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Abstract
In this paper, we propose a new clustering model for
speaker diarization. A major problem with using greedy
agglomerative hierarchical clustering for speaker diariza-
tion is that they do not guarantee an optimal solution. We
propose a new clustering model, by redefining clustering
as a problem of Integer Linear Programming (ILP). Thus
an ILP solver can be used which searches the solution of
speaker clustering over the whole problem. The experi-
ments were conducted on the corpus of French broadcast
news ESTER-2. With this new clustering, the DER de-
creases by 2.43 points.

1. Introduction
The goal of speaker diarization is to annotate temporal
regions of audio recordings with speaker labels, in order
to answer the question ”who spoke when”. This oper-
ation is performed without knowledge of the number of
speakers or their identity. A common approach to this
task consists in detecting homogeneous audio segments,
which each contains the voice of only one speaker. The
segments are then grouped into clusters, where each clus-
ter contains segments of only one speaker.

Actually, in speaker diarization of broadcast news, the
main methods of clustering are based on hierarchical, ag-
glomerative algorithms such as top-down algorithms [1]
or bottom-up algorithms [2]. Systems using the bottom-
up approach (also known as Hierarchical Agglomerative
Clustering – HAC) obtained the best results in the ES-
TER 2008 and NIST RT-04F evaluation campaigns. The
HAC approach is an iterative algorithm that merges the
two most similar clusters. This process is repeated un-
til the similarity between any two clusters does not rise
beyond some threshold value. Similarity is calculated
using Gaussian Mixture Models (GMM). Unfortunately,
greedy algorithms based on GMMs suffer from many
problems.

First, the HAC approach is a greedy algorithm that
solves the problem by choosing a local optimum at each
step with the hope of finding a global optimum. However,
during the greedy search, the selection of the next merge
depends strongly on those chosen so far. An error at the
beginning is propagated until the end of the clustering,
causing an increase in the error rate.

Second, GMM-based speaker models convey not
only useful information (related to the speaker) but also
useless information that can disrupt the speaker cluster-
ing. This useless information can be of various nature
and can be related to environment variability or channel-
variability, for example.

In the work presented here, we propose a new clus-
tering model where clustering is addressed as a global
process – as opposed to the greedy approaches where it
is treated as a series of local problems. We propose to
replace the greedy, bottom-up search with a global for-
mulation, where the basic bottom-up framework can be
expressed as a variant of k-center problem. The algo-
rithm can be expressed as a problem of Integer Linear
Programming (ILP), through a definition of the concept
of cluster in ILP terms. An ILP solver can then be used
to minimize the result of the objective function.This new
model is based on the i-vector paradigm. The i-vector ap-
proach was developed in an effort to enhance the classical
speaker GMMs used in the field of Speaker Verification
(SV), and was recently used in the field of speaker di-
arization of telephone conversations [3].

The paper is organized as follows: Section 2 presents
the architecture of speaker diarization. Section 3 presents
the corpus used for the experiments. Section 4 summa-
rizes the i-vector approach. Section 5 presents our global
optimization framework for speaker diarization. The re-
sults of our experiments are explained in Section 6. Sec-
tion 7 then concludes with a discussion of possible direc-
tions for future works.

2. Architecture
The diarization system used is the LIUM Speaker Di-
arization system[4], freely distributed1. This system ob-
tained the best results during the ESTER 2008 evaluation
campaign.

The system is composed of an acoustic Bayesian In-
formation Criterion (BIC)-based segmentation followed
by a BIC-based hierarchical clustering. Each cluster rep-
resents a speaker and is modeled with a full covariance
Gaussian. Viterbi decoding is used to adjust the segment
boundaries using GMMs with 8 diagonal components for
each cluster trained by Expectation-Maximization (EM).

1http://www-lium.univ-lemans.fr/diarization/
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Segmentation, clustering and decoding are performed
over 12 MFCC+E, computed with a 10ms frame rate.
Music and jingle regions are removed using Viterbi de-
coding with 8 GMMs, for music, jingle, silence, and
speech (with wide/narrow band variants for the latter two,
and clean/noised/musical background variants for wide-
band speech).

In the previous steps, features were used unnormal-
ized in order to preserve information on the background
environment, which may help differentiating between
speakers. At this point however, each cluster contains
the voice of only one speaker, but several clusters can
be related to the same speaker. The contribution of the
background environment to the cluster models must be
removed through feature normalization in order to merge
these clusters into one.

Audio signal MFCC
BIC 

segmentation

BIC

clustering

NCLR 

clustering

Figure 1: Architecture of the LIUM Speaker Diarization
system

As shown in Figure 1, the system is completed with
a Normalized Cross Likelihood Ratio (NCLR [5]) based
on bottom-up clustering. It is performed on the clusters
obtained after BIC segmentation: the parameters of each
segment are normalized using feature warping and a Uni-
versal Background Model (UBM) is adapted (Maximum
A Posteriori – MAP) for each cluster.

In this paper, we propose another method of cluster-
ing based on the i-vectors. We propose to substitute the
last step of the system (the NCLR) with our new model.
The previous steps (parameterization, segmentation. . . )
remain the same.

3. Corpus
The data used for the experiments are those of the ESTER
2008 evaluation campaign [6]. The data were recorded
from 4 French radio stations, and are divided into 3 cor-
pora: the train corpus corresponds to more than 111
shows (90 hours), the development corpus corresponds to
20 shows, and the evaluation corpus contains 26 shows.
The train corpus is employed to learn and to condition the
i-vectors and the development corpus is employed to set
the various thresholds of the systems.

4. i-vector
4.1. i-vector extraction

I-vector approaches have become the state-of-the-art in
the SV field. They provide an elegant way of reducing a
large-dimensional input data to a small-dimensional fea-
ture vector, while at the same time retaining most of the
relevant information. The technique was originally in-

spired by the Joint Factor Analysis (JFA) framework in-
troduced in [7].

Given a speaker- and channel-dependent GMM, the
corresponding mean super-vector M can approximated
by:

M = m+ Tw (1)

where m is the mean super-vector taken from a GMM-
UBM; T is a low-rank rectangular matrix spanning the
subspace covering the important variability; w is a low-
dimensional vector with a normally distributed prior
N(0, I).

After iteratively estimating matrix T over a training
corpus, equation 1 allows to use the lower-dimensional
vector w as a speaker model in place of a large GMM. w
is referred to as an i-vector.

The i-vector algorithm is fully described in [8].

4.2. i-vector conditioning and distance metric

4.2.1. Conditioning

At this step the i-vectors contain both speaker and chan-
nel information. The goal is to find a method that is able
to carry out channel compensation. In [9, 10], the authors
proposed to perform channel compensation in i-vector by
using several channel compensation techniques working
in this space. The best results were obtained by the pro-
cess LDA+WCCN+Fast scoring.

But in [11], the authors propose a more robust
method. That i-vector conditioning method is an itera-
tive process with two goals.
i) Ensure that the i-vectors are distributed among N(0, I).
One consequence of that constraint is that the vector di-
mensions of i-vectors are mutually independent.
ii) Apply length normalization to the i-vectors. In
[12, 11], it is shown that length normalization made the
test and trial i-vector distributions more similar and more
Gaussian shaped.

In the training corpus, for each turn of speech ob-
tained using the reference we extract an i-vector. The
goal of the conditioning algorithm is to compute param-
eters for the i-vectors present in the training corpus and
apply these parameters to the i-vectors present in the test
corpus.

Algorithm 1 describes the training method for the
i-vector conditioning parameters. The parameters (the
mean µi and the covariance matrix Σi) of the i-vectors
present in the train corpus are saved at each iteration i
(step 0). Next, the i-vectors are conditioned using the pa-
rameters of the current iteration: step 1 is the classical
data standardization, and step 2 is length normalization.

On the test corpus, after the BIC clustering, an i-
vector is computed for each cluster. The i-vectors are
then conditioned iteratively, in a manner similar to that
used during the training phase, as explained in algorithm

147



Algorithm 1: Conditioning algorithm of i-vectors
on the train corpus

for i = 1 to nb of iterations do
Step 0: Compute the mean µi and the
covariance matrix Σi on the train corpus;
for each w in the train corpus: do

Step 1: w = Σ
− 1

2
i (w − µi);

Step 2: w = w
‖w‖ ;

end
end

2. The difference lies in the absence of step 0: the mean
µi and covariance matrix Σi used for each iteration in this
phase are the ones saved during the training phase. As in
the training phase, step 1 is the data standardization, and
step 2 is length normalization.

Algorithm 2: Conditioning algorithm for the test
phase

for i = 1 to nb of iterations do
Step 1: w = Σ

− 1
2

i (w − µi);
Step 2: w = w

‖w‖ ;
end

4.2.2. Distance metric

Given two i-vectors wi and wj computed for clusters i
and j, the goal is to verify whether the two i-vectors
correspond to the same speaker or not. If we assume
homoscedasticity (equality of covariances) and Gaussian
conditional density models, the most likely class can be
obtained by the Bayes optimal solution:

d(wi, wj) = (wi − wj)W
−1 (wi − wj)

′ (2)

whereW is the within-class covariance matrix calculated
on the conditioned i-vectors of the train corpus. So ac-
cording to equation 2, the shorter the distance is, the more
likely the two i-vectors belong to the same speaker. The
within-class covariance is calculated :

W =
1

n

S∑
s=1

ns∑
i=1

(ws
i − w̄s) (ws

i − w̄s)
′ (3)

where ns is the number of utterances for speaker s, n is
the total number of utterances, ws

i is the training i-vector
of session i for speaker s, and w̄s the mean i-vector for
speaker s over all the sessions.

5. Global Optimization Framework
The solution of speaker clustering given by HAC algo-
rithms do not guarantee to provide an optimal solution.

We propose to write our problem of speaker clustering in
terms of ILP (Integer Linear Programming).

The goal of clustering is to group N i-vectors into K
clusters (where K is to be determined by the algorithm
and is of course between 1 and N ). To transform our
problem in an ILP, we use the hypothesis that i-vector n
can belong to cluster k if the distance between the center
of the cluster and the i-vector is less than a set threshold.
For our problem, the center of a cluster is necessarily an
i-vector. Theoretically, there may be as many clusters as
i-vectors. The goal is to minimize the number of clusters,
so that all i-vectors are assigned to a cluster.

From this, we can formulate the objective function
and constraints of our problem. The objective function is
to minimize the number of clusters, K, but also to mini-
mize the dispersion of the i-vectors within every cluster.
We define two binary variables yk and xk,n. The binary
variable yk indicates whether cluster k is selected. The
binary variable xk,n indicates whether i-vector n belongs
to cluster k. Thus our objective function can be written
as:

z =

N∑
k=1

yk +
1

F

N∑
k=1

N∑
n=1

d(wk, wn)xk,n (4)

The objective function is decomposed in two
parts: the first part (

∑K
k=1 yk) calculates the

number of clusters in our problem; the second
(
∑K

k=1

∑N
n=1 d(wk, wn)xk,n) calculates the sum of

the distances between the center of cluster k and the
i-vectors attached to that cluster; where d(wk, wn) is
the distance between the center of cluster k and i-vector
n. The resolution of this problem aims at minimizing
both the number of clusters and dispersion. F is a
normalization factor, to weight the two subparts of
Equation 4.

We note that under our assumptions, the center of any
cluster is in reality an i-vector, therefore calculating the
distance between cluster k and i-vector n is a distance
calculation between two i-vectors.

Thus, the speaker clustering model can be written as:

Minimize z

Subject To
N∑

n=1

xk,n = 1, ∀k,(5)

xk,n − yk ≤ 0, ∀k,∀n,(6)

d(wk, wn)xk,n ≤ δ, ∀k,∀n,(7)

xk,n ∈ {0, 1}, ∀k, ∀n
yk ∈ {0, 1}, ∀k

Equation 5 ensures that all i-vectors have been as-
signed to a cluster. Equation 6 ensures that if an i-vector n
is assigned to a cluster k, then the cluster k is selected. In
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Equation 7, an i-vector n can be selected from a cluster k
if the distance is lower or equal to distance δ. d(wk, wn)
corresponds to the distance given by Equation 2 between
i-vector n and cluster k.

6. Results and comparison
6.1. i-vectors and ILP

Matrix T of equation 1 is estimated over the train corpus.
The matrix is iteratively estimated using the Expectation
Maximization (EM) algorithm. We used 60-dimensional
acoustic features, with a 10ms frame rate, composed of
19 MFCCs plus log energy and augmented by first and
second-order deltas. The GMM-UBM is a gender- and
channel-independent GMM composed of 1024 Gaussians
computed using the ALIZÉ speaker recognition toolkit2.

In order to have a balance between the modeling pre-
cision and the amount of the data leading to accurate pa-
rameters estimation, we have chosen a dimension of 60
for the i-vectors. In fact, if we take an upper dimension
for some segments, we cannot have a sufficient number
of frames to correctly estimate matrix T .

The ILP clustering algorithm is developed using the
GNU Linear Programming Kit3.

6.2. Results

The default set of distance metric thresholds (δ) was de-
termined using the ESTER 2008 development corpus.
We can observe in Figure 2 that the optimal threshold on
the development and test corpora is the same (δ = 180).
Preliminary results show that the threshold is practically
the same for corpora of various kinds (meeting, TV).
We may theorize that as we remove useless information
(channel-effect, . . . ), the threshold focuses on speaker in-
formation and apparently there is less need to adapt it for
different tasks.
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Figure 2: Results on ESTER 2008 dev and test corpus, for
different distance metric threshold.

2http://alize.univ-avignon.fr/
3http://www.gnu.org/s/glpk/

We propose, following the same clustering algorithm
(HAC), to compare NCLR (NCLR HAC) and i-vector (i-
vector HAC). Then, we propose to apply the ILP model
on i-vector (i-vector ILP). The system NCLR HAC is the
classical system used for the campaign ESTER 2008. The
results are reported in Table 1.

Table 1: Baseline system vs i-vectors (DER on evaluation
corpus)
NCLR HAC: the baseline system
i-vector HAC: the system using the i-vectors and the HAC clustering
i-vector ILP: the system using the i-vectors and the ILP clustering

Corpus NCLR i-vector i-vector
HAC HAC ILP

Africa 1 9.60% 6.05% 2.79%
Inter 9.23% 11.72% 8.62%
RFI 3.61% 2.33% 2.33%

TVME 13.31% 13.17% 13.54%
ESTER-2 9.42% 9.08% 6.99%

The i-vectors with a HAC gives better results than the
baseline but worse than the i-vectors with ILP cluster-
ing. The ILP algorithm explores more clustering solu-
tions than the greedy HAC algorithm and the measure
between i-vector is a distance whereas it is a similarity
for NCLR. The i-vector ILP system obtains on TVME ra-
dio a worse result than the baseline (13.54% and 13.31%
respectively). Most of the speakers (56%) use a phone
in the shows from TVME radio. The GMM-UBM is
gender- and channel-independent; we think that lay be
the reason behind this result.

7. Conclusion
In this paper, we proposed a new model of speaker clus-
tering based on i-vectors. The ILP, in place of standard
NCLR-based clustering, obtains a DER decrease of 2.43
points on the test corpus of the ESTER 2008 evaluation
campaign. The i-vectors give more robust models than
GMMs for this task, as was already the case for speaker
verification.
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