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Abstract
I-vector has become a state-of-the-art technique for text-

independent speaker verification. The major advantage of i-
vectors is that they can represent speaker-dependent informa-
tion in a low-dimension Euclidean space, which opens up op-
portunity for using statistical techniques to suppress session-
and channel-variability. This paper investigates the effect of
varying the conversation length and the number of training ses-
sions per speakers on the discriminative ability of i-vectors. The
paper demonstrates that the amount of speaker-dependent infor-
mation that an i-vector can capture will become saturated when
the utterance length exceeds a certain threshold. This finding
motivates us to maximize the feature representation capability
of i-vectors by partitioning a long conversation into a number
of sub-utterances in order to produce more i-vectors per conver-
sation. Results on NIST 2010 SRE suggest that (1) using more
i-vectors per conversation enhances the capability of LDA and
WCCN in suppressing session variability, especially when the
number of conversations per training speaker is limited; and (2)
increasing the number of i-vectors per target speaker helps the
i-vector based SVMs to find better decision boundaries, thus
making SVM scoring outperforms cosine distance scoring by
22% and 9% in terms of minimum normalized DCF and EER.

Index Terms: speaker verification, i-vectors, utterance parti-
tioning, support vector machines.

1. Introduction
Recent research has demonstrated the merit of i-vectors [1]
for text-independent speaker verification. Unlike joint fac-
tor analysis (JFA) [2] which defines two distinct subspaces:
speaker space and channel space, the i-vector approach repre-
sents speakers in a single low-dimensional space named total
variability space. Because this total variability space has di-
mension much lower than that of the GMM-supervector space,
many statistical techniques such as linear discriminant analysis
(LDA), within-class covariance normalization (WCCN) [3], and
probabilistic LDA [4] can be applied to suppress the channel-
and session-variability.

Both LDA and WCCN involve the computation of a within-
class covariance matrix that requires many speakers with mul-
tiple sessions per speaker. For best performance and numeri-
cal stability, one should opt for a large number of sessions per
speaker. But in practice, it is costly and inconvenient to col-
lect such a corpus. In a typical training dataset, the number
of speakers could be fairly large, but the number of speakers
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who can provide many sessions is quite limited. The lack of
multiple sessions per speaker could result in incomplete within
speaker scatter matrix [5]. This paper aims to investigate the ef-
fect of varying the number of sessions per speaker on the LDA
and WCCN projection matrices and how the lack of multiple
speaker sessions degrades the verification performance.

The idea of i-vectors is to use the utterances of a large num-
ber of speakers to compute the total variability matrix (the factor
loading matrix in factor analysis). Then, given the utterance of
a target speaker or a claimed speaker, the latent variables that
constitute the i-vector are estimated based on the total variabil-
ity matrix and the sufficient statistics of the utterance. There-
fore, the speaker-dependent information of the whole utterance
is embedded in this low-dim i-vector. The amount of speaker
information will certainly increase with the utterance length but
the increase is unlikely to be linear. To confirm this conjec-
ture, we investigated the relationship between the length of the
utterances and the discriminative power (Fisher discriminate ra-
tio) of the resulting i-vectors. Interestingly, we observed that the
discriminative power of the i-vectors becomes saturated quickly
and flatten out when the utterances exceed 2–3 minutes.

The above finding motivates us to divide a long utterance
into a number of sub-utterances so that multiple i-vectors can
be produced for each utterance. We applied our recently pro-
posed Utterance Partitioning with Acoustic Vector Resampling
(UP-AVR) [6] to perform the partitioning. The idea is to pro-
duce a desirable number of i-vectors for each long utterance
without significantly reducing the feature representation power
of the i-vectors. This is achieved by randomly selecting a sub-
set of acoustic vectors from the full-length acoustic vector se-
quence for estimating an i-vector. This resampling procedure
is repeated several times to produce a desirable number of i-
vectors.

It turns out that this partitioning technique is beneficial to
(1) the estimation of LDA and WCCN projection matrices and
(2) SVM scoring based on the projected i-vectors. For the for-
mer, because a lot more i-vectors can be produced per training
speaker, numerical stability problems can be avoided even if
only two sessions per speaker are available. Using the inter-
view and microphone speech in NIST 2008 SRE data for train-
ing the LDA and WCCN projection matrices and NIST 2010
SRE data for evaluation, we observed that when each training
speaker has five recording sessions, UP-AVR can reduce the
EER from 12.21% to 5.55%. For the latter, it is common to
compute the cosine distance scores [1] of the LDA+WCCN pro-
jected vectors. The use of SVM scoring is not preferred in the
literature because of the data-imbalance problem, i.e., for each
speaker-dependent SVM, there is only one target-speaker’s i-
vector but many background-speaker i-vectors for training. This
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data-imbalance causes the SVM decision function to be dic-
tated by the background-speakers’ support vectors [7]. How-
ever, with the UP-AVR, this data-imbalance problem in SVM
scoring can be readily mitigated by using more target-speaker’s
i-vectors for training the speaker-dependent SVMs. This paper
demonstrates that with UP-AVR, SVM scoring can outperform
cosine distance scoring by 22% and 9% in terms of minimum
DCF and EER, respectively.

The paper is organized as follows. Section 2 outlines the
i-vector framework for speaker verification, followed by an ex-
periment highlighting the relationship between the utterance
length and the discriminative power of LDA+WCCN projected
i-vectors. Sections 4 describes the idea of UP-AVR and its ap-
plications to the i-vector framework. In Sections 5 and 6, we re-
port evaluations based on NIST 2010 SRE. Section 7 concludes
the findings.

2. The I-vector Framework For Speaker
Verification

The i-vector approach to speaker verification can be divided into
three parts: i-vector extraction, intersession compensation and
scoring.

2.1. I-vector Extraction

The i-vector approach is based on the idea of joint factor analy-
sis (JFA) [8]. In [1], Dehak et al. notice that the channel factors
in JFA also contain speaker-dependent information. This find-
ing motivates them to model the total variability space (includ-
ing channels and speakers) instead of modeling the channel-
and speaker-spaces separately. Specifically, given an utterance,
the speaker- and channel-dependent GMM-supervector [9] ms

is written as:
ms = m + Tw, (1)

where m is the GMM-supervector of the universal background
model (UBM) [10] which is speaker- and channel- indepen-
dent, T is a low-rank total variability matrix, and w is a low-
dimension vector called the i-vector. The training of the to-
tal variability matrix is almost identical to that of the eigen-
voice matrix in JFA. The only difference is that the utterances
of a training speaker are considered to be produced by different
speakers.

2.2. Inter-session Compensation

Because i-vectors contain both speaker and channel variation
in the total variability space, inter-session compensation plays
an important role in the i-vector framework. It was found in
[1] that projecting the i-vectors by linear discriminant analysis
followed by within class covariance normalization achieves the
best performance.

2.2.1. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a commonly used tech-
nique for dimensionality reduction. The idea of this approach is
to find a set of orthogonal axes for minimizing the within-class
variation and maximizing the between-class variation. In the i-
vector framework, the i-vectors of a speaker constitute a class,
leading to the following objective function for multi-class LDA
[11]:

J(A) = tr
{(

ATSwA
)−1 (

ATSbA
)}

(2)

where A comprises the optimal directions on which the i-
vectors should be projected, Sw is the within-speaker scatter
matrix, and Sb is the between-class scatter matrix. These two
scatter matrices are written as follows:

Sw =

S∑
i=1

1

Mi

Mi∑
j=1

(wi
j − µi)(wi

j − µi)T (3)

and

Sb =

S∑
i=1

(µi − µ)(µi − µ)T, (4)

where

µi =
1

Mi

Mi∑
j=1

wi
j , (5)

µi is the mean i-vector of the i-th speaker, S is the number of
training speakers, Mi is the number of utterances from the i-
th training speaker, and µ is the global mean of all i-vectors in
the training dataset. Maximizing Eq. 2 leads to the projection
matrix A that comprises the leading eigenvectors of S−1

w Sb.

2.2.2. Within Class Covariance Normalization

Within Class Covariance Normalization (WCCN) [3] was orig-
inally used for normalizing the kernels in SVMs. In the i-
vector framework, WCCN is to normalize the within-speaker
variation. Dehak et al. [1] found that the best approach is to
project the LDA reduced i-vectors to a subspace specified by
the square-root of the inverse of the following within-class co-
variance matrix:

W =

S∑
i=1

1

Mi

Mi∑
j=1

(ATwi
j − µ̃i)(ATwi

j − µ̃i)T (6)

µ̃i =
1

Mi

Mi∑
j=1

ATwi
j , (7)

where A is the LDA projection matrix. The WCCN projec-
tion matrix B can be obtained by Cholesky decomposition of
W−1 = BBT.

2.3. Scoring Methods

2.3.1. Cosine Distance Scoring

Cosine distance scoring (CDS) [12] is commonly used in the
i-vector framework. This scoring approach is computation-
ally efficient. The method computes the cosine distance score
between the claimant’s i-vector (w(c)) and target-speaker’s i-
vector (w(s)) in the LDA+WCCN projection space:

Scos

(
w(c), w(s)

)
=

〈
BTATw(c), BTATw(s)

〉

‖BTATw(c)‖‖BTATw(s)‖ . (8)

The score is then further normalized (typically by ZT-norm) be-
fore comparing with a threshold for making a decision.

2.3.2. Support Vector Machine Scoring

The idea of support vector Machine (SVM) scoring in i-vector
speaker verification [12] is to harness the discriminative infor-
mation embedded in the training data by constructing an SVM
that optimally separates the i-vectors of a target speaker from
the i-vectors of background speakers. Unlike cosine distance

166



scoring, the advantage of SVM scoring is that the contribution
of individual background speakers and the target speaker to the
verification scores can be optimally weighted by the Lagrange
multipliers of the target-speaker’s SVM. Given the SVM of tar-
get speaker s, the verification score of claimant c is given by

SSVM(w(c), w(s)) = α
(s)
0 K

(
w(c), w(s)

)
−

∑

i∈S(b)

α
(s)
i K

(
w(c), w(bi)

)
+ d(s) (9)

where α
(s)
0 is the Lagrange multiplier corresponding to the tar-

get speaker,1 α
(s)
i ’s are Lagrange multipliers corresponding to

the background speakers, S(b) is a set containing the indexes
of the i-vectors in the background-speaker set, and w(bi) is the
utterance of the i-th background speaker. Note that only those
background speakers with non-zero Lagrange multipliers have
contribution to the score. The kernel function K(·, ·) can be of
many forms. It was found [1] that the cosine kernel is appropri-
ate. Specifically,

K
(
w(c), w(s)

)
=

〈
BTATw(c), BTATw(s)

〉

‖BTATw(c)‖‖BTATw(s)‖ (10)

where we replace w(s) by w(bi) for evaluating the second term
of Eq. 9. Note that Eq. 8 and Eq. 10 are the same. However,
their role in the scoring process is different. The former is di-
rectly used for calculating the score, whereas the latter is used
for kernel evaluation.

While SVM scoring can take the background speakers’ i-
vectors into consideration, its major shortcoming is that the
SVM decision boundary is mainly governed by the background
speakers’ i-vectors because there is only one target-speaker’s
i-vector to define the decision boundary. This situation is
known as training data-imbalance. We have recently proposed a
method called utterance partitioning that can alleviate this prob-
lem, which will be described in details in Section 4.

3. Effect of Utterance Length on I-Vectors
The major advantage of the i-vector framework is that a
variable-length utterance can now be represented by a low-
dimensional i-vector. This low-dimensional space facilitates
the application of LDA and WCCN, which require low-
dimensionality to ensure numerical stability (unless abundant
training data are available). As the i-vectors are very compact,
it is interesting to investigate if short utterances are still able to
maintain the discriminative power of i-vectors. To this end, we
computed the intra- and inter-speaker cosine-distance scores of
272 speakers extracted from the interview mic, phonecall mic,
and phonecall tel sessions of NIST 2010 SRE. For each con-
versation, VAD [13] is first applied to extract the speech seg-
ments, followed by partitioning the segments into equal-length
sub-utterances. Then, variable numbers of sub-utterances were
packed to estimate the i-vectors, followed by LDA and WCCN
projections to 150-dim vectors. Cosine-distance scores were
obtained from these 150-dim vectors.

Figure 1 shows the mean intra- and inter-speaker scores
(with error bars indicating one standard deviation) of the three
types of speech. Apparently, both types of scores flatten out af-
ter the segment length used for estimating the i-vectors exceeds
a certain threshold. To further analyze the discriminative power

1We assume one enrollment utterance per target speaker.
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Figure 1: Intra-speaker and inter-speaker cosine-distance scores
versus utterance length. For “8 mins, interview mic”, the scores
were obtained from the 8-min interview sessions of 29 male
speakers in NIST 2010 SRE, each providing 4 interview con-
versations. This amounts to 174 intra-speaker scores and 12992
inter-speaker scores for each utterance length. For “3 mins,
interview mic”, the scores were obtained from the 3-min in-
terview sessions of 196 male speakers, each providing 4 inter-
view conversations. This amounts to 1176 intra-speaker scores
and 611,520 inter-speaker scores for each utterance length. For
“5 mins, phonecall tel”, the scores were obtained from the 5-
min phonecall conversations of 47 male speakers, each provid-
ing 4 conversations. This amounts to 174 intra-speaker scores
and 34,592 inter-speaker scores for each utterance length. For
each conversation, VAD [13] was first applied to extract the
speech segments, followed by partitioning the segments into
equal-length sub-utterances. Then, variable numbers of sub-
utterances were packed to estimate the i-vectors, followed by
LDA and WCCN projections to 150-dim vectors. Cosine-
distance scores were obtained from these 150-dim vectors.
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Figure 2: Fisher discriminant ratio (Eq. 11) derived from
the intra- and inter-speaker cosine-distances versus utterance
length. See the caption of Figure 1 for the details of intra- and
inter-speaker distance.

of the i-vectors with respect to the segment length, we plot in
Figure 2 the Fisher discriminant ratio

SFisher = (µintra − µinter)
2/(σ2

intra + σ2
inter) (11)

between the intra- and inter-speaker scores whose mean and
standard deviation are respectively denoted by µ and σ. The
larger the Fisher discriminant ratio, the higher the discrimi-
native power. The result clearly suggests that the discrimina-
tive power becomes saturated for segment length exceeding 2–3
minutes. This finding suggests that it is not necessary to record
very long utterances for the i-vectors to achieve good perfor-
mance. From another perspective, if long recordings are already
available, it may be beneficial to divide the long utterances into
a number of sub-utterances to produce more i-vectors per con-
versation. This can be achieved by our recently proposed utter-
ance partitioning method to be described next.

4. Utterance Partitioning with Acoustic
Vector Resampling

Utterance partitioning with acoustic vector resampling (UP-
AVR) [7] was proposed to maximize the utilization of target-
speaker’s information and to increase the influence of speaker-
class data on the SVM decision boundary. In the current work,
UP-AVR is applied to partitions an enrollment utterance into a
number of sub-utterances, with each segment producing one i-
vector. To increase the number of segments, one may reduce
the length of sub-utterances. However, this will inevitably com-
promise the representation power of the sub-utterances. To pro-
duce a sufficient number of sub-utterances without compromis-
ing their representation power, UP-AVR uses the notion of ran-
dom resampling in bootstrapping [14]. The idea is based on the
fact that changing the order of acoustic vectors will not affect
the resulting i-vector. Therefore, we may randomly rearrange
the acoustic vectors in an utterance and then partition the ut-
terance into N sub-utterances and repeat the process as many
times as appropriate. More precisely, if this process is repeated
R times, we obtain RN sub-utterances from a single enrollment
utterance.

UP-AVR was originally introduced to alleviate the the data
imbalance problem in GMM-SVM [9]. In the current work, we
found that UP-AVR is also applicable to the i-vector framework.
First, it can improve the effectiveness of LDA and WCCN under
limited speech resources. Second, it can be applied to alleviate
the data imbalance problem in SVM scoring.

4.1. UP-AVR for LDA and WCCN

The aim of LDA is to find a set of axes that minimize the intra-
speaker variation and maximize the inter-speaker variation. It
requires a sufficient number of recording sessions per training
speaker for estimating the inter- and intra-speaker covariance
matrices. However, collecting such recordings is costly and
inconvenient. As demonstrated in Section 3, when the utter-
ance length for i-vector extraction is sufficiently long, further
increasing the length will not increase the i-vectors’ discrimi-
native power significantly. Therefore, given a long utterance,
some intrinsic speaker information will be wasted if the whole
utterance is used for estimating the i-vector. To make a better
use of the long utterance, we can apply UP-AVR to partition the
utterance so that more i-vectors can be produced for estimating
the LDA and WCCN projection matrix. It not only solves the
numerical problem caused by insufficient data for LDA, but also
reduces the intra-speaker variation.

4.2. UP-AVR for SVM Scoring

A strategy for solving the data imbalance problem in SVM scor-
ing is to increase the number of minority-class samples for train-
ing the SVMs. One may use more enrollment utterances, which
means more i-vectors from the speaker class. However, this
strategy shifts the burden to the users by requesting them to pro-
vide multiple enrollment utterances, which may not be practi-
cal. Through UP-AVR, many sub-utterances of a target speaker
can be generated based on his/her original utterance and each
sub-utterance can produce an i-vector, which improves the in-
fluence of target-speaker class data on the decision boundary of
the SVM.

5. Experiments
5.1. Speech Data and Acoustic Features

The extended core set of NIST 2010 Speaker Recognition Eval-
uation (SRE) was used for performance evaluation. This paper
focuses on the interview and microphone speech of the extended
core task, i.e., Common Conditions 1, 2, 4, 7 and 9. The equal
error rate (EER) and the new minimum Detection Cost Function
(DCF) were used as performance indicators.

NIST 2005–2008 SREs were used as development data
(UBM, total variability subspace training, LDA, WCCN, T-
norm, and ZT-norm). Only the interview and microphone
speech of male speakers in these corpora were used. Silence re-
gions of the utterances in these corpora were removed by a VAD
[13]. Cepstral mean normalization [15] was then applied to the
MFCCs, followed by feature warping [16] using a window of
3 seconds. 19 MFCCs plus their 1st- and 2nd- derivatives were
extracted from the speech regions of each utterance, leading to
60-dim acoustic vectors.

5.2. Total Variability Modeling and Channel Compensation

The i-vector systems are based on a gender-dependent UBM
with 1024 mixtures. We selected 6,102 utterances from 192
speakers (each with at least 8 utterances) in NIST 2005–2008
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SRE to estimate a total variability matrix with 400 total factors.
A modified version of the BUT JFA Matlab code was used for
i-vector training and scoring. Before calculating the verifica-
tion scores, LDA and WCCN projections were performed for
channel compensation. We used the same data set for training
the total variability matrix to estimate the LDA and WCCN ma-
trices. After LDA and WCCN projections, the dimension of
i-vectors was reduced to 150.

5.3. Scoring Method and Score Normalization

In this paper, we adopted two scoring method: SVM scoring
and cosine distance scoring. For building the SVM classifier,
we selected 633 impostors from NIST 2005–08 SREs. ZT-norm
[17] was used for score normalization. 288 T-norm utterances
and 288 Z-norm utterances (each from a different set of speak-
ers) were selected from the interview and microphone speech in
NIST 2005–08 SREs.

6. Results and Discussions
6.1. UP-AVR for LDA and WCCN

The purpose of this experiment is to investigate the performance
of i-vector based systems under insufficient data for training the
LDA and WCCN matrices. Therefore, we only used the inter-
view and microphone speech of NIST 2008 SRE for training
the matrices. We started from not using intersession compen-
sation, i.e. without applying LDA and WCCN on the i-vectors.
Then, we progressively increased the number of recording ses-
sions per training speakers for training the LDA and WCCN
projection matrices. Table 1 shows the effect of varying the
number of recordings per speaker on the effectiveness of LDA
and WCCN projection. Without channel compensation (System
A), the performance is very poor. The results of System B sug-
gest that insufficient number of recordings per speaker can lead
to inaccurate projection matrices, causing the performance even
poorer than the one without applying LDA and WCCN (System
A). This observation also agrees with the findings in [5]. By in-
creasing the number of recordings per speaker, the performance
of the i-vector systems improves significantly.

Table 2 shows the overall performance of interview and
microphone speech, which was obtained by concatenating the
scores of Common Conditions 1, 2, 4, 7, and 9 in NIST 2010
SRE. When each training speaker has less than 5 utterances,
numerical difficulty occurs while training the LDA and WCCN
matrices.2 Even if the number of recordings per training speaker
increases to 5, it is still insufficient to estimate the projection
matrices. On the other hand, if UP-AVR is applied to increase
the number of i-vectors per training speaker, the performance
improves significantly. Although UP-AVR generates the sub-
utterances from the utterance in the same recording session, it
can help LDA and WCCN minimizing the intra-speaker varia-
tion. However, the contribution of UP-AVR to LDA and WCCN
diminishes when the number of recordings per training speaker
is sufficient (over 8 per speaker in our experiment).

6.2. UP-AVR for SVM Scoring

In this experiment, we used all of the available interview and
microphone speech from NIST 2005–2008 SRE for training the

2Maximizing Eq. 2 leads to the LDA projection matrix A that com-
prises the leading eigenvectors of S−1

w Sb. However, insufficient data
will cause Sw closed to singular.

No. of utts. per speaker (M )
Systems 2 3 4 5 6 ≥ 8

Without UP-AVR – – – 0.99 0.86 0.74
UP-AVR(2) 0.97 0.94 0.85 0.80 0.81 0.74
UP-AVR(4) 0.94 0.91 0.85 0.84 0.80 0.74
UP-AVR(8) 0.91 0.91 0.85 0.82 0.83 0.75

(a) MinNDCF

No. of utts. per speaker (M )
Systems 2 3 4 5 6 ≥ 8

Without UP-AVR – – – 12.21 7.76 3.96
UP-AVR(2) 15.24 8.97 6.71 6.21 6.18 3.83
UP-AVR(4) 9.51 7.28 5.74 5.68 5.61 3.74
UP-AVR(8) 8.13 6.93 6.34 5.55 5.58 3.67

(b) EER(%)

Table 2: The performance of i-vector based speaker verifica-
tion with and without partitioning the full-length utterances for
training the LDA and WCCN projection matrices. M is the
number of utterances per speaker used for training the matrices,
and M ≥ 8 means at least 8 utterances per speaker were used
for training. UP-AVR(N ) means dividing the full-length train-
ing utterances (obtained from the microphone speech of 111
speakers in NIST 2008 SRE) into N partitions using UP-AVR.
In all cases, the number of re-sampling in UP-AVR is set to 1,
i.e. R = 1. “–” denotes the situation where numerical difficulty
occurs when estimating the projection matrices.

LDA and WCCN matrices. The focus of the experiment is on
comparing SVM scoring against cosine distance scoring.

Table 3 compares the performance between SVM scoring
and cosine distance scoring in i-vector based speaker verifica-
tion. Table 3 shows that the performance of SVM scoring is
slightly worse than that of cosine distance scoring. This may be
caused by the data imbalance problem in SVM training. How-
ever, after applying UP-AVR to SVM training, SVM scoring
can outperform cosine distance scoring by 22% and 9% in terms
of minimum DCF and EER, respectively. Results in Table 3 also
suggest that when UP-AVR is applied, a small penalty factor C
is more appropriate than a large one. This is reasonable because
a small C leads to more target-speaker class support vectors,
which improve the influence of target-speaker class data on the
decision boundary of the SVMs.

7. Conclusions
This paper applies utterance partitioning with acoustic vector
resampling to i-vector speaker verification using the latest NIST
SRE for performance evaluation. This work demonstrates that
the approach is not only effective in overcoming the data im-
balance problem in SVM scoring but also able to improve the
effectiveness of LDA and WCCN projections under insufficient
speech resources for training these projection matrices.
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MinNDCF EER (%)
No. of utts. per speaker (M ) CC1 CC2 CC4 CC7 CC9 Mic CC1 CC2 CC4 CC7 CC9 Mic
(A) M = 0 (Without LDA and WCCN) 0.62 0.84 0.82 0.98 0.63 0.90 5.10 10.77 9.65 15.08 5.96 12.60
(B) M = 5 0.97 0.99 0.97 0.99 0.98 0.99 8.52 12.75 11.72 18.43 10.25 12.21
(C) M = 6 0.76 0.86 0.79 0.97 0.56 0.86 4.50 8.52 6.10 12.84 5.13 7.76
(D) M = 7 0.71 0.81 0.82 0.96 0.56 0.85 3.83 6.84 5.19 12.28 4.27 6.53
(E) M ≥ 8 0.54 0.64 0.72 0.98 0.42 0.74 2.43 3.79 3.85 10.87 4.09 3.96

Table 1: The performance of i-vector based speaker verification using different numbers of recordings (utterances) per speaker for
training the LDA and WCCN matrices. 111 male speakers were selected from NIST 2008 SRE, each speaker provides an average of
32 utterances recorded by various types of microphones. “CC” denotes common condition. ”Mic” represents all common conditions
involving interview-style speech or microphone speech. M = 0 means without applying LDA and WCCN. M = x means each speaker
only has x recordings for training the LDA and WCCN matrices. M ≥ 8 means each speaker provides at least 8 recordings, with an
average of 32 recordings per speaker.

Common Condition
Scoring Methods CC1 CC2 CC4 CC7 CC9 Mic

CDS 0.38 0.52 0.53 0.99 0.44 0.63

SVM
C = 1 0.33 0.49 0.50 0.91 0.28 0.52
C = 0.01 0.30 0.47 0.45 0.99 0.29 0.53

SVM+UP-AVR(4)
C = 1 0.29 0.47 0.46 0.92 0.29 0.49
C = 0.01 0.28 0.45 0.41 0.99 0.23 0.49

SVM+UP-AVR(16)
C = 1 0.30 0.46 0.47 0.89 0.24 0.49
C = 0.01 0.26 0.44 0.41 0.99 0.24 0.49

(a) MinNDCF

Common Condition
Scoring Methods CC1 CC2 CC4 CC7 CC9 Mic

CDS 1.72 2.88 2.81 9.23 1.71 2.98

SVM
C = 1 1.87 3.12 3.06 10.05 2.56 3.26
C = 0.01 1.87 3.30 3.07 8.94 3.31 3.35

SVM+UP-AVR(4)
C = 1 1.71 3.00 2.86 10.05 2.56 3.10
C = 0.01 1.57 3.04 2.97 8.37 3.04 3.07

SVM+UP-AVR(16)
C = 1 1.64 3.03 2.79 9.31 2.56 3.12
C = 0.01 1.46 2.76 2.70 8.30 3.18 2.73

(b) EER(%)

Table 3: The performance of i-vector based speaker verification
using different scoring methods. C is the user-defined penalty
parameter for training the SVMs; CDS: cosine distance scor-
ing; SVM: SVM scoring with each SVM trained by using one
LDA+WCCN projected i-vector from a target speaker and 633
i-vectors from background speakers; SVM+UP-AVR(4): SVM
scoring with each SVM trained by using 5 target-speaker’s
LDA+WCCN projected i-vectors and 633 background speak-
ers’ i-vectors, each i-vector derived from a sub-utterance pro-
duced by UP-AVR with N = 4 and R = 1; SVM+UP-
AVR(16): SVM scoring with each SVM trained by using
17 target-speaker’s LDA+WCCN projected i-vectors and 633
background speakers’ i-vectors, each i-vector derived from a
sub-utterance produced by UP-AVR with N = 4 and R = 4.
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