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Abstract 
Frequently organized by NIST1, Speaker Recognition 
evaluations (SRE) show high accuracy rates. This 
demonstrates that this field of research is mature. The 
latest progresses came from the proposition of low 
dimensional i-vectors representation and new classifiers 
such as Probabilistic Linear Discriminant Analysis 
(PLDA) or Cosine Distance classifier. In this paper, we 
study some variants of Boltzmann Machines (BM). BM 
is used in image processing but still unexplored in 
Speaker Verification (SR). Given two utterances, the SR 
task consists to decide whether they come from the 
same speaker or not. Based on this definition, we can 
illustrate SR as two-classes (same vs. different speakers 
classes) classification problem. Our first attempt of 
using BM is to model each class with one generative 
Restricted Boltzmann Machine (RBM) with symmetric 
Log-Likelihood Ratio on both models as decision score.   
This new approach achieved an Equal Error Rate (EER) 
of 7% and a minimum Detection Cost Function (DCF) 
of 0.035 on the female content of the NIST SRE 2008. 
The objective of this research is mainly to explore a new 
paradigm i.e. BM without necessarily obtaining better 
performance than the state-of-the-art system.     

1. Introduction 
Over the last five years, we have seen a huge 
improvement in term of performances. The greatest 
improvements result from the proposition of the Joint 
Factor Analysis (JFA) [1] and recently, the introduction 
of i-vector representation [2].  The i-vector has the 
advantage of modeling the speaker useful information in 
a low-dimensional space. These low dimensional i-
vectors are generally given as inputs to another classifier 
such as Probabilistic Linear Discriminant Analysis [3] 
or simple Cosine Distance classifier [2]. By applying 
these methods, we are achieving about 2% EER. Since 
then, it seems that performances have reached a plateau. 
This finding motivated us to explore new approaches 
inspired by other application areas.  
                                                             
1 http://www.itl.nist.gov/iad/mig/tests/spk/ 

PLDA and Cosine Distance techniques are based on 
strength assumption that data follow a Gaussian 
distribution. This assumption is not always correct [3]. 
Introducing latent variables in Boltzmann Machines and 
learning a deep architecture enable to model distribution 
with a high level of complexity [4]. BM is definitely not 
a new research [5]. However, it has recently seen 
progress in term of robustness in learning algorithm. 
BM has been mainly used in image processing 
problems. Recently, many successful attempts of using 
these approaches for speech recognition have been 
reported [6][7][8].  

The rest of this paper is organized as follows. In 
Section 2, we present the general case of Boltzmann 
Machines. Sections 3 and 4 are dedicated to a particular 
case of BM called Restricted Boltzmann Machine 
(RBM). In Section 5, we show how to apply RBM’s in 
speaker recognition. In Section 6 we present some 
preliminary results on NIST SRE2008 SRE telephone 
speech and then conclude.  

2. Boltzmann Machines 
A Boltzmann machine [5] is a stochastic neural network 
with symmetric connections between units and no 
connection in the same unit. In this model, the 
probability distribution of a binary observable inputs v  
is expressed as follows: 

 P(!; θ) = !
!
e!!(!;!) (1) 

where: 

• ! = {!,!} are model parameters, ! is the synaptic 
symmetric weight matrix with diagonal elements 
set to zero and ! is a biases vector.  

• !(!; !) is the energy function of the state vector  !. 
It is given by:  

 E !; θ = − !!!!! − !!!!"!!!!!  (2) 

• ! is a normalizing constant called partition function 
computes as follows 

 ! = !!! !;!
!  (3) 
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Usually the estimation of the partition function  ! is 
intractable and it becomes exponentially hard when 
the complexity of the model increases. However, the 
good news is that for the verification task we don’t 
need to evaluate since it is constant for all the trials.    

 

Figure 1: Boltzmann machine with ! visible units 
! =    {!!,!!…!!} (black states) and ! hidden units 
! =    {!!,!!…!!} (white states). 

The original version of Boltzmann Machine used 
only visible units. The introduction of hidden variables 
in the model (Figure 1) increases certainly its ability of 
modeling more complex pattern for a given data, even 
though this data is not fully observed. 

The training of such a model consists of estimating 
the weight matrix and the biases vector. Unfortunately, 
it is very expensive in term of time and resources since 
it is based on minimization of gradient. Recently, many 
robust algorithms that approximate the gradient are 
developed such as Contrastive Divergence  (CD) [9], 
Persistent Contrastive Divergence (PCD) [10] and 
variational approximations [11].     

3. Restricted Boltzmann Machines 
Restricted Boltzmann machines are a particular case of 
the Boltzmann machine. The architecture of RBM has 
two layers without any interaction between units in the 
same layer, i.e. between visible-visible or hidden-hidden 
(Figure 2).  

This restriction is useful for several reasons.  First of 
all, it makes training easier and faster because of exact 
analytic solution for mathematic derivations of training 
formulas. Second, with this architecture, RBM becomes 
the basic brick in order to build more complex models 
such as Deep Belief Networks (DBN) or Deep 
Boltzmann Machines (DBM).  

Given an RBM with ! binary input states 
{!!,!!… !!}, and F hidden variables {!!,!!…!!}, the 
energy function of the RBM is given by the following 
formula: 

 E !,!; θ = − !!!!! − !!!!"!!   − !!!!!!"  (4) 

where ! is the biases vector of the hidden variables.  

  

 

 

Figure 2: Restricted Boltzmann machine with ! visible 
units ! =    {!!,!!…!!} (black states) and ! hidden units 
! =    {!!,!!…!!} (white states). 

By analogy with the general form of the probability 
distribution of a BM given in equation (1), we can easily 
derive the joint distribution of visible and hidden 
variable as follows: 

  P !,!; θ = !
!
exp −! !,!; !  (5) 

with the partition function Z= !"# −! !,!; !!!  

For a given visible vector ! =    {!!,!!… !!}, the 
probability ! !; !  assigned to ! can be evaluated by 
marginalizing out the hidden variable !: 

 P !; θ = !
!

e(!!(!,!;!))!  (6) 

After some mathematical simplification, we obtain: 

 P !; θ =
!
!
exp !′! 1 + exp !! + !!"

!
!!! !!!

!!!  (7) 

From (5), we can also derive the factorized 
conditional distribution for both the visible and the 
hidden units: 

 P !|  !; θ = ! !!|!; !!
!!!  (8) 

 ! !|  !; ! = ! !!|!; !!
!!!  (9) 

Both of the probabilities,  ! !! = 1|!; !  (that a 
visible unit !! is active observing all the hidden units !), 
and ! !! = 1|!; !   (that a hidden !! is active observing 
all the visible units !), are given by sigmoid functions as 
follow: 

 ! !! = 1|!; ! = !"#$ !!"!! + !!!  (10) 

 ! !! = 1|!; ! = !"#$ !!"!! + !!!  (11)  

!! !! !! 

ℎ! ℎ! ℎ! 

 
!! !! !!  

ℎ! ℎ! ℎ! 

! 
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3.1. Model training 

3.1.1. Derivation of a learning rule 

We can set a learning rule by taking derivatives of log-
likelihood of data based on the model parameters as 
follows: 

 ! !"#! !;!
!!

= !"′ !"#" − !"′ !"#$% (12) 

 ! !"#! !;!
!!

= ! !"#" − ! !"#$% (13) 

 ! !"#! !;!
!!

= ! !"#" − ! !"#$% (14) 

where    .    .   !"#" is an expectation operator calculated 
on the data distribution and   .    .   !"#$% is also an 
expectation calculated with respect to the model 
distribution.  

3.1.2. Gibbs sampling  

During the RBM training, it is very complex to estimate 
the expectation regarding the model   .    .   !"#$%   as 
defined in the previous section. For this reason it is 
fundamental to sample from an RBM distribution in 
order to estimate model parameters or to measure how 
well the model captures the irregularities in the training 
data.  

The sampling method used most in the RBM 
framework is the Gibbs Sampling method.  Starting 
from the visible data !, the Gibbs Sampler of !-steps is 
given as follows: 
 

v0 ~ P v( )
h0 ~ P h | v0( )
v1 ~ P v |h0( )
h1 ~ P h | v1( )
!!!!!!
vm ~ P v |hm!1( )

 

 
In practice, Gibbs Sampling is doing surprisingly well 
with only 1-step. 

3.1.3. Contrastive Divergence CD 

Contrastive Divergence is an approximation of the 
stochastic gradient that is widely used to train the RBM. 
Based on the accumulated model and data statistics in 
(12), (13) and (14), the update rule of parameters is 
expressed as follows: 

 !(!) =!(!!!) + !!    !"′ !"#" − !"′ !"#$%    (15) 

 !(!) = !(!!!) + !! ! !"#" − ! !"#$%  (16) 

 !(!) = !(!!!) + !! ! !"#" − ! !"#$%  (17) 

where  !!,   !!,!! are learning rates.  

4. RBM for continuous data  
Binary representation of real complex data is not 
obvious in the common real problems. Therefore, many 
extended versions of RBM working on real-valued data 
have been proposed [11][12]. The most interesting 
proposed version is the Gaussian-Bernoulli RBM (GB-
RBM). The visible units of GB-RBM are continuous 
Gaussian data and the hidden units are either Bernoulli 
or binary data.  

Given a vector ! =    {!!, !!… !!}   ∈ ℝ of real-valued 
states. The energy function of a GB-RBM is given by:   
 

 E !,!; θ = − !!!!! !

!!!
!! − !!

!!
!!"!!   − !!!!!!"  (18) 

where ! is the standard deviation. 
In analogy with the binary RBM we can also easily 

derive the marginal probability function as follows: 

 P !,!; θ = !
!
exp −! !,!; !  (19) 

with the partition function Z= !"# −! !,!; !! !" 

 P !; θ = 

!
!
exp !!! ! !!!

!!!
1 + exp !! + !!"

!
!!!

!!
!!

!
!!!  (20) 

Also conditional probability functions are given by the 
following formulas: 

 ! !! = !|ℎ; ! = !
!!  !

exp − !!!!!! !!"!!!
!

!!!
!  (21) 

 ! !! = 1|!; ! = !"#$ !!"
!!
!!
+ !!!  (22)  

where ! is real number. 
In practice, we perform whitening as a preprocessing 

of the data before modeling it with GB-RBM. This 
whitening ensures the same ! ≈ 1 for all visible states 
and simplifies the implementation of the model.  

5. RBM for Speaker Verification   
The problem of Speaker Verification can be 
implemented as follows. Given two i-vectors: 
! =    (!!, !!… !!)  and ! =    (!!, !!… !!)    (! for 
enrolment and ! for test). The question that arises is 
whether these two recordings are belonging to the same 
speaker (Target class) or to different speakers (Non-
Target class). 

Based on this implementation of speaker verification 
problem, we propose to model Target and Non-Target 
classes by two different GB-RBM’s1. Each RBM has as 
input a concatenation of two i-vectors !, !  (Figure 3).   

We refer RBM-T (with parameters !!) as the RBM 
of the target class. RBM-T is trained on a set of target i-

                                                             
1 For simplicity we will use shortly RBM to refer to GB-RBM for the 
rest of this paper. 
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vector couples !, ! . By analogy, we define RBM-N 
(with parameters !!) as the RBM for non-target class. 
TBM-N is trained on non-target data only. 

 

Figure 3: Restricted Boltzmann machine with 2×! 
visible units ! =    {!!, !!… !!} for speaker enrolment 
utterance (left),  ! =    {!!, !!… !!} for test utterance (right) 
and ! hidden units ! =    {!!,!!…!!}. 

5.1. Model Scoring  

The Log Likelihood Ratio (LLR) is traditionally used in 
order to compute the decision scores on speaker 
verification system.  In our modeling, the decision score 
is evaluated using LLR as described in the following 
equation 

 ! !, ! = log ! !,!;!!

! !,!;!!
   

                            = log! !, !; !! −! !, !; !!  (23) 

It is clear that our approach will not provide 
symmetrical scores since ! !, !;!"# ≠ ! !, !;!"# . 
In order to resolve this problem, we propose a 
symmetric version of the scoring defined as: 

 SymS !, ! =    !
!
S !, ! + S(!, !)  (24) 

6. Experiments 
We performed experiments on the short2-short3 
condition of the NIST SRE 2008 FEMALE part. We 
use the Equal Error Rate (EER) and the old minimum 
Detection Cost Function (DCF) of NIST as metrics to 
report the results.  

6.1. Feature extraction 

6.1.1. Universal Background Model 

We use a gender dependent Universal Background 
Model (UBM) containing 2048 Gaussians. This UBM is 
trained with the LDC releases of Switchboard II, Phases 
2 and 3; Switchboard Cellular, Parts 1 and 2; and NIST 
2004–2005 SRE. It was trained on 60-dimensional 
vector of Mel Frequency Cepstral Coefficients (MFCC) 
with their first and second derivatives. 

6.1.2. i-vector extractor 

We use a gender dependent i-vector extractor of 
dimension 600. Its parameters are estimated on LDC 
releases of Switchboard II, Phases 1, 2 and 3; 
Switchboard Cellular, Parts 1 and 2; Fisher data and 
NIST 2004, 2005 and 2006 SRE. In order to train the i-
vector extractor, we performed minimum divergence 
training algorithm [1] at the last step of the training 
process in order to make all the i-vectors having zero 
mean and variance equals to Identity which is a crucial 
assumption on the training on GB-RBM, ! = 1. 

6.1.3. Results 

We carried out two experiments. The first one used i-
vectors without any post-processing. In the second 
experiment, we normalized the length of the i-vector 
before as input to the two RBMs. This processing is 
based on the work presented in [13] which proves that 
the length normalization makes the distribution of the i-
vectors more Gaussian. Results are reported on Table 1.  

Table 1: The results obtained with the generative RBMs 
based on both raw and length normalized i-vectors. The 
experiments are carried out on NIST 2008 SRE (Det7).  

 Non-sym 
(e,t) 

Non-sym 
(t,e) 

Symmetrical 
scoring 

EER DCF EER DCF EER DCF 
Raw i-vector 
 

8.6% 0.044 9.6% 0.048 7.1% 0.037 

Length 
normalization 

8.7% 0.041 9.4% 0.044 7.0% 0.035 

 
Results shows that length-normalized i-vectors 

produce slightly better performance compared to the 
raw ones. We also note from Table 1 that the 
symmetrical scoring always outperforms the non-
symmetrical ones. However, the performances are 
definitely worst compared to the ones obtained by the 
PLDA [3] and the cosine distance classifier [2].  

7. Conclusions 
In this work we presented a new paradigm for speaker 
verification. Despite its lower performance than the 
state-of-the-art systems (Probabilistic Linear 
Discriminant Analysis and the Cosine Distance 
classifier), we believe that BM could open new 
horizons in the speaker verification area. From 
complexity point of view, the proposed model is quite 
simple. We believe that these results can be improved 
with the use of Deep Boltzmann machines rather than a 
single layer of restricted Boltzmann machines. 

 

ℎ! ℎ! ℎ! 

! 

!! !! !! !! !! !!  
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