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Abstract 

Short conversations pose some challenges for online 

diarization due to data sparseness and unbalanced 

representation of the two speakers. This paper presents our 

recent advances in online diarization of two-wire telephone 

conversations, introducing several methods for improving 

processing efficiency and accuracy on short conversations. 

Our framework is based on the offline diarization of a 

conversation prefix followed by an efficient online processing 

of the rest of the conversation. We use an adaptive prefix size, 

resulting from the tradeoff between desired efficiency and 

accuracy as measured by a confidence measure on the 

diarization output. We further show the enhancement of our 

online speaker recognition system based on implicit speaker 

diarization using the proposed techniques. 

1. Introduction 

Speaker diarization is the task of “who spoke when”. This 

paper is part of our ongoing [1-5] work on speaker diarization 

in summed (two-wire) telephone conversations which are 

mostly two-speaker based.   Our work is motivated by a 

requirement for an accurate, robust, efficient and online 

diarization solution which can be either used as a 

preprocessing phase for speaker verification and speech 

recognition systems or may be used as an information source 

for speech analytics systems. The typical use cases are for law 

enforcement and for contact centers which often have access 

to summed data only. 

Lately [3] we have proposed a novel method for two-

speaker diarization based on supervector parameterization of 

short audio segments, unsupervised (session based) intra 

speaker within-session variability modeling, and PCA 

(Principal Component Analysis) based clustering. The 

proposed method was reported to have good accuracy, 

reasonable efficiency and does not require any training data. 

However, it has two shortcomings. First, the method is 

essentially an offline method. Second, the method was tested 

on standard five minutes telephone conversations. Recently, 

while evaluating the method on realistic contact center data, 

we observed a significant degradation in accuracy when 

processing short conversations which happen to be quite 

frequent in real data. Other state-of-the-art methods for 

speaker diarization in summed telephone conversations [6] 

also have shortcomings such as the need for a huge 

developments set, offline computation and unreported results 

for short conversations.  

Speaker diarization in short conversations has been 

investigated in [7] where sessions as short as 100 seconds 

were evaluated. However, in our work we focus on much 

shorter lengths (starting from 15 seconds) which raise 

different issues than in [7].  

Online speaker diarization has been investigated in 

several works such as [8-11]. In [8, 10], online speaker 

diarization in European parliament plenary speeches [8] and 

broadcast news [10] was performed relying on accurate 

detection of new speakers on-the-fly and using speaker 

models that were trained according to online decisions, an 

approach which may lead to error accumulation. In [9], online 

speaker diarization in meetings was achieved by the use of 

hybrid online/offline processing which makes use of all 

available information to train speaker models (and not relying 

completely on online decisions), thus avoiding error 

accumulation.  However, the underlying speaker diarization 

technology used in [9] is very different from the technology 

we use in [3] which achieves very accurate speaker diarization 

in summed telephone conversations.  

Contrary to [8-10], the work in [11] does address the task 

of speaker diarization in summed telephone conversations. 

The approach taken in [11] is to run the offline diarization 

system on a prefix of the conversation. The outcome of the 

prefix processing is a segmentation of the prefix and trained 

acoustic models for each hypothesized speaker. The rest of 

the conversation is simply decoded using the trained acoustic 

speaker models using Viterbi decoding. The method we take 

in this paper approach extends the approach described in [11]. 

This paper reports our efforts for improving our speaker 

diarization method to be efficient, online and robust to 

conversation length. The contributions of this paper are as 

follows. We introduce the concept of intra-speaker within-

session variability modeling from an unlabeled development 

set consisting of summed conversation.  

Next, we introduce the concept of outlier-emphasizing-

PCA that gives a larger weight to outlier vectors in the PCA 

analysis. Outlier-emphasizing-PCA enables PCA-based 

clustering to better cope with short sessions for which very 

often one of the speakers is underrepresented in the session. 

Furthermore we modified our probabilistic model derived in 

[3] to be more robust to underrepresented speakers. 

Our basic framework is similar to the one in [11] in the 

sense that we separate a conversation into a prefix that we 

process in an offline manner, and then use Viterbi to decode 

the rest of the conversation using trained speaker models from 

the prefix processing. However, we set the prefix adaptively 

using a confidence measure estimated on-line. The adaptive 

prefix length approach enables us to use in general short 

prefixes, and use larger prefixed only when required. 

Furthermore, contrary to [11] we do update our speaker 

models periodically after prefix processing in order to get a 

more accurate diarization. 

Last but not least, we show how the proposed techniques 

significantly enhance our online two-wire recognition system 

based on implicit speaker diarization [4].  
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The remainder of this paper is organized as follows: 

Section 2 describes the baseline supervector-based speaker 

diarization system. In Section 3 we describe our methods for 

obtaining improved speaker diarization accuracy in short 

conversations. In Section 4 we describe our proposed online 

speaker diarization system.  In Section 5 we present our 

enhanced online implicit speaker diarization system for 

speaker verification in summed telephone conversations. In 

Section 6 we describe the experimental setup, datasets and 

results. Finally, we conclude in Section 7. 

2. Supervector-based speaker diarization 

Our baseline speaker diarization system is based on 

unsupervised compensation of intra-speaker within-session 

variability followed by PCA-based clustering and is described 

in detail in [3]. The system parameterizes the audio using 

GMM (Gaussian Mixture Model) supervectors extracted for 

evenly overlapping one-second superframes. Intra-speaker 

within-session variability is estimated in an unsupervised 

manner and removed from the GMM-supervectors using the 

NAP (Nuisance Attribute Projection) method.  The system 

exploits the assumption that only two speakers are expected in 

a session. This assumption is used by applying PCA to the 

compensated GMM-supervectors scatter matrix and 

distinguishing between the two speakers by taking each 

GMM-supervector and classifying it according to the sign of 

its projection on the largest eigenvector (the one 

corresponding to the largest eigenvalue). The segmentation is 

smoothed using Viterbi decoding, and refined by applying 

Viterbi re-segmentation using the original frame-based 

features. The system achieves a SER (speaker error rate) of 

2.8% on NIST 2005 summed telephone conversations.  

In the following subsections we describe in more detail 

the different components of the system. 

2.1. Front-end 

The front-end used in our system is based on Mel-frequency 

Cepstrum coefficients (MFCC). The feature set consists of 13 

cepstral coefficients extracted every 10 ms using a 25 ms 

window. An adaptive energy based voice activity detector 

(VAD) with Viterbi smoothing is used to locate and remove 

non-speech frames. The adaptive VAD is essentially offline 

because it uses an energy histogram calculated from the entire 

conversation.  

2.2. Session-dependent UBM 

A GMM-UBM (Universal Background Model) is estimated 

independently for each session. This approach eliminates the 

need of a development set. However, it is inherently offline. 

2.3. Supervector parameterization 

We parameterize the speech signal with a time series of 

supervectors. The speech signal is divided into evenly spaced 

overlapping superframes (sequences of frames) of one second 

length with an offset of 100 ms (superframe rate is 10/second). 

We estimate a supervector for each superframe using standard 

MAP (Maximum a Posteriori) adaptation. The  

 

 

 

 

parameterization procedure is outlined as following: 

 

GMM-supervector parameterization 

1.  Define evenly spaced overlapping superframes of one 

second length with an offset of 100 ms. 

2.  Estimate a GMM for each superframe by adapting the 

UBM to the frames of the superframe using standard 

MAP. 

3.  Parameterize each superframe with the supervector created 

by concatenating the means of its estimated GMM. 

2.4. Intra-speaker within-session variability 

compensation 

We assume that most of the intra-speaker within-session 

variability is confined to a low dimensional affine subspace in 

the supervector space.  In order to estimate this subspace 

without any development data, we estimate it independently 

for each conversation. This is done by exploiting the fact that 

speaker turns are in general longer than the one-second 

superframes we use to parameterize the speech signal. We can 

therefore assume that pairs of overlapping adjacent segments 

usually belong to the same speaker. According to this 

assumption, we estimate the covariance matrix of the 

difference supervectors between adjacent overlapping one 

second segments and use PCA to estimate the intra-speaker 

subspace. The estimated subspace is removed from all 

supervectors using the NAP method. Intra-speaker within-

session variability compensation gave a 40% SER reduction 

(4.8%→2.8%) in our experiments [3]. Regarding online 

processing, our method for intra-speaker variability 

estimation is inherently offline. 

2.5. PCA-based supervector clustering 

After intra-speaker variability compensation, we assume that 

most of the supervector variability is accounted to speaker 

identity. We use the following recipe to cluster the audio into 

two clusters:   

1. Compute the covariance matrix of the compensated 

supervectors. 

2. Apply PCA to find the largest eigenvector. 

3. Project each compensated supervector onto the largest 

eigenvector. 

4. Use the projections for estimating an LLR (log-

likelihood ratio) for each superframe with respect to the 

two speakers (more details in subsection 3.4 below).  

5. Viterbi segmentation is used to create a smoothed 

segmentation from the superframe-based LLRs. 

 

Regarding online processing, both steps 2 and 5 are offline in 

nature. 

2.6. Viterbi re-segmentation 

The segmentation obtained from the PCA-based supervector 

clustering is used to train a GMM for each speaker using the 

original frame-based feature vectors. The GMMs are used by a 

Viterbi decoder to produce a refined segmentation. The 

adaptation-segmentation scheme is iterated for several 

iterations (two in our setup). 
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3. Robustness to short sessions 

Achieving accurate diarization for short sessions is essential 

for an offline diarization system dealing with realistic data, 

and is also an important step in a development of an online 

system. In addition to the problem of data sparseness which 

we address in subsections 3.1-3.2, short sessions are more 

likely to suffer from underrepresented speakers, a problem we 

directly address subsections 3.3-3.4.  

3.1. Offline UBM & NAP training 

In our baseline system the UBM and the NAP projection are 

trained on-the-fly for every session independently.  In short 

sessions, the available data may be insufficient. We therefore 

propose to train the UBM and the NAP projection from an 

unlabeled development set consisting of summed 

conversations. 

The training of a UBM from an unlabeled development 

set is straightforward. The NAP projection is trained by 

processing the development set with the steps described in 

subsections 2.1-2.4 and pooling the individual covariance 

matrices (used to train session-dependent NAP) over the 

entire development set. The offline-trained NAP projection is 

obtained by applying PCA on the pooled covariance matrix.  

3.2. Reduced GMM orders 

In [3] the GMM orders were optimized to maximize accuracy 

on five-minute sessions, resulting with 64 Gaussians for the 

UBM and 32 Gaussians for the final speaker GMM models. 

However, the optimal GMM orders should be lower when 

sessions are short, and in our setup for the proposed system 

we set the GMM orders to 16 Gaussians for both the UBM 

and the speaker models.   

3.3. Outlier-emphasizing PCA 

The accuracy of the segmentations obtained by our diarization 

system is heavily dependent on the assumption that the 

dominant component in the supervector scatter matrix is the 

speaker identity. However, in cases of an underrepresented 

speaker, the supervector scatter matrix may be dominated by 

the dominant speaker's intra-speaker variability. 

In order to increase the influence of an underrepresented 

speaker in the supervector scatter matrix, we exploit the fact 

that the supervectors of such a speaker may be considered as 

outliers compared to the supervector sample. We can 

therefore replace the supervector scatter matrix with a 

weighted scatter matrix and assign large weights to 

supervectors which we consider as outliers and smaller 

weights to supervectors we consider inliers. In this work we 

detect outliers by selecting the top 10% supervectors in a 

given session with the largest distance to the sample mean. 

3.4. Adaptive LLR calibration 

In [3] we show that the LLR of a compensated superframe ci 

with respect to speakers s1 and s2 is a linear function of the 

projection of the corresponding supervector on the largest 

eigenvector (pi): 
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In [3] we assumed that both speakers are equally represented 

in the call. This assumption led to setting the bias b to zero. 

We further assumed that a is session independent. In order to 

be robust to unequal representation of speakers, we estimate 

the bias b by averaging the 10% and 90% percentiles of the 

projected supervectors sample.  

4. Online speaker diarization 

4.1. Online VAD 

In order to decrease the latency of the VAD subsystem we 

limit the estimation of the energy histogram to a predefined 

prefix of the conversation denoted by Pv. For a required 

latency Lv, the Viterbi decoding (used for smoothing) is 

replaced by the following online version:   

 

Online Viterbi decoding 

For every frame t: 

1.  Compute forward Viterbi probabilities for frame t. 

2.  If t = nLv/2 for n=2,3,… 

Backtrack from frame t to frame t-Lv and report state 

sequence for frames [t-Lv+1 ,…,t-Lv/2] 

 

In this work we use Pv=15 seconds and Lv=0.1 seconds. This 

setup ensures that the latency of the diarization system is 

hardly affected by the latency of the VAD component.   

4.2. Online PCA-based supervector clustering with 

Viterbi re-segmentation 

In order to convert the offline sequence of PCA computation, 

Viterbi smoothing and iterative Viterbi re-segmentation to an 

online setting, we define a prefix of the conversation for 

which the processing is done offline. The result of this step is 

a segmentation reported for the prefix, an estimated largest 

eigenvector, and trained speaker models. 

After processing the initial prefix, the trained speaker 

models are used to run an online Viterbi decoder as described 

in subsection 4.1 to obtain a segmentation with a predefined 

latency. In order to benefit from online accumulated data, the 

PCA and Viterbi re-segmentation steps are re-executed 

periodically using the accumulated speech signal. Following 

is an outline of the online algorithm with a prefix denoted by 

Pd, a retraining period denoted by Rd, and delay denoted by 

Ld. Note that step 2.D is essential for preventing the PCA 

algorithm to obtain inconsistent clustering when it is re-

executed with more data. 

 

 

Online speaker diarization 

For every frame t 

1.   Accumulate statistics for PCA calculation 

2.   If t=Pd+nRd  for n=0,1,2,… 

      A. Compute PCA using accumulated statistics  

     (for frame 1,…,t) 

      B.  Calculate LLRs for frames 1,…,t 

      C. Calculate a smooth Viterbi segmentation for [1,…,t] 

      D.  if n>0 

    Verify that the new segmentation is consistent  

     with the previous segmentation. If not, swap the  

     first speaker with the second speaker. 

      E.    Iterate Viterbi re-segmentation to obtain a refined
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 segmentation and trained speaker models 

2.   If t=Pd 

Report segmentation for prefix [1,…,t-Ld] 

3.   Use the most updated speaker models to calculate an LLR 

      for frame t. 

4. If t = Pd+nLd/2 for n=1,2,… 

Backtrack from frame t to frame t-Ld and report  

segmentation for frames [t-Ld+1 ,…,t-Ld/2] 

 

4.3. Confidence-based prefix length 

The proposed online system is useful only if the prefix (Pd) is 

short enough. However, for short prefixes many conversations 

contain significant speech from only a single speaker. For 

instance, on the NIST-2005 dataset that we use for our 

experiments in Section 6, for a 15 seconds prefix, only 60% 

of the sessions contain two speakers with more than one 

second of speech, and only 35% of the sessions contain two 

speakers with more than three seconds of speech. Even for a 

30 seconds prefix, only about 70% of the sessions contain 

more than three seconds for two speakers. 

The strategy we propose is as follows. For a given 

session, we start by setting a short prefix (15 seconds). After 

obtaining the segmentation for the prefix, a confidence 

measure is estimated. In case of a low confidence, we extend 

the prefix to a longer duration (30 seconds), etc. Using a 

clustering validity measure as a confidence measure of the 

diarization quality on the leading prefix of the call, we can 

either reduce the latency of the diarization process if the 

confidence is high, or prolong the prefix as needed if the 

confidence is low. We apply the clustering validity measure to 

the segmentation output obtained from diarization of the 

prefix segment and use this measure for adaptive selection of 

the prefix size.  

We explored several well-known clustering validation 

algorithms for guiding the online diarization process 

including the Davies-Bouldin (DB) validation index  [12] and 

the Silhouette validation method  [13]. We present our 

confidence-based diarization results with the DB validation 

index, which gave us the best results. The DB index provides 

an overall score for the entire segmentation. It is defined as 

the ratio between the sum of the two standard deviations of 

the data points’ distances in each cluster to their cluster center 

and the Euclidian distance between the two clusters centers. 

The Silhouette method will be used for the speaker 

recognition experiments in Section 5. The Silhouette is a 

measure of the similarity of a data element to the elements in 

its cluster compared to the elements in other clusters.  This 

measure provides a score for every superframe in 

segmentation. 

 

5. Online implicit speaker diarization for 

speaker verification 

Speaker diarization is particularly useful as a preprocessing 

phase for speaker recognition in summed conversations. 

Focusing on this particular use case, we took in mind in [4] 

that the optimization criterion in such a setup is minimization 

of speaker recognition error rather than minimization of 

speaker diarization error rate (SER).  We therefore proposed 

in [4] to use a framework that integrates an implicit speaker 

diarization step into the speaker recognition process. The 

basic algorithmic ideas were inspired by our speaker 

diarization work in [3], but the different optimization criterion 

and time complexity requirements led to some significant 

modifications.  

In short, the method in [4] works by dividing the audio 

into overlapping five-second superframes and scoring 

independently each superframe against a target speaker 

model. A partial diarization processing is used to cluster the 

superframes into two clusters and discard superframes which 

are in the borderline between the two clusters. 

The superframe classification process was implemented in 

[4] by using the PCA-based supervector clustering method 

described in subsection 2.5 with the exception of using a 

simple thresholding instead of using Viterbi smoothing. In 

order to achieve low latency, the PCA was done only on a 

prefix of the conversation. However, it was observed that a 

minimal prefix of 60 seconds was required to obtain good 

results. 

Our current goal is to reduce the required prefix 

significantly. We present in the following subsections a better 

superframe classification scheme leading to substantial 

reduction in the latency requirements towards online 

diarization. 

5.1. Eigenvoice-based diarization 

Our proposed method attempts to overcome the delay caused 

by PCA training from scratch by incorporating prior 

information into the learning process. This is accomplished by 

replacing the conversation-dependent PCA projection with a 

fixed subspace projection spanning the most informative 

speaker directions. This unique base is actually the low-rank 

representation of the speaker space, also known as 

Eigenvoices [14]. Eigenvoice-based diarization decreases the 

relative large amount of learning data required by the PCA 

method at the expense of a larger projection subspace rank. 

The augmented projection space demands more sophisticated 

superframe classification schemes than simple thresholding 

used for the one-dimensional PCA projection. In the current 

implementation, k-means clustering is used to classify 

incoming superframes into two speakers. A related approach 

is described in [15], where clustering is used on the main 

PCA projections of the total variability space for diarization. 

Although conceptually similar to our approach, preliminary 

experiments suggested that apart from diarization, recognition 

performed on the clustered low-rank features (either 

Eigenvoices or the total variability) performs poorer than if 

performed on the non-projected superframes, as we propose. 

5.2. Clustering quality 

Our methodology can be further improved by considering the 

concept of clustering validation discussed in 4.3. Clustering 

quality measures can help us determining how well the 

speakers’ centroids can be determined given a certain prefix 

of the conversation. Besides enabling us to dynamically 

optimize the prefixes’ length, these measures can be used to 

enhance the recognition process by spotting unseen outlier 

superframes or even foreseeing difficult conversations.  

Actually, the noise-floor threshold for discarding 

borderline superframes used with the one-dimensional PCA 

diarization [4] can be seen as a simple clustering quality 

mechanism. A drawback of that method is that noise 
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thresholds determined based on the PCA training prefix are 

not stable for unseen superframes. 

6. Experiments and results 

6.1. Datasets and protocol for the speaker diarization 

experiments 

A subset of the NIST-2005 SRE core dataset was used as a 

development set (131 sessions), and a disjoint subset was 

used as an evaluation set (916 sessions). We artificially 

convert the stereo datasets to mono by summing both 

channels. The ground truth was derived from the 

automatically produced transcripts provided by NIST. 

Speech/non-speech segmentation is not the main focus of 

this work. Therefore, we use the standard speaker error rate 

(SER) measure and do not include speech/non-speech errors. 

SER is computed according to the standard protocol for 

evaluation of a two-speaker segmentation task, which is 

available from NIST [16]. However, in order to improve our 

assessments in short sessions, we do not discard the margins 

around speaker turns (for all our results), as done in [16]. We 

therefore report slightly degraded accuracy compared to what 

we would have obtained by discarding the margins.  

For the sake of the analysis of short sessions, we have cut 

the original NIST five-minute sessions into short sessions of 

variable lengths by taking the prefixes of each session. In our 

preliminary experiments we realized that a significant amount 

of these short prefixes do not have an adequate representation 

of two speakers. We therefore limit the analysis to prefixes 

which contain at least three seconds of net speech per speaker. 

6.2. Short sessions experiments – selected results 

Table 1 presents results for our baseline system [3] and our 

proposed system which included all the capabilities described 

in Section 3.   

Table 1: SER for the proposed system compared to the 

baseline as a function of session length. 

Session length     

(in seconds) 

Baseline  

system 

SER (in %)  

Proposed 

system 

SER (in %) 

Relative 

improvement 

(in %) 

15 22.2 9.9 55 

30 17.6 8.8 50 

60 13.3 7.6 43 

90 10.2 6.7 34 

120 7.9 5.6 29 

240 5.0 4.6   8 

300  4.4 4.4   0 

 

The results in Table 1 show a clear superiority of the proposed 

system compared to the baseline system, especially for short 

sessions. 

6.3. Short sessions experiments – detailed results 

Figure 1 presents detailed results for short session 

experiments. Note that the results for 15 seconds sessions are 

generally better than those for 30 seconds sessions due to the 

removal of sessions with less than three seconds of speech per 

speaker, which prevents the 15 seconds sessions to have an 

extreme speaker imbalance. In fact, we found out in our 

experiments that the degree of imbalance between speakers is 

the most important factor for predicting the accuracy of our 

system. 

Analyzing the results we can conclude that all systems 

perform roughly the same for long sessions (240 and 300 

seconds). For short sessions, we see that in general all our 

proposed variants improve performance and combine 

favorably. 

Figure 1: SER for short sessions using different 

algorithmic variants described in Section 3. 

6.4. Online diarization results 

A tradeoff between the latency, accuracy and time complexity 

of the online system can be achieved by controlling the VAD 

parameters (prefix length and delay) and the speaker 

diarization parameters (prefix length, retraining period and 

delay). The VAD parameters were discussed in subsection 

4.1. Regarding the speaker diarization parameters, we set the 

retraining parameter (which is unrelated to the latency) to 15 

seconds, and report results for various delay values and 

various prefix values. 

6.4.1. Speaker diarization delay parameter 

Table 2 presents online diarization results as a function of the 

delay parameter for prefixes of 15 and 30 seconds. The results 

in Table 2 indicate that a delay parameter value of 0.2 is 

optimal. 

Table 2: SER for the online diarization system as a 

function of the delay parameter.  

Delay (in seconds) 0.1 0.2 0.5 1 

Prefix = 15 seconds 

SER (in %)  

9.6 9.0 9.0 9.0 

Prefix = 30 seconds 

SER (in %)  

8.3  7.7  7.7 7.7  

 

6.4.2. Speaker diarization prefix parameter 

Table 3 presents online diarization results as a function of the 

prefix parameter (the delay parameter is set to 0.2 seconds).  

The second row presents results for all sessions that pass the 

three seconds net speech per speaker criterion. The third row 
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presents results for all sessions for which the prefix passes the 

same criterion. A comparison between the two rows indicates 

that our online diarization system is able to deal very well 

even with short prefixes as long as the two speakers are 

reasonable represented in the prefix. 

 

Table 3: SER (in %) for the online diarization system 

as a function of the prefix parameter. The delay 

parameter is set to 0.2 seconds. 

Prefix 

(in seconds) 
15  30 45 60  90 120 offline 

3 seconds 

per speaker  

in session 

9.0    7.7 6.8 6.2 5.4  4.9   4.4 

3 seconds 

per speaker 

in prefix  

6.4    5.7 5.6 5.5 5.1  4.8   4.4 

 

6.4.3. Latency 

The latency of the proposed online diarization system is Pd 

(prefix length) for the prefix. For the rest of the conversation, 

it is the sum of the VAD delay, the diarization delay and the 

superframe length:  Lv+Ld+1, which is 1.3 seconds for the 

configuration found to be optimal in subsection 6.4.1. 

 

6.5. Confidence-based scoring for diarization 

The confidence score on the call prefix can be useful for 

determining if the segmentation accuracy is good enough for a 

given prefix or we need to prolong the prefix. At a given 

prefix length, we compute the confidence on the prefix and 

select some percentage of the calls with the highest 

confidence. For the selected calls we make a decision to use 

the given prefix for the diarization, and the performance on 

that subset of calls is the online diarization with the 

corresponding prefix. For the rest of the calls with the lower 

confidence, we use a longer prefix, and the performance for 

that subset is the online diarization with a longer prefix. The 

overall accuracy on all the calls is computed by the 

combination of the two subsets.   

We demonstrate this approach by showing the confidence 

results for two prefix lengths: 15 and 30 seconds. We present 

the results obtained with the DB index method described in 

subsection  4.3. Figure 2 presents the overall performance 

results for four different combinations of prefix lengths. The 

legend P1-P2 means a combination of a short prefix P1 in 

seconds and a long prefix P2. The P1 prefix is used for 

confidence computation of all the calls and for diarization of a 

selected subset of calls with the highest confidence, while 

prefix P2 is used for diarization of the rest of the calls. The x-

axis represents the percentage of the calls selected by the 

confidence scoring performed on the shorter prefix P1. This 

means that the accuracy value at x=1 represents the online 

diarization accuracy with the shorter prefix P1, while the value 

at x=0 is the accuracy with the longer prefix P2. The data 

points along each line represent different combinations of the 

two prefix sizes. These results show that when selecting up to 

20% of the calls with the highest confidence for a 15-seconds 

prefix, the accuracy is preserved. With a longer prefix of 30-

seconds for confidence computation, the accuracy is preserved 

at a wider range up to 50%.  

Figure 3 presents the performance as a function of the 

mean latency achieved by each confidence-based combination 

of a short and a long prefix (P1-P2) using the DB Index 

confidence score. We can see, for example, that for a mean 

prefix of 45 seconds, the best performance is achieved by the 

30-60 combination with SER=6.41% for a combination of 

50% with P1=30 seconds and 50% with P2=60 seconds, while 

the overall performance of a single prefix with P1=45 seconds 

is only SER=6.84%. This is an indication that confidence 

scoring is useful for improving the performance of the online 

diarization process.    

 

 

Figure 2: Performance of confidence-based diarization 

of short and long prefixes combinations as a function 

of the percentage of calls selected by the confidence. 

 

Figure 3: Performance of confidence-based diarization 

of short and long prefixes combinations as function of 

the mean prefix length.  

6.6. Speed analysis 

Table 4 presents an analysis for selected offline and online 

diarization systems described in this paper. For each system 

the accuracy and speed are reported.  The analysis is done for 
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full (five minutes) conversations. No sort of optimization was 

done for the C++ implementation of the diarization systems. 

Under the offline framework, the best accuracy (SER of 

3.5%) is achieved using our baseline system with two 

modifications (outlier PCA, adaptive LLR). However, this 

system runs only 5 times faster than RT. The proposed offline 

system (Section 3 and subsection 6.2) is much more efficient 

(50 times faster than RT) with some reduced accuracy (4.4%). 

Moreover, as shown in subsection 6.2 the proposed system 

copes much better with short conversations. 

Under the online framework, a tradeoff between accuracy 

and speed is reported in Table 4. Basically the speed is 

controlled by the frequency of PCA and GMM retraining 

(retrain parameter). A good tradeoff may be obtained by 

varying the retraining frequency in such a way that at the 

beginning of the conversation the frequency of retraining is 

higher compared to the frequency later on in the 

conversations (var. #1 and var. #2). 

 

Table 4: Speed and accuracy analysis of selected 

offline and online diarization systems.  

System SER  

(in %) 

Speed 

(xRT)  

Offline Diarization 

Baseline [3]  4.4 5 

Baseline  +  Outlier PCA + 

Adaptive LLR  

3.5 5 

Proposed system (subsection 6.2) 4.4 50 

Online diarization, prefix=30, delay=0.3 

Retrain parameter = 15  7.7 17 

Retrain parameter = 30  8.0 26 

Retrain parameter = 60 8.9 36 

Retrain parameter – var. (#1)  7.8 30 

Retrain parameter – var. (#2)  8.0 40 

 

 

6.7. Datasets and protocol for speaker verification 

experiments 

The speaker recognition experiments were performed on the 

male subset of the NIST-2005 SRE core dataset. Speaker 

models are trained using the four-wire conversations defined 

by the NIST protocol. Two-wire testing sessions were 

obtained as before by artificially summing the two sides of the 

testing conversations in the original protocol. At all, there are 

274 speaker models, and around 950 and 8000 target and 

impostor trials respectively. Data from NIST 2004 and 2006 

campaigns is used for UBM, background modeling, NAP and 

Eigenvoices estimation.  

 

6.8. Eigenvoice vs. PCA diarization 

The following experiments compare the effectiveness of the 

proposed Eigenvoice based diarization in Section 5 with the 

former PCA approach [4]. We use the same GMM-NAP-

SVM used in [4] and briefly described above. In particular, 

we investigate optimum subspace ranks, delays involved and 

the usefulness of the clustering quality measure. 

 

The superframe sequence is classified into two groups 

either by thresholding their PCA projection (as in the original 

framework) or by k-means clustering of their Eigenvoice 

decomposition. Both (non-projected) superframe groups are 

scored against the speaker model and the highest of each 

group’s average score is the ultimate recognition score. Note 

that the experiments focus on the on-line diarization 

capabilities of the proposed method, although recognition 

performance is evaluated for the entire conversations. 

Initially, we show in Table 5 the impact of the Eigenvoice 

(EV) space rank on recognition performance. For comparison, 

we show the PCA-based method including higher PCA 

dimensions beyond the main axis used originally. For both 

cases, k-means is used for superframe classification. We 

observe that a few Eigenvoice directions are equivalent to the 

main eigenvector estimated per conversation. Moreover, no 

gains are obtained by increasing the dimension of the PCA 

rank.  

The next experiment investigates the performance as a 

function of the prefix length, as seen in Figure 4. Distinct 

prefix lengths are used for estimating the main PCA axis and 

the Eigenvoice (rank=25) clusters. We present two additional 

versions of the Eigenvector technique incorporating clustering 

quality in the recognition process. Among the various existing 

clustering quality measures mentioned in Section 4.3, we use 

in these experiments the Silhouette method. Superframe 

silhouettes are calculated given the estimated centroids for 

different prefixes. The Silhouette originally ranges from -1 to 

+1, although we re-normalized this range to [0,1]. Therefore, 

a superframe with assigned silhouette of zero is probably an 

outlier, while a silhouette value of one represents a well 

clustered superframe. The first Eigenvector version simply 

discards superframes possessing silhouettes less than 0.5 

before scoring (EVh). The second version weights each 

supervector by its silhouette value during scoring (EVs). The 

experiment confirms that the Eigenvector method clearly 

outperforms the former PCA approach in reducing training 

delays. In addition, we observe that the incorporation of 

clustering quality measures further enhance the Eigenvector 

method, especially for low prefixes as could be expected.  

We finally investigate the use of variable prefix lengths 

within Eigenvoice diarization. In this experiment, we 

progressively check 10, 20 and 30 second-prefixes, until we 

reach some target quality for the prefix clustering. Figure 5 

shows recognition performance for the several methods as a 

function of the targeted silhouette value. Higher quality 

values will improve performance at the expense of larger 

prefixes. The corresponding average prefix length across the 

whole evaluation is shown for each silhouette. The results 

obtained support the idea of using variable prefix lengths for 

distinct conversations. In average, variable prefixes roughly 

halves the delay introduced with fixed prefixes. 

 

Table 5: DCF (x100) as a function of the rank for 

PCA and Eigenvoices projections. 

Rank 1 5 10 25 50 

PCA 2.30 2.68 2.96 2.71 2.65 

EV 2.52 2.30 2.28 2.19 2.17 
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Figure 4: Performance as a function of the prefix 

length for the PCA and Eigenvector projections. 

 

 

Figure 5: Performance as a function of the target 

silhouette and the correspondent average prefix length. 

7. Conclusions 

In this paper we have extended our recently developed method 

for speaker diarization [3] to cope with short conversations, 

and to perform online diarization. For coping with short and 

frequently speaker-unbalanced conversations we proposed the 

following novelties: offline unsupervised estimation of intra-

session intra-speaker variability, outlier emphasizing PCA for 

improved speaker clustering and adaptive calibration of 

speaker log likelihood ratio calibration. Our proposed online 

diarization system builds on the novelties discussed above and 

achieves a low latency (1.3 seconds) except for a prefix of 

variable length (15-60 seconds) which we determine according 

to a confidence measure. By setting the length of the prefix 

adaptively we manage to reduce the expected prefix length by 

25% with a very small degradation in accuracy. In order to 

obtain improved accuracy we redo the PCA analysis and 

clustering and retrain the speaker models periodically during 

the online processing. 

  In terms of speed, our proposed offline system runs 50 

times faster than real-time without any code optimization. The 

proposed online system runs 30-40 times faster than real-time. 

Finally, substantial delay reduction was also achieved on our 

summed-channel speaker recognition system. Diarization 

performed on the Eigenvector instead of PCA domain halved 

original delay requirements. The average delay can be further 

halved by using our concept of variable prefixes. 
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