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Abstract
In this paper, we present a clustering algorithm for speaker

diarization based on spectral clustering. State-of-the-art diariza-
tion systems are based on agglomerative hierarchical clustering
using Bayesian Information Criterion and other statistical met-
rics among clusters which results in a high computational cost
and in a time demanding approach. Our proposal avoids the use
of such metrics applying Euclidean distances on the eigenvec-
tors computed from the normalized graph Laplacian. A hybrid
system is proposed in which HMM/GMM modelling and Viterbi
alignment are still applied, but the BIC for merging and stop-
ping criterion are substituted by a spectral clustering algorithm.
Once an initial segmentation is obtained and the clustering align-
ment is computed using the Viterbi algorithm, the remaining
clusters are modeled by stacking the means of the Gaussians in
a super vector. In such a space single value decomposition of
the associated normalized graph Laplacian is computed. Most
similar clusters are merged based on the Euclidean distances
in resulting eigenspace. Cluster number estimation is based on
analyzing eigenstructure of the similarity matrix by selecting
a threshold on the eigenvalues gap. In experiments, this ap-
proach has obtained a comparable performance to the traditional
AHC+BIC approach on the Rich Transcription conference eval-
uation data. Although it still relies on Gaussian modelling of
clusters and Viterbi alignment, the proposed approach leads to a
system which runs several times faster than traditional one.
Index Terms: Speaker diarization, speaker segmentation,
speaker clustering, spectral clustering

1. Introduction

Speaker diarization consists in segmenting and labeling an un-
known set of speakers in a continuous audio stream trying to
answer to the question who is speaking? This information is
useful in a range of applications such as speaker indexing, infor-
mation retrieval and speaker adaptation as a pre-processing for
the speech content transcription. [1].

Agglomerative hierarchical clustering (AHC) has become
one of the most widely applied approach to speaker diarization
task. Clusters are represented by parametric probability densities
like Gaussian mixture models (GMMs). Hidden Markov Models
(HMM) together with Viterbi perform segmentation and cluster-
ing of audio data in an iterative bottom-up fashion [2]. In such a
framework, Bayesian information criterion (BIC) is one of the
most popular metrics to estimate which couple of clusters merge
at each agglomerative iteration. BIC is usually also employed as

a stopping criterion for the agglomerative process [3]. Metrics
like as Generalized likelihood ratio (GLR), Kullback-Leibler
(KL) divergence, information change rate (ICR), amongst others,
has been also proposed, but all of them with same Achilles’ heel,
that is, a high computational cost and a performance heavily
depending on the choice of the metric [4].

To overcome this drawback, we propose a speaker diariza-
tion approach method based on spectral clustering (SC) avoiding
the use of computationally demanding statistical metrics like
BIC. Spectral clustering refers to a class of techniques which
rely on the eigenstructure of a similarity matrix to partition points
into disjoint clusters. Points having high similarity are pooled
together in the same cluster whereas they evidence a low simi-
larity among other points grouped in different clusters. SC has
been successfully applied in blind source separation, separating
speech mixtures from a single microphone [5] with no require-
ment of explicit models for speakers. However, there are a few
recent works which use SC to infer speaker clusters specifically
in speaker diarization task [6, 7, 8, 9].

Instead of making assumptions on data distribution, SC re-
lies on analyzing the eigenstructure of an affinity matrix [5, 10]
which models the similarity among the clusters. Nevertheless,
in contrast to classical AHC clustering approaches, such affinity
matrix is treated as part of the learning problem. Our proposal is
based on a parametric segment representation through a Gaussian
super vector (GSV). The GSV vector is composed by stacking
just the means of the Gaussians [11]. The classical BIC metric in
AHC is replaced by Ng-Jordan-Weiss (NJW) spectral clustering
algorithm [5]. In our work, the affinity matrix is built by defining
the similarity between segments through the Euclidean distance
in the GSV space of segments representation. We employ spec-
tral clustering algorithm with cluster number estimation based
on eigenstructure analysis, searching the drop in the magnitude
of the eigenvalues as in [7, 9].

Our clustering algorithm still depends on HMM/GMM mod-
elling and Viterbi segmentation as pre and post - processing for
spectral clustering. For instance, they are used for obtaining the
GSV vector representation per each segment which feed the SC
algorithm. In that case, the initial segmentation is computed
through a initial partition in homogeneous segments. Such seg-
ments are realigned by an HMM/GMM model together with
Viterbi decoding up to no variation in segmentation structure is
noticed. Finally, it is also applied as a post-processing of spectral
clustering results. This approach generates results comparable to
AHC+BIC ones but achieves much higher speed than the latter.
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Algorithm 1 Agglomerative Hierarchical Clustering (AHC),
bottom-up alternative.

Require: {xi}, i = 1 . . . , n̂ : speech segments
Ĉi, i = 1, . . . , n̂ : initial clusters

Ensure: Ci, i = 1, . . . , n : finally remaining clusters
1: Ĉi ← {xi}, i = 1, . . . , n̂
2: repeat
3: i, j ← argmin d(Ĉk, Ĉl), k, l = 1, . . . , n̂, k 6= l
4: merge Ĉi and Ĉj
5: n̂← n̂− 1
6: until no more extra cluster merging is needed
7: return Ci, i = 1, . . . , n

2. AHC diarization based on HMM/GMM
and BIC

In Figure 1 we depict an overall scheme of our baseline diariza-
tion system based on classical AHC. The system was submitted
to Rich Transcription (RT) 2007 and 2009 evaluations with minor
changes [12, 13]. In this work, only single distant microphone
(SDM) condition is taken into account. It performs the diariza-
tion on a mono-channel audio stream which is given by NIST.

Since we are interested in algorithm performances related
to speaker clustering, no algorithm is applied for speech activity
detection. The diarization reference files, provided by NIST, are
applied to produce speech activity labels, avoiding the speech
insertions – which produce false alarms errors – and speech
deletions – which lead to misses – and creating oracle speech
detection labels. Pre-processing of the data consists of Wiener
filter denoising for each sdm channel. 19 MFCC features are
then extracted from the filtered signal.

The baseline diarization system follows the commonly used
agglomerative hierarchical clustering (AHC) approach as ex-
plained in Algorithm 1. Firstly, speech is broken into short
uniform segments and the successive clustering iterations group
acoustically similar segments and assign them to speaker clusters.
The main steps of the system can be condensed in the following
points:

• Feature extraction and removal of non-speech frames. At
this stage, a clustering initialization is also performed
based on an homogeneous partition of the data (Fig. 1
block A).

• Complexity selection of the models based on the amount
of data per cluster and the cluster complexity ratio
(CCR), which fixes the amount of speech per Gaussian.
HMM/GMM training and cluster realignment by Viterbi
decoding based on maximum likelihood (Fig. 1 block B).

• Agglomerative hierarchical clustering based on the
Bayesian information criterion (BIC) metric among clus-
ters. The stopping criterion, also based on the BIC, drives
the ending point of the algorithm (Fig. 1 block C).

The number of initial clusters is determined automatically
depending on the meeting length with minimal and maximal
value constraints. In this work, the total amount of clusters was
constrained to a minimum and a maximum of 35 and 65 clus-
ters respectively, aiming to avoid overclustering and to reduce
the computational cost of the iterative approach. Each initial
cluster is modeled by a mixture of Gaussians, fitting the prob-
ability distribution of the features by the classical expectation-

Figure 1: Speaker diarization scheme based on AHC baseline system
with automatic complexity selection.

maximization (EM) algorithm (Fig. 1 block B). The automatic
selection of the initial number of clusters (Kinit) is defined as,

Kinit =
N

Ginit RCC
(1)

This expression takes into account the total amount of data
available per speaker cluster (N), the number of Gaussian mix-
tures initially assigned to each speaker cluster (Ginit) and the
cluster complexity ratio (RCC). The RCC is a constant value
across all meetings that defines the number of frames per Gaus-
sian. It was fixed to 7 seconds of speech per Gaussian whereas
the initial number of Gaussians per model (Ginit) was set to 5.

It follows an iterative bottom-up strategy driven by a loop
of BIC estimations and HMM alignments (Fig. 1 block C). In
this step the segments which belong to the same speaker are
combined in a new model at each iteration. A time constraint as
in [2] is also imposed on the duration of the speaker segments
through a hierarchical modelling of each state. In that sense,
Viterbi decoding decisions are taken based on the estimation of
the observation probabilities by accumulating the likelihoods per
cluster/state in a 3 seconds window.

We used a modified BIC-based metric [2] to decide most
likely-pair of clusters to merge. The segmentation obtained at
the output of the block B (see Fig. 1) defines a new set of speaker
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clusters/states which will be retrained. Most of the systems based
on agglomerative clustering perform just one merge at each BIC
iteration, in which they choose to merge those couple of clusters
with higher BIC value. Nonetheless, for this work a threshold
was applied depending on the standard deviation of the set of
BIC value obtained among cluster-pairs. We decide to merge all
of those cluster-pairs (i, j) fulfilling:

BICij > BICµ +
3

2
BICσ (2)

where BICij is the BIC value between the clusters i and j,
BICµ is the mean of BICij for i 6= j and BICσ the standard
deviation for the same set. Therefore, the system might merge
more than one pair of clusters per iteration yielding to a speed up
in the agglomerative clustering. At each iteration j, the number
M j
i of Gaussian mixtures to model the cluster i is updated by

M j
i =

⌊( N j
i

RCC

)
+

1

2

⌋
, (3)

where N j
i is the number of frames belonging to the cluster

i. Whenever two segments are merged, a new segment model
is also trained pooling all the features from the merged seg-
ments and fixing the model complexity according to the RCC

value. Such automatic selection of the modelling complexity
has demonstrated a successful performance while avoiding the
use of the penalty term in the classical BIC metric [14]. This
procedure is iterated until the stopping criterion is reached. It
is met whenever all the remaining set of BIC cluster-pairs show
negative values, meaning that no suitable candidates are found
to merge and consequently the algorithm ends.

Finally, at the last iteration and once the stopping criterion is
met, each remaining state represents a different speaker. A more
detailed description of the system can be found in [13].

3. Diarization based on spectral clustering
in Gaussian space

Despite of the good results achieved by popular AHC systems,
an important drawback arises in the case of long duration audio
documents. AHC approach is a highly time consuming approach.
The processing time for audio recordings depends directly on
the number of initial segments taken into account. For instance,
augmenting the initial number of segments in long audio doc-
uments considerably increases the size of the BIC comparison
matrix and, therefore, the total time processing of the iterative
approach. Reducing the number of initial segments drastically
makes smaller such time but at the expense of the speaker detec-
tion accuracy due to the initial cluster impurity. So there exists a
tradeoff between computational cost and detection performance
in AHC based systems. To overcome such drawback we propose
a clustering approach based on spectral clustering that, despite
of its computing time is still dependent on the number of ini-
tial segments, it avoids statistical metrics to build the similarity
matrix yielding to a faster algorithm than AHC+BIC one.

In Figure 2 we draw the scheme of the proposed system
based on spectral clustering. As in the AHC approach, we
keep as prior modules, the oracle Speech/Non-Speech detection
module and a Wiener filtering implementation from the QIO
front-end. Cluster initialization is still based on an homogeneous
splitting of data but, in contrast to AHC approach, no automatic
selection of number of clusters is performed. Number of initial
cluster is tuned with development data.

Figure 2: Speaker diarization scheme based on spectral clustering with
Viterbi HMM/GMM initialization and clustering refinement.

3.1. Segments representation

The core of the proposed system is shown in blocks B and C
of Figure 2. Before spectral clustering was carried out, initial
segments are modeled by a mixture of Gaussians with fixed
complexity, that is, number of Gaussians is independent of the
duration of the segment. Following, a Viterbi decoding is per-
formed by means an ergodic HMM. Once initial segmentation is
stabilized, the segments presents a great variety of durations. To
overcome this drawback, a Gaussian super vector (GSV) mod-
elling is proposed [11]. Furthermore, segments lesser than 3
seconds are discarded in order to ensure statistical significance
in Gaussian parameter estimation. Such segment discarding is
motivated by characteristics of our data. The estimated probabil-
ity density for a speech segment is assumed to represent speaker
characteristics. However for conversational speech recordings,
plenty of short utterances and changes in speaker turns, the den-
sity estimation by means GMM will be strongly biased by their
phonemic variations. In any case, initial discarded segments will
be assigned to discovered clusters by the SC through Viterbi
alignment in last step of the approach, see block C in Figure 2.

Only the means of the Gaussians µik are stacked in a vec-
tor to build the GSV. The µik means are normalized through
the corresponding variance σik and weight of the Gaussian as
follows:
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GSVik =
√
wik Σ

(−1/2)
ik µik, (4)

k = 1, . . . , D , i = 1, . . . ,M

where w stands for the weight of the Gaussian, Σ is the cor-
responding variance and µ represents the mean of the Gaussian.
Indexes i and k stand for the number of Gaussian in the mix-
ture model and the Gaussian dimension respectively. Therefore,
stacking normalized Gaussians’ means in a vector leads to a
length of the GSV vector equals to the number of Gaussian M
employed to model i-th segment (which is always the same for
all segments) times the number of dimensions D.

Other segment representation has been proposed for spectral
clustering in diarization task. In [7] GMM parameters adapted
from a UBM, trained on the whole audio data, are employed
as representation for speech segments whereas KL distance is
used for building the affinity matrix. In [9], author employed
a non-parametric representation of speech segments based on
Vector Quantization (VQ) in which the VQ codebook is created
from the audio recording and utterances are represented as a
vector of frequencies in VQ space. The affinity matrix is con-
structed by means cosine similarity distance. In our approach
we have decided to apply Gaussian super vector model due his
excellent results in speaker verification tasks and its robustness
against trials involving segments of different duration [11]. In
addition, no statistical measure as KL is proposed to construct
the affinity matrix but Euclidean distance is computed in GSV
space, consequently saving in computational time.

3.2. Spectral Clustering

Once a initial segmentation and a segment representation is
computed, a speaker clustering is performed to join those seg-
ments which belong to same speaker. We use a modification
of the Ng-Jordan-Weiss (NJW) algorithm [15] and a modified
implementation in C++ programming language taken from [16],
which we first briefly review. Given a set of speech segments
S = {s1, . . . , sn} represented by n points X = {x1, . . . , xD},
in this work the GSV vector, that we want to cluster into k
subsets:

• Form a similarity graph defined by the affinity matrix

A ∈ Rn×n where Aij = exp(
d2(si, sj)

σ2
) if i =

j, and Aii = 0, where d(si, sj) is distance function
and σ2 is a scaling parameter.

• Define D to be the diagonal matrix whose (i, i)-element
is the sum of A’s i-th row, and construct the normalized
symmetric graph Laplacian matrix L = D1/2AD1/2.

• Select the number of clusters k.

• Find {u1, u2, . . . , uk}, the k largest eigenvectors of L,
and form the matrix U = {u1, u2, . . . , uk} ∈ Rn×k.

• Re-normalize the rows of U to have unit length yielding
Y ∈ Rn×k , such that Yij = Uij/(

∑
j U

2
ij)

1/2.

• Cluster the points Yij with k-means algorithm into clus-
ters C1, . . . , Ck.

The main idea behind spectral clustering algorithm relies on
changing the representation of data points xi in yi ∈ Rk, that is,
mapping xi into a space where the simple k-means clustering
algorithm has no difficulty to detect clusters. Nevertheless, such
a situation only occurs in an ideal case whether data is enough

clean and consequently no overlap among different classes takes
place.

In order to form the affinity matrix, it is required to define
a similarity function d on the data and a scaling parameter σ.
In this work, the Euclidean distance among GSV vectors has
been employed, fulfilling distance requirements such as: be
non-negative, be low for similar segments and high otherwise.
Euclidean distance has clearly an intuitive sense in GSV space,
giving an idea of how far are Gaussian mixtures among different
segments. In addition, all distances amongst segment-pairs has
been considered leading to a fully connected graph. The scal-
ing parameter σ is some kind of measure of when two points
should be considered similar and controls how rapidly the affin-
ity matrix Aij falls off with the distance between si and sj
segments. As the work presented in [7], we calculate a scaling
parameter depending on the pair of segments (si, sj) involved in
distance computation, by considering the second order statistics
of distances to all other data segments as follows,

σij =
√
V ar(d(si, sn))V ar(d(sj , sm)), (5)

with n 6= i, m 6= j

where V ar(·) computes the variance and d(si, sn) are dis-
tances from segment si to all other segments. In contrast to [7]
we do not include the scalar parameter β in computation of σij .

As part of the diarization task, the number of clusters has
to be estimated automatically. In model-based clustering ap-
proaches, such decision is usually based on the likelihood per-
formed from data as in the previous AHC system. In this work,
number of clusters is estimated by analyzing the magnitude of
the eigenvalues of the normalized Laplacian matrix L as in [7, 9].
It is known as eigengap heuristic, where the objective is to se-
lect k clusters as the number of k maximum eigenvalues of the
Laplacian L matrix,

γk = |λk − λk+1| > Θ, (6)

where γk is the eigengap between two consecutive eigenval-
ues {λk, λk+1} and Θ is a threshold we tune with development
data. There exists different explanations to the use of such cri-
terion, as those from perturbation theory or geometric graph
invariants, due to the fact that similarity information can be com-
pacted with just first eigenvalues/eigenvectors of the Laplacian
matrix L [5, 10].

Finally, in the last step of the SC approach and once we
have selected the number of k clusters, a k-means algorithm
is employed to link up segments in clusters into the new space
representation, yi ∈ Rk

3.3. Clustering refinement

As we can see in block C of Figure 2, the resulting clustering
obtained by SC feeds a last HMM alignment step. In contrast
to the initialization step, a complexity selection as in AHC sys-
tem is employed, and the newly clusters are modeled by an
HMM/GMM. Several Viterbi alignments are performed until no
variation in the segmentation is perceived and a final clustering
hypothesis is obtained.
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RT data #Shows SNR (dB) #Speakers Eval time Speech time Speaker time Overlap time
Development RT06s 9 19.72 5.11 (9/4) 1109.33 989.07 1305.50 232.30
Development RT07s 8 22.94 4.37 (6/4) 1316.84 1048.322 1191.186 154.84

Development RT06-RT07s 17 21.24 4.76 (9/4) 1206.98 1016.95 1251.70 195.85

Evaluation RT09s 7 24.11 5.43 (11/4) 1549.47 1262.30 1484.69 194.00

Table 1: NIST Rich Transcription official conference evaluation data from RT06s, RT07s and RT09s. From left to right, columns denote: Number of
shows in the data set, Signal to Noise Ratio (SNR) in dBs, mean number of speakers involved (with maximum and minimum inside the parentheses),
mean total time evaluated with and without non-speech segments, mean speaker time counting the overlap speech as often as the numbers of overlapped
speakers and the mean speech time corresponding to any kind of speaker overlap. All time columns are expressed in seconds.

4. Experiments and results

In order to assess the proposed spectral clustering approach, it
is compared to classical AHC system with BIC metric and com-
plexity selection. The performance of the speaker diarization was
evaluated by means of the diarization error rate (DER) as defined
by NIST [12]. The DER is a time-weighted metric composed of
the sum of missed speaker time, false alarms and speaker error
time. Due the use of oracle speech activity detection references,
both missed speaker time and false alarms time is not taking
into account. Such errors are 0% in a single speaker scoring
metric, which does not consider more than one reference at the
same time. Anyway, speaker overlap should be considered since
shows exhibiting a high percentage of speaker overlap traduces
in a hard challenge for diarization approaches which not handle
this issue directly, e.g, given more than one label at the speaker
overlap regions. Since neither of the approaches presented in
this paper gives more than one speaker label at the same time,
we will restrain our experiments to the speaker error produced
by just one speaker. That is, considering such overlap regions
as uttered by a single speaker we removed the speaker error
produced by the overlap references.

In conclusion, we are not considering DER degradation due
miss speaker time produced by overlap and just one-speaker
time is taking into account to compute the DER. In addition, as
usually in NIST evaluations, a collar of 0.25 seconds is applied
in the scoring tool 1, that is, there is a non-score zone around
reference segment boundaries where the clustering output is not
evaluated which is within ±0.25 seconds.

4.1. Rich Transcription Data

NIST Rich Transcription (RT) data consists of excerpts from
multi-party meetings in English collected at eight different sites
at various time periods. From each meeting only an portion
of 20 minutes is evaluated. The number of microphones avail-
able for each recording ranges from 1 to 16 but we will only
focus on the single reference channel given by NIST, which is
known as SDM condition. Evaluation conference data from RT
2006 and 2007 has been used to perform algorithm development
whereas conference data from RT09s has been used to assess the
performance of the algorithms.

Table 1 gives a brief summary of RT data characteristics

1Tool evaluation command looks like ”./md-eval-v21.pl -1 -nafc -c
0.25 -s output -r reference”. Evaluation tool from NIST can be directly
downloaded from ftp://jaguar.ncsl.nist.gov/pub/sctk-2.4.0-20091110-
0958.tar.bz2

Figure 3: Histogram for segment durations in RT’05, RT’06 and RT’07
data. The tick marked as the red vertical line stands for the mean
duration of a speaker segment.

regarding number of speakers, SNR 2 , evaluation time and
speaker overlapped time.

4.2. Tuning system parameters

Some parameters are tuned through a set of experiments on
the development data, such as: The minimum duration turn
per speaker, the initial number of segments, its GMM model
complexity and finally the threshold Θ as maximum eigengap.
In Figure 3 we depict the histogram for the segment duration in
NIST RT data for the evaluations in 2005, 2006 and 2007. It
takes into account any speaker segment in the evaluation time,
that is, all consecutive speech from the same speaker without
silences greater than 0.5 seconds. Speaker overlapped segments
are also considered to draw the picture yielding to a total of
8450 samples. As we can see at the red line in the histogram,
the mean duration of the segments is around 2 seconds. The
minimum duration constrain for HMM/Viterbi alignment is set
to such value in both SC and HMM+BIC implementations.

2The NIST Speech Quality Assurance (SPQA) package has
been used for calculating the SNR for speech. It can be down-
loaded from http://www.itl.nist.gov/iad/mig//tools/
spqa_23sphere25tarZ.htm
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Figure 4: Spectral clustering performance in terms of % DER
depending on the initial number of clusters and the Gaussian complexity
for building the GSV vectors.

The initial number of segments and the number of initial
Gaussians per segment has been also tuned using the develop-
ment data sets. Figure 4 presents impact on diarization error rate
for the spectral clustering algorithm for different GMM model
complexities: 3,4 and 5 Gaussians respectively; and for a num-
ber of initial segments ranging from 70 to 110 segments. The
DER curves are obtained on the development data RT’06 and
RT’07. The lowest DER is reached by using 100 initial clusters
and employing GMM models composed by 5 Gaussians. These
values are selected in the SC approach applied to the RT’09
evaluation data.

Finally the threshold Θ, which is used to select the number
of clusters, is also tuned based on %DER performance in devel-
opment data. Thus the first maximum γk eigengap is fixed to
0.001.

4.3. Results

Figures 5 and 6 display the results per each show obtained on
RT’06 and RT’07 conference data respectively. In both data
sets, the DER errors produced by the SC-based implementation
are only slightly worse than those obtained by the AHC+BIC
approach. In general, AHC system obtains a better performance
for both development and evaluation data sets. Nevertheless
and depending on the development subset, SC outperforms the
results obtained by classical AHC+BIC.

As we can see in the RT’07 data, SC obtains a 14.54%
DER outperforming the AHC+BIC system with a 17.73% DER.
Nonetheless, the same does not happen in RT’06 data in which
SC performance fall off compared to the AHC approach. In
overall, in the Figure 7 we report the DER per show and the total
error computed on the development data in which AHC+BIC
obtains slightly lower DER results.

Figure 5: Development results on Rich Transcription 2006s data.

Figure 6: Development results on Rich Transcription 2007s data.

Finally, the Figure 8 shows the generalization of the results
to unseen data in the evaluation data set. As in the case of
development experiments, the AHC+BIC approach outperforms
slightly the SC-based one, 25.19% compared to 27.52% DER.

Table 2 summarizes the results performed by both ap-
proaches on the different data sets. DER error rates and the
associated standard deviation (σ) per set are also reported. It
is worth to mention the lowest deviation (σ) observed in the
SC results compared to the AHC approach. The SC implemen-
tation seems to perform more robustly across different shows
than AHC does, specifically in RT’09 and RT’07 data sets. In
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Figure 7: Development results on Rich Transcription 2006s and 2007s
data.

addition and aiming to verify that the SC clustering provides a
significant reduction in terms of complexity, we report in Table
2 computational relative time on the different RT evaluation data
sets for AHC+BIC and SC approaches. Feature extraction pro-
cessing is common for both methods and it was not taken into
account for measuring time consumption. Processes were run on
a Intel(R) Xeon(R) CPU E5540 2.53GHz machine. Experiments
conclude that SC based clustering runs around 3 times faster
than the AHC+BIC system.

5. Discussion and Conclusion

We compare SC based speaker diarization system with a base-
line system based on agglomerative clustering with HMM/GMM
modelling and automatic Gaussian complexity selection. The
main advantage of spectral clustering is that it does not build any
statistical metric for deciding if two clusters should be merged.
This avoids explicit BIC or KL computation at each merging
step, by employing a Euclidean distance among super vector
representation of clusters, thus signicantly reduces the complex-
ity of the clustering algorithm. Experiments are performed on
RT’06, RT’07 and RT’09 conference evaluation data and results
are provided in terms of diarization error rate and using an oracle
speech detector.

A set of experiments are performed on a development set
in order to chose optimal parameters for SC-based system. In
the second set of experiments, the results are generalized to
a “blind“ data set. In this case the SC system has a drop in
performances by 2% w.r.t baseline AHC+BIC approach. To
summarize, the spectral clustering based algorithm along with
Viterbi realignment is found to achieve DER results slightly
worse than the conventional AHC+BIC system but with reduced
computation. Results presented also display a great variance
among different shows as well as between evaluation data sets.
It may be due to data characteristics, e.g., number of speakers
involved, room setups, SNR levels and speech overlap segments.

Figure 8: Evaluations results on Rich Transcription 2009s data.

AHC+BIC SC
%DER / σ %DER / σ xfaster

RT06 27.88% / 12.38 34.90% / 16.98 3.02x
RT07 17.73% / 13.90 14.54% / 9.13 2.43x

RT06+RT07 22.83% / 13.51 24.81% / 16.82 2.67x

RT’09 25.19% / 15.33 27.52% / 13.19 3.24x

Table 2: DER results and standard deviation (σ) per set on Rich
Transcription 2006, 2007 and 2009 conference data and number
of times that SC implementation is faster than classical AHC+BIC.

For instance, the worst performance is reported in RT’06 data
which exhibits both lower SNR and higher overlap time than the
other databases used, see Table 1.

Finally, this work on spectral clustering theory is based
on a series of assumptions that will be further investigated
in future works. For instance, the similarity matrix is built
based on Euclidean distances among Gaussian super vector
representation of clusters obtained without MAP adaptation of
an universal background model. In addition, we employ a full
connected graph weighted by a scalar parameter for building
the affinity matrix. These steps can be improved by means a
more robust cluster representation and a best adapted metric
distance among them, or by a most suitable scalar parameter
to improve the merging step. Furthermore, we used an initial
uniform segmentation in blocks of fixed duration. In this case,
the system may be improved through the use of a speaker change
detection algorithms to obtain ”pure” initial segments containing
a single speaker. Further research comparing implementation
with multiple channels and different sets of features will also be
addressed in future works.
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