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Abstract 

Time-series clustering is a process which takes into account 

the input samples chronological sequence. So, in time-series 

clustering, the samples are not processed independently as a 

result for a given sample depends on the clustering result of 

the whole sequence. One of the popular clustering algorithms 

to handle such dependency is the well-known Hidden-

Markov-Model (HMM) trained by the Viterbi statistics. 

In this work we propose a generalization of the broadly used 

HMM, denoted Hidden-Distortion-Models (HDMs). Our 

proposal is based on distortion-based models and transition 

count, for which probabilistic calculations are no longer 

mandatory. We will introduce our approach by its 

mathematical bases. It will be shown that Viterbi based HMM 

can be seen as a special case of HDM. This proximity allows 

to us to apply similar approaches for state-model training 

when the new paradigm is used to learn the sequence 

dependencies. 

Speaker diarization application will be presented to show the 

advantages of the HDM as a clustering algorithm. 

1. Introduction 

Time-series clustering is a process where the chronological 

sequence of the input must be taken into account. In time-

series clustering, the samples are processed with respect to the 

dependencies between them. As a result, the clustering for a 

given sample may depend on the clustering result of the whole 

sequence. Time series clustering has many applications in 

different areas as speaker diarization ‎[1]-‎[4], video 

segmentation ‎[5], bio-medicine ‎[6], and many others. This task 

corresponds to an unsupervised process where the samples 

have to be separated into k groups (clusters). Each group has 

to be homogeneous in some sense, e.g., one speaker per 

cluster, similar shapes, etc. The clustering process is driven by 

a criterion and different criteria lead to different clusters. It 

constitutes one of the main differences relatively to supervised 

classification processes, like speaker recognition, where 

training and working phases are clearly separated and the 

former process is driven by labeled data. 

In time-series clustering, taking into account the time 

dependencies between the samples leads to different strategies 

depending on the time-context used to process a given sample. 

The probabilistic Hidden-Markov-Models (HMMs) approach 

and its variants ‎[1] ‎[7] ‎[8] are one of the most successful 

approaches in this case. 

HMM based clustering has many advantages, but at the same 

time suffers from several limitations: 

1. The model training process is based on Viterbi statistics. 

Both transition matrix and state models are optimized 

using Maximum Likelihood criterion. The estimation of 

the transition parameters of the HMM model is based only 

on the counts when the state models learning (usually, 

Gaussian Mixture Models (GMM)) relies on EM 

algorithm using input samples. So, the whole training 

process is disjoint and there can be an unbalance between 

the emission likelihoods and the transition probabilities. It 

might happen that most of the global likelihood depends 

on the transition probability, and is almost independent 

from the input samples. It might be the case if the state 

changes are rare, so the self loop transition probability is 

very high (close to one), while other transition 

probabilities are very small. In this case, a regularization 

parameter can help to improve the performance. However, 

in the probabilistic framework (HMM), there is no 

regularization option to adjust the transition probabilities. 

To emphasize this point, the aim of the HMM training is 

to increase the global likelihood, involving both 

transitions and emissions parts, and not to decrease the 

clustering error. 

2. HMM approach is based on the probabilistic paradigm and 

the state models (a state model represents one of the 

classes) have to be statistical models (GMM for example). 

For some specific situations or tasks like Damerau–

Levenshtein distance calculation in strings comparison 

(DNA protein sequences), it is a limitation as it is difficult 

to represent such a constraint with probabilistic models. 

To overcome these two limitations, we propose in this work an 

extension of the HMM, which embeds the advantages of 

HMM-based approach but allows also to use distortion-based 

approaches. Distortion-based approaches will allow both to 

learn the time dependencies and to represent the different 

states/classes by models other than probabilistic ones. We 

name our approach “Hidden-Distortion-Model” (HDM) as it 

corresponds to an HMM-like approach but using distortion 

paradigm. To do so, we limit ourselves to a family of additive 

distortions,    1 1
, ,

N

N nn
Distortion x x distortion x


 , i.e. 

the distortion of a N  vectors sequence is the sum of N  

individual distortions applied each on one vector. Unlike 

distance which is defined as a metric, distortion does not have 

all the metric properties (non negativity for example in the 

negation of log-likelihood). On the other hand, like distance, 

we would like to relate close events with a small distortion. 

The negation of the log-likelihood is an example of such 

additive distortion, so Viterbi-based HMM can be seen as a 

particular case of HDM. Instead of the emission probabilities, 

emission distortions are calculated; similarly, transition cost 

matrix and initial cost vector are used as a replacement of 

transition probability matrix and initial probability vector. An 

estimation of all the parameters is done in the distortion and 

transition counts space, without requiring any probability, or 

likelihood estimation. In this new framework, a regularization 

of transition costs becomes a natural part of the model. The 
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regularization parameters have to be determined based on 

some development data. We compare the HDM approach on 

the base of the system presented in [1], which is a variant of 

HMM with self-organizing map (SOM) as a state probability 

model. First, we use the original system as a baseline, and then 

replace the HMM by the HDM. It will be shown that better 

results can be achieved using HDM, compared to the HMM-

based baseline system. 

As an application of the described framework, we present 

results obtained in the task of speaker diarization. Speaker 

diarization has a growing interest in the recent years ‎[1]-‎[4]. 

Given a conversation between several unknown participants, 

speaker diarization comes to answer the question "Who spoke 

when?" As both the speakers and the speech segment 

boundaries are unknown, the problem corresponds to a time-

series clustering. Sometimes the number of participants is also 

unknown and has to be estimated. Many different algorithms 

were proposed to solve this problem and many of them are 

based on HMMs with Viterbi segmentation ‎[1], ‎[3] and ‎[4]. 

Such an application is well suited to evaluate the HDM 

approach we present in this paper. We evaluate it on telephone 

conversations, where the number of speakers is known and 

equal to two.  

The manuscript is arranged as follows: the classical HMM-

based clustering approach is presented in section 2; section 3 

describes the new HDM approach, highlighting the theoretical 

constraints and section 4 provides theoretical solutions to 

these constraints. Section 5 illustrates how HDM can be 

applied to fix duration constraints. The comparison between 

HDM and HMM is discussed in section 6. In section 7, we 

present several possible constraints on the objective function 

to be minimized when the experimental results on speaker 

diarization problem are shown at section 8. Finally, we 

conclude on the interest of HDM in section 9 together with 

future extensions of this work. 

2. HMM based clustering limitations 

In HMM, the log-likelihood of any clustering path is a 

combination of two sums. One sum relies only on the log-

likelihoods of the models given the input data, and the second 

sum relies only on the logarithm of the transition matrix. 

During the training phase, at each iteration, the Viterbi 

algorithm follows the Maximum Likelihood criterion by 

optimizing separately the emission probabilities and the 

transition probabilities which are linked to the two terms of 

the log-likelihood sum. The emission probability models are 

optimized using only the related samples when the transition 

matrix optimization is based only on the transition counts. In 

figure 1 we show an example of two Gaussian distributions 

with the same variance, 2 1   and the means 
1 2 1    . 

In the upper plot (a), both distribution are drown, while in the 

plot below (b) the log-likelihood ration is given in the solid 

line. It can be seen that for each data sample the contribution 

of the emission probabilities to the global log-likelihood of a 

path is usually less than six (in terms of absolute value of the 

emission probabilities log-likelihood ratio). If the transition 

frequency from one model to another is relatively low than the 

contribution of the transitions to the global path log-likelihood 

will be comparative to the contribution of the state models. 

For example, let us assume that the state change rate is each 60 

samples on average. In this situation, the self transition 

probabilities are 59
11 22 60

a a   and the probabilities to change 

from one state to another are 1
12 21 60

a a  . The log ratio is 

     11 22

12 21

59 60

1 60
ln ln ln 4.1

a a

a a
    (dash lines). It means that if 

the likelihood of a sample is much higher for a given state 

model than for the others, a transition (in direction of this 

state) may be observed. On the other hand, if the transitions 

are much rarer, like in conversational interview, where the 

transitions might happen each 8 seconds on average, which is 

800 samples (in speech recognition the features are usually 

extracted each 10msec) then the 

     11 22

12 21

799 800

1 800
ln ln ln 6.7

a a

a a
    (dot line). In this case, the 

values of the emission probabilities become irrelevant and the 

decisions rely only on the transition probabilities. So the 

algorithm will always tend to stay in the initial state (only out-

layers can cause to the system to switch). This situation of 

staying in the initial state leads to the maximum likelihood of 

course, but to very poor clustering performances. The opposite 

situation could also occur if the transitions ratio is largely 

smaller than the state-emission probabilities (for a state swap 

every 3 input samples in average the transition log ratio is 

     11 22

12 21

2 3

1 3
ln ln ln 0.7

a a

a a
   , to be compared with a ratio 

which can be up to 6.0 for the emission probabilities). 

Although, our goal is to optimize the clustering quality by 

minimizing the clustering error, the HMM maximization 

objective function is the log-likelihood function and could be 

suboptimal in some situations. 

In order to solve this problem, another framework has to be 

developed which can in the same time take into account the 

transitions but not neglect the emission probabilities and vice 

versa. In order to estimate the transition costs, it could be also 

useful to allow the use of other frameworks than the 

probabilistic one, like distortion-based models. This leads us 

to propose a more global family which is denoted Hidden-

Distortion-Model (HDM). We will show next that HMM is a 

private case of HDM. 
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Figure 1: Example of two states HMM. (a) The pdfs of the 

states. (b) The log-likelihood ratio of the state models 

(solid line); frequent changes transition-cost ratio (dash 

lines); rare changes transition-cost ratio (dot line). 
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3. Problem definition 

Assuming we have a system with K hidden states. Each state 

is defined by a distortion model 
kDM . Be 

 1cost |qk n nC s q s k    the transition cost of being at 

discrete time n at state q, given being at time n-1 at state k. 

| 1, , , 1, ,
qk

q K k K
C C

 
    , is a time constant cost transition 

matrix.  k nd x  is a distortion of the data vector 

 1, ,n Nx X x x  , when X is the sequence of data vectors, 

given a model 
kDM . The distortion have to be additive, 

meaning,    |
n

nx X
D X DM d x


 . GMM for example is 

such a model with     logn nd x l x  , where  nl x  is the 

likelihood of the model given the observation vector 
nx . 

In addition there is a vector of initial costs, to be at state k at 

time zero, 1, ,
T

K      . Our model can be defined as a 

triple   , ,kDM C  . 

The two problems we have for HDM are: 

Given the distortion models  
| 1, ,k k K

DM


, the cost transition 

matrix C and the vector of initial costs  , find the path 

which minimizes the cost for a sequence of data samples 

 1, , NX x x :  

 

 
    

1 1 1
| 1, ,

1

2

|

  min
n n n

n n N

N

N

s s s n s s
s

n

C X

d x d x C


 



 
   

 


 (1) 

This problem can be solved using the well known Viterbi 

algorithm. 

Parameter estimation problem in Viterbi sense: given the data 

samples X, the sequence of states  
| 1,n n N

S s


 , and the 

model parameters , to find a new model ˆ  which will 

minimize the total cost. First let us find the total cost:  

 

      

 

   

1 1 1

1 1

1

2

1 2

, |

| | ,

n n n

n n n

N

N s s s n s s

n

N N

s s n s s

n n

N N

C X S d x d x C

d x C

C S D X S











 

    

   

 



  (2) 

When  |NC S  is the total sum of costs and 

 | ,ND X S  is the total distortion, given the model and the 

state sequence. As it can be seen, the distortions part and 

costs part are disjoint and can be minimized separately. When 

only one sequence is available, it is not possible to train 

properly the initial costs as one cost will have a reasonable 

value and the others, in many cases, will be set to infinity, as 

it happen in HMM with Viterbi training. In the HMM case, 

one state will have probability one and all the others will be 

set to zero. The HMM costs are 

   log ,  logqk qk k kC w      , when qkw  is the transition 

probability from state k to state q, and k  is the initial 

probability of state k.  

The initial scores vector can be trained if several sequences 

from the same environment have to be clustered together. 

Assuming several records of conversations of the same group 

of participants are available, it becomes possible to cluster all 

the conversations together, enabling to train also the initial 

cost vector. 

4. Model parameters estimation 

In this section we present the estimation procedure of the 

HDM parameters. The estimation of the initial cost vector, 

transition cost matrix and the state model estimation are 

presented. 

4.1. Counts Model 

Like in HMM, let us assume first that we do not have hidden 

variables and instead of observation vector sequences, we 

have a set of state sequences    1
1
,  , ,

q

Q

q q q qN
q

S S s s


 S . 

We wish to estimate the cost transition matrix C and the 

initial cost vector  . 

Just like in the 1st order Markov model log-likelihood 

calculation, the total cost will be the sum of all the cost along 

the given path. As several sequences are given, the sum will 

be also over the all sequences: 

  
1 1

1 2

1 1 1

1 1 1 1

| ,

                     

,   

q

q qn qn

NQ

N s s s

q n

K K K

k k qk qk

k k q

QK K K

k pk q

k k p q

C C C

N N C

N Q N N







 

  

   

 
    

 
 

 

 

 

 

  

S

 (3) 

When qkN  is the number of transitions from state k to state q 

over all the sequences, and 
kN  is the number of times to be at 

state k at time zero (beginning of the conversation, for 

example). 

Minimizing the expression 
1 1 1

K K K

k k qk qkk k q
N N C

  
    of 

eq. (3) over all the costs is straightforward, by setting all the 

values to zero. This trivial solution almost does not carry any 

information. The only constrain for this solution is that all the 

costs should be non-negative values, which is not always 

required. An example of such system is a clustering process 

based on a single codebook. Usually, in such case, each code-

word has its Voronoi cell, and the vectors which are in the 

cell define a cluster. The problem is to find the partition able 

to minimize the overall distortion. If we do not want the 

trivial solution, the minimization should be done according to 

some pre-defined constraints. A first simple constraint is 

defined by 1

1
1

qk

K

Cq
k


    and 1

1
1

k

K

k 
 , this ensures 

that the sum over the inverse costs will equal to one for each 

state or initial cost. This constraint observes a somehow 

"probabilistic" feeling. This implies that more frequent 

transitions will have lower transition cost than rare transition, 

and the same for the initial costs. The objective function to be 

minimized, using the Lagrange multipliers, is: 

 
1 1 1 1

1 1

1
1

1
1

K K K K

qk qk k

k q k q qk

K K

k k

k k k

J C N C
C

N 



 


   

 

 
    

  

 
   

 

  

 

 (4) 
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Taking the partial derivation with respect to qkC  and compare 

it to zero gives: 

 
 

2

1
0qk k

qk qk

J C
N

C C



  


   (5) 

For each q, we have 
2 2 2,k qk qk pk pk qk qkN C p q N C N C      (6) 

We can now construct K-1 linearly independent equations, 

without a lost in terms of generality, 0.5 0.5

1 1k k qk qkN C N C  for 

2, ,q K  (we do not want to take the solutions which give 

negative cost, but theoretically it can be done), and one non-

linear equation 
1

1
1

K

q
qkC
 . It is easy to see that the 

following expression solves all the equations, and all the costs 

are positive. 

0.5

1

0.5

K

pk

p

qk

qk

N

C
N





    (7) 

The same should be done for the initial costs: 

 
0.5

1

2 0.5

1
0

K

p

p

k k

k k k

N
J C

N
N

 
 


    




 (8) 

The costs are all non negatives, and even all not less than 1. 

4.2. Hidden Distortion Model 

In sub-section 4.1 we estimated the  |NC S  part of eq. 

(2). In order to estimate the distortion models, we have to 

minimize the following expression: 

     
 

 

1 1 |

1 1

| ,

# |

n n

n

N K

N s n s n

n k n s k

QK

n q

k q

D X S d x d x

n s k N

  

 

 

 

  

 

 (9) 

From the right side of eq. (9), we see that each distortion 

model can be minimized independently from all the others, 

applying the minimization algorithm according to the pre-

defined distortion measure. 

4.3. The iterative training 

Given an HDM of K states with distortion models 

 
| 1, ,k k K

MD


 and the data    1
1
,  , ,

q

Q

q q q qN
q

X X x x


 X , 

the algorithm is: 

Initialization: 

1. For each state, initiate the models 
  0

| 1, ,
k

k K

MD


. 

Different ways can be applied depending on the targeted 

task and the type of model. 

2. Initialize the cost matrix 
 0

C  and the initial vector 
 0

 . 

It can be done randomly according to some assumptions 

or by finding the path according to the partition of the 

data, relying only on the scores at step 1. 

Iterative part: 

3. Segment the data using the model, and get the new 

partition and the minimum cost path. 

4. Train the distortion models with the new partition, 

according to sub-section 3.1, and get 
  1

| 1, ,

i

k
k K

MD




. 

5. Train the new transition cost matrix 
 1i

C


 and initial cost 

vector  1i
  according to eqs. (7) and (8). 

6. Set 
         1 1 1 1

| 1, ,

, ,
i i i i

k
k K

MD C
   



   

         
| 1, ,

, ,
i i i i

k
k K

MD C


   , and iterate steps 3 to 

6 until to meet the termination conditions. 

If only one sequence is given as input of the algorithm, the 

training of the initial vector is impossible and the cost should 

be set accordingly to some prior knowledge (equal costs could 

be also used if there is no priority of one model over the 

others). 

5. Duration constraint parameters estimation 

In speaker diarization, it is reasonable to force the direction 

from one state to another for several consecutive frames (left-

to-right model with one possible transition). Furthermore, 

usually all the states share the same state model. The time 

constraints are linked to some physical considerations, such 

as, speaker cannot speak less than 200ms. This leads to force 

the system to stay in a “hyper state” for 20 successive input 

data (frame rate is 100 frames per second). According to eq. 

(7), the corresponding transition costs will be equal to 1. It 

differs from the HMM which implies a probability set to one, 

i.e., zero in terms of transition log-probability. All other 

transition costs are set according to eq. (7). 

At the last state of each hyper-state, only transition to the first 

state of each "hyper-state" is allowed. It is giving a fixed 

duration clustering system. The model, the transition matrix 

and initial transitions vectors estimation are identical than the 

ones described in section 4. An example of two-state fix 

duration system is given in figure 2. 

 

Figure 2: Two-state fix duration HDM system. 

In general it is easier to describe the transitions cost matrix as 

a block matrix, where each block is a transition matrix qkC  

between hyper-states k  and q : 

11 12 1

21 22 2

1 2

K

K

K K KK

C

 
 
 
 
  
 

C C C

C C C

C C C

  (10) 

If each state has fix duration of length  , then the diagonal 

blocks are a intra hyper-state transition costs matrix, kkC , 

defined in eq. (11). The elements below the main diagonal are 

all equal to MinCostC , as this is the only allowed path. At the 

last state of the hyper-state, it is allowed to transit to the first 

state of any hyper-state, including self loop. The upper right 
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element is the self loop transition cost from the last state of 

the kth hyper-state to its first state. All other transitions are 

forbidden and fixed to a maximal transition cost, 
MaxCostC . 

The inter hyper-state transition costs matrix is given in (12). 

As any transition is forbidden except from the last state of the 

kth hyper-state to first state of the qth hyper-state, all the costs 

are equal to 
MaxCostC , excluding the upper right one, which 

equals to kqC . 

MaxCost MaxCost

MinCost MaxCost MaxCost

MaxCost MinCost MaxCos

k

t

k

kk

C C

C C C

C C

C

C

 

 
 
  
 
  
 

C  (11) 

MaxCost MaxCost qk

MaxCost MaxCost MaxCost

MaxCost MaxCost MaxCost

qk

C C C

C C C

C C C

 

 
 
  
 
  
 

C  (12) 

If we apply it to HMM then  ln 1 0MinCostC    , 

 ln 0MaxCostC     , and the cost the 

    1ln ln |qk qk n nC w p s q s k       

6. HDM verses HMM and DTW 

In many senses the HMM and the HDM are similar, but HDM 

is much more flexible than the HMM. The main advantages of 

the HDM are: 

1. HDM do not restrict all transition probabilities from each 

state to sum to 1. Instead, different constraints can be 

applied according to some knowledge. In this manuscript, 

the case of the sum of the inverse costs constraint was 

presented used in eq. (4). 

2. In HMM the "cost" of the probability 1 transitions is the 

negation of the log-probability and always equal to zero. 

In the presented case, the "all counts" transitions are equal 

to one and with other constraint the cost can be any other 

value. 

3. In both approaches, the cost of zero count transitions is 

infinite. In HMM, it corresponds to the negation of the 

logarithm of zero and, in the presented work, we have 

zero in the denominator. In practical systems, if we want 

to preserve the ability to train this zero count transitions, 

the cost should be set to some high value, but not infinite 

value. 

To conclude on this comparison, it can be said that HMM in 

the case of Viterbi training is a private case of HDM, with 

distortions set to the negation of the log-likelihood of the 

emission probabilities; the costs are the negation of the 

logarithms of the transition/initial probabilities. The 

constraints which are used to calculate the costs in HMM are: 
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1 1

1

1

qk

k

K K
C

qk

q q

K K

k

q q

w e

e 



 



 

 

 

 

 
  (13) 

Where qkw  is the transition probability to state q from state k, 

and k  is the initial probability to be in state k. 

Another comparison can be done with dynamic time warping 

(DTW) and Gaussian dynamic warping (GDW), presented by 

Bonastre at el ‎[9]. Both methods are based on finding the best 

matching path on a grid, by comparing reference templates 

verses the test template. Both approaches are based on 

additive distortion constraints as presented in this study. The 

main advantages of our approach are: 1) it does not required a 

predefined reference template; 2) the transition costs are 

trained and do not have to be defined by some rules of thumb, 

including local and global restrictions of the moves on the 

grid. 

7. Two examples of constraints 

In sections 4-7, we have shown how to define the distortions 

and the costs for the HDM. This can achieve different results 

according to different distortion models and different 

transition constraints. It is still does not solve the problem of 

cost regularization. If the costs are high comparably to the 

distortions, the problem remains the same as shown in section 

2. In this section, we will present several ways to regularize 

the costs by applying regularization parameters into the 

constraints. 

1. Scaled log-likelihood:  

  1

1 1

1qk

K K
C

qk

q q

w e


 

     (14) 

In this case we used similar constraints than in HMM but, 

instead of the cost in the exponent, we use a scaled cost. It 

is easy to show that the costs become:  
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2. Powered inverse sum:  
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It gives:  
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. Substitute 

this result into the constraint equation gives:  
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This time, the hyper-parameter   is responsible about the 

starching or compressing the ration between the costs, due 

to the presence of 
2  in the power of all the expression. 

So, it becomes possible to emphasize or deemphasize the 

frequent transitions compared to the rare transitions. 

The   parameter is a scaling hyper-parameter which should 

be estimated on some development data. 

In the 2nd case defined in (17) the confidence on the counts is 

regularized. It means that small values of   increase both the 

costs and the ratio between the costs of rare and frequent 
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transitions. If the value of   increases, all the costs will tend 

to one, which means that the counts are unreliable. 

In figure 3, we return to the example presented in figure 1 

where we have the same Gaussian distributions with the same 

variance, 2 1   and the means 
1 2 1     (shown in the 

upper plot (a)). In the plot below (b) as in figure 1, the log-

likelihood ratio is given in the solid line. The rare transition 

costs case is drown using dot line (approximately 6.7) and the 

probability for state changing is very low. Appling (15) with a 

scaling factor 
1 0.5   allows setting the transition costs to a 

more reasonable value (dash line). This value should be 

estimated on a development set. This example is only 

illustrative as for two states case with symmetrical 

distributions and same state-change rate, the transition costs 

depend only on one parameter which can be estimated on the 

development set, without using any of the above mentioned 

constraints. This trivial solution becomes unreachable when 

the number of states increases nor if the distributions differ. 
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Figure 3: Example of two states HMM. (a) The pdfs of the 

states. (b) The log-likelihood ratio of the models (solid 

line); rare changes transition costs (dot line); rare changes 

transition costs scaled by a factor of 0.5   (dash lines). 

8. Experiments and results 

8.1. Speaker Diarization 

We apply our HDM approach on a two-speaker telephone 

speaker diarization task. Non-speech data and overlapped 

speech can be present in the conversation and the 

corresponding segments should be detected as well. The 

system used for this experimental evaluation of HDM reuses 

mainly the HMM-based system presented in ‎[1]. The system 

block diagram is presented in figure 4. It is mainly composed 

by a set of preprocessing steps (feature extraction, non-speech 

detection, overlapped speech detection…) followed by the 

diarization system itself. 

First, classical Mel-Frequency Cepstral Coefficients (MFCC) 

are extracted (20ms signal window with 50% of overlap, 12 

MFCC coefficients). The speech activity detection is 

performed by a simple energy threshold. The overlapped 

speech detection performs in the time domain and is described 

in ‎[1].  

The speaker diarization system has 3 hyper-states (non-

speech, speaker A, speaker B). As explained in section 5, a 

fixed duration constraint of 20 tied states (200ms) is used 

during the first 5 iterations and, in order to increase the 

resolution, only 10 tied states are used for the last iteration 

(giving a total of 6 iterations). Each cluster model is a Self-

Organizing Map (SOM) ‎[11], with size of 6 10 , used as 

likelihood estimator ‎[12] (assuming that each code-word is a 

mean of a Gaussian with an identity covariance matrix). In all 

HDM experiments, the model distortion measure is the square 

Euclidian distance. The non-speech model is initialized using 

the non-speech segments provided by the speech activity 

detector and the two other models are initialized thanks to a 

weighted segmental K-means ‎[10] (applied only on the 

speech segments). As each conversation is diarized separately, 

no initial costs are used. 

In all the presented experiments, “baseline” refers to the 

HMM-based system (corresponding to ‎[10]), by setting the 

corresponding HDM parameters to follow HMM transition 

probability model. 

 

Figure 4: Speaker diarization system. 

8.2. Database 

Two databases are used for the experiments: LDC America 

CallHome ‎[14] and NIST 2005 ‎[15]. 108 conversations 

CallHome conversations are used for LDC of about 30 

minutes duration each, but with only about 10 minutes with 

human transcription. Only this transcribed part is used here. 

2048 conversations are selected for NIST, with duration of 

about 5 minutes for each conversation. The data are sampled 

at 8kHz in a 2 channel μ-law format and the two channels are 

summed in order to have one channel conversations. 

8.3. Diarization Error Rate (DER) 

The performance is evaluated thanks to the frame-based 

Diarization Error Rate, as defined by NIST in ‎[16]. The DER 

calculation is performed excluding a 0.5 seconds time-

window around the changing points (i.e., the errors inside 

0.25 second on each side of the changing points are not taken 

into account). 

8.4. Experiments with LDC America CallHome 

Table 1 presents the DER for the baseline (HMM). Results 

using the same system but without transition costs (the 

transitions probabilities are all equal) is also presented. It can 
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be seen that the HMM transitions give about 30% relative 

DER improvement. 

Table 1: Results of the baseline system and without 

transition cost system. 

 Baseline  o Costs system 

DER [%] 17.18 24.37 

1st Experiment: The transition log-likelihoods are scaled 

according to (15). Notice that setting the meta-parameter to 

1 corresponds to the baseline. 

Table 2: Results with scaled log-likelihood. 

 =0.02   Baseline  

DER [%] 45.20 13.46 18.55 17.18 23.08 

The results are presented in table 2. The best results are 

obtained for 0.2  , outperforming significantly the baseline 

results. It shows that the baseline costs are too close one to 

each other. When   becomes very small, the transition costs 

become very large and the diarization relies mostly on them, 

giving unpredictable results. On the other hand, large   

shadow the transitions and give results close to baseline 

without transition costs. 

2nd Experiment: in this experiment we apply the powered 

inverse sum constraint, according to (17). 

Table 3: Results with powered inverse sum. 

 Baseline =0.05  

DER [%] 17.18 98.13 12.71 23.93 

Table 3 presents the related results. The HDM performs 

clearly better than the baseline with results a bit better than 

the ones of the previous experiments. Another time, the worst 

case gives results where the transition costs are very high. 

In figure 5 we show how the DER depends on the hyper-

parameter. Large value of the hyper-parameter leads to equal 

cost and the DER close to the no-cost DER. For very small 

values the cost are very large and the state distortions have no 

effect. This leads so all the data falls mainly to one cluster and 

the DER is extremely high. The optimal value is found 

empirically and in this experiment 1.0   reaches the lowest 

DER (12.71%). 

 

Figure 5: DER as a function of the hyper-parameter. 

Table 4 presents some examples of transition costs for a given 

file. The cost variation is very large and has an important 

impact on diarization performance. Optimal costs allow an 

important gain in terms of DER compared to the baseline. In 

this example, the no-cost system performs worse than the 

baseline but the difference is not huge. 

Table 4: Example of costs for different constraints for the 

file en_4065 (LDC). 

Baseline – DER=12.08% 

0.03 4.45 4.23 

5.73 0.01 5.83 

5.83 6.14 0.01 

Scaled likelihood,=0.2 – DER=7.20% 

0.08 22.35 27.84 

37.97 0.01 32.91 

36.98 36.48 0.01 

No Cost – DER=14.99% 

 

8.5. Experiments with NIST 2005 

Following the best result obtained on the LDC database, we 

apply our HDM to the NIST 2005 database, using the same 

meta parameters.  

Table 5: Results with LDC parameters on NIST 2005. 

 Baseline 

scaled 

likelihood

=0.2 

powered 

inverse sum



No 

Cost

DER [%] 14.56 18.98 16.28 17.96 

Table 5 summarizes the results. The HDM performs clearly 

worse than the baseline and sometimes worse that the No Cost 

(without cost matrix) case. One explanation could be bad 

values of the meta-parameters, estimated on LDC and applied 

on NIST, knowing that these two databases are very different. 

To assess this explanation, we divided the database into a 

development set (500 conversations) dedicated to meta-

parameter estimation and an evaluation set (1548 

conversations) to compute the performance. The best results 

on the development set are given in table 6: 

Table 6: Results with NIST 2005 development set. 

 Baseline

scaled 

likelihood

=0.8 

powered 

inverse sum



No 

Cost

DER [%] 14.64 14.48 14.51 18.46 

The first observation is that, as expected, good estimation of 

the scaling parameters can usually give results at least as good 

as the baseline system. However, even if HDM systems 

performed slightly better than the baseline, the improvement 

due to HDM is not clearly shown like for LDC. 

Table 7: Results with NIST 2005 evaluation set. 

 Baseline

scaled 

likelihood

=0.8 

powered 

inverse sum



No 

Cost

DER [%] 14.53 14.34 15.12 17.79 

Table 7 presents the results obtained on the NIST evaluation 

set, using the meta-parameters estimated on the development 

set. The results are similar to the results presented in Table 6. 
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9. Conclusions and perspectives 

In this work we defined a Hidden-Distortion-Model. This 

model allows exploring a large family of distortions and 

transition constraints. Our proposal includes also the classical 

HMM approach which becomes a specific case of HDM. We 

proposed different examples of transition cost models which 

do not require probabilistic assumptions. 

The HDM, by the possibility to add some constraints on the 

transition costs, allows to scale the transition costs versus the 

state-models distortions such that more frequent transitions 

will have lower cost than the rare transitions (which is 

logical). An important difference between the standard HMM 

and our approach concerns the tied states, usually used to 

embed durations constraints. In HMM, tied states have 

transition probabilities of one (or in log domain, zero cost), 

while in the presented system, the costs can differ from zero 

and depend on the chosen constraints. 

Several experiments with different costs were presented on 

telephone conversation (with two speakers) diarization. Our 

HDM approach was able to provide a significant 

improvement in performance on LDC (12.71% DER to be 

compared with 17.18% DER). It appeared that the hyper-

parameters (scale or regularization parameter) tuning is 

important and depends on the data to be clustered: on NIST 

the HDM performed slightly better than the baseline only 

when the hyper-parameters are correctly tuned on a NIST 

development set (from 18.98% DER without tuning to 

14.34% DER after tuning, to be compared with 14.56% DER 

for the baseline). It is also interesting to remark that, as 

expected, the state models are playing a more important role 

than the transition costs in the performance. For example, 

using equal cost for the transitions for the baseline system 

leads to an absolute DER loss of 7.19% for LDC and 3.4% for 

NIST.  

It is also interesting to remark that the optimal costs are very 

different depending on the database: on LDC, the optimal log-

likelihood scaling parameter is 0.2, which means multiplying 

the baseline system costs by a factor of five, when for NIST 

the optimal value is 0.8, which corresponds to add only 25% 

to the original costs. It means that the baseline HMM NIST 

2005 costs are almost optimal and it is hard to have a 

significant improvement, while for LDC America CallHome 

the original costs are far to be optimal, and HDM gives much 

larger improvement. 

In this paper, we focused on two transition cost systems when 

many other options could be examined. We showed that the 

choice of cost constraints should be driven by the targeted 

task, as the nature of the speech recordings seems to play a 

major role. In addition, the meta-parameters should be also 

optimized in order to match well with the data. 

This study, we showed that the classical HMM-based 

clustering is a private case of a much wider family. Our 

approach allows a better modeling of the information gathered 

from the input data temporal sequence without to lose the 

well-known advantages of HMM/Viterbi systems. 

The experimental part of this paper was done on a two 

speaker diarization task (but the task included the non-speech 

and overlapped speech detection). We wish to investigate in 

future works the role of our HDM approach in the case of 

recordings with unknown and large number of speakers. We 

hope that the flexibility of HDM, compared to HMM, will 

allow a better modeling of transition-related information.  
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