotional State
Angry 17.50 24.00 15.50 20.50 15.50
Happy 33.00 18.50 11.50 15.00 13.00

Physical Status
Denasalized 13.50 15.00 8.00 11.50 9.50
Mumbled 22.00 17.00 14.00 15.00 12.50

Speaking Language English 14.00 17.00 10.50 16.50 11.00

Table 5: EERs(%) for each testing condition when whisper utterances are used for enrollment.

Speech Variation Variation Form GMM-UBM i-Vector+LDA i-Vector+WCCN i-Vector+NAP i-Vector+LDA+WCCN

Base Case Spontaneous 47.50 37.00 29.50 34.50 23.00

Speaking Style Reading 46.50 37.50 31.00 34.50 28.50

Speaking Volume

Loud 45.00 35.00 27.00 33.50 23.00
Soft 43.50 32.00 30.00 29.50 27.50
Whispered 17.22 11.67 5.00 6.67 6.11

Speaking Rate
Fast 47.00 35.00 34.00 36.50 28.50
Slow 45.00 35.00 36.50 32.50 27.50

Emotional State
Angry 47.50 31.00 36.00 34.50 26.50
Happy 41.50 30.50 31.00 32.50 24.00

Physical Status
Denasalized 47.50 32.00 33.00 31.00 24.00
Mumbled 45.50 30.00 30.50 28.50 25.00

Speaking Language English 49.50 34.50 36.50 36.50 26.50
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pensation techniques will be attempted before modeling the
whisper variations to address the problems caused by whisper
utterances.

6. Conclusions
This paper investigates the effects of intrinsic variation using
i-vector framework from six aspects, namely speaking style,
speaking rate, speaking volume, emotional state, physical sta-
tus and speaking language. Performances of speaker verifica-
tion systems decrease sharply due to mismatches between train-
ing and testing data in intrinsic variations. A variety of tech-
niques are used to compensate for the intrinsic variations, in-
cluding LDA, WCCN and NAP. Experimental results on the
intrinsic variation corpus demonstrate that the i-vector based
speaker verification systems perform better than the GMM-
UBM based system and the best results are obtained using the
i-vector framework with a combination of LDA and WCCN.
Compared to the GMM-UBM baseline system, relative im-
provement in EER of around 36.76% is obtained in the i-
Vector+LDA+WCCN system in the intrinsic variation corpus.

Spontaneous utterances used for enrollment bring better
performances compared to other enrollment conditions when
testing is done by using utterances with different intrinsic vari-
ations. The effects of speaking volume are the most significant
in the six variation aspects. Speaker verification performances
decline when the volume level becomes lower. Whisper testing
data bring the largest degradation of speaker verification perfor-
mances in the twelve variation forms when spontaneous utter-
ances are used for enrollment. The speaker verification perfor-
mances decrease sharply for each mismatched testing condition
when the whisper recordings are used for enrollment. Although
whisper represents the most difficult situations, the improve-
ment in speaker verification performance is still very impressive
in the i-Vector+LDA+WCCN system compared to the GMM-
UBM based system.

Problems caused by intrinsic variation remain an important
challenge for speaker verification systems. Our future work will
attempt more techniques for the compensation of intrinsic vari-
ations in the i-vector framework for robust speaker verification.
As whisper utterances cause the largest degradation in speaker
verification performance, more research will be done to address
the effects of whisper variation.
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