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Abstract 
This paper presents Cisco’s speaker segmentation and 
recognition (SSR) system, which is a part of a commercial 
product. Cisco SSR uses speaker segmentation and speaker 
recognition algorithms with a crowd sourcing approach to 
create speaker metadata. The speaker metadata makes the 
enterprise videos more accessible and more navigable by 
itself, and by its combination with other forms of metadata 
such as keywords. This paper illustrates various functional 
blocks of SSR and a typical user interface. The paper 
describes the specific implementations of speaker 
segmentation and recognition algorithms. The paper also 
describes the evaluation data and protocols plus results for 
both speaker segmentation and speaker recognition tasks. 
Speaker segmentation results show that Cisco SSR performs 
comparable to the state-of-the-art on RT-03F data. Speaker 
recognition results show that a small set of user provided 
labels can be effectively transferred to a continuously 
expanding set of videos. 

1. Introduction 
Video is everywhere. People are effortlessly creating, editing, 
and sharing videos. YouTube® [6] highlights the importance 
of video in the consumer space. In the enterprise space, 
solutions like Cisco Show and Share® [5] are providing secure 
portals for sharing videos between employees.  

The success of these portals has created a new problem; 
making these videos searchable and easier to consume. This is 
an important problem as the objective of video “sharing” is not 
really met if a video is not “searchable”. Videos are made 
searchable by indexing them with metadata. This metadata 
includes title, tags, comments, categories, etc. However, 
content creaters/uploaders seldom provide exhaustive 
metadata and the provided metadata tends to be relatively 
generic [7]. For this reason, a large area of research is focused 

on automatically generating useful metadata, for example via 
automatic keyword spotting and automatic topic detection.  

Another useful form of metadata is the identity of 
participants in the video and the locations in the video where 
the respective participants spoke. We refer to this metadata as 
a “speaker” metadata. This metadata makes videos searchable 
by the name of the participants and allows easier navigation 
within a video, e.g., find all videos by “John Chambers”. Note 
that the speaker metadata can be combined with other 
metadata such as keywords, e.g., find all videos where “John 
Chambers” spoke about “telepresence”. Speaker metadata is 
very useful for enterprise videos because they contain 
structured and loosely structured communications between one 
or more participants. To the best of our knowledge, no 
commercial system has automatically generated and used this 
type of metadata.  

This paper describes Cisco’s speaker segmentation and 
recognition (SSR) system. It uses well-known speaker 
segmentation [2] and recognition [3] algorithms with a novel 
crowd-sourcing approach for obtaining speaker names. The 
system automatically creates speaker metadata to improve 
video indexing and video consumption, and is aimed at the 
enterprise space. The paper describes the overall architecture 
of the product, and specific implementation details. It also 
describes in-house data collection at Cisco. The paper reports 
the accuracy of speaker segmentation and recognition on this 
in-house data and also on NIST RT-03F [4] data. It concludes 
with a short summary section. 

2. Cisco SSR  
SSR has four functional blocks – speaker segmentation, 
speaker recognition, model merging and name propagation. 
Figure 1 shows the connections between these blocks in blue. 
This section explains SSR by describing the three main 
workflows. 

 

Figure 1 Cisco SSR functional block diagram where SSR blocks are shown in blue.
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Figure 2 Prototypical UI for displaying SSR information

2.1.1. Speaker segmentation and recognition 

External applications send videos to SSR with a unique 
identifier for that video.  An identifier is used to index speaker 
segmentation information for a video. If the applications re-
submit the same video (with the same unique identifier) then 
SSR simply returns the corresponding information from its 
database. 

Before performing SSR, the video is converted to an 
audio file. SSR performs feature extraction and speaker 
segmentation on the audio file. The output consists of speaker 
homogeneous segments labeled with “SSR speakers”. Note 
that these SSR speakers may or may not refer to unique real-
world speakers. The new SSR speakers found in this video are 
compared to the existing SSR speakers that were created from 
previously processed videos. A “similar speaker” list is 
created for each new SSR speaker. Note that the new SSR 
speakers do not have any name at this stage. 

SSR has access to user provided labels for existing SSR 
speakers (as explained in the following section). It derives a 
label for each new SSR speaker based on its own list of 
similar speakers. The updated segmentation, speaker 
information and label association is stored inside the database. 
The same information is sent back to the application. 

2.1.2. User interface 

A user interface (UI) shows the SSR output to an end user. An 
example UI from Cisco Show and Share® is shown in Figure 
2. The video is displayed on the left side. SSR information is 
displayed in two ways. First, a list of speakers is displayed 
next to the video on the right side. Each speaker is associated 
with a unique color. Second, a color-coded map is shown 
below the video, which shows the parts of the video where a 
particular speaker is speaking. The names for speakers are 1) 
provided by a previous end user, or 2) derived from a 
“similar” speaker, or 3) empty. A user can accept the existing 
names or change them. If user labels two or more SSR 
speakers with the same name then they are merged into a 
single speaker and one color represents all of them.  

The UI is designed for fast navigation within a video 
using speaker and keyword information. When a user selects a 
speaker from the list, the color-coded map shows only the 
regions where that speaker is speaking. A user then selects 
these regions either by using the arrows next to the name or 
by clicking the color-coded map. 

The UI also shows the list of keywords that are estimated 
from a given video. When a user selects a speaker, the 
keyword list shows only the keywords spoken by the speaker. 
A user can select keywords to browse within the video. Thus 
the UI shows an example of how different type of metadata 
can be combined with speaker metadata to improve 
navigation within a video. 

Any user can label the speakers in a video. User provided 
labels are sent to SSR and it performs two updates. First, it 
updates all the SSR speakers with the corresponding user 
provided labels. Second, it finds all the SSR speakers that are 
“similar” to the newly labeled SSR speakers and updates their 
names if necessary. 

2.1.3. Merging SSR Speakers 

As mentioned before, unique SSR speakers are generated for 
each video and they are associated with user provided labels. 
As a result, many SSR speakers have identical labels. An 
improved statistical model is created for a label by 
“combining” all, or a sub-set of, the corresponding SSR 
speakers and by updating this model over time. A model 
trained from multiple SSR speaker models is referred to as a 
composite speaker model. Note that there may be multiple 
composite models for a single real speaker. However, there 
are many fewer composite models than SSR speaker models, 
which are generated per video.1 Following section describes 
this process in detail. 

SSR periodically creates composite speakers models and 
updates them. It also updates the “similar” speaker 
associations with respect to the composite models.  

2.2. Implementation Details 

2.2.1. Speaker Segmentation  

Figure 3 shows the block diagram of the segmentation 
algorithm, which uses standard steps that are well 
documented in the literature (give citations). Here are some 
specific details of the system  

                                                
1 Composite models can therefore also improve the speed of 
the search for “similar” speakers.  
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1. Gender, bandwidth and speech-silence detections 
are performed as the first step to create gender and 
bandwidth homogeneous segments. 

2. The change detection (CD), linear clustering (LC) 
and hierarchical clustering (HC) stages use the same 
features. Linear clustering merges segments that are 
adjacent in time only, using the Bayesian 
Information criterion. Hierarchical clustering uses 
the same clustering criteria, without any restriction 
on what segments can be clustered together. 

3. LC and HC stages do not merge segments with 
different genders and different bandwidths. 

4. Gaussian mixture models (GMM) are used for 
cross-likelihood ratio (CLR) clustering and Viterbi 
resegmentation.  

5. Post processing removes low-confidence SSR 
speakers and corresponding speech segments, and 
improves the segmentation performance on the 
remaining video. As the results will show, post 
processing improves SSR accuracy at the cost of 
increased missed speech detection error.  

 

 

Figure 3 Speaker segmentation algorithm 

2.2.2. Speaker Recognition 

The first part of speaker recognition is about creating 
“similar” speakers. Speaker recognition is performed between 
new and existing SSR speakers. If the distance between two 
SSR speakers is less than a threshold, then the speakers are 
marked as ‘similar’. Section 4.2 describes the procedure for 
estimating this threshold. Note that multiple SSR speakers can 
be “similar” to a new SSR speaker. Also note that SSR 
speakers are not compared across gender and bandwidth. 

The second part of speaker recognition is about name 
propagation, i.e., obtain names for new SSR speakers. The 
names come from two sources. The first source is a user. A 
user can label a SSR speaker when viewing the corresponding 
video. Only a user – who need not be the one who provided 
the last label - can override this label. In general, SSR allows 
unlimited name changes using a crowd-sourcing approach. 
The second source of names is similar speakers, where SSR 
assigns a name to a new SSR speaker based on names of the 
corresponding similar speakers. 

The details of the name propagation algorithm are given 
below - 

1. A user watches a given video, identifies a SSR 
speaker as X, and labels the SSR speaker as X. 

2. This name is sent to SSR with the corresponding 
SSR speaker identifier (ID), represented by id1. SSR 
removes the existing name for id1, if any, and 
associates name X with it. 

3. SSR finds all other SSR speaker IDs that are similar 
to this particular ID id1. 

4. If a given SSR speaker id2 is similar to id1 but 
already has a user given name then id2 retains its 
original user given name. 

5. If a given SSR speaker id2 is similar to id1 and does 
not have any name associated with it then it gets 
labeled with the name X. 

6. If a given SSR speaker id2 is similar to id1 and it has 
an SSR suggested name that has not been verified by 
a user, then we find the SSR speaker id3 from which 
id2 derived its name. If the distance between id2 and 
id1 is less than id2 and id3, then id2 is associated 
with the name X, otherwise it retains the older name 
association. 

In summary, the algorithm overrides a user given name 
for an ID with only another user given name. The algorithm 
derives a label for SSR speaker id1 based on the closest SSR 
speaker id2, which has a user given name. 

3. Evaluation Protocol  
The performance of speaker segmentation and name 
propagation is evaluated separately. The latter includes the 
evaluation of both speaker recognition and composite model 
estimation. In the following subsections, we describe the data 
and the performance metrics used for each task. 

3.1. Speaker Segmentation  

Evaluation data includes about 75 hrs of video data from 
Cisco and 3 speech recordings used in the NIST RT03 fall 
evaluation [1]. We perform gender bandwidth detection based 
on the true speaker segments for these videos. These labels 
are assumed to be the true labels and are used for analysis of 
the results. The data has mixed-gender and mixed-bandwidth 
conditions. The actual number of speakers varies from 1 to 
27.  

3.2. Performance Measures 

Speaker segmentation error is measured as a sum of three 
errors: speech false alarm (FA), speech miss detection (MD) 
and speaker misclassification. The first two are speech silence 
segmentation errors. In our experiments, these three errors are 
calculated in two different ways. First, we use the NIST 
scoring protocol, which assigns one real speaker to only one 
SSR speaker. If a real speaker is split into two SSR speakers 
then the dominant SSR speaker is assigned to the real speaker 
and the time for the other SSR speaker is considered as an 
error. This is refer to this as a “NIST” error.  

In real-life scenarios, the constraint of mapping one real 
speaker to only one SSR speaker can be relaxed to some 
extent. If a real speaker is split into multiple SSR speakers 
then an end-user just needs to provide the same name for 
multiple SSR speakers. While it can be frustrating to provide 
the same label for multiple speakers, it is a much more benign 
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error than the one, where two different real speakers are 
merged into a single SSR speaker.  

Therefore, the NIST scoring script is modified to allow 
assignment between multiple SSR speakers and a real 
speaker. This is the second approach. The dominant real 
speaker is calculated for each SSR speaker, and a mapping is 
created between the two. The error calculated with the 
modified NIST protocol is referred to as an “Internal” error. 
This error measures cluster purity and it indicates potential 
gains from improved clustering. It also gives the residual error 
after a user is allowed to give the same name to different SSR 
speakers. Note that false alarm speech errors and miss detect 
speech errors are the same with the “NIST” and “Internal” 
scoring approaches. Also note that a very low internal error at 
the cost of very high NIST error by producing too many 
clusters. This is avoided by measuring the overall error as a 
combination of the two errors. 

Speaker recognition performance is also measured with 
FA and MD errors. The errors are referred to as speaker FA 
and speaker MD respectively. The errors are measured at 
different operating points using different thresholds. Typically 
a threshold is chosen to minimize a certain cost function, 
which is a combination of speaker FA and MD with other 
parameters. In this paper, the results are reported using equal 
error rate (EER), where the cost function is an average of 
speaker FA and speaker MD. In other words, the operating 
point assumes the same cost and priors for the two types of 
errors. 

 

3.3. Name propagation and model merging 

The goal of this evaluation is to measure the accuracy of 
speaker recognition. The speaker recognition algorithm inside 
SSR compares SSR speakers from different videos to derive 
names for new SSR speakers. Thus speaker recognition 
accuracy directly translates to the efficacy of name 
propagation.  Higher speaker recognition accuracy is 
important for minimizing user input and improving the 
usability of speaker metadata. 

The evaluation data consists of 78 videos from Cisco. The 
speakers are mostly executives, many of whom appear in 
numerous videos. The videos are either corporate 
announcements or interviews. There are 68 unique speakers 
across 78 videos. There are 8 speakers (executives) that speak 
across multiple videos, and 60 unique speakers (interviewers 
and others) that speak in only one video. 

The evaluation protocol assumes that users will upload 
videos in batches; they will watch videos in a random 
sequence; and label SSR speakers as needed. Figure 4 shows 
the evaluation protocol, which is described in detail below. 
1. Process all the videos to get the segmentation and 

similar speaker information. Note that none of the 
SSR speakers have any names associated with them.  

2. Generate a random sequence of the 78 videos from 
the dataset; this sequence determines the order in 
which a user might watch and label the speakers in 
the videos.  

3. Take the next video in the list, name all the SSR 
speakers that haven’t been named or have been 
labeled wrong. Keep a count of how many labels 
were empty or wrong. Confirm all the correct names. 

4. Propagate the speaker names to all the similar SSR 
speakers in other videos. Note that all the previous 
videos in this sequence have correct labels for all the 
SSR speakers. So name propagation does not affect 
those labels. It only affects SSR speakers in the 
videos that have not been processed yet. 

5. Repeat steps 3, 4 and 5 for all the videos in the 
random sequence. 

For each random sequence of videos, three types of errors are 
measured.  
1. Number of user inputs - The number of user inputs 

required to label all the videos in a sequence. The 
goal is to label all of the speakers in the videos with 
minimal user input.  

2. False acceptance error - If the speaker is labeled 
incorrectly due to incorrect similar speaker 
association then it is counted as a false acceptance 
error. 

3. False rejection error - If a speaker has been labeled in 
another video but the name has not propagated to the 
current video, then it is counted as a false rejection 
error.  

An experiment is performed over multiple random 
sequences of videos, and mean and the standard deviation 
of each type of the error is calculated. 

The benefit of the composite models is measured with and 
without name propagation. The results from our “name 
propagation” evaluation, where we did not merge SSR 
speakers, are used as a baseline. The setup is modified with an 
additional step after step 3. In this step, all the speaker models 
with the same names are used to get the corresponding 
composite models (if possible), and the speaker similarity is 
recomputed for all speaker models.  

Second, speaker recognition performance is measured 
without name propagation (and the random sequence). This is 
similar to a more traditional speaker recognition evaluation 
setup. The videos are divided into two sets – train and test. 
True names are obtained for all the SSR speakers in the train 
set. Speaker recognition is performed with SSR speakers in 
the test set. The speaker recognition experiment is repeated by 
switching the train and test sets. The final performance 
measure is the average performance of these two speaker 

Figure 4 Name propagation evaluation protocol 
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recognition experiments.  This performance measure is 
referred to as a baseline.  

The benefit of composite models is tested as follows. In 
the train set, speaker models are merged based on their true 
names to obtain a smaller set of composite models. Speaker 
recognition is performed on the speakers in the test set with 
only the composite models. This experiment is repeated by 
switching the train and test sets. The results are averaged 
across the two experiments and are then compared to the 
baseline. 

3.3.1. Algorithm for Model Merging  

The algorithm to perform model merging on speakers, which 
have the same user given name, is described below –  

1. Store the sufficient statistics of the GMM 
representing each SSR speaker in each video. 

2. Get all models that have the same user given name. 
3. Perform a bottom up clustering on these speaker 

models. At each clustering step, find the two closest 
models, combine these models by adding the 
sufficient statistics of the GMM representing each 
model, and estimate the mean of a single new 
model. Continue clustering until the closest distance 
between the speaker models is greater than a 
predetermined threshold. This results in one or more 
composite speaker models for a given speaker. 

4. Repeat steps 1 through 3 periodically in the system. 
 

Note that “user given name” refers to not only names that 
a user manually provides for a speaker, but also to names that 
SSR has suggested for speakers in a given video and that were 
confirmed by a user. 

4. Results 

4.1. Speaker segmentation 

 Table 1 shows results for all the videos (RT03+Cisco) before 
and after post-processing. Table 2 shows results on RT03 
before and after post-processing (as explained in Section 
2.2.1). In both cases, we compare performance with the NIST 
and internal scoring scripts. Note that all these results were 
produced with the same SSR parameter settings. 

The results show the effect of post-processing as 
described in section 2.2.1. For both RT03 and Cisco videos, 
post-processing reduces the speaker error at the cost of false 
rejection. The confidence threshold was selected to ensure 
that FR error does not exceed 10%. 

The results also show the difference between the NIST 
and internal scoring. These two scorings strategies yield the 
same FA and FR for speech-silence segmentation. The only 
difference is in the speaker error. Internal error is always 
lower than NIST error by design. As mentioned before, the 
internal error can be interpreted as the error after improved 
clustering or residual error after the user labels multiple 
speakers with the same name. 
 

4.2. Name propagation and model merging 

Table 3 shows the results obtained for speaker name 
propagation using the evaluation protocol described in Section 
3.3. The results were obtained using 50 different permutations 
of video sequences. Note that the theoretical minimum number 

of names required to label all speakers in the videos is equal to 
the unique number of speakers in the data set, which in this 
case is 68. The maximum number of names required to label 
all speakers, assuming perfect speaker segmentation and no 
name propagation across videos, is equal to 201. This is equal 
to all of the SSR speakers found in all of the videos. The 
operating point is chosen to be where the false acceptance 
error rate is equal to the false rejection error rate. Table shows 
that the corresponding threshold is between 0.6 and 0.65. The 
experiments show that it is consistent across two-fold cross 
validation. Table 3 also shows that name propagation using 
speaker recognition has brought the average number of user 
provided labels to 77.4 to 74.94. This is significantly better 
than the number without speaker recognition. This number is 
also very close to the minimum number of speaker labels. 

 

 Table 1 Segmentation error for all videos (RT03+Cisco)  

Speaker error( %) Stage Speech 
FA 
error 
( %)  

Speech 
FR 
error 
( %) 

NIST Internal 

 Before post 
processing 

3.26  1.44 11.53 3.61 

After post 
processing 

1.38 10.92 4.09 2.82 

 

Table 2 Segmentation error for RT03 

Speaker error (%) Stage Speech 
FA 
error 
( %) 

Speech 
FR 
error 
( %) 

NIST Internal 

 Before post 
processing 

2.66 0.19 5.97 4.72 

After post 
processing 

1.84 9.79 3.41 3.41 

 

Table 3 Name propagation errors without model 
merging 

Threshold Average 
number of 
user labels 
required 

FA speaker 
error % 

FR speaker 
error % 

0.5 106.26  0.59 18.08 
0.55 94.06  1.84 12.35 
0.6 83.4  4.63 7.23 
0.65 77.94  7.30 4.61 
0.7 74.94  13.23 3.09 
0.75 72.9  20.42 1.82 

 
The system is evaluated with the same set of video sequences 
that were used in the model merging evaluation. Table 4 
shows the results after merging the models with the threshold 
set to 0.65. 

These results suggest that the merging of models 
improves the false rejection rate and reduces the number of 
user provided labels. However the difference is not significant 
because there is not enough evaluation data. This experiment 
will be performed with more data in the future. 

155



Table 4 Name propagation performance after model 
merging 

Threshold Average 
number of 
user labels 
required 

FA Speaker 
error % 

FR Speaker 
error % 

0.65 75.88  7.82 3.55 
 

Table 5 shows the speaker recognition results with and 
without model merging and Figure 5 shows the speaker FA 
and speaker FR curves as a function of the threshold. 

These results show that the merging operation does not 
improve the recognition accuracy, but it does not degrade it 
either. The thresholds are very similar across the two setups. 
Note that a very simple approach for creating composite 
models and to compute the distance between the models. 
Improved model merging and distance computation 
approaches should yield improvements to performance. These 
results show a potential for significant reduction in speaker 
recognition time. 

 

 

Figure 5 False acceptance and false rejection errors 
as a function of threshold 

5. Summary and Future Work 
Usability studies at Cisco have shown that speaker metadata 
is useful for video search and navigation. This paper 
described Cisco’s speaker segmentation and recognition 
(SSR) system that generates this metadata. To the best of 
author’s knowledge, it is the first commercial system that 1) 
automatically discovers speakers from videos and 2) uses 
crowd sourcing to label these speakers, so that a growing set 
of videos become searchable using speaker metadata. 

The paper described the functional blocks of SSR using 
different use cases – segmentation and recognition; UI; and 
model merging. Segmentation evaluation was performed 
using 75 hours of internal Cisco data and 3 shows from RT03. 
This data is a mix of different genders and bandwidths. The 
numbers of speakers vary from 1 to 27. In addition, Cisco 
internal data was used to measure accuracy of speaker 
recognition and name propagation. Novel error measures and 
evaluation protocols were described to measure the 
performance. 

Our segmentation errors on RT03 were comparable to the 
state-of-the-art [1]. SSR has shown acceptable performance 
on Cisco internal data and deployments inside Cisco. Name 
propagation results show that SSR effectively minimizes the 
labeling effort required from end users. 

 

Table 5 Speaker recognition performance 

Experiment False 
positive % 

False 
negative % 

Total 
error % 

w/o model 
merging 

11.29 6.25 17.54 

w/ model 
merging 

6.45 11.71 18.16 
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