
Cisco’s Speaker Segmentation and Recognition System

S. Kajarekar, A. Khare, M. Paulik, N. Agrawal, P. Panchapagesan, A. Sankar and S. Gannu

Cisco Systems, Inc, San Jose, CA
{skajarek,apkhare,mapaulik,nehagraw,ppanchap,asankar,sgannu}@cisco.com

Abstract
This paper presents Cisco’s speaker segmentation and
recognition (SSR) system, which is a part of a commercial
product. Cisco SSR uses speaker segmentation and speaker
recognition algorithms with a crowd sourcing approach to
create speaker metadata. The speaker metadata makes the
enterprise videos more accessible and more navigable by
itself, and by its combination with other forms of metadata
such as keywords. This paper illustrates various functional
blocks of SSR and a typical user interface. The paper
describes the specific implementations of speaker
segmentation and recognition algorithms. The paper also
describes the evaluation data and protocols plus results for
both speaker segmentation and speaker recognition tasks.
Speaker segmentation results show that Cisco SSR performs
comparable to the state-of-the-art on RT-03F data. Speaker
recognition results show that a small set of user provided
labels can be effectively transferred to a continuously
expanding set of videos.

1. Introduction
Video is everywhere. People are effortlessly creating, editing,
and sharing videos. YouTube® [6] highlights the importance
of video in the consumer space. In the enterprise space,
solutions like Cisco Show and Share® [5] are providing secure
portals for sharing videos between employees.

The success of these portals has created a new problem;
making these videos searchable and easier to consume. This is
an important problem as the objective of video “sharing” is not
really met if a video is not “searchable”. Videos are made
searchable by indexing them with metadata. This metadata
includes title, tags, comments, categories, etc. However,
content creaters/uploaders seldom provide exhaustive
metadata and the provided metadata tends to be relatively
generic [7]. For this reason, a large area of research is focused

on automatically generating useful metadata, for example via
automatic keyword spotting and automatic topic detection.

Another useful form of metadata is the identity of
participants in the video and the locations in the video where
the respective participants spoke. We refer to this metadata as
a “speaker” metadata. This metadata makes videos searchable
by the name of the participants and allows easier navigation
within a video, e.g., find all videos by “John Chambers”. Note
that the speaker metadata can be combined with other
metadata such as keywords, e.g., find all videos where “John
Chambers” spoke about “telepresence”. Speaker metadata is
very useful for enterprise videos because they contain
structured and loosely structured communications between one
or more participants. To the best of our knowledge, no
commercial system has automatically generated and used this
type of metadata.

This paper describes Cisco’s speaker segmentation and
recognition (SSR) system. It uses well-known speaker
segmentation [2] and recognition [3] algorithms with a novel
crowd-sourcing approach for obtaining speaker names. The
system automatically creates speaker metadata to improve
video indexing and video consumption, and is aimed at the
enterprise space. The paper describes the overall architecture
of the product, and specific implementation details. It also
describes in-house data collection at Cisco. The paper reports
the accuracy of speaker segmentation and recognition on this
in-house data and also on NIST RT-03F [4] data. It concludes
with a short summary section.

2. Cisco SSR
SSR has four functional blocks – speaker segmentation,
speaker recognition, model merging and name propagation.
Figure 1 shows the connections between these blocks in blue.
This section explains SSR by describing the three main
workflows.

Figure 1 Cisco SSR functional block diagram where SSR blocks are shown in blue.

Odyssey 2012
The Speaker and Language Recognition Workshop
25-28 June 2012, Singapore

151

Figure 2 Prototypical UI for displaying SSR information

2.1.1. Speaker segmentation and recognition

External applications send videos to SSR with a unique
identifier for that video. An identifier is used to index speaker
segmentation information for a video. If the applications re-
submit the same video (with the same unique identifier) then
SSR simply returns the corresponding information from its
database.

Before performing SSR, the video is converted to an
audio file. SSR performs feature extraction and speaker
segmentation on the audio file. The output consists of speaker
homogeneous segments labeled with “SSR speakers”. Note
that these SSR speakers may or may not refer to unique real-
world speakers. The new SSR speakers found in this video are
compared to the existing SSR speakers that were created from
previously processed videos. A “similar speaker” list is
created for each new SSR speaker. Note that the new SSR
speakers do not have any name at this stage.

SSR has access to user provided labels for existing SSR
speakers (as explained in the following section). It derives a
label for each new SSR speaker based on its own list of
similar speakers. The updated segmentation, speaker
information and label association is stored inside the database.
The same information is sent back to the application.

2.1.2. User interface

A user interface (UI) shows the SSR output to an end user. An
example UI from Cisco Show and Share® is shown in Figure
2. The video is displayed on the left side. SSR information is
displayed in two ways. First, a list of speakers is displayed
next to the video on the right side. Each speaker is associated
with a unique color. Second, a color-coded map is shown
below the video, which shows the parts of the video where a
particular speaker is speaking. The names for speakers are 1)
provided by a previous end user, or 2) derived from a
“similar” speaker, or 3) empty. A user can accept the existing
names or change them. If user labels two or more SSR
speakers with the same name then they are merged into a
single speaker and one color represents all of them.

The UI is designed for fast navigation within a video
using speaker and keyword information. When a user selects a
speaker from the list, the color-coded map shows only the
regions where that speaker is speaking. A user then selects
these regions either by using the arrows next to the name or
by clicking the color-coded map.

The UI also shows the list of keywords that are estimated
from a given video. When a user selects a speaker, the
keyword list shows only the keywords spoken by the speaker.
A user can select keywords to browse within the video. Thus
the UI shows an example of how different type of metadata
can be combined with speaker metadata to improve
navigation within a video.

Any user can label the speakers in a video. User provided
labels are sent to SSR and it performs two updates. First, it
updates all the SSR speakers with the corresponding user
provided labels. Second, it finds all the SSR speakers that are
“similar” to the newly labeled SSR speakers and updates their
names if necessary.

2.1.3. Merging SSR Speakers

As mentioned before, unique SSR speakers are generated for
each video and they are associated with user provided labels.
As a result, many SSR speakers have identical labels. An
improved statistical model is created for a label by
“combining” all, or a sub-set of, the corresponding SSR
speakers and by updating this model over time. A model
trained from multiple SSR speaker models is referred to as a
composite speaker model. Note that there may be multiple
composite models for a single real speaker. However, there
are many fewer composite models than SSR speaker models,
which are generated per video.1 Following section describes
this process in detail.

SSR periodically creates composite speakers models and
updates them. It also updates the “similar” speaker
associations with respect to the composite models.

2.2. Implementation Details

2.2.1. Speaker Segmentation

Figure 3 shows the block diagram of the segmentation
algorithm, which uses standard steps that are well
documented in the literature (give citations). Here are some
specific details of the system

1 Composite models can therefore also improve the speed of
the search for “similar” speakers.

152

1. Gender, bandwidth and speech-silence detections
are performed as the first step to create gender and
bandwidth homogeneous segments.

2. The change detection (CD), linear clustering (LC)
and hierarchical clustering (HC) stages use the same
features. Linear clustering merges segments that are
adjacent in time only, using the Bayesian
Information criterion. Hierarchical clustering uses
the same clustering criteria, without any restriction
on what segments can be clustered together.

3. LC and HC stages do not merge segments with
different genders and different bandwidths.

4. Gaussian mixture models (GMM) are used for
cross-likelihood ratio (CLR) clustering and Viterbi
resegmentation.

5. Post processing removes low-confidence SSR
speakers and corresponding speech segments, and
improves the segmentation performance on the
remaining video. As the results will show, post
processing improves SSR accuracy at the cost of
increased missed speech detection error.

Figure 3 Speaker segmentation algorithm

2.2.2. Speaker Recognition

The first part of speaker recognition is about creating
“similar” speakers. Speaker recognition is performed between
new and existing SSR speakers. If the distance between two
SSR speakers is less than a threshold, then the speakers are
marked as ‘similar’. Section 4.2 describes the procedure for
estimating this threshold. Note that multiple SSR speakers can
be “similar” to a new SSR speaker. Also note that SSR
speakers are not compared across gender and bandwidth.

The second part of speaker recognition is about name
propagation, i.e., obtain names for new SSR speakers. The
names come from two sources. The first source is a user. A
user can label a SSR speaker when viewing the corresponding
video. Only a user – who need not be the one who provided
the last label - can override this label. In general, SSR allows
unlimited name changes using a crowd-sourcing approach.
The second source of names is similar speakers, where SSR
assigns a name to a new SSR speaker based on names of the
corresponding similar speakers.

The details of the name propagation algorithm are given
below -

1. A user watches a given video, identifies a SSR
speaker as X, and labels the SSR speaker as X.

2. This name is sent to SSR with the corresponding
SSR speaker identifier (ID), represented by id1. SSR
removes the existing name for id1, if any, and
associates name X with it.

3. SSR finds all other SSR speaker IDs that are similar
to this particular ID id1.

4. If a given SSR speaker id2 is similar to id1 but
already has a user given name then id2 retains its
original user given name.

5. If a given SSR speaker id2 is similar to id1 and does
not have any name associated with it then it gets
labeled with the name X.

6. If a given SSR speaker id2 is similar to id1 and it has
an SSR suggested name that has not been verified by
a user, then we find the SSR speaker id3 from which
id2 derived its name. If the distance between id2 and
id1 is less than id2 and id3, then id2 is associated
with the name X, otherwise it retains the older name
association.

In summary, the algorithm overrides a user given name
for an ID with only another user given name. The algorithm
derives a label for SSR speaker id1 based on the closest SSR
speaker id2, which has a user given name.

3. Evaluation Protocol
The performance of speaker segmentation and name
propagation is evaluated separately. The latter includes the
evaluation of both speaker recognition and composite model
estimation. In the following subsections, we describe the data
and the performance metrics used for each task.

3.1. Speaker Segmentation

Evaluation data includes about 75 hrs of video data from
Cisco and 3 speech recordings used in the NIST RT03 fall
evaluation [1]. We perform gender bandwidth detection based
on the true speaker segments for these videos. These labels
are assumed to be the true labels and are used for analysis of
the results. The data has mixed-gender and mixed-bandwidth
conditions. The actual number of speakers varies from 1 to
27.

3.2. Performance Measures

Speaker segmentation error is measured as a sum of three
errors: speech false alarm (FA), speech miss detection (MD)
and speaker misclassification. The first two are speech silence
segmentation errors. In our experiments, these three errors are
calculated in two different ways. First, we use the NIST
scoring protocol, which assigns one real speaker to only one
SSR speaker. If a real speaker is split into two SSR speakers
then the dominant SSR speaker is assigned to the real speaker
and the time for the other SSR speaker is considered as an
error. This is refer to this as a “NIST” error.

In real-life scenarios, the constraint of mapping one real
speaker to only one SSR speaker can be relaxed to some
extent. If a real speaker is split into multiple SSR speakers
then an end-user just needs to provide the same name for
multiple SSR speakers. While it can be frustrating to provide
the same label for multiple speakers, it is a much more benign

153

error than the one, where two different real speakers are
merged into a single SSR speaker.

Therefore, the NIST scoring script is modified to allow
assignment between multiple SSR speakers and a real
speaker. This is the second approach. The dominant real
speaker is calculated for each SSR speaker, and a mapping is
created between the two. The error calculated with the
modified NIST protocol is referred to as an “Internal” error.
This error measures cluster purity and it indicates potential
gains from improved clustering. It also gives the residual error
after a user is allowed to give the same name to different SSR
speakers. Note that false alarm speech errors and miss detect
speech errors are the same with the “NIST” and “Internal”
scoring approaches. Also note that a very low internal error at
the cost of very high NIST error by producing too many
clusters. This is avoided by measuring the overall error as a
combination of the two errors.

Speaker recognition performance is also measured with
FA and MD errors. The errors are referred to as speaker FA
and speaker MD respectively. The errors are measured at
different operating points using different thresholds. Typically
a threshold is chosen to minimize a certain cost function,
which is a combination of speaker FA and MD with other
parameters. In this paper, the results are reported using equal
error rate (EER), where the cost function is an average of
speaker FA and speaker MD. In other words, the operating
point assumes the same cost and priors for the two types of
errors.

3.3. Name propagation and model merging

The goal of this evaluation is to measure the accuracy of
speaker recognition. The speaker recognition algorithm inside
SSR compares SSR speakers from different videos to derive
names for new SSR speakers. Thus speaker recognition
accuracy directly translates to the efficacy of name
propagation. Higher speaker recognition accuracy is
important for minimizing user input and improving the
usability of speaker metadata.

The evaluation data consists of 78 videos from Cisco. The
speakers are mostly executives, many of whom appear in
numerous videos. The videos are either corporate
announcements or interviews. There are 68 unique speakers
across 78 videos. There are 8 speakers (executives) that speak
across multiple videos, and 60 unique speakers (interviewers
and others) that speak in only one video.

The evaluation protocol assumes that users will upload
videos in batches; they will watch videos in a random
sequence; and label SSR speakers as needed. Figure 4 shows
the evaluation protocol, which is described in detail below.
1. Process all the videos to get the segmentation and

similar speaker information. Note that none of the
SSR speakers have any names associated with them.

2. Generate a random sequence of the 78 videos from
the dataset; this sequence determines the order in
which a user might watch and label the speakers in
the videos.

3. Take the next video in the list, name all the SSR
speakers that haven’t been named or have been
labeled wrong. Keep a count of how many labels
were empty or wrong. Confirm all the correct names.

4. Propagate the speaker names to all the similar SSR
speakers in other videos. Note that all the previous
videos in this sequence have correct labels for all the
SSR speakers. So name propagation does not affect
those labels. It only affects SSR speakers in the
videos that have not been processed yet.

5. Repeat steps 3, 4 and 5 for all the videos in the
random sequence.

For each random sequence of videos, three types of errors are
measured.
1. Number of user inputs - The number of user inputs

required to label all the videos in a sequence. The
goal is to label all of the speakers in the videos with
minimal user input.

2. False acceptance error - If the speaker is labeled
incorrectly due to incorrect similar speaker
association then it is counted as a false acceptance
error.

3. False rejection error - If a speaker has been labeled in
another video but the name has not propagated to the
current video, then it is counted as a false rejection
error.

An experiment is performed over multiple random
sequences of videos, and mean and the standard deviation
of each type of the error is calculated.

The benefit of the composite models is measured with and
without name propagation. The results from our “name
propagation” evaluation, where we did not merge SSR
speakers, are used as a baseline. The setup is modified with an
additional step after step 3. In this step, all the speaker models
with the same names are used to get the corresponding
composite models (if possible), and the speaker similarity is
recomputed for all speaker models.

Second, speaker recognition performance is measured
without name propagation (and the random sequence). This is
similar to a more traditional speaker recognition evaluation
setup. The videos are divided into two sets – train and test.
True names are obtained for all the SSR speakers in the train
set. Speaker recognition is performed with SSR speakers in
the test set. The speaker recognition experiment is repeated by
switching the train and test sets. The final performance
measure is the average performance of these two speaker

Figure 4 Name propagation evaluation protocol

154

recognition experiments. This performance measure is
referred to as a baseline.

The benefit of composite models is tested as follows. In
the train set, speaker models are merged based on their true
names to obtain a smaller set of composite models. Speaker
recognition is performed on the speakers in the test set with
only the composite models. This experiment is repeated by
switching the train and test sets. The results are averaged
across the two experiments and are then compared to the
baseline.

3.3.1. Algorithm for Model Merging

The algorithm to perform model merging on speakers, which
have the same user given name, is described below –

1. Store the sufficient statistics of the GMM
representing each SSR speaker in each video.

2. Get all models that have the same user given name.
3. Perform a bottom up clustering on these speaker

models. At each clustering step, find the two closest
models, combine these models by adding the
sufficient statistics of the GMM representing each
model, and estimate the mean of a single new
model. Continue clustering until the closest distance
between the speaker models is greater than a
predetermined threshold. This results in one or more
composite speaker models for a given speaker.

4. Repeat steps 1 through 3 periodically in the system.

Note that “user given name” refers to not only names that
a user manually provides for a speaker, but also to names that
SSR has suggested for speakers in a given video and that were
confirmed by a user.

4. Results

4.1. Speaker segmentation

 Table 1 shows results for all the videos (RT03+Cisco) before
and after post-processing. Table 2 shows results on RT03
before and after post-processing (as explained in Section
2.2.1). In both cases, we compare performance with the NIST
and internal scoring scripts. Note that all these results were
produced with the same SSR parameter settings.

The results show the effect of post-processing as
described in section 2.2.1. For both RT03 and Cisco videos,
post-processing reduces the speaker error at the cost of false
rejection. The confidence threshold was selected to ensure
that FR error does not exceed 10%.

The results also show the difference between the NIST
and internal scoring. These two scorings strategies yield the
same FA and FR for speech-silence segmentation. The only
difference is in the speaker error. Internal error is always
lower than NIST error by design. As mentioned before, the
internal error can be interpreted as the error after improved
clustering or residual error after the user labels multiple
speakers with the same name.

4.2. Name propagation and model merging

Table 3 shows the results obtained for speaker name
propagation using the evaluation protocol described in Section
3.3. The results were obtained using 50 different permutations
of video sequences. Note that the theoretical minimum number

of names required to label all speakers in the videos is equal to
the unique number of speakers in the data set, which in this
case is 68. The maximum number of names required to label
all speakers, assuming perfect speaker segmentation and no
name propagation across videos, is equal to 201. This is equal
to all of the SSR speakers found in all of the videos. The
operating point is chosen to be where the false acceptance
error rate is equal to the false rejection error rate. Table shows
that the corresponding threshold is between 0.6 and 0.65. The
experiments show that it is consistent across two-fold cross
validation. Table 3 also shows that name propagation using
speaker recognition has brought the average number of user
provided labels to 77.4 to 74.94. This is significantly better
than the number without speaker recognition. This number is
also very close to the minimum number of speaker labels.

 Table 1 Segmentation error for all videos (RT03+Cisco)

Speaker error(%) Stage Speech
FA
error
(%)

Speech
FR
error
(%)

NIST Internal

 Before post
processing

3.26 1.44 11.53 3.61

After post
processing

1.38 10.92 4.09 2.82

Table 2 Segmentation error for RT03

Speaker error (%) Stage Speech
FA
error
(%)

Speech
FR
error
(%)

NIST Internal

 Before post
processing

2.66 0.19 5.97 4.72

After post
processing

1.84 9.79 3.41 3.41

Table 3 Name propagation errors without model
merging

Threshold Average
number of
user labels
required

FA speaker
error %

FR speaker
error %

0.5 106.26 0.59 18.08
0.55 94.06 1.84 12.35
0.6 83.4 4.63 7.23
0.65 77.94 7.30 4.61
0.7 74.94 13.23 3.09
0.75 72.9 20.42 1.82

The system is evaluated with the same set of video sequences
that were used in the model merging evaluation. Table 4
shows the results after merging the models with the threshold
set to 0.65.

These results suggest that the merging of models
improves the false rejection rate and reduces the number of
user provided labels. However the difference is not significant
because there is not enough evaluation data. This experiment
will be performed with more data in the future.

155

Table 4 Name propagation performance after model
merging

Threshold Average
number of
user labels
required

FA Speaker
error %

FR Speaker
error %

0.65 75.88 7.82 3.55

Table 5 shows the speaker recognition results with and
without model merging and Figure 5 shows the speaker FA
and speaker FR curves as a function of the threshold.

These results show that the merging operation does not
improve the recognition accuracy, but it does not degrade it
either. The thresholds are very similar across the two setups.
Note that a very simple approach for creating composite
models and to compute the distance between the models.
Improved model merging and distance computation
approaches should yield improvements to performance. These
results show a potential for significant reduction in speaker
recognition time.

Figure 5 False acceptance and false rejection errors
as a function of threshold

5. Summary and Future Work
Usability studies at Cisco have shown that speaker metadata
is useful for video search and navigation. This paper
described Cisco’s speaker segmentation and recognition
(SSR) system that generates this metadata. To the best of
author’s knowledge, it is the first commercial system that 1)
automatically discovers speakers from videos and 2) uses
crowd sourcing to label these speakers, so that a growing set
of videos become searchable using speaker metadata.

The paper described the functional blocks of SSR using
different use cases – segmentation and recognition; UI; and
model merging. Segmentation evaluation was performed
using 75 hours of internal Cisco data and 3 shows from RT03.
This data is a mix of different genders and bandwidths. The
numbers of speakers vary from 1 to 27. In addition, Cisco
internal data was used to measure accuracy of speaker
recognition and name propagation. Novel error measures and
evaluation protocols were described to measure the
performance.

Our segmentation errors on RT03 were comparable to the
state-of-the-art [1]. SSR has shown acceptable performance
on Cisco internal data and deployments inside Cisco. Name
propagation results show that SSR effectively minimizes the
labeling effort required from end users.

Table 5 Speaker recognition performance

Experiment False
positive %

False
negative %

Total
error %

w/o model
merging

11.29 6.25 17.54

w/ model
merging

6.45 11.71 18.16

6. References
[1] Meignier, S., and Merlin, T., “LIUM

SPKDIARIZATION: An Open Source Toolkit For
Diarization“, Proceedings of CMU SPUD Workshop,
2010,
http://www.cs.cmu.edu/~sphinx/Sphinx2010/papers/104.
unblinded.pdf.

[2] Tritschler, A., Gopinath, R. A., "Improved speaker
segmentation and segments clustering using the bayesian
information criterion", In proceedings of EUROSPEECH,
679-682, 1999.

[3] Bimbot, F., Bonastre, J.-F., Fredouille, C., et al., “A
Tutorial on Text-Independent Speaker
Verification,” EURASIP Journal on Applied Signal
Processing, vol. 2004, no. 4, pp. 430-451, 2004

[4] RT-03 fall evaluation plan,
http://www.itl.nist.gov/iad/mig/tests/rt/2003-
fall/docs/rt03-fall-eval-plan-v9.pdf

[5] Cisco Show and Share,
http://www.cisco.com/en/US/prod/video/ps9339/ps6681/s
how_and_share.html

[6] YouTube website, www.youtube.com
[7] Aradhye, H.; Toderici, G.; Yagnik, J., "Video2Text:

Learning to Annotate Video Content," Data Mining
Workshops, 2009. ICDMW '09, pp.144-151, 6-6 Dec.
2009,
http://static.googleusercontent.com/external_content/untr
usted_dlcp/research.google.com/en/us/pubs/archive/3563
8.pdf

156

